
A111D5
NISTIR 62ia2

Conformance Testing Object-Oriented

Frameworks Using JAVA

Kevin G. Brady
James St. Pierre

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Electronic Information Technologies

Group
Gaithersburg, MD 20899-0001

Q

100

.056

NO. 6202

1998

NIST

1

:1

1

^1

'

i

\

i

Conformance Testing Object-Oriented

Frameworks Using JAVA

Kevin G. Brady
James St. Pierre

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Electronic Information Technologies

Group
Gaithersburg, MD 20899-0001

July 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Brady/St.Pierre 1

Conformance Testing Object-Oriented

Frameworks Using JAVA

Kevin G. Brady and James St.Pierre

Electronic Information Technologies Group
National Institute ofStandards and Technology

Gaithersburg, MD 20879

Abstract

This paper details the assumptions, decision processes, and conclusions reached

during the development and implementation of a Conformance Testing Tool using the

JAVA [refenJAVA] programming language, and the Object Management Group’s

(OMG’s) Common Object Request Broker Architecture (CORBA) specification

[refer:CORBA] for distributed object communication. JAVA was used to implement the

tests, and CORBA was used to provide the communication interface between the JAVA

tests and the object under test. This test tool is being continually refined and expanded by

the National Institute of Standards and Technology (NIST), but it was initially conceived

as part of a collaborative effort between NIST and SEMATECH, 1994 to 1997, in support

of the development of the SEMATECH Computer Integrated Manufacturing (CIM)

Framework [refer:CIMF]. SEMATECH ^ had the foresight to include plans for

conformance testing at the early stages of the CIM Framework specification development,

and asked NIST to assist in this task. Although this initial implementation was developed

for the semiconductor industry, the concepts, software and conclusions are relevant and

applicable to conformance testing of any object-oriented framework.

Introduction

The programming language “JAVA” and its relationship to the World Wide Web

(WWW) is familiar to most people. Although most people are familiar with the name.

1. Specifically, Alan Weber, project leader for the SEMATECH CIM Framework.

5th August, 1997

'.' '£; ''J -'U/j. J .
! '''“f‘j>y'i

.. ,j
',

>v ' }_ jV'J. si<V‘i

V .ti', '.'‘A
, :wO

.. I

' .:-:.7 j‘ :,ub

(•

'’
-j '-H

I z .' - '‘iC '

•;• ‘

• jt '.'‘^5''!, 'i ^

. f.

'
5 .,

i.

.

('-

t! I-, ,

'<
'

2 Conformance Testing Object-Oriented Frameworks Using JAVA

they are unfamiliar with what JAVA actually is and what it actually does. Never before

has a computer language been developed that has been so widely accepted and

implemented [referiJAVAFACT]. JAVA is an object oriented programming language,

whose primary difference from other object oriented programming languages is its ability

to run on any computer platform that supports the JAVA Virtual Machine (JVM). The

JVM is the software which is embedded in web browsers to allow them to run JAVA

applets - software programs written in JAVA. The most exciting aspect of JAVA is its

potential to allow programmers to “write once, run anywhere.” This goal has not yet been

fully achieved, but with the amount of industry and research resources being applied to

the problem it is expected that it could be achieved in the near future. JAVA is riding on

the coat-tails of success the WWW has experienced. The ability to run JAVA applets is

now found in almost all web browsers. It is interesting to note that many people do not

realize that the browser they use to “surf the web” contains a JAVA Virtual Machine. [As

people surf the web they encounter JAVA applets all the time, and some may not even

realize that they are running an “applet.”] Software conformance testing methodologies

have always been faced with the difficulty of providing testing tools that are portable

across a wide variety of heterogeneous platforms [referiNIST]. The widespread

availability of the JAVA programming language makes it an ideal candidate for use in

conformance testing.

SEMATECH’s CIM Framework Specification is a document which defines an

application framework for Computer-Integrated Manufacturing (CIM) within

semiconductor factories. A framework is a software infrastructure that creates a common

environment for integrating applications and sharing information in a given domain.

While originally designed to support semiconductor manufacturing, the design of the

CIM Framework does not prohibit its extension into other manufacturing domains

[refer:CIM]. The CIM Framework specification describes the object abstractions,

attendant services, and message protocols necessary to build compatible applications for

the semi-conductor manufacturing floor. Because the CIM Framework is defined as a

collection of objects (using the OMG’s Interface Definition Language (IDL)) which can

communicate via OMG CORBA technology, it readily lends itself to the use of an object

oriented programming language, such as JAVA, for conformance and certification testing.

5th August, 1997

’j S ^'^cmirfolnoCJ

' "'*!•'
.

' J! .fr*W >Mif y':; -, .H A'/Ai. IfcjjW (UtW 1ftUr£rtl:t;tU A'^dl

*' ^
’

.; Vv' •• ^ 1
"'•'/ s b"'X','0^f-'r‘r. rtr T::i1i[Ju;.:f|o::- i. ailfi

WA I; ;-

'

« iu^m^ ; i

'V'-
n i

’

:j, r *
^ t !: {X irnii ^ -it^ib /is;4 x';;

j
.i\zor\\v

;'. -/'>' •. IV. \afi.' n:T
'

'

. :x:.a3r' y.ffft qo riiTi q!

-'')'':>i / r
'

'

.

-ii MVi
F

'

',^7r ^

'’if • Z'<,„ ^''
1 .;T5- '. ‘ '''7.';

n.!;, wionsJoq

l - ' 'f
f : M

,

' :i’ y vri i
.'

,*•'
i; ..'•% K , -'.M' •] rrr‘5!--^<''7.; ^{b

-Jib

' ..• :,wa
'

'

. i.jy r ! bif' ; ‘mm
• K'S ''Jib '.'.? » '.U '•A|jii?ri

''
^
-" '

'
'

y. r* fV!

'

.' ••^^ "
;.;

^ -1;

i V ' u : ri'
•'

: ;>';. It; ':>vsrl

i V ^

’• 7 niiir /i'

' V ' -1..' .>'

•'
1
'

: i .kjr; .

- :
. . vv. nc

* '
’.*

r . .. ~i ' \ .*

' M ..v\-''r

,

' '.
. !

• A.)

*
1,4 _ ’

;
^

•

; i- il .

'Tl"'

' -'
.

-
'

;_, » -'1;

’ ’ '

vT.’
'

'

...

' _ 1 . •
1 « '

u

Brady/St.Pierre 3

Conformance Testing - Myths and Methodologies

Conformance testing in general has two major beneficiaries; the application user and

the application developer. The application user, or organization, benefits from the

assistance conformance testing provides to the creation of procurement specifications.

When a user wishes to purchase software, conformance testing provides a means for them

to “measure” the level of conformance of a software application to the specification

(often an ANSI/ISO standard). The user can then procure software with a greater

understanding of the completeness of the application (i.e., conformance). This

information can also be used as a requirement specification in the selection process. Thus,

for the user, the completeness of the application can be directly measured.

The application developer, or vendor, benefits from the availability of a conformance

test tool. As an application is developed, conformance tests can be run against the

individual “pieces” to ensure correctness, before they are integrated to form larger

applications. Correcting errors at the earliest possible point in the development process is

cost effective for vendors. Developers do not have to wait until they have completed a

software project to begin running the conformance tests. Issues as simple as “inconsistent

interpretation” of a specification can be eliminated from the software development

process by having conformance tests available at the earliest possible cycle of the

process. By following this methodology the developer can have a high degree of

confidence that the software product will be conformant when it is completed.

In trying to develop a test suite before an actual implementation is available,

checking the correctness, depth, and breadth of the test suite becomes very difficult. Most

developers of conformance tests use alpha and beta versions of a vendor’s

implementation to exercise the test suite, hoping to flush out any major errors in the tests

being developed. [The reason most conformance test suites are so very far behind the

development of the actual software is that they are waiting for something to test; at the

same time the vendors need tests to verify their implementation code.] This creates a

classic “chicken and egg” problem. In an effort to address this problem, researchers at

NIST are developing a software tool that will allow test developers to simulate

application software, so that the test suite can be developed prior to the existence of any

commercial implementations. The Manufacturer’s CORBA Interface Testing Toolkit

(MCITT) currently under development in the Manufacturing Engineering Laboratory

5th August, 1997

’•rl
br?;. viftM •

,

> -i;U r' 'vfrnolftiXD

'... . 'jC.ij ^>£.1? ^uU

•'0-1

• ' A/‘V:
.
^>^.;.^ ^iK. f ' ^Si^t

:

" ".)*
:ii ’Jii*' (4

‘

.ij^ 0 ?ij^0>V

=.
.,

1
.'-

'
. A4 i :

' •- ’’1

'•»i

j'**'

-. i r. ’ •'' >• "’T

'

-I-
! r " •

.

•• ' i ;

- Vi /
'

’

i <

•A -.A.^T

bai

i -ft?nr.

w.

4 Conformance Testing Object-Oriented Frameworks Using JAVA

(MEL) at NIST, will be able to simulate objects given a description of their behavior

[referiMCITT]. This testing tool will be used in the next phase of this project when we

develop more of the actual test suite. So that the test suite can be verified, the MCITT
reads a file containing Interface Testing Language (TTL) definitions and generates skeletal

objects that respond correctly to inquiries. As a simple example, assume an object has a

name parameter and a status parameter. The test tool would read the definitions and

automatically create an object that replies with a character name and the correct status,

but does not have to implement the functionality of the object. The test suite then

requests, and subsequently verifies, the name and status from the object. The availability

of such a test tool allows conformance tests to be developed well in advance of the actual

implementation. One advantage the test tool has over an actual implementation is that

faults can be programmed as well, something actual objects can not do (e.g., simulate

failures of objects). Tools of this nature will make conformance testing and development

of the software they test much more independent, decoupling the dependence of one upon

the other.

Conformance Testing - Object Oriented Style

As stated above, the goal of this project was to develop a prototype implementation

demonstrating the process of conformance testing a working implementation of the

SEMATECH CIM Framework. The CIM Framework is an Object-Oriented (00)

specification, and therefore posed additional considerations not found in most simple

applications. Chief among those considerations was the “language” to use to implement

the test suite. Since it is an Object-Oriented application, an OO programming language

was a primary requirement. Until a few years ago, the choices were very limited and C-H-

would most likely have been the language of choice. But with the many different

“flavors” of C++, multiple copies of a test suite, compiled for different hardware

platforms would have been necessary. With the advent of the WWW and the JAVA

programming language a new choice was available. The pros and cons of each of these

languages will be discussed later in this paper. The widespread availability via web

browsers and the platform independence of JAVA make this language particularly useful

for conformance testing. As we shall see, distribution of code, version control, mnning of

the test suite and certification are greatly simplified using JAVA and CORBA.

5th August, 1997

t '

a.

S; •

U’-' Wt?'- fi'lRW’'^ ^
j

t' : '-jv f. ^ jvl’J ;‘3tu ' ;
- ^{^r.'> ;S!t.'^/ i?«1 I'Uw ^TSIV; “jt (

M

.11 .j'' '•^'^- .’ »: :Jf^ 'T v’J.'4 JC*'J
•. 'liiCM fuft .['rTT)M.'i^Jf1'51,fJ

'

'
- ‘Tj|V 4.r 'X

;' ^

^ io :'

,Mf. i -'pjij.'v .,
':•'

’^IS ft

.. 'Vi(w.. >> ^'^ 1 . baoq?^;'^ '^f!v :

1

.

' '. ' ^
^ /H.i^. ” ,.uinu.;i6q I

r 6:.- ‘ i\„.. ix- lx Kj '•'{'I/^c^j,: V -afi I

v'.- .• .

"'
-h.^- :^i-h ^.; •"V'.:' ,.01 ^fdi}

-
"

''/-
, . ' .

'. i.>* .'i J> :{
'

•
':

‘ >de3-ajU|X/l J

.

'
r- - r - ^ -i'i . ; ,

, „
. .<'.!fii; *i^y }

" '
'

'-,'‘
7;;. 'f!; - >i

*' *’
'

;7 ;7
'

s^'’:.|,Oi«; 5>r1

' *. ,

;' .. ;• : :^T
'

O' l kO ?kl
Jj

.

’ .'.a^ X'lt i'u,. H')
f]

'sSCit^ fj

/ .

M

Brady/st.Pierre 5

Interface Definition Language (IDL)

In order for two pieces of software to interact, a common interface must be defined.

Usually, for non Object Oriented software, this interface is simply a set of subroutine

calls with the number and types of each parameter strictly defined. As an example,

consider a graphics library. To draw a simple line a user would call a subroutine “line”

with four integer parameters. The four parameters would represent two sets of X and Y
coordinates, the start and end points of the line to be drawn. Each routine in the library

would have a specified number of parameters and each of a specific type (e.g., character,

integer, etc.). In the Object Oriented (00) world, interaction is a more complex issue,

because each object not only has attributes of specified types, but can contain its own set

of function calls that operate on those attributes. A more robust system for defining

objects was required. The Interface Definition Language (IDL) is the unifying bond that

most object oriented frameworks share. It allows the framework developer to express the

application interface completely, so that two different implementations can interact. The

SEMATECH CIM framework IDL describes the attributes and behaviours for each of its

objects. The implementor builds each object according to the specification, with a

common interface to the object instances. Most object-oriented languages contain a

special compiler for IDL to assist the implementor. The compiler parses the IDL and

creates “stub” files (e.g., skeleton files) for both the client and server applications. The

programmer provides additional code to implement the object behaviours and inserts it

into the skeletal routines created by the compiler. This ensures that the application

interface remains exactly as specified, with no errors in the definitions of the object’s

interface.

The Object Management Group (OMG) is the standards body responsible for IDL.

The OMG does not develop standards, rather they endorse implementations that become

standards. The IDL definition for JAVA will soon be a standard, and will be the last piece

of the conformance testing puzzle to fall into place. Once the IDL definition is complete,

JAVA applications will soon begin to flourish and surpass their peer C-I-+ implementations

(at least in client applications).

5th August, 1997

-:*H i'ohimr'<} -ViSi '.'mt

i' - ‘ ^%K ' ‘W) ^ '-I

. s' .ifi-*
»»0i^ 'Z*:-] ^

nv 7 n : }fii W ^
.

<'
'.(jL'- Irv^j

f 1 •’; :d- iiue'r^,

'
- ;

"!••
.

^ ; izT(/'li ;i;‘«

- ?••-
.

^'
-it -

’•
.

•>’ ‘Id. " /.3;- Kf't. -Vif

i\ -

:.{ y.-jnt

. !
'

-' .' is. '-.v^ -; »-»j, ^4
' •<: ’ ^

- • ,..iri'

-
' ‘

'
"V

'*
i

,C
,

, ^.f<^'.••’fi

' ' w '
^]

•
'

t
.

J Ik ILP'^J

d -,
‘

. . , J

T <

1

^
A

t

6 Conformance Testing Object-Oriented Frameworks Using JAVA

Common Object Request Broker Architecture (CORBA)

Another piece of the puzzle was solved by using CORBA for communications.

Writing the test suite as a JAVA applet introduced certain security restrictions of JAVA. A
JAVA applet cannot open a connection to any computer except the computer (web server)

it originated from. An applet down loaded from a web server cannot open a connection to

the users local machine. This restriction is easily removed if the user down loads the code

and runs it as a JAVA application on their computer. However, another option is possible

using CORBA and the Object Request Broker (ORB) on the web server. The JAVA applet

can connect to the ORB running on the web server, and with information provided by the

user, that ORB can then make the connection to the user’s ORB using the Internet Inter-

Orb Protocol (HOP). CORBA defines the standard protocol for the two ORBs to

communicate (See Figure 1). The server ORB then simply relays all test requests to the

client ORB, and relays back the results to the JAVA applet. This simple connection

prevents the user from having to down load the software and run it as an application that

has no security restrictions.

JAVA vs. C++

C++ has been in development for years and lacks only one real quality that JAVA

possesses, widespread implementation. Technically speaking, JAVA is a subset of C++, so

there are things you can do in C++ that cannot be done in JAVA (e.g. pointers, multiple

inheritance, etc.). JAVA started out as the “Oak” programming language developed by

SUN Microsystems for use in the consumer electronics industry. Oak was intended to

address a problem that new semiconductor chips presented. In the consumer electronics

industry, chip designs were evolving very rapidly, and new software had to be written for

each chip, compiled and loaded. The idea was to develop an architecture in which

software could be “down loaded” to any new chip. Since it was interpretive, the new code

would not have to be compiled for each chip, thus saving precious time and money. When
the WWW came into existence, it initially only served HTML pages to browsers. The

JAVA development team quickly realized it could also “serve” programs to web browsers

in much the same way that chips were being loaded. JAVA quickly developed the needed

functionality to integrate with the web and is currently implemented directly in most web

browsers. This gives JAVA the wide-spread availability that C++ does not have, making it

5th August, 1997

» t •'ijf;.' O'

;
’

- -rwV- -Ijis-T

H / -.•vVs' s.;j.'A J.wji

y '.
- r-

, ;

urA ;v!7 :..mJnVi^',

'
. ^ '^.xh V. , .; j-jA, d- ''Aij

..'
• :: - i»,

. A. " iS

'- y- ^
.

•

,,

1

Jt

Brady/St.Pierre 7

Figure 1. Conformance Testing Environment Using Java and CORBA

a more desirable programming language for the delivery of conformance tests.

C++ will probably remain the language of choice for implementing server side code

(the actual functionality of the objects). In conformance testing, JAVA is sufficient to

query the objects under test. The IDL compilers exist to assist in writing the client side

tests, allowing the tester to instantiate an object and test all of its attributes and functions.

5th August, 1997

Sr -4
j :3:— ;*

4v'-r,

f~t
t j: -vrs/vl "•i,

• -A -

V'
.

:?:•

4: Vt
:

'*'
5?

-

,“ 4l

« ;

8 Conformance Testing Object-Oriented Frameworks Using JAVA

Graphical User Interface (GUI)

Perhaps the most beneficial aspect of the JAVA language, in our opinion, has turned

out to be the Abstract Windowing Toolkit (AWT). The AWT is built-in to JAVA, and

therefore contained in most browsers. The AWT provides comparable functionality to the

X windowing system, allowing the creation and deletion of windows, buttons, graphics,

etc. When developing a conformance test suite in the past, the use of any GUI was

impossible. No single windowing package was built for all systems, and therefore,

anything used could not be assumed to be available on all systems. Hence, the test suite

was distributed on all types of magnetic media (e.g., disks, tapes, etc.) or left in a

directory for anonymous ftp access in many formats (e.g., tar files, zip files) for

workstations, PCs, and mainframes. A document had to be written explaining how to

install, run, and interpret the results of the test suite. Now, with JAVA and the AWT, a

user interface can be written to step the user through the running of the test suite with the

click of a mouse, and the results can be analyzed and displayed by the GUI in any

appropriate format. By simply distributing a Universal Resource Locator (URL) of your

test suite, the user can load it via his browser. With the click of a mouse, you have

distributed the software in a single format, installed it, and as the AWT interface runs, it

steps the user though the process of executing the test suite and interpreting the results.

Results of the test can be displayed graphically, and the final results displayed (pass or

fail), without the user having to analyze any of the results. Conformance certifications,

which in the past required an on-site visit to verify the integrity of the test suite source

code, can be done remotely. Applets can be signed using internet security procedures

with digital signatures, authenticating the user and validity of the source code. Since the

code is distributed “read-only”, no on-site presence is required to guarantee source code

integrity.

The JAVA test tool provides an ideal harness for conformance testing. The only thing

that must change from application to application are the actual conformance tests. The

AWT portion can be developed and mostly re-used for each software test suite developed.

Source code can be down loaded for viewing, help files distributed, and descriptions of

the tests can distributed via the WWW using HTML instead of writing and distributing a

paper document. Version control problems for test suites are eliminated because each

time a user runs the test suite, they are down loading the latest versions of the tests.

5th August, 1997

f

'r7rjLl fv *?

i-

t

A

'

'ft

V

Brady/St.Pierre 9

The JAVA Test Tool

With all the pieces in place, the development of the JAVA/CORBA-based test tool

could begin. The first step was to build a small reference implementation. Since, as

mentioned above, no commercial implementations existed, and the NIST MCITT test tool

was not yet available, the class Resource and ResourceManager from the CIM framework

were implemented. The EDL definitions were run through a C++ IDL compiler, to

generate both client and server stub files. Then, the functionality in the server module,

and a client to drive the server, were implemented. Again, these two were written in C++

to verify the IDL implementation (See the source code at the URL referenced below).

Next, when the C++ client and server were interacting correctly, a JAVA-based client

to drive the C++ server was developed. The same IDL was put through a JAVA IDL

compiler to generate the JAVA client stubs. The client code was then developed in JAVA

and tested to verify that a JAVA client could interact with a C++ server through the ORB.

Since most of the interaction occurs in the ORB and is not visible to the user, a small

JAVA thread was developed to graphically display the creation and deletion of the objects

as they occur. This gives the programmer visual confirmation that the objects are indeed

created, and is a true necessity for demonstration purposes.

Once we had verified the interaction of JAVA clients and C++ servers, it was time to

develop the actual test harness and test suite. The test harness implemented as a JAVA

applet, and the ORB, must reside on the web server. The GUI development had one

major goal - make the running of the test suite as effortless as possible for the user. (This

ease of use was achieved by having the user simply supply the address of the machine

where the application under test resided. The test tool then queries the ORB on his

machine for available servers. Upon selection of a server, with one more click of the

mouse we could then run the entire test suite against his implementation. The results of

tests are displayed graphically. Each of the 105 classes tested is listed, with green

indicating conformant results and red indicating failed results.

For the classes that failed, the first thing an implementor would like to do is view the

individual tests that were run against that class. The implementor is permitted to load the

individual class, and then run the subset of tests pertinent to that class. Again, results of

the tests are displayed graphically, listing the individual tests that passed in green and

5th August, 1997

: >

it>. --m lai'-' 0

- -J * fvb .K'jili: '-;.i?;.j»{/ !,

. -’'.'VVV.- ,av v,

' • iJ '

> : f

'S)M. -;'
>:.

^'*-: '" '‘.
i '??*•* f*Ti:

'•- ; '

: ^ *'•=
. .

'* >'. J ’
_ , 7 /'i V^J:

* '
': .

,

;-tAp. ,;;v. ^

*n

»

'•
I'i

.

.* .T‘::o

- I .»i*
*

/
'

' -
.j.';

'

loli' i’ teT K^i\\

.m:
,

u ^ aiij (fjfc iiiiW'

-J-j
rM'i'F bfe':^j3

;u7 0 :i«

r-;>.,fc,>'
''

'ij i-(Y k'.»

,s':u aril b.
_

1

'^'.'•s c : L uiii\h

.v: .. .' e |j|^3
'4 fQuei.JG- “?t'> '7n,c-^ fiilM

Ji nailA- ..t-f'-sK jJ

,

'-•’?» a>

,i.
• :.*•- 'P/A

,'. ' .' a. '
'

:
,'(-7 •'

•U,/
'

V
'" • •' •' '

' '

• '} '.;' V.,,, 'XyA^ o

'
J

^

:
)"!' ;’ uri

10 Conformance Testing Object-Oriented Frameworks Using JAVA

failures in red, along with the test numbers. With the click of a mouse, he can view a

master list of tests for this object, listed by test number, with a brief description of the

purpose of the test. After selecting the test that failed, he can then view the actual JAVA

source code of the test, to allow him to see exactly how the test was constructed. The test

can be re-run individually, so changes he makes to his implementation can be tested

immediately, without having to redo tests that have already passed. This methodology is

continued until all tests have passed.

The last part of the conformance testing process would be the certification of the

implementation. This normally would have required a site visit, but the next part of this

project will outline the security required to perform the certification remotely. With

proper security measures in place, the vendor could be issued a certificate detailing the

level of conformance to the standard being tested.

Summary

The JAVA language is widely used and implemented, and provides a viable language

for use in conformance testing. In conjunction with the OMG’s CORBA, it can provide a

very effective harness for implementing and delivering a test suite for various

applications. Our experience to date has demonstrated its usefulness in the Object-

Oriented Frameworks domain. Its applicability to other areas will only be limited by the

ability to implement (or drive) an application via a JAVA programming interface, (e.g.,

this project was made possible because there was a JAVA EDL compiler; if it did not exist

we would have had to implement in a language with an IDL compiler like C-I-+). We are

looking into other possible applications for this conformance test tool, including testing

of computer file formats used for electronic circuit descriptions. The tool would analyze

an input file to make sure it was compliant to a given standard. This is analogous to the

numerous HTML syntax checkers currently in operation. Given the URL of a particular

HTML document (web page), these tools access the page, conformance test it to the

HTML standard and report back errors. The one downfall of this HTML testing method is

the processing load put on the web server, since all scripts are run on the web server.

JAVA would run on the client machine, thereby greatly minimizing the network load, and

by using the JAVA AWT a much more robust and user friendly GUI could be developed.

5th August, 1997

1

;< 5, K jlv‘‘ 'f^-' U iii''^'' %r^1 “Mij .bsi ni ts^ffiliisf.

|

.it uj\^ :nf' -m ! ^ ^ ,; :
-’5,.. ' ,n ?id> v*t ^0 rali j

,

: ‘•d •:., '4'
, /; jiU'H ^r;hV*b^ laliA .'!s4>J lo

''
'^-r .*' ‘-i;! .:f'“frju,. ^' I,,,; 'nri yt ‘ ii«S' 01 OdHt>

I;; . .lU ... ’fc ...^ '/iu ,. yrdbto <un j' ‘»d :)..J

'A - ' /' .;d -''r’!! -' ,byjui:b!3irmy

'•..jCj - a ^V.; ‘b i' » /
^

'jLVtd Jf ^f>:

.:
' A T

1
.

,
[Q>y, !..ir '>'-

;.
<•

*
'

'•

.

‘ "'
4^

. ;'ii«"..f: .''.Li','

'
-.' -

' .:. ';K _.'fr' -’ ^ri iUw

^ -'>0 r' ' ;i,

. -^ v- .' V .

' AXJ Iv

'rr •y f

Brady/St.Pierre 11

This project is an ongoing endeavor, with NIST’s Electronics and Electrical

Engineering Laboratory (EEEL) continuing to expand the scope and applications of the

test tool to support the electronics industry. Other NIST researchers are also evaluating

the test environment for possible use in their domains. The tool has functioned well and

can be viewed at the following URL (all source code is also available):

http://niegavoIt.eeel.nist.gov/CIM.html

From this URL you can control the running of a partial test suite against a prototype

CIM Framework application. The test tool is connected to an ORB on a web server here

at NIST. In addition, the source code is available if you would like to explore the use of

this test environment for your own conformance testing needs. All that is required to run

this demonstration is aWWW browser which includes the JVM.

We are expanding the test tool to incorporate the two ORB scheme mentioned above, and

are writing more individual conformance tests. We will be exploring the use of Digital

Signatures to allow an applet to directly connect to a machine other than the web server.

This will lift the restriction that forces the applet to connect to the NIST ORB first and

then to the user ORB. In addition we are collaborating with industry to explore further

development and commercialization of the tool. The MEL MCITT tool will also be used

to simulate some of the objects we are testing.

5th August, 1 997

J J

:)f»- ^

•M I

'<',(f

h- t'- I..

'3

!<-/• 4’*ri5 1''. 3» o:9foiq e?/iT 'ih

^/r- i’. ''
^ 'MllH) VW.'£7<^d-f5J

-'• ''
i •

> 0.:f

-t,
:' Mh ::;f '-v JXtJ5

7 • K''- J^U '^fij
-

. (
.

' •
. r-j ..

‘ ' !. JJ -:or^
fl

I.-:' : .;: [^ -
-

'

.‘r''<V'.- t/Tje.-^' . Jj
t'cv.

'

^
. i-.i \

-

:»J

-'1 '

'.;
', '-*,V’ ?I(;i|‘^':

' %
" -•'

‘ioi- ' >!!' .-'I'v,

-J

•* '^'
I) i-

V. . 'iff <j-.i ^
1 . .1 ' i:;. >. '

. . ' wj>*,

'

' I*
* *

•
;
-"^r- ' Ir

'

n;

:/'' ' ',
,

; ‘n, 'dlfl

12 Conformance Testing Object-Oriented Frameworks Using JAVA

References

All Web references (URL’s) were verified for existence in February 1998.

[CIM]

Web reference [http://www. sematech. org/member/division/fi/cim/cimhome.htm]

[CIMF] Computer Integrated Manufacturing (CIM) Framework document, Version

2.0, Austin, TX:SEMATECH.
Web reference [http://www.sematech.0rg/public/docubase/abstract/1697jeng.htm\

[CORBA] Object Management Group, Common Object Request Broker: Architecture

and Specification, Revision 2.1. Framingham, MA: Object Management

Group, 1997.

[JAVA] Web reference [http://www. sun. com/java/\

[MCITT] Web reference [http://www.mel.nist.gov/msidstaff/fiater/mcitt/index.html]

[NIST] James A. St.Pierre, Kevin G. Brady, S.L. Stewart, Conformance Testing and

Specification Management NISTIR 5879 (1996).

[JAVAFACT]

Sandeep Singhal, Binh Nguyen, The Java Factor, Communications of the

ACM June 1998 volume 41.

5th August, 1997

rj

’j] ^ 'V] -a^ia 'J ' ?A''«iiK'’l0'’ d' 'ff liA

nMr>}*
I —31- .V

>

j

i

