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Abstract

This paper presents results on direct optical matching, using Fourier transforms and

neural networks for matching fingerprints for authentication. Direct optical correlations and

hybrid optical neural network correlation are used in the matching system. The test samples

used in the experiments are the fingerprints taken from NIST database SD-9. These images,

in both binary and gray level forms, are stored in a VanderLugt correlator [1]. Tests of typical

cross correlations and autocorrelation sensitivity for both binary and 8 bit gray images are

presented. When Fourier Transform (FT) correlations are used to generate features that

are localized to parts of each fingerprint and combined using a neural network classification

network and separate class-by-class matching networks, 90.9% matching accuracy is obtained

on a test set of 200,000 image pairs. These results are obtained on images using 512 pixel

resolution. The effect of image quality and resolution are tested using 256 and 128 pixel

images, and yield accuracy of 89.3% and 88.7%. The 128-pixel images show only ridge flow

and have no reliably detectable ridge endings or bifurcations and are therefore not suitable for

minutia matching. This demonstrates that Fourier transform matching and neural networks

can be used to match fingerprints which have too low image quality to be matched using

minutia based methods. Since more than 258,000 images were used to test each hybrid

system, this is the largest test to date of FT matching for fingerprints.

1 Introduction

This paper presents data on inked fingerprint images matched with optical and hybrid optical

neural network correlators. The matching method is tested on an authentication application.

The inked fingerprint images are roUed prints scanned at 20 pixels/mm on a 4 cm by 4 cm
area of a fingerprint card. We study matching of the inked fingerprints using global optical

correlations [1] and partial optical correlation features and a system of neural classification

and matching networks [2]. Images of three difierent resolutions are tested to determine the

effect of image resolution and quality on matching accuracy.
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For images of inked rolled fingerprints, even after core alignment and correction for ro-

tation, optical matching of most prints is successful for matching the original image and

rejecting other fingerprints, but fails on second copies of inked roUed images because plastic

pressure distortions and image size variation are too large to allow global Fourier transform

(FT) matching. Detailed computer simulations show that global optical matching uses the

fine-grained pha^e-plane structure of the Fourier transform of the fingerprints to produce

strong optical correlations. This fine-grained structure is very sensitive to pressure and plas-

tic distortion effects which then dominate in correlations of static fingerprints.

The fine grained local variations in fingerprints can be compensated for by calculating

optical correlations on smaller zones of the fingerprints. A training set was derived from disk

two volume 1 of SD-9 and the testing set from disk one of volume one of SD-9 [3]. Since

all fingerprints in disk one were tested against all each other, a total of 258,444 tests were

performed in each experiment. This is the largest FT based matching experiment reported to

date. In our experiments, two four by four matrices of correlations on zones of the fingerprint

are used to produce a total of 32 features. One set of correlations is computed with the local

zone grid centered on the core and one set is computed with the core in the center of the

grid just above and to the left of grid center. Features were extracted from the correlation

data using correlation peak height, correlation peak width, and correlation area.

These features are combined using two types of neural networks. The first network is used

to classify the fingerprints [4, 5, 6]. This fingerprint classification network works directly with

the fingerprint image. After each fingerprint is classified, class-by-class matching networks are

trained for each class. These two networks function in a way similar to the binary decision

networks discussed in [7]. For this particular problem, the network training is strongly

dependent on regularization and pruning for accurate generalization [2].

The advantage of the combiued optical neural network method is its insensitivity to

image resolution and quality. The experiments presented in this paper were done with three

different image sizes. Initial results were obtained with image samples with 512 by 512 pixels

on each side, sampled at 20 pixels/mm. These images were down-sampled to 256 by 256 and

128 by 128 using averaging of the gray levels to achieve samphng rates of 10 pixels/mm and

5 pixels/mm. The full matching test was then performed for three combinations of extracted

features and for images of each size. As we will discuss in section 3, analysis of ridge spacing

data on the test fingerprints shows that the Nyquist sampling limit of two pixels for each

ridge and valley occurs at the 256 pixel level. The 128 by 128 images were sampled at half

the Nyquist level and axe of low quality with few clear ridge endings and/or bifurcations. As

we discuss in section 5, the accuracy of the hybrid matching method decreases with image

resolution but remains usable even for 128 by 128 images.

In section 2 we describe the direct optical correlation experiment. In section 3 we present

an analysis of ridge frequency data and its effect on image quality. In section 4 we discuss

combining optical and neural network methods. In section 5 we present the results of the

hybrid system and in section 6 we draw some conclusions about the difference in correlations

of real time and roUed inked fingerprints.

2 Global Optical Correlations

In the global optical matching experiment, images from NIST Special Database 9 (SD-9) [3]

are core aligned using the method discussed in [4] and cropped to fit the 640 by 480 pixel field

of the pattern recognition system. Two hundred reference fingerprints and second rollings
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Figure 1: Diagram of the optical pattern recognition system

(inked images taken at a different time) axe available for autocorrelation and cross correlation

experiments. When binaxy finger prints axe used the method used is based on that presented

in [5].

Figure 1 shows a schematic diagram of the optical pattern recognition system. It is based

on the conventional VanderLugt correlator [1]. The target fingerprint image is loaded on an

spatial hght modrdator, (SLM) and is Fourier transformed by a lens. The resulting Fourier

spectrum is interfered with a reference beam to record a Fourier transform hologram. After

recording is finished, if an arbitrary input fingerprint is presented on the SLM the correlation

of the input and the target appears in the correlation output plane.

Although the spatial heterodyning technique, often called joint transform correlator [8],

has many advantages for real-time apphcations [9, 10] and was used ia most of the recent

fingerprint recognition experiments [11, 12, 13, 14, 15, 16], the VanderLugt correlator was

adopted in this experiment. This is because the VanderLugt correlator does not require a

fast SLM with high resolution and the large SBP (space bandwidth product) available from

holographic recording materials provide a high degree of freedom to accommodate various

distorted versions of a target that axe simultaneously compared with an input. Also, since

the information is recorded in the form of a diffraction pattern (hologram) instead of a direct

image, it can be used on a credit caxd or an ID caxd for security purposes without need

for further encoding. Finally, the VanderLugt correlator is better suited for spatial filtering

to increa.se signal to noise ratio (SNR). The critical positioning tolerance problem of the

VanderLugt correlator can be greatly relaxed by using in-situ recording materials, such as

thermoplastic plates, as were used in this experiment. In this case, once the system is aligned.

3



new holograpliic filters can be generated with no fear of misalignment.

In the global correlation experiment, fingerprint images are generated from the NIST

fingerprint database [3]. In the real-time correlation experiment, images axe generated by a

hve-scan fingerprint scanner (Identicator Technology, Gatekey Plus ver. 4.1) An electri-

cally addressable hquid crystal SLM (Kopin, LVGA kit, 14 mm diagonal)^ is used as am input

device. The SLM is mounted on a rotational stage to facilitate precise rotational tolerance

measurements.

Holographic filters are recorded on a thermoplastic plate (Newport Corp. HC-300)^ that

allows fast non-chemical processing, high diffraction efldciency and high sensitivity. Although

the recording process cannot be achieved in real-time (close to 1 minute), the time-consuming

comparison of an input with many other images in a large database can be done very fast,

once a hologram is made.

A 10 mW HeNe laser with a ND 2 filter was used as a light source, and so only 0.1 mW
was used to see correlation output, due to the high fight efiiciency of the system.

The system is also equipped with real-time in-situ monitoring of am input image, its

Fourier transform, and the correlation output. These monitoring parts, combined with a

frame grabber and other analytic tools, permit real-time quantitative analyses and accurate

characterization of every stage of the system operation.

The correlator system is capable of shift-invariant pattern recognition over a broad range

of input positions and has high SNR due to accurate alignment using an interferometer and

a microscope.

Figure 2 shows a histogram of peak correlations for gray (a) and binary inputs (b). For

each of 20 randomly chosen fingerprints, an individual holographic filter was fabricated and

tested against the 200 fingerprints in the NIST database stored in the control computer.

Therefore each plot involves 4,000 correlations. Each peak correlation value was obtained

by taking the maximum value in the correlation plane. In case of gray inputs shown in (a),

all 20 autocorrelations peak at the maximum value (152). Cross-correlations distribute in a

Gaussian shape with a full width half-minimum (FWHM) of aroimd 15, and the maximum
at 60.

For binary inputs shown in (b), aU autocorrelations peak at the maximum value, as in

gray inputs. However, in this case, cross-correlations are significantly reduced to zero except

for the few cases which were found to be from the correct fingerprints of the other rolling.

For both gray and binary inputs, the autocorrelations are weU separated from the cross-

correlations to permit perfect 100% recognition for correct fingerprints (without considering

distortions).

The exact mechanism for the significant increase in SNR for binary inputs is not com-

pletely understood. However, several previous works [17, 18] support the experimental re-

sults. Such a high SNR of binary inputs can be efficiently used to make a composite filter to

permit tolerance against distortion.

^Certain commercial equipment may be identified in order to adequately specify or describe the subject matter

of this work. In no case does such identification imply recommendation or endorsement by the National Institute

of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for

the purpose.
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Figure 2: Histograms of peak correlations for gray (a) and binary (b) fingerprint images.

3 Fingerprint Image Characteristics

In tliis section we present data on fingerprint ridge pitch and frequency and the effect of

image sampling frequency on image quality. The standard sampling frequency for fingerprint

data for images of inked fingerprints is 500 pixels/inch or 19.7 pixels/mm, approximately 20

pixels/mm. Live scan system designed for law enforcement applications use this sampling

rate but live scan systems designed for verification applications are using lower sampling

rates down to approximately 5 pixels/mm.

The constraint on image quality that ridge frequency values imposed is important for

both minutia matching methods and for Fourier transform methods. For minutia matching

methods, the ridge structure of the fingerprint must be sampled with sufficient frequency

to allow the ridge and valley structxrre to be accurately detected. This is observed to be

approximately two points for each ridge and two point for each valley as expected form basic

Nyquist sampling theory. In the FT case, the frequency of sampling is important because it

effects the sensitivity of the correlation to plastic distortion. Near the center of the fingerprint

ridge and valley position do not vary much with pressure but at the edges fingerprint ridges

may be displaced by a full ridge width effectively interchanging the ridge and valley positions.

Smaller ridge pitch values for an equally elastic finger will increase this effect. Typical effects

of elastic distortion are shown in figure 14. In previous optical fingerprint correlation studies

[11, 12, 13, 14, 15, 16], decreasing image size and sampling frequency has decreased sensitivity

to rotational alignment and plastic distortion.
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Figure 3: Relative power of the FT as a function of ridge pitch for fingerprint with small pitch

Figure 4: Example fingerprint with narrow, 0.4mm, ridge pitch.
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Figure 5: Relative power of the FT as a function of ridge pitch for fingerprint with large pitch.

Figure 6: Example fingerprint with wide, 0.6mm, ridge pitch.
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3.1 Ridge Pitch Variation

In a collection of fingerprints, two kinds of variation of ridge spacing are of interest for matclier

evaluation. First we have variations in ridge pitch within individual fingerprints, and second

we have variations in ridge pitch across samples of fingerprints, such as the volume 1 disk 1

of NIST database 9.

The variations discussed here were measured by performing FTs for each fingerprint. The

power spectrum of the FT of the fingerprint was then sampled over angles from 0 to tt at

257 different radial distances and a histogram of relative power vs spatial frequency was

produced for each fingerprint. The average values of these histograms over each class for

male and female subjects was also produced. The class sample sizes reflect the natural class

occurrence rates; sample sizes for arches and tented arches are about 1/19 the size of those

for loops and whorls.

The variations in ridge spacing for two individual fingerprints are shown in figures 3 and

5. Both fingerprints have sharp peaks in their power spectrum in the typical ridge pitch range

between 0.4mm and 0.6mm and have minimum ridge spacing of about 0.2mm and maximum
ridge spacing of about 0.8mm. The peak power of the two prints are near the limits for

peak power observed in the special database 9 sample. The fingerprint with the smaller ridge

pitch has a power distribution skewed toward smaller ridge pitch values, see figure 3, and the

fingerprint with the larger ridge pitch has a power distribution skewed toward larger ridge

pitch, see figure 5. The fingerprints measured to obtain the two distributions are shown

in figures 4 and 6 respectively. Both images have a scale of 19.7 pixels/mm and the ridge

pitch shown in figure 4 is, as expected from the distributions, 2/3 of that shown in figure 6.

Figure 6 also demonstrates that using FT power to measure ridge pitch is robust enough to

work weU on a fingerprint with a poor quality image. Examination of the fingerprint images

illustrated that the larger ridges are near the crease at the bottom of the images and the

smaller ridges are near the finger tip. This is true for all of the fingerprints tested.

As the number of fingerprints used in the calculation of the power spectra vs ridge pitch

is increased, the distributions become smooth and approach skewed Gaussian form. This is

illustrated in figures 7 for males with fingerprints classified as whorls and by 8 for females

with fingerprints classified as whorls. In these distributions, the range of ridge pitches in

each distribution, 0.2mm to 1.0mm, is larger than the variations in maximum ridge pitch

between males and females, and larger than the variation in maximum ridge pitch between

classes. The distributions for other classes of fingerprints have similar shapes and ranges.

These measurements show that ridge pitch variations in individual fingerprints and in classes

of fingerprints are always larger than variations in most likely ridge pitch across groups of

fingerprints or between sexes.
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Figure 7: Relative power of the FT as a function of ridge pitch for males for fingerprint which are

classed whorls.

Figure 8: Relative power of the FT as a fimction of ridge pitch for females for fingerprint which

are classed whorls.
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Figure 9: Example fingerprint sampled at 20 pixels/mm.

3.2 Image Quality

The effects of sampling frequency on image quality are shown in figures 9, 10, and 11 for

a single fingerprint sampled at 20 pixels/mm, 10 pixels/mm, and 5 pixels

/

mm . Based on

the FT power spectra presented in the previous section we would expect some part of the

fingerprint, usually above the core of the fingerprint, to be just adequately sample at the 20

pixel/mm sampling rate but that most of the fingerprint would be adequately sample. In

figure 9 the region of narrow ridge spacing between 1 and 3 o’clock above and to the right of

the core are just adequately sampled.

When the sampling rate is reduced to 10 pixels/mm, as in figure 10, some of the minu-

tiae in this region are difficult to detect because of blurring. Most of other sections of the

fingerprint has clearly defined ridge structure. From the class FT power distribution, such

as figure 7, we would expect that only a few per cent of the ridges would be obscured by this

2-to-l down-sampling and this is the case.

When the sampling rate is further reduced to 5 pbcels/mm, as in figure 11, we see a large

reduction in image quality. At 5 pixels/mm we would expect, from figure 7, that about 40%
of the fingerprint would be sampled with a resolution less than the expected Nyquist limit.

In figure 11 most of the minutia locations are blurred, and ridge locations in the area above

and to the right of the core are lost at this level of resolution.

From the combined effect of FT ridge pitch analysis and from the examples given above

we conclude that on most fingerprints, the effect of sampling at 10 pixels/mm will be small

although some part of many fingerprints will be undersampled. Sampling at 5 pixels/mm wUl

make minutiae detection either imcertain or impossible, and will make detection of ridges
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difficult in a significant part of most fingerprints.

Figure 10: Example fingerprint sampled at 10 pixels/mm.

11



Figure 11: Example fingerprint sampled at 5 pixels/mm

4 Combined Optical and Neural System

Direct global correlation of fingerprints for matching has a significant failure rate caused by

the elasticity of fingerprints. Two rollings of the same print can vary significantly, as seen by

computing their Fourier transforms, because of the stretching variations which occur when

rolling a fingerprint. Figure 12 shows the correlation of two rollings of the same print that

have been rotation-aud-translation-aligned based on the ridge structure around the core. It

is clearly seen that the fingerprints correlate (indicated by the dark gray pixels) around the

core, but away from the core the patterns have different amounts of elastic distortion.

Since the elastic distortion problem is local, a method of local correlation can be used to

lower the average distortion in small subregions of the fingerprint.

4.1 Optical Features

A solution to elastic distortion that occurs in different roUings of the same fingerprint is

partitioning the images into tUes and comparing the data within each of the tHes using FT
based methods. For this work, each image was partitioned into 4 by 4 tiles twice so that

each tile contained one sixteenth of the total image area. One partition had the core located

in the center of the image, as defined by the fingerprint core, and the second partition has

core shifted away from the center so that the new center is located at the corner of one if

the first set of partitions. This double partitioning allowed for overlap of data (specifically

data on the edge of the tiles). Since the neural network is allowed to prune any data that is

not needed, excess overlap in the features can be removed during network training. Figures
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Figure 12: Correlation of two rollings of the same print. (Dark gray indicates correlated ridges,

white and light gray indicate uncorrelated ridges.)

13a-b show the core location for each 4x4 partition.

In NIST database 9 two rollings of each fingerprint are present; these fingerprint sets

labeled file prints (f(n)) and search print (s(n)) . After partitioning, each f(n) and s(ni) pair

are compared by correlated the corresponding tiles (32 tiles) for each print and extracting

features from the correlations as inputs to the neural network. The features used are the

central correlation peak height, correlation peak area and correlation peak width. Figure 14

shows two print tiles from a matched pair and the corresponding correlation output. The

correlation peak data is extracted by taking a cross-section (perpendicular to the fingerprint

ridge direction) of the peak at the maximum correlation value.

The correlation is computed in the Fourier domain by taking the Fourier Transform of the

partitions and computing the inverse Fourier Transform of their product, using the complex

conjugate of the first (eq. 1).

/(n) o s{m) = x .F[s(m)]]
(
1
)

Each f(n) and s(m) vector has 32 values for each peak feature (i.e. height, area and width)

(n = 1,2, ... 900 and m = 1,2, ... 900):

peak-features[f{n)i o s(m)i]

peak-features[f(n)2 o s(m)2]
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Figure 13: Shows image partitioning and the corresponding feature number.
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Automated feature detection procedures were apphed to NIST Special Database 9 Vol 1,

where disk2 was used as training data and diskl was used as testing data.

For this partitioning technique to be effective, the images need to be rotationaUy and

translationally aligned about the cores of the two fingerprints being compared. This align-

ment was accomphshed over a large set of data using an automated technique. There are three

steps in the automated alignment, filter/binarize image, detect core location, and determine

alignment.

Filtering, biaarization, and core detection are done using methods previously developed

and discussed in detail in [6]. The only addition is that the binarized fingerprint is median

filtered using a 3 by 3 window to help smooth noise in the ridge data and improve correlation

performance.

The alignment step uses 128 by 128 segments that are centered about the core of the

fingerprints being aligned. The correlation of the segments is computed while rotating the

second segment over a range of angles. The angle which produces the largest correlation is

used for rotation alignment. Since two prints can have significant angular displacements the

alignment is actually done in two stages. Stage one uses an angular step size of 1 degree over

a range of ±15 degrees and stage two a step size of 0.2 degrees over a range of ±1 degree

from the angle determined in the first stage.

Since the correlation computed by equation 1 is translation independent, translation

alignment is accomplished by using the peak correlation location from the second stage of

the angular alignment. The amount that the peak correlation is off center of the 128 by 128

segment determines how much the second print needs to be shifted to achieve translational

alignment with the first.

The feature extraction procedure results in a total of 96 features for each pair of finger-

prints compared. In SD-9, each fingerprint has one print in the test set that matches and

several thousand which do not match. Only those prints which do not match but are of

the same class axe included in the training set. The previously developed neural network
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Figure 14: Original matched pair and corresponding correlation.

classifier [6] is used for this screening process.

The 96 features were used in three different neural networks. The first network only used

the maximum correlation values as the features (32 features). Because of partitioning the

prints, a main source of error resulted from non-matching prints having a maximum peak

value in the ranges of matching prints. The difference was that matching prints had very

narrow, weU defined peaks and non-matching prints had broader flat peaks. This led to

the next neural network iu which correlation peak area was added as an input feature (64

features). Significant improvements were obtained iu matching error rates (shown later in

the paper). The final network tested used all 96 features (correlation peak maximum, area,

and width) and showed a smaller improvement over the 64 feature network.

4.2 Neural Network Matching

The matching networks discussed m this section were trained using a dynamically modified

scaled conjugate gradient method presented m [2]. In [2], we demonstrated that performance

equal to or better than Probabilistic Neural Networks (PNN) [19] can be achieved with

a single three-layer Multi-Layer Perceptron (MLP) by making fundamental changes in the

network optimization strategy. These changes are: 1) Neuron activation functions are used

which reduce the probability of singular Jacobians; 2) Successive regularization is used to

constrain volume of the weight space being minimized; 3) Boltzmann pruning is used [20]

to constrain the dimension of the weight space; and 4) Prior class probabilities are used to

normalize all error calculations so that statistically significant samples of rare but important

classes can be included without distortion of the error surface. All four of these changes are

made in the inner loop of a conjugate gradient optimization iteration [21] and are intended

to simplify the training dynamics of the optimization.
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In this work we found that the effect of the sinusoidal activation, 1 above, was not useful,

but that pruning, 3 above, and regtdarization, 2 above, were essential to good generalization.

Since the distribution of match and do not match classes was highly unequal, the effect of

prior weights, 4 above, was also very important. The optimal regularization factor for all

runs was found to be 0.001 and the optimum pruning temperature was found to be 0.005.

5 Hybrid Results

Five different experiments were performed. In each experiment all fingerprints from disk one

of volume one of SD9 were used as a test sample. AU fingerprints from disk two of volume

one of SD9 were used for network training. A total of 258,444 tests were performed in each

experimental test sequence. The experiments were designed to test the effect of different

methods of FT peak feature extraction and the effect of image resolution on accuracy. The

feature extraction experiments used the three methods described above to obtain features

from the local FT data. AU images were sampled at 20 pixels/mm. In the first of these

experiments the correlation peak height was used as the feature. In the second experiment

the area under the correlation peak was used as an additional feature. In the third set of

experiments, the width of the correlation peak was added to the feature set. For each feature

set the K-L (Karhunen-Loeve) transformation was used, as in [7], to reduce the dimensionality

of the feature set. Before K-L transformation, these three experiments had feature vector

lengths of 32, 64 and 96-elements. In the second set of experiments, the 96-element feature

vectors including correlation peak height, peak area, and peak width were extracted for sets

of images which were sampled at 20 pixels/mm, 10 pixels/mm, and 5 pixels/mm. The first

set of images in the resolution experiments was the same cls the set of images from the third

experiment.

Each of the local features sets discussed above was separated into testing and training

samples both by class and as a global (aU class) set. The training sets were used to calculate

global and class-by-class covariance matrices and eigenvectors and to calculate K-L transform

[22] features for aU of the testing and training sets. The effect of the K-L transform was to

reduce the feature set sizes from 32 to 13, from 64 to 58 and from 96 to 58 or 59.

When the eigenvectors of the K-L transform were examined for the peak-based 32 element

feature set, the primary source of variation was found to be in 12 zones near the center of

the two feature grids. The first eigenvector of each of the transforms was approximately 40

times larger than the 13th eigenvector, indicating that only about 13 statistically indepen-

dent features were computed from the training sets. No large difference in K-L transform

characteristics were seen between global and class-by-class data sets.

When the eigenvectors of the K-L transform were examined for the combined peak-and-

area-based 64 element feature set, most elements, 58 of the 64, made a significant contribution

to the sample variance. Increasing the feature set width to 96 elements by adding the

correlation peak width did not increase the number of useful eigenvalues. The transformed

feature vectors were stiU 58 elements long. We can therefore conclude that peak width and

peak area are highly correlated.

The K-L transformed features were used to train neural networks for both global and

class-by-class matching for each of the five data sets. The networks were trained using

regularization to bound weight size and pruning to restrict the number of active weights in

the network to a size. Network size, pruning, and regularization were adjusted empirically
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to provide reasonable generalization. The criterion used to test generalization accuracy was

the comparison of the test and training matching errors.

5.1 Correlation Peak Features

The basic network size was a 13-24-2 network with 386 weights including bias weights. 24

hidden units were needed to provide adequate coverage of the various combinations of inter-

connections during pruning. A sigmoidal activation function was used for the hidden nodes.

With this network size and these training parameters, a typical functioning network has

approximately 150 weights and has a accuracy of 62%-71%.

The resTilts of this process are given in the table below.

Class train test wts. pruned Test set size

All 70.2 65.2 285 258444

Arch 71.8 64.9 229 1681

Left Loop 72.1 62.6 240 73984

Right Loop 72.5 71.1 209 68121

Tented Arch 75.4 67.3 247 1089

Whorl 72.0 68.5 275 113569

Table 1: Results of training and testing for global and class-by-class neural network matching

using 13 K-L features. Features were taken from the correlation peak in each subregion. Images

contained 512 pixels on each axis. Combining all networks with pattern classification yields 85.28%

accuracy. All networks had a 13-24-2 structure with 386 weights.

These results can be significantly improved by using PCASYS or some other classification

method to test only prints of the same class for matching. Assuming the PCASYS accuracy

of 99% correct classification at 20% rejects and a natural distribution of classes would allow

the results given above to be improved to 84.3% matching accuracy. If a perfect classifier were

available, then the combined accuracy would be 90.3%. This model assumes that each print

is classified or rejected by PCASYS. The rejected prints are matched with the AU network

given in the top line of the table. All other prints are matched by the network selected by

its PCASYS class. All prints misclassifted by PCASYS are assumed to be mismatched.

The process of calculating the results shown in table 1 involved training runs in which

both the regularization and pruning were systematically varied to determine the correct

network size and the appropriate dynamics for training. As discussed in [20], network size

is an indication of the amount of information that can be transferred between the training

sample and the network without learning random noise patterns. In table 1, all of the final

networks had a potential weight space size of 386 weights. Larger networks were found to

have poorer testing error than networks of this size. The pruning temperature was varied

to produce similar testing and training errors for each class and for the global class. As the

table shows, this produced weight reductions of from 209 to 285 weights, leaving 101 to 187

nonzero weights. The small network size and large pruning ratio for acceptable generalization

with training set of up to 100,000 samples shows that the noise in the features used in the

training is at a level where larger network sizes are not useful, because all of the information

needed for generalization is learned by these small networks.
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All of the pruning experiments require that some small amount of regularization be used

to constrain the volume of weight space [2]. This allows the discriminant surfaces to remain

in the part of the training space which is heavily populated by the data. AJl of these runs

were done in the 13-feature K-L space, but numerous test pruning and regularization runs

were made in the original 32-feature space. Similar effective weight spaces were found in the

full 32-feature space, about 150 weights. The 13-feature data set was selected for additional

testing to save on computation time during training.

5.2 Correlation Peak and Peak Area Features

Class train test wts. pruned total wts. Test set size

All 78.3 76.0 1144 1442 258444

Arch 78.2 75.0 587 746 1681

Left Loop 79.1 84.6 608 698 73984

Right Loop 80.6 80.0 576 722 68121

Tented Arch 86.8 74.1 402 722 1089

Whorl 79.3 80.7 589 722 113569

Table 2: Results of testing and training for global and class-by-class neural network matching

using 26-28 K-L features. All class networks had 24 hidden nodes while the all network had 48

hidden nodes. Features used were based on peak correlation and area under the correlation peak.

Images contained 512 pixels on each axis. Combining all networks with pattern classification yields

89.95% accuracy. Typical class networks had a 58-24-2 structure.

The basic network size was a 58-24-2 network with 722 weights, including bias weights,

for class networks and 59-48-2 for the all class network. A sigmoidal activation function

was used for the hidden nodes. With this network size, from table 2 we see that a typical

functioning network has approximately 100-300 weights and has an accuracy of 74%-84% for

class networks. The global (AU) class network had 298 weights and an accuracy of 76%.

This experiment differs from the peak feature experiment in that the combined feature

set is only reduced from 64 features to 58 features. For some classes, such as left loops, this

results in greatly improved accuracy, from 62.2% to 84.6%, and a reduced number of weights,

from 146 to 90. For other classes the network does not reduce in size or improve in accuracy.

For tented arches the accuracy decreases from 75.4% to 74.1% and the number of active

weights increases from 139 to 320. Since the training data has a natural class distribution,

the data indicates that the classes with relatively small sample sizes, arch and tented arch

did not improve with more complex features but the classes with larger training set sizes,

loops and whorls, improved an average of 10%.

5.3 Correlation Peak, Peak Area, and Peak Width Features

The basic network size was 57,58,59-48-2 network with 1442, 1466, 1490 weights, including

bias weights, for the various networks. A sigmoidal activation function was used for the

hidden nodes. With this network size, from table 3 we see that a typical functioning network
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has approximately 250-530 weights and has a accuracy of 74%-84% for class networks. The

global (All) class network had 298 weights and an accuracy of 76%.

This experiment differs from the two previous experiments in that the required network

size has 48 hidden nodes for all of the networks and pruning on these networks with the

training set sizes used is substantially less effective than it was with peak and area features.

The less effective pruning of the network doubles the number of weights from 100-300 to

250-530. This shows that, even after feature correlations are removed by the K-L transform,

various complex feature combinations are available that are detected in the network training.

As ia the previous experiment, the classes with relatively small sample sizes, arch and tented

arch, did not improve with more complex features, but the classes with larger training set

sizes, loops and whorls, improved an average of 10% over simple peak features.

5.4 Scan Resolution of 10 Pixels/mm

In this experiment the image scanning resolution was reduced from 20 pixels/mm to

10 pixels/mm. The basic network size was 57,58-48-2 network with 1442, 1466 weights,

including bias weights, for the various networks. The network size is similar to the 20

pixel/mm experiment. A sigmoidal activation function was used for the hidden nodes. With

this network size, from table 4 we see that a typical functioning network has approximately

85-190 weights and has an accuracy of 71%-81% for class networks. The global (All) class

network had 302 weights and an accuracy of 76%.

The two main effects of lower image resolution are to increase pruning effectiveness and

to decrease accuracy. The required network size is still about 1466 weights but the number

of weights that are useful has decreased by about a factor of two and the class networks have

been trained to a corresponding lower accuracy. The data needed to generate more complex

weights set is missing in the lower resolution data.

5.5 Scan Resolution of 5 Pixels/mm

In this experiment the image scanning resolution was reduced from 10 pixels/mm to 5

pixels/mm. The basic network size was 62,60-48-2 network with 1562, 1514 weights, including

bias weights, for the various networks. A sigmoidal activation function was used for the

hidden nodes. With this network size, from table 5 we see that with these training parameter

a typical functioning network has approximately 88-247 weights and has an accuracy of 74%-

81% for class networks. The global (All) class network had 418 weights and an accuracy of

76%.

Further reduction in image resolution from 10 pixels/mm to 5 pixels/mm has had two

effects. The K-L transform yields 60-62 features instead of 58-59 features which results in a

small increase in initial network size. This larger network is then pruned to about the same

size as in the 10 pixel/mm case and the final accuracy of the matching is reduced by less

than 1%.
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Class train test wts. pruned total wts. Test set size

Ah 78.3 76.0 1144 1442 258444

Arch 80.1 76.0 1135 1490 1681

Left Loop 82.2 84.9 1276 1466 73984

Right Loop 82.6 79.9 1251 1466 68121

Tented Arch 96.0 74.5 963 1490 1089

Whorl 84.8 82.7 1235 1490 113569

Table 3: Results of testing and training for global and class-by-class neural network matching using

58 K-L features. All networks had 48 hidden nodes. Features used were based on peak correlation,

the width of the correlation peak, and area imder the correlation peak. Images contained 512 pixels

on each axis. Combining all networks with pattern classification yields 90.9% accuracy.

Class train test wts. pruned total wts. Test set size

Ah 78.3 76.0 1144 1442 258444

Arch 76.2 71.3 1276 1466 1681

Left Loop 77.6 81.9 1358 1442 73984

Right Loop 76.9 76.0 1343 1442 68121

Tented Arch 80.1 72.0 1276 1466 1089

Whorl 77.5 79.4 1381 1466 113569

Table 4: Results of testing and training for global and class-by-class neural network matching using

58 K-L features. All networks had 48 hidden nodes. Features used were based on peak correlation,

the width of the correlation peak, and area under the correlation peah. Images contained 256 pixels

on each axis. Combining all networks with pattern classification yields 89.3% accuracy.

Class train test wts. pruned total wts. Test set size

All 78.3 76.0 1144 1562 258444

Arch 79.0 77.9 1315 1562 1681

Left Loop 79.0 81.7 1384 1514 73984

Right Loop 76.6 77.5 1430 1514 68121

Tented Arch 84.7 76.6 1360 1514 1089

Whorl 77.6 73.8 1433 1514 113569

Table 5: Results of testing and training for global and class-by-class neural network matching using

58 K-L features. All networks had 48 hidden nodes. Features used were based on peak correlation,

the width of the correlation peak, and area under the correlation peak. Images contained 128 pixels

on each axis. Combining all networks with pattern classification yields 88.66% accuracy.
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Feature Type Sample Resolution Accuracy

Peak 20 pixels /mm 85.28%

Peak -hArea 20 pixels/mm 89.95%

Peak -t-Area-1-Width 20 pixels/mm 90.9%

Peak-j-Area-|-Width 10 pixels/mm 89.3%

Peak-(-Area-fWidth 5 pixels /mm 88.66%

Table 6: Accuracy of match for different features and sample resolutions

5.6 Summary
In table 6 the global matching accuracy of aU five matching experiments are compared.

The largest improvement in accuracy occurs when the peak area is added to the peak height;

this improves matching accuracy from 85% to 89%. Adding the peak width provides another

1% increase in accuracy but the peak width and area are sufficiently correlated that major

improvements are not possible.

Decreasing the image resolution decreases matching accuracy. The reduction from 20

pixels/mm to 10 pixels/mm reduces matching accuracy from 90.9% to 89.3%. The most

surprising result is that, by using FT-based features, the 5 pixel/mm image can stUl be used

to train an 88.66% accurate matcher which is only 0.64% lower than the 10 pixel/mm case.

This clearly shows that the FT-based features can be used for matching on images which

have too low quality to provide clear minutia.

6 Conclusions

We have compared optical and combined optical-neural network methods for rolled inked

fingerprint image matching. For static inked images, direct global optical correlation of

inked images made at different times has very low reliability, although cross correlations and

auto correlations of the original inked images are good. This difficulty can be accounted for

by the plastic deformation of the fingerprint during rolling.

Combining zonal optical features with neural networks for classification and matching can

yield reliable matching with an accuracy of 90.9%. This result was achieved usiug a neural

classification network described elsewhere [4, 5, 6] and three components of the local FT
correlation to drive class-by-class matching networks. The information content analysis of

the features, both from the dimension of the K-L transform features and the generalization

error analysis, show that the information transfer from the training data to the classification

network is as high as the noise level of the features will allow for each K-L transform, feature

set, and image resolution. The method used to achieve this optimal training is discussed in

[2]. In principle, direct combination of multiple real-time images in a holographic matched

filter can allow for greater stored information content in the matching process. This wiU be

the subject of further study.
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