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Abstract

A multiple-order-parameter mean field theory of ordering on a binary hexagonal-

close-packed (HCP) crystal structure is developed, and adapted to provide a contin-

uum formulation that incorporates the underlying symmetries of the HCP crystal

in both the bulk and gradient energy terms of the free energy. The work is an

extension of the previous treatment by Braun et al. [Phil. Tfans. Roy. Soc.

Lond. A 355 (1997), p. 1787] of order-disorder transitions on a face-centered-cubic

crystal (FCC) lattice. The theory is used to compute the orientation dependence

of the structure and energy of interphase and antiphase boundaries in ordering

to the CdsMg and CdMg structures, which are the HCP analogs of CU3AU and

CuAu structures in FCC. As in the corresponding FCC case, the multiple order

parameters do not form a vector. Anisotropy is a natural consequence of the un-

derlying crystal symmetries and the multiple-order-parameter continuum formation

presented here. The isotropy transverse to the six-fold axis expected for a scalar

order parameter is not found.

Key Words: Diffuse interfaces; hexagonal close packing; anisotropy; mean field

theory; Allen-Cahn equation; interphase boundaries; antiphase boundaries; surface

energy; discrete free energy*.
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1 Introduction

Continuum diffuse interface theories of solid-state phase equilibria are based on thermo-

dynamic descriptions in which the conventional free energy densities for the bulk phases

are augmented by gradient energy terms whose specific forms reflect the underlying sym-

metries of the crystal [1]. For example, in the mean-field description of order-disorder

transitions of a binary FCC crystal considered by Braun et al. [2,3] three nonconserved

order parameters X
3

are used to model the disordered phase and the ordered phases

AB 3 and A 2B 2 . The gradient energy term is a quadratic form in the spatial gradients

dXj/dxk = Xj,k having the general form CjkimXj^X^m ,
wdiere the coefficients Cjkim reflect

the FCC crystal symmetry. Surprisingly, Braun et al. find that the resulting symmetry

of the coefficients Cjkim is not that of a general fourth rank tensor for a cubic material

[4], which is a consequence of the fact that the nonconserved order parameters Xj do not

transform as a tensor under the appropriate changes in coordinates. Braun et al. deter-

mined the form of the coefficients in two equivalent ways, first by invoking invariance of

the gradient energy term to symmetry operations, and also by evaluating the gradient

energy terms in a continuum limit of a discrete Ising-type model that takes into account

nearest and second nearest neighbor interactions.

In this paper we consider the analogous form of the gradient energy term for an hexag-

onal close packed (HCP) binary alloy, by considering the continuum limit of a discrete

Ising-like model. In an appropriate coordinate system, both the HCP and FCC structures

can be described in terms of the layering of close-packed planes. Neighboring planes are

shifted relative to one another, with the HCP structure described by alternating stacking

of two layers [a-b-a-b] and a space group symmetry P6smmc, whereas the FCC structure

involves the stacking of three such shifted layers [a-b-c-a-b-c], and a loss of the six-fold

symmetry, but gaining cubic Fm3m symmetry. The appropriate form of gradient energy

coefficient for an HCP structure is worked out in two steps to facilitate comparison with

the analogous FCC result. We first derive the expression for the contributions to the

gradient energy term from the nearest neighbors in the close-packed planes, which are

common to both FCC and HCP. This in-plane contribution displays a three-fold sym-
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metry, in contrast to the isotropic form which would be expected for a tensor quantity

in two dimensions with hexagonal symmetry. We then obtain the full expression for the

HCP gradient energy terms by adding the contributions from the six first and six second

neighbors in the layers above and below the close-packed plane, which (for the ideal axial

ratio of HCP) are at the same distances, but have different arrangements, for the FCC

and HCP structures. The resulting HCP model retains the three-fold symmetry in the

close-packed planes, as well as isotropic contributions that arise from the second-nearest

neighbors.

The HCP model can be used to compute surface energy anisotropies for interphase

boundaries (IPBs) between ordered and disorder phases and antiphase boundaries (APBs)

between variants of ordered phases. We illustrate the HCP model by giving examples

of both IPB and APB interfacial energies as a function of the interface orientation. An

analytic solution is possible for a particular type of APB in the A2B2 phase, and the

closed-form expression for the surface energy exhibits a two-fold axis of symmetry. For

IPB boundaries between the disordered and AB3 ordered phase, a “wetting” of the inter-

face region by the A2B 2 phase is possible, as in the analogous FCC treatment of Kikuchi

and Cahn [5]. In this case the surface energy, computed numerically by integration of the

one-dimensional governing equations for a diffuse IPB, exhibits anisotropy that is trans-

verse to the six-fold axis of symmetry. A fourth-rank tensor with hexagonal symmetry

would exhibit transverse isotropy
[
6 ].

In the following section we describe the discrete model and describe the form of

gradient energy coefficient that results from a formal continuum limit of the discrete

model. This is followed in Section 3 by application of the model to surface energy

calculations for APBs and IPBs. Discussion and conclusions are given in Section 4.

2 Discrete Model

The HCP crystal structure consists of alternating layers of close-packed crystal planes,

in which a given atom is surrounded by six neighbors in the basal plane. Three other

neighboring atoms appear in each of the close-packed planes immediately above and
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below this atom. In HCP these six out-of-plane neighbors are not strictly equivalent to

the six in-plane neighbors, but in FCC they are. To facilitate comparison with our FCC

results we will at times assume that twelve nearest neighbors surrounding each atom in

HCP, as illustrated in Figure 1, are fully equivalent. There is no difference between HCP

and FCC in the atomic arrangements of pairs of adjacent close packed planes. In both

HCP and FCC there are three first and three second neighbors on each of the adjacent

planes.

Figure 1 . A schematic plot of the hexagonal close packed (HCP) structure,

projected onto the basal plane. The labeling of the four distinguished sites for

the atomic fractions p
7

, p
77

, p
777

,
and p

7v
in the basal plane (filled symbols)

and in the neighboring planes above and below this plane (open circles) is

indicated. Also shown by thick lines is the unit cell for the HCP structure.

For an ideal axial ratio, the nearest neighbors of the central site labeled I in

the figure are the six surrounding neighbors in the basal plane consisting of

diametrical pairs of II, III, and IV sites, and the three sites above and the three

sites below this plane of types II, III, and IV. The next nearest neighbors are

the three sites above and the three sites below this plane that are of type I.
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A result of making the twelve neighbors in HCP identical is that there is no difference

in the energies, entropies, and free energies of alloys of A and B computed from mean

field theories between FCC and HCP if the A-B interactions are the same for first and

second neighbor, and there are no longer-range interactions. Consequently there is an

exact correspondence to the kinds of ordered phases that form, and the phase diagrams

superimpose. Calculations using the cluster variation method find differences in the

entropies that lead to changes in the 8th significant figure in the values of the free energy,

consistent with estimates from exact expansions [7].

Figure 2. The AB 3 ordered state in an HCP crystal. The filled circles corre-

spond to species A, and the open circles correspond to species B. The larger

circles at vertices lie in a basal plane, and the smaller circles at triangle centers

lie in the planes above and below this plane. Also shown by the thick lines is

the unit cell for the AB3 ordered structure.

A major distinction between HCP and FCC is that the atoms in an FCC structure oc-

cupy the points of an FCC Bravais lattice, whereas in an HCP structure the points of the
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hexagonal Bravais lattice are unoccupied. The HCP structure is non-symmorphic; there

are no points with the full 6/mmm symmetry. The atoms sit on a set of symmetrically

equivalent points with symmetry 6m2 that form a lattice complex (a crystallographic

orbit, a Wyckoff position), but not a lattice. Another distinction is that the unit cell

of FCC is given by three orthogonal lattice vectors a; along the cube axes, whereas for

the HCP cell there is one vector c along the six-fold axis and three equivalent but not

independent vectors aj at 120°. This leads to a four index system (hkil) in which h+k+i

= 0 .

Figure 3. The A2B 2 ordered state in an HCP crystal (see Figure 2 for a

discussion of symbols). Also shown by the thick lines is the unit cell for the

A2B 2 ordered structure.

We will be considering interfaces in a particular ordering of HCP in which the close

neighbor interactions would lead to the Cu3Au and CuAu structures of FCC. A proto-

type material for these HCP order-disorder transitions is the Cd-Mg system (see, e.g.

[8]), which admits the ordered phases Cd3Mg and CdMg3 (space group P63mmc, Struk-

turbericht designation DO19) near 25 % and 75 % compositions, respectively, and the
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CdMg ordered phase (space group Cmcm, Strukturbericht designation Big) near 50 %

[9]. The Cd3Mg and CdMg ordered phases are depicted in the next two figures. Fig-

ure 2 shows the AB 3 ordering in an HCP crystal structure that describes the Cd3Mg

phase. Figure 3 shows the A2B2 ordering that describes the CdMg phase. Our treatment

is specifically designed to describe the disordered HCP and ordered Cd3Mg and CdMg

structures in the context of a mean field treatment involving nonconserved order param-

eters that are smooth, slowly-varying functions of space on the scale of the underlying

lattice.

# I-Family •

O II-Family o
B Ill-Family

IV-Family

Figure 4. A schematic plot showing an extended portion of the HCP structure

denoting the the four independent sites. Larger circles and squares correspond

to the in-plane contributions discussed in the text, and the asterisks denote

the sites in the neighboring close-packed planes immediately above and below.
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Each of these ordered states, as well as the disordered HCP state, can be described

with a Nix-Shockley (Bragg-Williams) model having four degrees of freedom, representing

the atomic fractions at each of four distinct sites in the structure that is equivalent to

what was used for FCC [2]. The labeling of the four families of sites is indicated in Figure

4. Interactions between the A and B atoms in the binary alloy can be characterized by

appropriate interaction energies, which we will model approximately by using simple

expansions in terms of the local atomic fraction p at each site (see, e.g., [10]). Our main

concern will be to derive the appropriate form of gradient energy term in a continuum

description of the HCP structure, and for this purpose it will suffice to consider nearest

and second nearest neighbor interactions that will ultimately determine the form of the

free energy functional for the system. With the free energy functional in hand, we are

able to compute the surface energy associated with interfaces between different ordered

and disorder phases as a function of interface orientation and the other model parameters.

We first discuss the description of the bulk equilibrium states in terms of nonconserved

order parameters. To describe inhomogeneous states, such as IPBs and APBs, gradient

energy terms are introduced in two stages, first giving the contributions to the free

energy that take into account only interactions between atoms in the same plane. We

then include the effects arising from out-of-plane interactions to obtain the full expression

for the free energy functional that we use to describe the anisotropy of interfacial energy

in HCP structures.

2.1 Bulk Equilibrium

The ordered states of the HCP structure that we consider can be characterized in terms

of the four parameters p
7

, p
77

, p
777

,
and p

7V
that define the atomic fraction of atom A

at each type of site, as shown in Figure 4. These four parameters thus can be viewed

as average values of the atomic fraction over these four families. An elementary tetra-

hedron consisting of one member from each family forms a natural symmetry unit for

the structure, and the form of the bulk free energy density must reflect the underlying

symmetry associated with relabeling of the indices of the atomic fractions p
7

, p
77

, p
777

,

and p
IV

,
which should leave the energy invariant.
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As in the treatment by Braun et al. [2], it is convenient to replace the four atomic

fractions by a single conserved order parameter that represents the overall atomic fraction

of the system, and three nonconserved order parameters that characterize the state of

order in the system and for FCC could be identified with the cubic crystal axes. To

avoid confusion with Ref. [2], for the HCP crystal we will call these four order parameters

respectively Qo,Qi,Q2 ,
and Q 3 . These parameters are defined by

Qo = \{p
i + p

ii +pih + p
iv

}, (l)

Qi = \ {/
- p" + P

,,! - P
IV

} , (
2

)

Q2 = \{p
, + P

n -Pm -Piv
}, (

3 )

Q3 = +/A (
4

)

Here Q 0 is the average composition and is conserved. A more geometric interpretation

of the other nonconserved order parameters Q i, Q2 ,
and Q3 will be given in Section

2.2.1 below when discussing the ordering within a close-packed plane. With this type of

model, the disordered state would be indicated by p
7 = p

11 — p
lu — p

7V
,
implying that

Qi — Q2 = Q3 = 0. Ordered states correspond to non-zero values of any of these three

order parameters.

The bulk free energy function, that is, the energy associated with a homogeneous or

uniform phase, is assumed to depend on the four atomic fractions p
7

, p
77

, p
777

,
and p

IV
,

viz / = /(p
7

, p
77

, p
777

, p
7V

), or, equivalently, to depend on Q0 , Q i, Q2 ,
and Q3 ,

viz F(Qi).

This free energy must take into account the symmetries dictated by the HCP structure.

The arguments and resulting form are similar to those for a FCC crystal [2], and we

merely summarize the results here. The energy should be invariant to permutations such

as

p
11

p
111

p
IV

1 Qi Q21 Q2 Qz: Q3 —
> Qii (

5
)

and to interchanges such as

p
1 —

> p
11

1 p
111

p
IV

5 Qi —Qi, Q2 Q2, Q3 —Q3, (6 )
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so that the bulk energy function F(Qi) must be invariant to permutations in Q 1? Q 2 ,
and

Qz, as well as to sign changes of any two of these variables. Imposing these symmetries

leads to an expression of the free energy of the form (see, e.g., Landau and Lifshitz [11])

F(Qi) = a2{Qi+Q2 JrQl) Jra3QiQ2Q3+a4i{Qi+Q2+Qt)+a42(QiQ2+Q2Ql+QlQi)i (
7

)

where we have expressed the free energy as a simple fourth-degree polynomial in Q i,

Q2 ,
and Qs with the required symmetry. The coefficients will generally be functions

of composition and temperature, but for the purposes of determining the symmetry of

gradient energy terms and computing surface energy anisotropy it suffices to assume

that the coefficients are constant, with F = F(Qi,Q2,Qz)- For example, this would be

appropriate for a description of IPBs at a congruent point of the coexistence curves in

the phase diagram, where the compositions of the two bulk phases are equal, or for APBs

in which negligible concentration variation occurs across the interface.

This free energy function is identical to that used previously in the FCC model of

order-disorder transitions [2], and represents the pointwise energy of the site. In our case

it allows the description of the disordered HCP phase [with Qi = Q2 = Qz — 0], the

CdMg phase [with Qi = Q2 = 0 and Qz / 0, and variants thereof], and the Cd3Mg

phase [with Qi = Q2 = Qz 7^ 0 and variants thereof] that we wish to consider. Inherent

limitations of this simplified description are discussed in [2, 12]. The FCC and HCP

models differ in the form of the derived gradient energy terms that we consider next.

2.2 Gradient Energy Terms

To describe inhomogeneous states such as IPBs and APBs, we retain the description in

terms of the parameters p7 or Qj ,
but assume that a continuum limit exists in which

they are approximated by smooth functions of space that are slowly varying on the scale

of the lattice dimensions. The form of the gradient energy terms is then determined by

considering the formal limit of a discrete energy as the dimensions of the lattice become

small compared to the assumed macroscale lengths.

The point energy f(p) and nearest neighbor contributions to the free energy T of the
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discrete system are assumed to have the form

a? = £ \f{pj,k,l) + “V (pj+l,k,l + Pj-l,k,l + Pj,k+l,l + Pj,k—l,l + pj-i
t
k+l,l + Pj+l,k-l,l) Pj,k,l

j,k,l
L Z

a
+ — {pj,k,l+l + Pj,k,l- 1 + Pj-l,k,l+l + Pj—l,k,l—l + pj t

k-l,l+l + Pj,k-l,l-l) Pj,k,l (8)

where the indices j and k refer to locations within each close-packed plane as described

more fully below, and the index l labels each close-packed plane. Here a and a' represent

nearest neighbor interaction energies in the close-packed plane with index l and the

neighboring planes with indices / + 1 and l — 1, respectively, that are repulsive for positive

values of a and a'. For an ideal HCP structure for which all twelve nearest neighbors

are equivalent, one would have a = a'. The factor of 1/2 is included to account for

the double counting that occurs in the summation over all points. It is convenient to

split the summation over l into two sums over even and odd values of /, which each

lead to identical contributions in the continuum limit. We therefore focus attention on

a representative close-packed plane with index /, and its neighboring close-packed planes

above and below with indices l + 1 and l
— 1.

2.2.1 In-Plane Contribution

If we restrict our attention to the in-plane atomic fractions, a density function for the

close-packed plane can be defined in terms of a plane wave expansion as

p(x) = Qo + Qi cosu
\/3 1 \ _ / \/3 1 \

x ~ y y I + Q 2 cos uy + Q3 cos u -—x+-y
,

N
2 2

— Qo + Qi cos ioy\ + Q2 cos uy2 + Qs cos xy%.
(
9

)

where u = 27r/(h\/3) is the wavenumber corresponding to the wavelength A = 2it/lu =

\/3h between the centers of neighboring hexagons. Here h is the edge length of a hexagon.

The density function consists of a uniform term proportional to Q 0 ,
and three terms that

represent density variations in each of three directions y0
normal to the three basal

lattice vectors aj. Specifically, the local coordinates aligned with the lattice vectors are

given by (x^yi) = {-x/2 - VSy/2,V^x/2 - y/2 ), (x2 ,y2 )
= (z,y), and (x 3 ,y3 )

=

11



(—x/2 + y/3y/2, — y/Sx/2 — yj 2). The four atomic fractions are then given in terms of

the order parameters by

P
1 — p(0, 0) — Qo + Qi + Q2 + Qzi (10)

P
11 — p(h, 0) = Qo ~ Qi + Q 2 ~ Q35 (11)

p
111 — p{h/ 2, \/3/z/2) = Qo + Qi — Q 2 — Qz-, (12)

p
IV — p{~ h/2, y/Sh/2) = Qo — Q\ — Q2 + Qs (13)

Figure 5. The index notation for the discrete variables prior to passing to a

continuum limit.

If the in-plane sites of the HCP crystal are labeled by the coordinates (j,k) as shown

in Figure 5, then the in-plane contribution to the energy Tip from interactions between

neighboring in-plane atoms can be written in the form

Fip - f (Pj,k ) + ^ (pj+l,k + Pj-l,k + pj,k+

1

+ Pj,k-

1

+ Pj— l,k+l + Pj+l,k—l) Pj,k ,

(14)
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as in the Ising model (see, for example, [13]). The sum is rewritten as four sums over

each site type,

rr _ \ t( J \ _i_
a

( Ji Ji
i

Jii
i

All
,

tv , tv \ i
-'IP / y J\Pj,k) ' r\ \Pj+l,k Pj—l,k ' Pj,k+ 1 ' Pj,k— 1 ' Pj—l,k+l ' Pj+l,k—l J Pj,l

j even
k even

+ / (Pj!k) + 9 (Pj+Vk + P>-l,jfc + Pjjc+l + Pj
V
k-

1

+ Pj-pfc+l + Pj,'

II
k

j odd
k even

+ ^2 f(Pj!k) + T (Pj+l,fc + + Pj,fc+1 + Pj,Jfc-l + Pj-l,fc+l + Pj+i,k-l) p]\
III
k

j even
k odd

+ f (Pjjc) + V {Pj+l,k + Pj-l,k + Pj,fc+1 + Pj!k-

1

+ Pj -!,*+! + Pj+l,k-l) Pj]

j odd
k odd

IV
k (15)

Taylor’s Theorem can be applied to the pairwise interactions, giving to leading order the

form

Fip ~ ah2

/V) + -7- (PxL + Px2x2 + pZx3)
p‘

j even <-

k even-

+ E
<ah

2

j odd -

k even

/vo + -
7- b'r*, + pfx 2

+ Pxzx3 ) p
n

+ E
a/i

2

/(P
H
0 + -7- (pOx, + PxL + Pxsx3 )

P
/H

j even l

k odd

+ E
j odd
k odd

2

f{p
IV

) +y (Px{xi + Px2X 2
+ ^^3X3, P

IV
(16)

where /(p) = f(p) + 3ap2
. Here we use subscripts to denote partial derivatives, with

= dp1 /dxj, and so forth. In the limit h —» 0, the sums over nearest neighbors tend

to integrals that, following integration by parts, involve the squares of the derivatives of

the atomic fractions.
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The resulting expressions can be rewritten in terms of the order parameters Qj by using

the definitions (10)— (13) ,
which leads to gradient energy terms of the form

—ah2
[|Vtf(2i|

2 + \VhQ2
\

2 + |V#Q3

, , l 2 ( f V3dQl ldQi

+(i + fy/3
dQ 3

+ I

\ 2 dx 2 dy
(17)

= —ah' \VhQi\
2
-F \VhQ2 \

2 + |V„Q 3
|

2 — 4
dQi

dyi

(dQ 2

\dy2

+
(dQA 2

\dy3

where we have defined \VhQi\
2 = (dQi/dx) 2 + (dQi/dy )

2
,
etc. The terms involving VH

have rotation symmetry in the plane, whereas the latter three terms can be shown to

have a three-fold symmetry. Since we have assumed that the concentration variation is

negligible, no gradients of Q0 appear in these expressions.

2.2.2 Out-of-plane nearest neighbors

The definition of the sites in the neighboring close-packed plane is shown in Figure 4.

The nearest neighbors of p
1

in the neighboring planes are then p
77

, p
777

,
and p

7V
as

indicated. The vertical distance between close-packed planes for the ideal axial ratio is

given by \/6h/3.

In this case a typical out-of-plane interaction term has the form

p\0, 0, 0) p"(0, -h/V3, ±%/6/i/3), (18)

p
1
(0, 0 , 0) p

in(-h/2
,
h/2v/

3, ±V6h/3), (19)

p'(0
,
0, 0) p

I,v
(h/ 2

,
h/2y/3, ±VEh/3). (20)

Permutations of these expressions result from the contributions centered at the sites //,

III
,
and IV. Taking into account all the symmetries, and evaluating in a similar

14



method to the in-plane nearest neighbors, the contributions from the out-of-plane nearest

neighbors take the form

'U 2
a'h \VHQi\

2 +\VhQ2\ 2 + \VHQ 3
\

2 -
dy i J \dy2 ) V dyz ) J

Setting a' — a makes the in-plane and out-of-plane interactions equal.

(21)

2.2.3 Full Expression for Nearest Neighbor Interactions

When a' = a adding together the in-plane and out-of-plane contributions gives the

expression

4ah2
( f y/Z dQi

3 | \ 2 dx

1 dQA
2 dy J

+ 2
V3dQ3 1

2 dx 2 dy J

+
(
22

)

Note that the dependence on the 2 derivatives in this expression is much simpler than

those for x and y derivatives, which show the three-fold symmetry mentioned previously.

The x and y derivatives in the free energy define directional derivatives in the directions

normal to the symmetry planes of the hexagons, in a manner reminiscent of the form for

the density p(x) given in Eq. (9).

2.2.4 Second-Nearest-Neighbors

We will also include gradient energy contributions arising from second nearest neighbor

interactions, which will be assumed to be attractive. Referring to Figure 1, the second

nearest neighbors of a given site are of the same family, located in the planes immediately

above and below the site. Similar methods were applied to the second nearest neighbors,

and the results are isotropic:

|VpJ
|

2 + |Vp/J
!

2 + |Vpm
|

2 + |Vp/v
|

2 ~ IVQU
2 + IVQ2

I

2 + |VQ3
I

2
, (23)
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where |VQi|
2 = |V#<2i|

2 + (dQ\/dz )

2
,
etc. This result is similar to that found for the

FCC model [2], where the effects of the second nearest neighbor interactions was also

found to be isotropic.

2.3 Governing Equations

When a' = a the continuum free energy functional, including nearest and second-nearest

neighbor interactions and the bulk energy, thus has the form

2 /^ \ 2 / _ _ _ x 2

^ ~ f \ Q2 ’ Qz) + j
( \/3<9Qi _ lgQid

| 2
(XhV + 2

(V3 9^3 + 1 dg 3 \+ 2

\~wj
+ Z \~2^ +

2 ~wj

Here A and B are positive constants that are proportional to the nearest and second near-

est neighbor interaction energies, respectively. When a' / a the (dQi/dz) 2 -h(dQ2/dz)
2+

(dQs/dz )

2 term will be multiplied by a third independent positive constant.

The steady-state governing equations for equilibrium solutions take the form

0 =

0 =

0 =

SB _ dF

SQi

ST
SQ2

ST

dQi

dF
dQ2

dF

-BV 2Q l - A

-BV2Q2 - A

d2
Qi

dz2

d2Q2

dz2

-BV2Q3 - a(^ + 2

y/3 a2
Q. 1 g>

2
Qx

4 dx2 2 dxdy 4 dy2

sTi\
dy2

)
’

3 d2
Qz

+ 2

VSd2Qs 1 d2Qs

4 dx2 2 dxdy 4 dy2SQ3 dQ 3

This expression allows the prediction of the dependence of surface energy between

bulk phases on the orientation of the interface, as we will next discuss.

(25)

(26)

(27)

two

2.3.1 Surface Energy

An IPB between the disordered HCP phase and an ordered phase can exist when the

free energy densities of the two bulk phases are equal. In general a common tangent

construction relates the bulk compositions on either side of the interface, but in our

approximate treatment such variations in composition are neglected. To define the surface

energy, consider a one-dimensional solution that depends on a single variable, ( = x • n,
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which varies in the direction of a given unit vector n. The partial derivatives of the order

parameters Q3
then have the form dQj/dxk = UkdQj/dC The second nearest neighbor

interactions are isotropic, since \VQ
3 (

dQj/dQ 2
,
with no dependence on n. The

surface energy, 7 ,
is defined in terms of the free energy per unit area:

T r 16 fdQ l

7 = -=/ -
A J 12 dC

+ l(^j + l(^ 1
(28)

where the orientation-dependent coefficients T are

Zi = A 0
(VS _ 1

'

2
( ^

71x + n\ + B,

£2 A. 2n2 + ni

£3 — ^4
2

2 ( -r-nx + —n.
1

2
y

+ 5,

+ £.

(29)

(30)

(31)

(Note from (7) that F(0,0, 0) = 0).

The governing equations that describe two equilibrium phases in contact can then be

computed by taking the variation of either the full energy functional (24), which results in

a partial differential equation, or the above surface energy functional. The latter results

in ordinary differential equations that have the form

6

$2

$3

d2Q !

d(
2

d2Q2

d(
2

fQz
d(2

dF

dQi’
(32)

dF

dQi
(33)

dF

dQi
(34)

These equations are to be applied over the range — oo < C, < oo, with far-held values

given by the bulk equilibrium values in each phase. The equations admit the first integral

l(^) + l(^) + l(?) =*’(«»&•&) + instant, (35)

which allows explicit evaluation of the surface energy in special cases.
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3 Results

We give two examples of surface energy computations using the model. The first uses

a closed form solution representing an interface between two variants of the same phase

for the A2B2 state. The second uses a numerical solution to compute the surface energy

of an interface between the disordered HCP phase and the ordered AB 3 phase.

3.1 Anti-Phase Boundary

An analytic solution can be obtained for a special case of an anti-phase boundary (APB)

between two variants of the same phase. We consider domains with the ordered structure

A2B 2 ,
characterized by a single non-zero order parameter, Q2 ^ 0. The relations between

the order parameters and site densities then give

p
1 — Qo ± Q2: (36)

p
n — Qo + Q21 (37)

p
ui = Qo -

O2, (38)

p
IV — Qo — Q2 - (39)

For a stoichiometric composition Q 0 = 1/2 appropriate to the A2B 2 phase, the atomic

fractions p
1 = p

11 — 1 and p
111 = p

IX = 0 correspond to the value Q2 = 1/2, i.e.
,
site

I and II have A atoms and sites III and IV have B atoms. The choice Qo = 1/2 and

Q2 = —1/2 leads to p
1 — p

11 — 0 and p
HI = p

IV = 1, reversing the occupation pattern.

The two states with Q 0 = 1/2 and Q2 = ±1/2 are identical up to a shift by y/Sh/2 in

the y-direction.

For Q l = Q3 = 0, the governing equations reduce to a single second order equation

for Q 2 that has the solution

<?2(C) = \
tanh (W

j
, (40)

for —a2 = G41/2 > 0, where Co is a characteristic interface width given by Co — $2/(2g4 i).

The surface energy can then be evaluated explicitly to give

7 = — \M(1 - n\ + ri*) + B — ^2a

^2
^A(l - sin

2 ^cos 2<j>) ± B
, (41)
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where we have written the normal vector in spherical angles as n = (sin 0 cos cf>. sin 6 sin 0
,
cos 9

) ,

For A = 0 and 5/0, the surface energy is isotropic (independent of n). The strongest

anisotropy is obtained if A =/= 0 and B — 0. In this case, the energy of a surface with

normal n = (1,0.0) vanishes, whereas the surface energy is highest for a surface with

normal n = (0, 1, 0). Figure 6 shows a contour plot of the function 7(6, 0 ), corresponding

to the case A = 0.95 and B = 0.05. For these values the ratio of minimum to maximum

surface energy is given by 7m in /7max = 0.16. The surface energy has a saddle point in the

direction n = (0, 0, 1), and Figure 6 has a two-fold axis of symmetry about this direction.

The equatorial plane is also a plane of symmetry. The overall symmetry is mmm.

Figure 6. Contour plots of the HCP-A2B 2 APB surface energy 7(0,6). The

surface energy has two minima and two maxima along the equator of the

sphere.
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3.2 Interphase-Phase Boundary

We next consider the case of an inter-phase boundary (IPB) connecting the disordered

HCP phase with Qi = Q 2 = Qz — 0 with the ordered AB 3 phase. At the composition

Q0 = 1/4, the ordered phase can be represented by atomic fractions p
1 — 1 and p

11 =

p
111 = p

IX = 0, corresponding to the order parameter values Qi = Q2 = Qz = 1/4.

An analytic solution is possible for an IPB with n = (0, 0, 1), in which case fi = f2 —

£3 = (A+ B). For an IPB to exist the coefficients are related by (g4 1 + a42 )
= 4g2 > 0 and

a3 = — 24a2 ;
these relations effectively define the HCP-AB3 congruent temperature in our

model. The governing equations then admit a solution with Qi — Q2 = Q3 throughout

the IPB, and the solution is given by

Qi(C)
1

8
1 + tanh (42)

where = 2fi/(3

a

2 ), with surface energy 7 = \/6fia2 /96.

For n = (1, 0, 0) we have fi = £3 = (3A/2 + B) and f2 = B. A solution with Qi = Q 3

is possible, and the governing equations take the form

(I
a+b
)y

- S7‘3" a> ’ (43)

1,41

This case is identical to that considered by Braun et al. [2] for a [001] Cu3Au IPB, the

FCC Cu3Au phase being the analog of the HCP Cd3Mg phase. As shown in [2], in the

limit that B/A 1, the IPB has an interior layer where Q2 becomes small compared

to Q 1, which represents “wetting” by the CdMg phase. Surprisingly, this can occur even

under conditions for which CdMg does not exist as a bulk phase. It is possible to derive

asymptotic expansions that describe the solution for B/A 1; see [2] for details.
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2

Figure 7. Contour plots of the HCP-AB 3 IPB surface energy 7 (0, 6). The IPB

surface energy has six minima evenly spaced along the equator and maxima

at the poles.

For general orientations analytical solutions are not known, and we have computed

numerical solutions to the governing equations by using the program COLSYS [14] (see

[2]). Results are shown in Figure 7, where contours of the surface energy 7 are

shown, again corresponding to the case A = 0.95 and B = 0.05. In this case the

surface energy anisotropy is much milder than in the previous case of an APB, with

7mm/7max = 0.98. The symmetry of the energy is also different. The IPB surface energy

has a six-fold axis of symmetry about the orientation id = (0,0,1), which is the orientation

of maximum energy. The energy is a minimum for the orientation n = (1, 0, 0).
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4 Conclusion

The model developed in this paper obtains a gradient energy theory for anisotropic

interfaces between ordered and disorder phases from a discrete Bragg-Williams formula-

tion. The result of analytical and numerical solutions of nonlinear ordinary differential

equations is a prediction of the dependence of surface free energy on the orientation for

anti-phase boundary and inter-phase boundary models. In all cases, the orientation de-

pendence that is found is consistent with the symmetry of the problem; in particular, for

the APB associated by a shift between two parallel domains of the CdMg structure, the

anisotropy expected and found was orthorhombic and quite strong.

For discrete theories of interfaces the anisotropy conforms to the crystallographic sym-

metry. In going to a continuum gradient theory additional symmetries appear. Thus for

a scalar order parameter, gradient energy coefficients correspond to a tensor of rank two,

and would be completely isotropic for an interface between two aligned cubic phases. For

hexagonal crystals this tensor can be represented by a matrix with two parameters. This

gives a simple axial anisotropy but no transverse one. For the multiple order parameter

model considered here, the HCP gradient energy coefficients Cijki that appear in the gra-

dient energy term in Eq. (24) depend on two parameters, and the resulting surface energy

of an interface between two aligned hexagonal phases, such as the IPB we calculate in

this paper, do not have transverse isotropy in the plane but exhibits six-fold symmetry.

By contrast, the elastic tensor for an hexagonal crystal contains five parameters and is

isotropic in the basal plane [6].

In both this work and in related work for an FCC alloy [2], we have considered

multiple order parameter models with gradient energy terms that are quadratic in the

spatial derivatives of the order parameters. The multiple order parameters we used in

both the FCC and HCP models have a crystallographic character, but the three order

parameters that are used in each case do not constitute components of a vector (tensor

of rank one), and strictly speaking these are “multiple order parameter models” but not

“vector order parameter models.”

For the FCC model the three order parameters could be considered amplitudes of
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plane waves aligned with the crystallographic axes, but under changes of axis that pre-

serve cubic symmetry the components do not transform like a vector [2]. The gradient

energy contribution can be compared with an analogous expression based on the gradi-

ents of vector quantity rather than gradients of the FCC order parameters. If the energy

associated with the vector gradient is expressed as a quadratic form the coefficients form

a fourth rank tensor which must conform to the symmetry of the crystal. The vector

gradient need not be symmetric and can be expressed as a sum of a symmetric and an-

tisymmetric tensors. In a crystal with cubic symmetry no more than three independent

coefficients can occur for the energy due to the symmetric part, which in elasticity would

be termed Cn, C12 ,
and C44, while a fourth coefficient may be needed for the energy due

to the antisymmetric part [15]. The FCC gradient energy coefficients are analogous to

a restricted form of the tensor case: of the three possible coefficients for the symmetric

part, the one corresponding to Cn vanishes, while the coefficient corresponding to the

antisymmetric part is identical to C44. This is a minor difference, and the anisotropy is

consistent with that of a vector order parameter model with two additional restrictions

on the coefficients.

For the HCP model, in the basal plane the three order parameters appear as compo-

sition waves aligned with the three hexagonal axes aj, which are in the plane and thus

not independent. In three dimensions, because of the non-svmmorphic character of the

structure, the order parameters are not easily identified with plane waves. Since the HCP

order parameters do not transform as a vector, the associated coefficients Cijki that ap-

pear in the gradient energy term in Eq. (24) do not have the transformation properties of

a tensor of rank four under changes of coordinates. The different symmetries associated

with the order parameters and the spatial coordinates are apparent in the form of the en-

ergy functional in Eq. (24): the three order parameters Qj appear symmetrically, whereas

the z-axis is distinguished in this expression. For an HCP structure with the ideal axial

ratio
(
a ' = a), the gradient energy has two coefficients, as in our cubic calculations. Had

we imposed that a' 7^ a there would have been three parameters. In either case there is

a term which is not isotropic transverse to the z axis. Its consequences can be seen in

the results for the IPB free energies, which display a distinct six-fold anisotropy.
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A multiple order parameter of the kind that we have used here and in the previous pa-

pers leads naturally to anisotropy in a continuum model. Anisotropy has been introduced

artificially in calculations with a scalar order parameter by making the gradient energy

coefficients depend on the direction of the gradient [16]. Any surface energy anisotropy

can be modeled in this way, but it cannot be deduced from a physical model. In addition,

for a constant mobility the kinetic anisotropy is directly proportional to the interfacial

anisotropy. In our FCC work we found that kinetic anisotropies naturally derived from

this multiple order parameter model were far greater than the surface energy anisotropies;

quite mild energy anisotropies led to nonconvex kinetic anisotropies and sharp corners [3].

We have not explored the full range of anisotropies that are accessible for the HCP model,

but we expect nonconvex growth behavior, maybe even six-fold structures analogous to

snow flakes, without resorting to the addition of an artificial anisotropy.
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Appendix

The expression (17) for the in-plane nearest neighbor interactions can be used to rederive

the form of the gradient energy term for FCC crystal structure [2] by combining it with

a modified out-of-plane contribution that accounts for the difference in arrangement of

the neighboring layers in FCC and HCP structures.

The near-neighbor contributions to the FCC gradient energy term have the simple

form

(45)

where the primed variables refer to the coordinates used in Ref. [2], where the coordinate

system is aligned with the cube axes of the FCC crystal. The definitions of the order
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parameters in Eq. (45) are consistent with our usage in this paper, but differ from those

used in Ref. [2] by a permutation given by Q3 —> X, Qi -» Y, and Q2 Z due the

different labeling of the densities. The z axis is the [111] direction in the (x',y',z')

system, and the primed coordinates are related to the coordinates used in this paper by

the rotation matrix

x'
)

/ -l/y/2 -1/V6 l/y/3 \ f

N

y' = 1/V2 — 1/n/6 1/^3 y • (46)

\
z '

) \
0 A/A i/A

) \
z

j

In the (x, y ,
z) coordinate system, a typical out-of-plane interaction term for FCC has

the form

A 0, 0, 0) p
/7

(0, Th/V3, ±V6h/3), (47)

p\ 0, 0, 0) p
UI {-h/ 2, ±h/2\/3, ±y/6h/3), (48)

or

p‘ (0, 0, 0) p
nv

(h/2, ±h/2V3, ±\flh/Z). (49)

in which similar families above and below the close-packed plane are reflections of one

another through the center of symmetry, rather than mirror refections through the plane

as in the HCP packing.

The resulting contribution from the out-of-plane nearest neighbors can be written in

the form

ah2
(8 / dQi \

T~|3 \d7

)

dQi dQ i

dx dz

dQ3 dQ,

dx dz

+ 8
A dQj_dQj_

2
dQ1 dQ1 _ dQ3 dQ3

dy dz dy dz dy dz
+ 2

+
dQ i

dy

dQ2

.

dy
+ 2

dQ3

dy
+
73

dQ i dQ]

dQ2 \

dx )

dQ3 dQ3

dx dy dx dy

which factors to give

(50)

4ah"
f
— 1 dQ3 1 dQ 3 1 dQ3

2
1 dQi 1 dQi 1 dQil

2

A dx A dy A dz
+ A dx A dy A dz

_
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+
2 dQ2 1 d<?2

-i 2

+ ah" hQi\
2 + |VtfQ2

|

2 + IV//Q3I' (51)
3 dy y/3 dz

A u 2 i ( VsdQi ldQi}
2

( dQi \
2

(V3dQ 3 ldQ3~ 4ah +
U^J

+ (t^ + 2^7
Adding the in-plane contribution (17) to the out-of-plane contribution (51) recovers

the full expression for the nearest neighbor contributions to the FCC gradient energy

term,

4ah"
1 dQz

i 2
1

+ _L^i +

+

\/2 dx y/6 dy \[3 dz
_

-i 2

1 dQ i 1 9Qi
i2

1 dQ i

\/2 dx y/6 dy ^
y/3 dz

_

'2 dQ2 l_dQ2

3 dy
+

y/3 dz
= 4ah 2 W + f^)

2+
ax' y V a?/' y V 0z'

(52)

where we have used the coordinate transformation (46) to simplify the final expression.
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