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Abstract

We develop a phase-field model for the solidification of a pure material that includes

convection in the liquid phase. The model permits the interface to have an anisotropic

surface energy, and allows a quasi-incompressible thermodynamic description in which

the densities in the solid and liquid phases may each be uniform. The solid phase is

modeled as an extremely viscous liquid, and the formalism of irreversible thermodynamics

is employed to derive the governing equations. We investigate the behavior of our model

in two important simple situations corresponding to the solidification of a planar interface

at constant velocity: density change flow and a shear flow. In the former case we obtain a

non-equilibrium form of the Clausius-Clapeyron equation and investigate its behavior by

both a direct numerical integration of the governing equations, and an asymptotic analysis

corresponding to a small density difference between the two phases. In the case of a parallel

shear flow we are able to obtain an exact solution which allows us to investigate its behavior

in the sharp interface limit, and for large values of the viscosity ratio.
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1 Introduction

Diffuse theories of interfaces separating two bulk phases were developed in the 19th Century by

Poisson [1], Gibbs [2], Maxwell [3], Rayleigh [4], and van der Waals [5]. Previously, interfaces

had been modeled by Young, Laplace and Gauss as surfaces. In the latter formulation the

interface is regarded as a singular surface on which associated physical mechanisms are localized

and represented as boundary conditions to be applied at the surface; e.g., the notion of surface

energy as an energy per unit area of the interfacial surface. This description of a phase boundary

is sometimes referred to as a ‘sharp interface’ model and results in a so-called ‘free boundary

problem’. In contrast, diffuse interface theories recognize that, in reality, the interface has a

finite thickness (albeit small compared with typical macroscopic length scales) in which physical

quantities, such as density or composition, vary between their values in the adjacent bulk phases

(see, e.g., [6,7]). Quantities that in the sharp interface formulation are regarded as localized to

the interfacial surface are, in the diffuse interface setting, identified as being distributed within

the interfacial region. For example, the surface energy of an isothermal interface is derived from

the elevated Helmholtz free energy density throughout the whole interfacial region.

Diffuse interface models may be based on an extended thermodynamics involving gradients

of the thermodynamic variables to account for nonlocal effects. Originally such theories were

formulated to investigate liquids near their critical point and have subsequently been refined

and developed to account for a wide range of physical situations, such as liquid crystals [8],

superconductivity [9], spinodal decomposition [10,11] and ordering transitions in alloys [12-14].

Rowlinson and Widom [15] provide a thorough account of their historical development.

The phase-field model of the first-order phase transition associated with the solidification of

a pure material was first proposed by Langer [16, 17] and subsequently developed by a number

of researchers [18-23]. Phase-field models provide an example of a diffuse interface model in

which an order parameter, <j>, is postulated whose value indicates the phase of the system at a

particular point in space and time (in this paper <j>
= 1 and <f>

= 0 denote the solid and liquid

phases, respectively). Langer represented the free energy of a single-component system by a
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gradient energy functional of the form

T =
Jv {lt

2
\V<f>\

2 + f(4>,T)}dV, (1)

where e is the gradient energy coefficient and T is the temperature. The free energy density,

/(0, T), has a double-well structure with respect to 0 in which the two local minima correspond

to the solid and liquid phases. Langer proposed the following governing equations for the phase

field and temperature:

,,<90 6TM— = ——

-

dt 5(f)

(
2

)

(
3 )

where 1/M is a positive constant termed the mobility, c is the heat capacity, k is the ther-

mal conductivity and L is the latent heat per unit volume of the material. This phase-field

formulation replaces the free-boundary problem associated with the sharp interface model of

an interface by a coupled pair of nonlinear reaction diffusion equations. The location of the

interface is represented by the level set 0 = 1/2.

The original derivation of the phase-field equations was justified by requiring the free energy

of the system to decrease monotonically in time. The equation for the temperature (3) wras

based on a modification of the heat equation to allow a source term that accounts for latent heat

production at a moving interface. Subsequently, Penrose and Fife [23] and others [24-27] applied

the arguments of irreversible thermodynamics to the derivation of the phase-field equations,

establishing that they are consistent with non-negative local entropy production.

The phase-field equations have been extended to allow for anisotropic surface energy by a

number of authors [20,28,29]. In particular, Kobavashi [28] proposed that the gradient energy

coefficient, e, may be regarded as a function of V0 in order to model surface energy anisotropy,

and Taylor and Cahn [30,31] suggested that the square gradient term in the free energy functional

be replaced by [T(V0)] 2
,
where T(V0) is a homogeneous degree one function of its argument.

Wheeler and McFadden [32] showed how this formulation could be used to define a generalized

form of the ^-vector [33,34], which provides an elegant description of surface energy anisotropy.
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If we denote p = V</>, then the f-vector is a homogeneous function of p of degree zero with

components given by

tj(p) = £-r (p); (4)
dpj

£ satisfies the fundamental relation [33]

dT(p)=£-dp. (5)

For an isotropic surface energy, this gives £ = V</>/|V0|.

The relation between the phase-field equations and the free-boundary formulation can be

established by examining the so-called sharp interface limit of the phase-field equations. The

phase-field equation has solutions in which fronts form with a width proportional to e wherein

<j> varies between zero and one; the fronts represent interfaces. By investigating solutions of the

phase-field equations in the limit e —> 0, Caginalp [22] showed that the governing equations of the

phase-field model converge to a sharp interface model with associated boundary conditions, i.e.,

a free-boundary problem. By considering different distinguished limits Caginalp showed that a

variety of different free-boundary problems emerge in the sharp interface limit, most of which are

different forms of the classical Stefan problem, as well as the Hele-Shaw problem. Karma and

Rappel [35] also examined different distinguished limits that allow more flexible interpretations

of interface kinetics to be used in numerical calculations. For the anisotropic phase-field model

McFadden et al. [36] obtained, in the sharp interface limit, the anisotropic version of the Gibbs-

Thomson equation in two dimensions. Subsequently, Wheeler and McFadden [32] extended this

analysis to three dimensions by employing the generalized f-vector.

One of the main advantages of the phase-field formulation over the free-boundary problem

lies in its potential to compute realistic and complex interface shapes associated with dendritic

growth. Early calculations [37] were restricted by the available computing power to simple

interface geometries. Kobayashi [28] identified the importance of surface energy anisotropy

for the computation of dendritic growth and exhibited computational results corresponding to

both two and three-dimensional dendrites. Subsequently, numerous workers [29, 38-41] have
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refined the computational technique, provided numerical solutions with improved accuracy, and

addressed issues related to the viability of the computational approach.

The phase field model described above does not include coupling to the momentum equation

and viscous stress tensor of classical hydrodynamics. The aim of the present paper is to formulate

a phase-field model that is fully coupled to the equations of hydrodynamics in a self-consistent

manner. We shall find that this requires the inclusion of an additional stress tensor associated

with the diffuse interface. Wheeler and McFadden [42] showed, using Noether’s theorem (see,

e.g., [43]) that associated with the steady phase-field equation (2) there exists a second rank

tensor

-e
2
|V0|

2 + / I — e
2
W(t) 0 V0, (6)

where 0 denotes the outer product (see Appendix) and I is the unit tensor, which satisfies the

conservation lawr V • E = 0. E represents the part of the stress tensor that results in capillary

forces within the interfacial region. This conservation law has also be derived by Fried and

Gurtin [44,45] using an alternative approach employing configurational forces. The tensor S is

the counterpart of the capillary tensor [46] that acts as the reversible part of the stress tensor

in the theory of fluids near a critical point; the irreversible part is provided by the standard

viscous stress term of a Newtonian liquid.

In the original theory for a critical fluid, the density, which satisfies the continuity equation,

is treated as the order parameter and appears instead of 4> in the capillary tensor analogous to

(6). The momentum equation, modified to include the divergence of the capillary tensor, governs

the flow while an equation of state relates the pressure, temperature, and density. This original

theory for a critical fluid has been extended to investigate a range of hydrodynamic phenomena

including capillary waves, moving contact lines, droplets and nucleation [47]. In the context of

a binary fluid, the composition may play the role of a conserved order parameter that satisfies

a Cahn-Hilliard equation [10]. A variety of situations have been studied ranging from spinodal

decomposition to thermocapillary flow; the review by Anderson et al. [47] and references therein

provide further details. An early attempt to include fluid motion within a phase-field model
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is due to Caginalp and Jones [48,49]. They appended the inviscid momentum equation and

the continuity equation to the phase-field model, but did not address the issues of momentum

balance in the solid and capillary contributions to the stress tensor. Diepers et al. [50] have

employed the methodology of two-phase fluid flow, where (j> is interpreted as a solid fraction.

Their model is used to study coarsening in a binary solid/liquid mixture with and without flow.

Tonhardt and Amberg have also performed two-dimensional numerical studies using adaptive

finite elements to study the effects of a shear flow on dendritic growth morphology [51,52].

In this paper we bring together several ideas to develop a phase-field model which allows for

convection in the liquid phase. Our model has two notable aspects: first, we represent both the

solid and liquid phases as Newtonian fluids in which the viscosity of the putative solid phase is

specified to be much larger than that of the liquid phase. Second, the interface is ascribed an

anisotropic surface energy, which is non-standard for a model which treats the two phases as

Newtonian fluids. These unconventional features are in keeping with our intention to model a

solid-liquid system. In order to obtain the desired viscosity variation between the phases, the

viscosity is assumed to depend on the phase field, (p. The anisotropic surface energy is achieved

by employing the generalized £-vector formalism [42]. Unlike previous diffuse interface models,

which incorporate fluid motion coupled to a conserved order parameter description [47], we adopt

a nonconserved order parameter, </>, in line with our aim of directly extending conventional phase

field models of solidification to account for convection. This has the advantage that we may

treat quasi-incompressible systems [53] in which the density of the solid and liquid bulk phases

are each spatially uniform by allowing the density, p, to be a prescribed function of (p.

With these assumptions we develop the irreversible thermodynamics of the model from gra-

dient functionals for both the entropy and internal energy. We identify governing equations that

are consistent with the first and second laws of thermodynamics. The quasi-incompressibility

assumption, which allows the density to depend solely on <p and not the pressure, p, restricts

the form of the thermodynamic potentials that may be employed [53]. The model comprises the

compressible Navier-Stokes equations with a modified stress tensor which includes additional
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terms related to S as given in equation (6), an energy equation and a phase-field equation

involving a material time derivative of 0.

In order to investigate and validate this new model we examine it in some simple situations.

First, we consider an isothermal planar interface at equilibrium. We show that the model

recovers the classical equilibrium state in which the chemical potential and pressure are equal

in each bulk phase and the changes in temperature and pressure for coexistence are related

to the density and entropy mismatch of the two phases by the Clausius-Clapeyron equation.

We then investigate the non-equilibrium situation in which the planar interface advances with

constant velocity and an advective flow is induced in the liquid due to the density mismatch. We

derive a non-equilibrium form of the Clausius-Clapeyron equation, obtain numerical solutions

and conduct an asymptotic analysis for small density mismatch. Finally, we investigate the

situation in which a planar interface advances with constant speed into the melt with a parallel

shear flow ahead of it. We are able to obtain closed form solutions and investigate them in both

the sharp-interface limit as well as the limit in which the viscosity of the solid is much greater

than that in the liquid.

2 The Model

We consider a non-isothermal system consisting of a pure material that may exist in two distinct

phases. We follow the standard phase-field methodology and introduce a phase-field variable,

0(x, £), whose value indicates the thermodynamic phase of the system as a function of time, t,

and position, x. Both phases are treated as fluids, although in the applications we will assume

that one phase has a much larger viscosity and interpret it as an approximation to a solid phase.

In many solidification applications, a fluid model is used for the thermodynamic description

of the the solid phase, in that the elastic properties of the solid are ignored. We will also

consider that the phase transition is first-order and has an anisotropic surface energy, which is

unconventional for a fluid-fluid system, but is consistent with our intention to model a solid-

liquid system. We adopt the convention that 0 = 0 denotes the liquid phase and 0 = 1 denotes
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the solid phase. A solid-liquid interface is represented by a thin layer in which the phase field

varies rapidly between zero and unity. The governing equations are derived by following the

formalism of irreversible thermodynamics [54], as originally applied to the phase-field equations

by Penrose & Fife and others [23-25]. The steady-state versions of the equations can also be

obtained by appealing to variational arguments as in Ref. [42]. Derivations based on mechanical

microforce balance laws, as developed by Gurtin et al. [55,56], are also possible.

2.1 Nonequilibrium Equations

We assume that the total entropy, in a material volume, Cl(t), of the system is given by

<S == /JQ{t)
ps y|r2(V0) dV,

(
7

)

where p is the density and s is the entropy per unit mass. The first term in the integrand, ps, is

the classical entropy density (per unit volume) and the second is a nonclassical term associated

with spatial gradients of the phase field. Here the gradient entropy coefficient es is assumed

to be a constant for simplicity, and F is a homogeneous function of degree unity. As we show

below, the function T allows for a general anisotropic surface energy of the solid-liquid interface.

An isotropic surface energy results from the choice T(V0) = |V</>|.

The total mass, A4, linear momentum, V, and internal energy, E, associated with the material

volume are assumed to have the form

M

V

E dV,

(8 )

(
9

)

(
10

)

respectively 1
. Here u is the velocity, e is the internal energy density (per unit mass) and ce is

1 For simplicity we omit a possible gradient term in the density functional M
;

its inclusion modifies the

continuity equation and replaces the gradient Helmholtz free energy coefficient ep in Eqns. (29) and (35) by

a gradient coefficient ep corresponding to a thermodynamic, or Kramers, potential function. This is briefly

indicated in section 2.2 below.
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the gradient energy coefficient, which is assumed to be constant. The thermodynamic relations

de = T ds + dp + d$, (11 j

p
2 d(p

e = Ts - p/p + p, (12)

are assumed to apply locally, where p is the thermodynamic pressure and p is the chemical

potential (or Gibbs free energy per unit mass).

The physical balance laws for mass, linear momentum, and internal energy are given by

dM
dt

- 0, (13)

de

dt .

dV

dt
= / fi • m dA

,

J6Q(t)
(14)

/ qE • n dA
J6n(t)

II

oT"

-s

jo
3 Si

s.> (15)

respectively, where h is the outward unit normal to <5Q(t)
,
m is the stress tensor, and q% is

the internal energy flux. The momentum balance (14) requires that the rate of change of the

total momentum of the material volume results from forces acting on its boundary 5Q(t) (for

simplicity we neglect body forces such as gravity; their inclusion is straightforward). The energy

balance (15) equates the rate of change of the total internal energy of f2(t) plus the energy flux

through its boundary to the rate of w^ork of the forces at its boundary.

In addition, the entropy balance takes the form

— +/ qs • h dA = f s
prod

dV, (16)
dt Jsn(t) Jn{t)

wrhere qs is the entropy flux and s
prod

is the local rate of entropy production. The second law

of thermodynamics is then expressed by the requirement that s
prod

is non-negative.

To proceed we recast the conservation laws ( 13)—(16) as differential equations. These are

used to express the local entropy production in terms of the fluxes m, and qs ,
as well

as D<j)/Dt. We then identify forms for these quantities vrhich ensure that the local entropy

production is non-negative. The fluxes that result from this procedure involve both classical
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contributions and non-classical contributions that depend on V</>. In addition, we obtain an

evolution equation for the phase field.

Applying the Reynolds transport theorem [57] to the mass balance law (13) gives the conti-

nuity equation in its conventional form

^ + PV-u = 0, (17)

where the material derivative of p is denoted by Dp/Dt = dp/dt + (u • V)p. Similarly, the linear

momentum equation takes the form

Du
P Dt

V • m. (18)

where, if rrijk denotes the components of m, then V • m has components drrijk/dxj.

The energy equation is more complicated, and we discuss it in more detail. From (15) it

follows that

/Jn{t)

De _ Du _
P
lDt

+ PU '

~Dt
~ V '

’ U
' + V * QE dV + if h|r2(v<p)dv = o.

at Jn(t) 2
(19)

In Appendix A we show that

-!
dt Jn(t)

l

-r2(V4>)dv =
(
20 )

where

Qg = v •
(rf|T -

•
(r|) - rvu : £® v^» + ir2v • u. (21)

Here we have introduced the Cahn-Hoffman ^-vector [33] for a diffuse interface [42] as given by

Eqn. (4). If we set p = V0, it has components £j
= dT (p)/dpj] for an isotropic surface energy,

this gives f = V<j>/\V<j)\. Hence we deduce that

Hg
J~

^

)
p-— + pu • —- - V • (m u) + V • qE + e%

Q

G = 0. (22)

We now employ the conservation of linear momentum (18) to rewrite this equation as

De
p

—

+ u • (V • m) - V • (m • u) + V • qE + £
2
eQg = 0, (23)

10



which on using the identity

V • (m • u) — (V • m) • u + m : Vu, (24)

simplifies to yield the energy equation as

De

~Dt
p— + V • qE = m :W - e

2

EQG . (25)

Here m : Vu = nrikjduj/dxk (with summation over repeated indices implied). In an analogous

way, the entropy balance (16) leads to the result

Ds

DtPttt + V • qs — s
prod + e|QG . (26)

The thermodynamic relation between Ds/Dt and De/Dt follows from Eqn. (11) and is given

by

De _ Ds p Dp de D6
Dt Dt p

2 Dt dcj) Dt
(27)

The continuity equation (17) and Eqns. (21), (25), and (27) can be used to express the entropy

production given by Eqn. (26) as

\prod _2_

T
rrt + e|T£ 0 V0 +

6Ft 2

"-f r

+ V •
( qs

-
) + (

&

+ 4r(^) v
( ^ )

,

& _ eF TC0^

T T ^ Dt Dt J
(28)

where e
2
F = e

2
E + Te|.

We now make the following choices for the constitutive equations for the fluxes and D<j>/Dt

which ensure that s
prod

is positive

M

m =

D(j)

~Dt

Qe =

Qs =

-
P + fr- I - cjTf 0 V0 + r,

*(?)-**&

(29)

(30)

(31)

(32)
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Here r is the viscous stress tensor, which for a Newtonian fluid is given by t — p(Vu + S7ur
) +

A(V • u)I
,
where p and A are coefficients of viscosity, I is the unit tensor, and M is a positive

mobility coefficient which we take to be constant. A constant value for the thermal conductivity

k corresponds to the choice k = T2
k. The resulting equations of motion assume the form

P

M

Dp
Dt
Du
'Dt

D<\>

~Dt

De

Dt

= -pV • u,

V • -p + ^4r 2

)

/ - <g> v<t> + r

= 4v-(ra-P
de

= V • [hVT] + e|V • (T|)
Dcf)

~Dt

+ -P + jTe|T2

)
I - Te\Yi ® + r : Vu.

(33)

(34)

(35)

(36)

2.2 Equilibrium Equations

The equilibrium form of the above governing equations with u = 0 admits an isothermal solution

that also satisfies

0 = V- i-p+jr 2)/-4rf®

o = 4v.(rj)-p|.

(37)

(38)

By applying the divergence operator in (37) and using the fundamental relation (5), Eqn. (37)

can be reduced to the form

o = Vp + e
2
FV (if) V<f>. (39)

These equations also result directly from a variational formulation, which may be stated equiva-

lently as either an entropy maximization or an energy minimization; we briefly sketch the latter

argument. We temporarily include a gradient coefficient €m in the density functional (8) to illus-

trate the appearance of the thermodynamic, or Kramers, potential function in the formulation;

we subsequently set cm = 0 to recover the simpler model that we consider in the remainder of

the paper.
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We consider a convection-free equilibrium state, and set

0 = S{£ - XsS - AmM) =
6 J

pe — Xsps — XmP + (
ei + Xs e

2
s - Am^) 2r 2 (v<« dV, (40)

where A5 and Am are Lagrange multipliers that are introduced to account for the constraints of

constant total entropy and mass. Taking variations with respect to 5s, 5p, and 5</> gives

0 = pes
- Xsp , (41)

0 = e + pep — XsS — Xm, (42)

0 = pe^ — (eE + A565 — XM e
2
M)V • (T<f), (43)

respectively. Eqn. (41) implies that the temperature T = e s is uniform and equal to the Lagrange

multiplier A$. Using the relation ep = p/p
2

,
Eqn. (42) gives that Am = e + p/p — Ts = p is

also constant. In Eqn. (43) it follows that e
2
E 4- Xse

2
s — Xm^m = + Te2

s — pe2
M = e

2
K ,

where

eE is a gradient coefficient corresponding to the thermodynamic, or Kramers, potential function

pe — pTs — pp. Setting cm — 0 replaces eE by the Helmholtz free energy coefficient eE defined

by e
2
F = e\ + A565, so that Eqn. (43) becomes identical to Eqn. (38). We henceforth set cm = 0,

so that eE reduces to ep.

The equivalence of Eqn. (43) and Eqn. (39) results from the Gibbs-Duhem equation, which

for constant values of T and p implies that

-Vp = pe^V^ (44)

Alternatively, an application of Noether’s theorem [43] to the translation invariant functional

C — —Q+ \t
2
FY

2
in Eqn. (40), where —p = pe — pTs — pp, leads to a divergence-free stress tensor

[42]

<«>

which is identical to the equilibrium form for m in Eqn. (29) with r = 0 that appears in

Eqn. (37).
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Equilibrium is therefore characterized by uniform temperature and chemical potential. In

contrast, there are pressure gradients in the interfacial regions where V</> / 0, although the

far-held pressures in the bulk phases are equal.

2.3 Quasi-Incompressible Thermodynamics

In order to study situations in which the density in each phase is uniform, it is convenient to

adopt a thermodynamic formation which does not employ the density as an independent variable,

as in the model of quasi-incompressible how considered by Lowengrub and Truskinovsky [53]

and also in the work of Rooney et al. [58] on modeling thermal expansion in a Newtonian huid.

We therefore choose the pressure and temperature as independent variables, and work with a

Gibbs free energy per unit mass, g(T,p
: </>), which, aside from its argument, is formally identical

to the chemical potential p(p,T,4>) appearing in Eqn. (12). The internal energy per unit mass

may then be written in the form

e = g{T,p,<t>) + Ts{T,p, <j>)

P

p{T,p
, 4>Y

(46)

where we note the identities

s(T,p, <j>)
= -dg <^>11

r-H de
.
d9

dT p{T,p,<t>) dp
T,cp

dcj)
S,p T

(47)

V,T

where the variables which are held constant in forming the various derivatives are indicated

explicitly. We prescribe the density as a function of the phase-held variable <j> alone,

p(4>) = psr(4>) + pL [
1 - r(<t>)\

, (48)

where the solid and liquid densities ps and pL of the bulk phases are constants, and r(</>) is a

smooth monotonic function that has r(0) = 0 and r(l) = 1; we will take r(</>) = <j>
2

{3 — 2 </>).

Then, from Eqn. (47) we note that since p is independent of the pressure, the Gibbs free energy

may be expressed in the form

g{T,p,<t>) = ga {T,4’)+
{lj^, (49)
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where p0 is a reference pressure. The function g0 (T, cf>) is assumed to have the form

go{T,<i)) = «
- ibH ( -B -cTI>“ (£) +

(50 )
4a5 j \ ±m' \J-m

Here e0 is a constant reference energy, the heat capacity per unit mass c and latent heat per

unit mass L are assumed to be constant, Tm is the melting point at the reference pressure p0?

as and a are positive constants, and H(</>) is a double-well potential, which we will assume is

given by H(</>) =
(f)

2
(l — (f))

2
. This form for g0 is consistent with an internal energy which is a

linear function of temperature, which leads to the classical heat equation in the bulk liquid [25].

The corresponding expressions for the entropy and internal energy are then

s= ^{ e°- rWi+iM +cln (£)’ (51)

e — e 0 + c(T — Tm) ~ r ((f>)T +
1 1

,4as 4a
HW- Po

pW
(52)

3 Examples

In this section planar solidification fronts moving with constant speed V are examined. In this

case, the anisotropy of the surface energy plays no role, and we assume T(V0) = |V0|. The

solutions are assumed to depend only on the vertical variable z — z' — Vt, where z' is measured

in the rest frame of the solid, and the one-dimensional solutions are time-independent functions

of 2 . The velocity is measured in the rest frame, so that the velocity vanishes in the absence of

driving forces. In the moving frame, the governing equations (33) - (36) can then be expressed

as conservation laws for mass, horizontal and vertical components of momentum, and energy,

together with the phase-field equation, as

0

0

0

d

dz

d_

dz

d

dz

[p{w- V)],

p(w — V)u —

p(w — V)w +

*>E
2
F [2p{4>) + ^(0)]

(53)

(54)

(55)
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° dz
p(w - V) {e + i(» 2 + u,

2

)}
- e

f(w - V)
(g)

- fcWg

- - CW) + V4wg +
«/ jp + ^4 (g

0 = 4g-"(-v)S-pg.

(56)

(57)

respectively. Here for simplicity we consider a two-dimensional flow u = + with horizontal

and vertical velocity components u and w in the x and 2 directions, respectively. The material

properties k, p, and A are assumed to be constant in each bulk phase, depending only on <j>.

3.1 Equilibrium of a Planar Interface

The solution for a stationary planar interface in the absence of convection includes the conditions

for thermodynamic equilibrium, and represents a special case of the discussion in Section 2.2.

The sample is assumed to occupy the region — oo < 2 < 00
,
with </>(z) —

>

1 as 2 —» — 00 and

0 (
2

)
—>• 0 as 2 —>• 00 . The density and horizontal momentum equations are satisfied identically.

The energy equation admits an isothermal solution, and the remaining equations (55) and (57)

give

•'S
- “• |58>

and

p = p~-Y\Tz)’ (59)

where is the common value of the pressure in the bulk phases where the gradient of the phase

field tends to zero. By using (58) and (59), the derivative of g(p, T, 4>) with respect to 2 vanishes,

and so represents a first integral for the system as noted in Section 2.2. Upon elimination of

the pressure, Eqn. (58) represents a second order differential equation for the determination of

0; some numerical examples are given below.

Equating the bulk values of the chemical potential by setting g(poo,T,0) = g(p(X)1 T\ 1) in

16



Eqn. (49) gives an integrated form of the Clausius-Clapeyron relation [59],

{m>

which gives the dependence of the phase transition temperature on the pressure; here we recall

that Tm is the melting point at the reference pressure po. Bulk equilibrium values for a one-

dimensional planar equilibrium state are therefore completely determined if, say, the far-held

value of the pressure in the solid is given, since the far-held pressure in the liquid is the same,

and the Clausius-Clapeyron relation then provides the value of the temperature. Bulk values

for the other thermodynamic variables follow from the known values of the temperature and

pressure.

We note that LaCombe et al. [60] have proposed to take advantage of the relatively rapid

response of the melting point to pressure changes in dynamic solidihcation studies. For example,

during dendritic growth the response of the tip operating conditions to pressure-induced changes

in the bulk melting point can be examined in this way. We also note that Maruyama et al.

[61] have examined transitions in the kinetic growth shapes of ice J^, from a circular disc to

a hexagonal plate, in response to pressure-induced alterations of the melting point near the

roughening transition.

3.2 Density-Change Flow

Here we consider the steady flow normal to a moving planar solidification front that is gener-

ated by unequal solid and liquid densities; the horizontal momentum equation is then satisfied

identically. For simplicity of discussion we consider motion that is dominated by the effects of

interface attachment kinetics rather than diffusion; that is, diffusion is sufficiently rapid that the

system remains in thermal equilibrium, and the rate of solidification is determined by the devi-

ation of the temperature from the equilibrium melting point. We therefore ignore the equation

for energy conservation, and assume an isothermal system.

(Poo - Po)
1

Ps

1

PL
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The conservation of mass equation (53) implies that

p(w -V) = J, (61)

where the constant Jm represents the mass flux through the interface. For a stationary solid we

have that Jm = —psV ,
and

The flow velocity in the liquid far from the interface is then wg
3 = —V(ps/pL ~

1), representing

a contraction flow if the solid is more dense than the liquid.

The vertical momentum equation (55) gives

(63)

where the constant p1? represents the pressure in the solid in the far field. The difference in the

far-field pressures in the solid and liquid is then given by

(64)

which is analogous to the “vapor recoil” effect in a liquid-vapor system; i.e., a contraction flow

raises the pressure in the solid relative to that in the liquid.

In addition to the jump in the bulk pressure for a moving interface, there is a jump in

the chemical potential that is determined by the phase-field equation (57); this results in a

generalized version of the Clausius-Clapeyron equation in which the effect of pressure on the

melting point is altered by the rate of solidification. A calculation gives

(65)

where we recall from Eqn. (62) that w(z) is proportional to V and vanishes if ps = Pl • This

shows that the jump in chemical potential has a term linear in the solidification rate that depends

on the phase-field profile <j>{z ), a term proportional to V 2 involving the square of the density

18



difference, and a viscous dissipation term proportional to V (since
(
dw/dz

)

2
is proportional to

V2
). By using Eqn. (64) for the pressure difference p’<? — this expression can be written in

the form

+^/j2^)+a(« ] (£)
dz (66)

For the special case of pL = ps only the first integral on the right hand side remains, and we

recover the conventional phase-field description of kinetically-controlled growth, in which <j)(z)

has a hyperbolic tangent profile, and the growth velocity is proportional to the product of 1/M

and the deviation of the temperature from its equilibrium value. The general case requires a

numerical solution to determine the phase-field profile; in the following section we describe an

approximate solution which is valid if the density difference between the liquid and solid phases

is small.

3.2.1 Asymptotic Solution

In this section we study the simplified case where the solid and liquid densities are nearly equal.

We define the density mismatch parameter, (5, by

Ps = Pl{ 1 + 6). (67)

and consider the solution of (53)-(57) in the limit <5—^0. We introduce the expansions

(j> = 0o + $<f>i + • • •
,

(68)

V = y0 + (Wi + ..., (69)

and solve Eqn. (57) for 0 and V. The vertical component of velocity and the pressure are given

by (62) and (63), respectively. The density profile is given by Eqn. (48), and the resulting

vertical component of velocity is small, with w = O(S).

The 0(1) problem for </>0 is given by

2 dV<>
,

dgo n
eF~TT + MV0—, Pl— = 0,

dz2 dz d(j)
(70)
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where here and below go is the free energy evaluated at </>0 (under isothermal conditions). This

equation has the solution

<t>o{z) = 1 [1 - tanh(z/Q)

,

(71)

where the constant 4, which characterizes the thickness of the interface, is

4 — 2cp‘
2a0 (T)

Pl
(72)

Here

1 = 1 If T \

ao(T)
~

a
+

as V TM ) ’

and the leading order interface speed is related to the temperature by

(73)

MV0 — 6LeF^/2pLa0 (T) ^1 —
j

. (74)

In the limit of vanishing double-well height ratio, a/as -> 0, the velocity of the interface

depends linearly on the difference in temperature from the melting temperature Tm- When

T < Tm the leading-order interface velocity U0 is positive (i.e. the liquid solidifies) and when

T > Tm the interface velocity is negative (i.e. the solid melts).

The 0(5) problem for (pi is given by

£<4
2 d2

(f)

i

"F
dz2

+ MV0

d®i

dz

d2
go ^

pL
a </>

2 ^ K, (75)

where

n = MV^ - MV0 [1 - r(<t>0 )}

d<t>°

dz

+ PLr {<l>o)

dz

dgo

d<\)

oo 2

i
CM

o-e-

Ps -Po-
2
€f [dz)

r'W>o)- (76)

Here we have used a density profile of the form (48).

The operator C appearing in equation (75) can be written in self-adjoint form by first mul-

tiplying the equation by exp(MV0z/e2
F ). Upon noting that dfo/dz is a solution to the homoge-

neous problem, C(j>i = 0, we deduce the solvability condition

0=1 °vz
°° e-^ndz,
— CO dz

(77)
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where 77 = MV0 /e
2
F . Evaluating this integral gives that

MViQi(V0 )
= -(pf - p0)Q2 (V0 ) + MV0Q3 (Vo) + ^^Q4 (V0 ), (78)

where Qi{V0 ) , Q2 {V0 ) , Qs{V0 ) , Q 4 (V0 )
are the following integrals:

/
oo

exP( 7?C) y>o(0)
2
dC, (79)

-OO

/
OO

exp(rjQ r'(<f>0 (Q)(l>'0(Od(, (80)
-OO

/
OO

exp(»?C) [2t-(0o (C)) - l]K(C)]
2
dC, (81)

-OO

Qi(

V

o) = ^exp(r?C)4: {[^(OlM^C))} (82)

Eqn. (78) gives the the velocity correction, V1; in terms of V0 and p™ — po. Note that Vq is

related to the temperature by Eqn. (74) and hence Eqn. (78) can be regarded as determining

the the interface velocity in terms of the pressure and temperature. This relation represents the

asymptotic approximation to 0(5) of the nonequilibrium Clausius-Clapeyron relation given in

Eqn.
(
66 ). From Eqn.

(
66

)
we observe that to the first order in 5 the only contribution from the

nonequilibrium terms is due to interfacial kinetics represented by the first integral on the right

hand side.

The results of this asymptotic analysis are presented belowr in conjunction with the numerical

results for general values of the solid and liquid densities.

3.2.2 Numerical Solution

In this section we present numerical solutions of the one-dimensional system of governing equa-

tions (53)-(57). Our aim is to solve for the phase-field profile and the solidification front velocity

as the temperature and far-held pressure in the solid vary, and compare the results with our

small-5 asymptotic analysis.

We solve Eqn. (57) for the phase held with w and p given in terms of 0 by equations (62)

and (63), respectively. The numerical procedure involves a hnite difference discretization of the

governing equation (57) on the domain —L < z < L (where L is taken to be sufficiently large so
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as to not influence the results of the calculations). Neumann boundary conditions = 0)

are applied at z — ±L and we require that the integral of 0 — 1/2 is zero, which both fixes

the position of the interface near z = 0 and provides an additional equation that allows the

determination of the interface velocity for given values of the temperature and far-held pressure

in the solid. The discretized system of nonlinear equations is solved using Newton iteration by

employing the software SNSQ [62].

o
6/3

(T-Tm)/Tm x 105

Figure 1 . A plot of the dependence of the interface velocity on temper-

ature for three different far-held pressures in the solid. The data used is

given in Table 1 and corresponds to lead. The solid curves are from the

numerical solution of the governing equations and the dashed curves

show the small 6 asymptotic result evaluated from (78) for S = 0.035.

From top to bottom, the curves correspond to p — p0 = 17 bar, 0 bar,

and —17 bar, respectively.
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In Fig. 1 the solid curves display numerical results for the variation of the interface velocity

with temperature for three different values of the pressure using the material parameters

for lead given in Table 1. We put

p(4>) = ps r(<^) + Mi[l - r(<j>)
j, (83)

where = </>

2
(3</> — 1), and ps and pl are the dynamic viscosities of the bulk solid and

liquid phases, respectively. We use ps/pl = 1 and = — 2p(<j>)/3 in accordance with the

Stokes hypothesis. In these calculations ps > Pl and so from the equilibrium form of the

Clausius-Clapeyron relation (60) we expect the pressure to increase with temperature which is

in agreement with the results for V = 0 shown in this figure. In Fig. 1 we also observe that the

interface velocity decreases with temperature in a roughly linear fashion at fixed pressure. The

effect of changing the pressure is to shift the V(T) curves while preserving their slope. This

behavior is confirmed by our expression for the non-equilibrium Clausius-Clapeyron equation

(66), when we observe that the integrals on the right hand side are all positive. The dashed

curves in this figure represent the asymptotic approximations to these curves that are obtained

in the limit of small density differences.

We also investigated the effect of increasing the viscosity ratio, ps/pl- We observe from

the non-equilibrium Clausius-Clapeyron relation (66) that the viscous dissipation may increase

without bound as the solid viscosity is increased and result in the relationship between tem-

perature and pressure being significantly disrupted. However, we found from our numerical

calculations that for the material parameters given in Table 1 for lead with a pressure difference

p — Po — 0 that this is a very weak effect; the melting temperature varied by 4 % for an increase

in ps/pl from 1 to 106
. For a greater interface thickness of 10

-4 cm the change in the melting

temperature is 2 x 10
-3 % for the same increase in ps/pi .
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Table 1: Properties used in Calculations [64>65]

Property Value Units

Liquid thermal conductivity Kl 0.159 J/(cm s K)

Solid thermal conductivity Ks 0.297 J/(cm s K)

Liquid thermal diffusivity kl 0.108 cm2
/s

Solid thermal diffusivity Ks 0.202 cm2
/s

Melting point Tm 600 K
Heat of fusion Lv 256.0 J/cm3

Kinetic coefficient P 33 cm/ (s K)

Kinematic viscosity V 2.43 x 10~ 3 cm2
/s

Liquid density PL 10.66 g/cm3

Interface thickness 4 1.0 x 10“8 cm
Density change

(Ps/pL )
- 1 0.035 -

3.3 Shear Flow

We consider the case of a shear flow parallel to a planar interface that propagates with a constant

velocity V. Far from the interface, in the liquid, we assume that the component of fluid velocity

parallel to the interface is JJ^. We take a coordinate system coincident with the moving interface,

which is given by the plane z = 0. For simplicity we consider the situation where the system is

isothermal, the density of the both the solid and liquid phases are equal, the surface energy is

isotropic, and the dynamic viscosity has the form

n(<t>) = Hs<f> + (1 - <t>)HL- (84)

Under these assumptions the velocity field is given by u = u(z)i and the governing equations

(53)—(57) reduce to

dud

dz

d

dz

pVu + /i(</>)

dz

P+^i
d(j)

dz

0 = 6
2
d2

<t)
dg

?Is
+MV

Tz- pW

(85)

(86 )

(87)

where p is the common value of the bulk densities. The phase-field equation is identical to the

leading order equation for 0O in the previous section. Its solution is therefore given by (71) with
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the requirement that the interface velocity is related to the temperature in the same manner as

given in Eqn. (74) [when V is identified with V0 }. The momentum equations may be integrated

directly to give

p{z) = Poo ~
64a0 (T)

sech
4

(
—

and

u(z)

Ur*.

— I — A exp
1 + m\ z

2m )-3 {
cosh

z . (\ — m— + tanh
L Vl + mj.

where £ — pL/{pV )
is the viscous boundary layer thickness in the liquid,

(1 — m) 4
P = 2m t ’

(88 )

(89)

(90)

and m — ps/

P

l- The constant of integration, A, is chosen to satisfy the condition that u(—Z) =

0, where Z > 0:

A = exp
/I + m\ Z'

V 2m ) £

.

+ tanh
1

1 — m
1 + m (91)

Taking the sharp interface limit, £e/£ — 0, it is found that u(z) ~ U00 {l—exp[—(z+Z/m)/£]},

for z > 0 (in the liquid), and u(z) ~ bfoojl — exp [— (z + Z)/(£m)]}, for z < 0 (in the solid).

Subsequently, taking the limit in which the viscosity of the solid is much greater than that of

the liquid, m —>• oo, it is found to leading order in the liquid that u(z) ~ Uoo{l — exp (—z/£)},

and in the solid that u(z) ~ U00 (z + Z)/(£m ), i.e., a linear shear.

Thus in the sharp interface limit with the viscosity of the solid much greater than that of

the liquid we recover, at leading order, the exact solution for u(z) in the liquid to the underlying

free boundary problem, i.e., the asymptotic boundary-layer profile u(z) = Uoo{l — exp (—z/£)}.

In the solid phase we obtain a uniform shear flow, with a strain rate of magnitude Uool{2£m).

The velocity at the center of the interface (z = 0) is U^Z/(£m) and so we find that the no-slip

condition at the interface is almost satisfied, the magnitude of the error decreasing in a manner

inversely proportional to m.

Plots of u(z) for different values of m with £J£ — 0.01 are given in Fig. 2. For all values

of m we observe a thin interfacial layer separating the linear shear in the solid from the shear
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flow in the liquid. We see that as m increases the flow in the solid region is suppressed and

adopts a decreasingly small uniform shear while the flow in the liquid approaches the asymptotic

boundary-layer profile, consonant with our asymptotic analysis. The no-slip condition at the

interface, z = 0, is satisfied with greater accuracy as m increases.

o

ing equations for le/i = 0.01 and three different values of the viscosity

ratio hs/hl- From top to bottom, the curves correspond to Hs/hl
equal to 10, 30 and 500.

The above analysis results in a closed-form solution for the specific choice (84) of the dynamic

viscosity //(</>); other choices are, of course, possible, and Eqn. (84) was chosen as a compromise

that maintains consistency with the form (83) used in the previous section while allowing a
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simple exact solution. In general, the detailed behavior of the fluid flow in the interfacial region

would be expected to depend on the specific form chosen for /i(0). For example, interpolating

by the reciprocal, as in 1 / ii(<j>) — </>/ns + {1 — (f>)/nL, also results in a closed-form solution.

Similarly the viscous dissipation in the interface will also depend on the form of //(</>). This

in turn will influence the degree to which the melting temperature is influenced by the ratio

Us/

H

l discussed above for a density-change flow. We note that in a related situation in which a

diffuse-interface model was used to study non-equilibrium effects during directional solidification

of a binary alloy [66], the details of some interfacial quantities, such as a characteristic trapping

velocity, were found to be sensitive to the specific form chosen for interpolating the diffusivity

through the interface; such considerations likely apply to the present case as well.

4 Conclusions

In this paper we have developed a phase-field model for the solidification of a pure material that

includes convection. The model has been derived using the formalism of irreversible thermody-

namics, employing gradient energy and entropy terms that incorporate the effects of capillarity

within the framework of a diffuse interface model. Our solidification model has two distinctive

aspects: we treat both the solid and liquid phases as Newtonian viscous fluids (with a high

ratio of solid to liquid viscosity, and the phase boundaries are endowed with anisotropic

surface energy by using the generalized ^-vector formulation. Both features are consonant with

our intention to model a solid-liquid system. Our formulation neglects elastic effects in the

solid. We work with pressure and temperature as independent thermodynamic variables which

permit a quasi-incompressible formulation in which the densities can be uniform in each phase.

This allows us to model volume-change effects on solidification which we illustrated for the case

of constant velocity isothermal unidirectional solidification. In this setting wT
e derived a non-

equilibrium form of the Clausius-Clapeyron relation which describes how the relation between

pressure and temperature is modified by the motion of the interface. The ability of this two-

fluid model to approximate the no-slip condition at the interface was examined by considering
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a model shear flow parallel to a planar interface. In this situation we found an exact solution

which showed that the correction to the no-slip boundary condition is first order in the quantity

Hl/^s f°r a simple model in which the viscosity depends linearly on the order parameter (j>.

We have focused our attention on the derivation of the model and some important test cases

involving planar interfaces. In future work we plan to investigate the sharp interface limit for

curved interfaces as well as use the model as a computational vehicle for the investigation of

flow effects in dendritic solidification, including the effects of buoyancy forces.
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Appendix

We have

If
dt Jn(t)

\vvdv
'n{t)

f'n(t)

f'n{t)

iar 2
i ,_2 _+ -v r2

u)
2 dt 2

v '
dV,

r^ + £-(rvr) + ir2v-£
dt

v ’
2

dV,

dV,
(
92

)

where we have used the fundamental relation dT(p) = £ • dp, with p = V</>. We note that

v '(r*75t) = ^v-(r|) + rf + rvc = * ® v*. (93)

where the tensor A = £ ® V<j> has components Ajk = £jd(/)/dxk, and the double contraction of

the tensor product is denoted by Vu : A = dukjdx3
A3k . This gives that

-/
dt Jn(t)

\r2 (v<p)dv
'n(t)

V- re _ Dd
Dt ) Dt

1
— rw : £ 0 + -T2V ' ^

v
• (rf)

dV.
(
94

)
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