
A 111DS M7b3TS

U.S. Department ofCommerceNIST National Institute ofStandards and Technology

High Performance Systems and Services Division

NISTIR 6180 Scalable Parallel Systems and Applications Group

User Guide to CADMUS, a Simplified Parallel Code
for Laplacian-fractal Growth

Howland A. Fowler, Judith E. Devaney, and John G. Hagedom

NO. 61 80

1998
June 1998





NISTIR 6180

User Guide to CADMUS,
a Simplified Parallel Code for

Laplacian-fractal Growth

Howland A. Fowler
Judith E. Devaney
John G. Hagedorn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

High Performance Systems and

Services Division, ITL

Gaithersburg, MD 20899-0001

June 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director





User guide to CADMUS,
a simplified parallel code

for Laplacian-fractal growth

Howland A. Fowler* Judith E. Devaney and John G. Hagedorn

High performance Systems and Services Division, ITL
National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

High-voltage breakdown in liquid dielectric is simulated as growth of a stochastic

Laplacian fractal. The model is contained in a software package that is written in

Fortran 90 with data parallel extensions for distributed execution. These extensions

encapsulate an underlying, invisible message-passing environment (MPI), thus en-

abling the solution of memory intensive problems on a group of limited-memory

processors. Block-partitioning creates processes of reasonable size, which operate

in parallel like small copies of the original code. The user needs only to express his

model in transparent array-directed commands; parallel interfacing between blocks

is handled invisibly. Breakdown is performed in parallel, in each of the local blocks.

Contribution of NIST, not subject to copyright in the U.S.
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1 Introduction

This model simulates the growth of high-speed filamentary streamers, during

high-voltage breakdown in liquid dielectrics.

Fortran 90 is used as a high-level parallel language for the code, supple-

mented by NIST’s DPARLIB, a set of subroutines which extend F90 across

block-process boundaries, providing an invisible interface to the Message

Passing Interface (MPI).

Fortran 90’s advantages are

• addressing huge arrays directly, so as to take advantage of the large

individual-processor memory which is currently available on worksta-

tions and multiprocessors.

• allowing the assembly of program logic with combinations of real and

logical arrays.

• it contains the powerful WHERE mask, CSHIFT, PACK and UN-
PACK, distributing and collecting operations.

• user needs to loop over arrays only when reading in and out.

• organization of the program into modules makes for easy substitution,

compiling, and testing of code.

DPARLIB ’s extensions permit

• carrying F90 parallelism across block partitioning.

• taking advantage of MPI’s ability to facilitate and extend C-shifts

based upon a Cartesian-grid topology.

• The underlying MPI code is completely hidden; the resulting program

is very similar to serial code; indeed, it is so executed by the individual

processor.

• All processes start the same instructions together.

• A program may be built and tested on one processor, then scaled

upward to execute over a 2-D array of process blocks.

Thus, we have a high-level scalable language: ***** Fortran 90 / DPAR-
LIB / MPI ***** in which it is easy to model physics problems, test the

(serial) code at small scale, then enlarge to full scale on a multiprocessor
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(for example IBM SP2, SGI Onyx, SGI Origin 1
). The language is particu-

larly well-suited to problems which are easily expressed on a large Cartesian

grid, since MPI is adapted for communicating data across rectangular block

boundaries.

The model is a routine for the stochastic growth of Laplacian fractals on

large 3-D Cartesian grids [1]. While the intended application has been to

simulate global features of the growth of fast streamers in liquid dielectrics,

the family of possible application areas is larger than this
(
water-treeing

in solid dielectrics, growth of metallic structures in electrodeposition, sur-

face streamer-spreading at dielectric interfaces are examples ). Each would

require some specialization of parameters and boundary conditions. These

routines are presented as expository examples.

The elements of the algorithm are:

1. Assume streamer tree fully conductive, and attached to the anode

electrically.

2. Solve Laplace’s equation throughout the interior region, using the an-

ode and streamer tree as one boundary, and the cathode as the counter-

electrode boundary.

3. Examine neighbor sites to the tree. If phi is above threshold (cutoff)

level, then compare against weighted random numbers. If they exceed,

attach to tree.

4. Cycle until counter-electrode is reached.

Adjustable parameters of the calculation (grid bounds, needle position,

threshold (cutoff) voltage level, and power-law exponent) allow a broad

range of fractal behavior to be approximated.

Novel features of the realization include:

• Concurrent (simultaneous) growth is distributed over the entire tree

at any instant

• Simulated time progression (Monte-Carlo time ticks) is recorded. When
time-compression is used to avoid empty statistical trials, the Monte-

Carlo time is estimated.

1
Certain commercial equipment, instruments, or materials are identified in the paper to

foster understanding. Such identification does not imply recommendation of endorsement

by the National Institute of Standards and Technology, nor does it imply that the materials

or equipment identified are necessarily the best available for the purpose.
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• Full three-dimensional display of the growth process (animated or

color-banded) is possible.

• Compact procedures are used for statistical testing and for time com-

pression.

• Face- and body-diagonal links may be included in the fractal tree.

The code is presented as a directory of modules (cadmus/source), see

Figure 1, which are compiled by Makefile under four separate main pro-

grams (cadone, cadtwo, cadmus, cadbkl), each of which performs a

different task, cadone makes a comparison against a linear-weighted uni-

form random-number distribution, and counts the number of statistical tries

(Monte Carlo time ticks), cadtwo uses a square-law-weighted random-

number distribution, and counts statistical tries, cadmus and cadbkl al-

low a choice of integer exponents for the weighting. In these latter two

programs, a normalization is used which corresponds to time compression

for low probabilities, PACKing and weighting the neighbor-voltage distribu-

tion, and then comparing against a uniform random number distribution,

compressed when the voltage values are low (as at the outset). In such

cases we estimate the progression of statistical tries, instead of counting.

This permits cube-law and higher powers to be tested, without a very large

number of “empty” statistical tries. It has proved useful for tracing the

fractal shape of cube-law and fourth-power trees, cadbkl contains an esti-

mating formula for the value of Monte-Carlo waiting time between events

(important when the field strengths and discharge probabilities are low) as

presented by I. Beichl and F.E. Sullivan [2]. [The formula used in cadmus
routine is noticeably less accurate for this estimation.]

The directory cadmus/diag contains modified versions of the cadone
and cadtwo routines, which permit the addition of face- and body-diagonal

links in the tree growth. The greatly increased choice of directions from

each site, at each step of growth, leads to denser growth and more irregular

patterns of stems.

The routines have been run on both multiprocessors (IBM SP2, SGI

Onyx, SGI Origin) and open clusters of SGI workstations - sometimes re-

ferred to as networks of workstations (NOWs) - linked by LAM, with access

to a common memory-server.

For grid sizes up to 64 X 64 X 64, workstation clusters or running on

a time-shared Onyx are satisfactory for development work, with interactive

runs. For large grid sizes, namely 100 X 100 X 100 or 128 X 128 X 128,

the limitations are set by the burden of repetitive computation of Laplacian
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convergence. The number of available dedicated processors will determine

the duration of the-run, and will have to be determined by the local batch

queueing protocol.

Program Requirements:

Cadmus routines requirexs both MPI and the DPARLIB library. On an

SP2, MPI can be the IBM Parallel Operating Environment (POE) MPL or

a public-domain MPI like LAM [3] or MPICH [4]. On an SGI, MPI can be

SGI’s MPI or a public-domain MPI. DPARLIB can be obtained from our

web site:

http : //www . itl .nist
.
gov/div895/sasg

2 Details of the Cadmus Routines

Cadmus, after slaying a dragon, was instructed to sow its teeth on the

ground. There sprang up an array of fully armed soldiers, who fought

among themselves until only five remained...

The main program cadmus calls routines from the other modules. These

are compiled in the' Makefile, in the order in which the main requires them.

Note that the Makefile needs object code for DPARLIB and MPI to be in

place, in order to compile, and may need to be modified to state the correct

DPARLIB location on the local system. In the listings below, modules also

carry the suffix [underscore plus mod].

MAIN programs:

cadmus — calls fast3;

cadbkl — calls fastbkl;

cadone — calls singlcomp;

cadtwo — calls dblcomp.

Setup, initializing modules:

globals; breakup; growinit.

Display modules, printing to screen:

treedisp; nbrdisp.

5



Program logic and arithmetic:

nbr; lpl; fast3; fastbkl; singlcomp; dblcomp.

The modules contain data, assignments, and subroutines as follows:

globals reads from the input file ‘breakdown. in’ the integers decribing

the desired array of process blocks, and the dimensions of the desired rect-

angular grid (the latter must be an even number in the c- or z-direction,

along which the blocks are partitioned. The global z-dimension, divided by

the number of process blocks, must also be an even number, in order for the

red and black subgrids to match up at the boundaries.) It also contains a

list of 32 seed integers for the random number generator dp-uni. In order

to create a new run, alter the lead integers in the list and recompile. Only

as many seed integers will be used, as number of processes.

breakup allocates major arrays within the bounds of the individual pro-

cess blocks. It also contains a routine to assign the red and black subgrids.

growinit starts with the subroutine gradient, which fills the interior

volume with a linear-gradient voltage field ‘phi’. This is a zeroth approxima-

tion which reduces later convergence time. It then allocates and initializes

the ‘tree’ array, including the anode plate and the concentrating needle. It

allocates and initializes the cathode plate. It runs a test round-robin ac-

cess sequence to the output file streamer (if the empty streamer file is not

present, the program will stop). The subroutine writestream will be used

for output.

treedisp contains a test routine for displaying to screen one plane of

the ’tree’ array. When used, it displays, successively, all the planes in one

of the center-most blocks of the calculation, with +’s and .’s to mark the

disharged and empty sites. (Check to make sure that the starting needle is

located within the appropriate block.)

nbr finds all neighbor positions which are one grid step away from the

tree array as then constituted, identifying possible candidates for breakdown

in the next statistical try.

nbrdisp contains a test routine for displaying one plane of the nbrs

array. As above, it may need adjustment before use.

lpl contains the subroutine laplace which does the major repetitive

calculation of the voltage field, by Gauss-Seidel over-relaxation. Epsilon

is set at 0.0050; but this may be changed. Setting epsilon to 0.0010 will

roughly double the number of convergence loops to reach completion. Also

here is subroutine lplinit for initialization; this is set to run for 200 loops

instead of using the epsilon.
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fast3 describes the statistically-weighted growth stage. This is the

statistical-choice routine for the cadmus main. (The main action alternates

between fastthree and laplace.) fastthree identifies neighbor candidates

whose voltages exceed the ‘cutoff’ threshold, PACKs their values on ‘philin’

array, exponentiates that to ‘pwr’ onto ‘phisq’ linear array, and sums the

elements of ‘phisq’ to obtain the a-priori expected probability of any event

occurring. This sum is used to weight a uniform random distribution, for

test comparison against ‘phisq’. Survivors are UNPACKed to their original

positions, forming the array ‘nutree’, which is combined with ‘tree’ as the

growth step.

fastbkl differs from fast3 in utilizing the direct BKL approximations for

estimating the number of “empty trials” to reach a composite probability of

one [2]. Where fast3 tends to overstate this quantity, when the probabilities

are very low, fastbkl may do a better job.

The Dparlib random number generator is used; it starts from a sepa-

rate seed within each process and creates independent streams of random

numbers.

Both laplace and fastthree terminate with global-count if loops which

ensure that the step into the alternate subroutine is performed simultane-

ously in all processes.

Output into the ‘streamer’ file is a five-column list; three position inte-

gers followed by the breakdown voltage at that site and the statistical trial

number (Monte Carlo time tick).

singlcomp is the statistical-choice routine for the cadone main pro-

gram. It differs from fast3 in counting all statistical trials, instead of just

estimating the ones with low probability. No PACK routine is called. The

neighbor phis are compared against a uniform distribution of random num-

bers, at their sites.

dblcomp is the corresponding routine for the cadtwo main program.

Instead of exponentiating the field to power 2, as in fast3, it finds a MAX
array from two linear arrays, each filled with a uniform distribution of ran-

dom numbers. This is equivalent to conditional(or product) combination,

passing the distribution of voltages at the neighbor positions over a “double

hurdle” of filters, and leaving a square-weighted distribution of survivors.

cadone and cadtwo are set up to call nbrdisp and treedisp at con-

venient intervals during an interactive run. cadmus instead prints a lot

of numerical information at the steps of the statistical routine, which can

be read to tell the status of the run. When not desired, these printout in-

structions may be commented out; or, their output may be led to a null

file.
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IMPORTANT NOTE: USE CADBKL WHEN THE DESIRED (SUR-

VIVOR) POWER-LAW EXPONENT IS 3 OR HIGHER, IN ORDER TO
AVOID MANY EMPTY STATISTICAL TRIAL LOOPS WHEN THE FIELD
STRENGTHS ARE SMALL.

3 Input required from user

The program looks for an input file ‘breakdown.in’ which must contain six

lines of integers:

Line 1 gives the global upper bounds of the grid, in three columns

Line 2 gives the 2-D array configuration of process blocks

Lines 3, 4 and 5 give the global bounds of the anode needle: X or a

direction in line 3 is direction of growth,anode to cathode. Y or b direction,

line 4, is orthogonal to this, across the growth axis. Z or c direction, line

5, is also orthogonal; this is the direction in which the process blocks are

stacked.

Line 6 gives the desired exponent for the statistical weighting of the

power law. It is read by cadbkl and cadmus, and is ignored by cadone and

cadtwo.

4 Guide to Operating

Before starting each run, make sure that an empty file ‘streamer’ exists,

to catch the listing of breakdown sites from the individual processes. The
unix commands “rm streamer” followed by “touch streamer” will do this

job. In its present realization, the programs assume that all processes will

have access (round-robin) into a common file; this is especially convenient

if the run happens to be interrupted, because it will contain the full growth

history of the streamer, up to that moment.

If the processes cannot communicate to a common file, then the output

instructions should be adjusted to form a streamer file for each process,

which will dump at the end into a common ‘streamer’. This should then be

sorted by statistical trial number (Monte Carlo time tick) to arrive at the

correct sequence.

If a new selection of random-number seeds is desired, change the leading

integers in the data list of 32 seeds, which is supplied in globals-mod.f90,

and recompile. Be sure that there are 32 in the list after you modify it.

If a different value of cutoff (threshold phi) is desired, change the assigned

value of this parameter at the beginning of fast3 (or fastbkl, singlcomp,
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dblcomp) and recompile.

If a value of convergence epsilon in the Laplacian calculation, other

than 0.0050 is desired, change this assigned value at the start of subrou-

tine laplace, in lpl, and recompile.

Subroutines showtree and shownbrs were used in early testing of the

program on small grids, say 48 X 48 X 48. To use shownbrs the integer k

is set to the z-plane in which the anode needle is located (usually identified

with the central-most process block), and the routines produce a screen

display of -f’s and .’s, to indicate the subarray of tree or nbr sites in that

plane only. As a general rule, they are not needed in larger runs - the system

will print (to screen) enough data to show the progress of the run.

5 Graphics for display of the breakdown tree

The 5-column ‘streamer’ list file generated by Cadmus runs must be post-

processed to render it in 3-D graphical format. See Figure 2.

Three programs are used: nuldrread prepares two files, ‘newtree’ and

‘ldr’, which can be read in black and white line display (fixed angle) by

PVWave graphics routines, several examples of which are provided, having

the suffix .pvw. For a system provided with PVWave support, the calls are

then “wave”, and “.RUN xxx.pvw”, where xxx stands for the name of the

specific PVwave program.

nuldrread makes a backward search to find the link connections implied

by the ‘streamer’ listing, and then lists all of these links. Thereupon, it traces

back through the array of the links to find the continuous path from cathode

to anode, which it calls in a heavy-weight line display. The PVWave routines

read the links and the continous path from the newtree and ldr files. In order

for this leader-trace function to proceed correctly, the discharge of the site

in the plane next to the cathode must be the last line of the ‘streamer’ file.

(In cases where many sites discharge at once in the last statistical try, this

may have to be adjusted manually.)

streamer2avs calls a routine which resets the coordinates of the cadmus

cubic coordinates to those used by the AVS graphics system. It outputs a

‘streamer-avs’ file which must then be processed by “de2ucd streamer-avs”

.

The latter performs the backward search as above, and restates the data in

the ucd format, which enables AVS to pick it up rapidly.

The sample AVS network which is included, will then display the streamer

in its cube of coordinates. (The outlines of the cube and needle are read in

separately, and must be adjusted for the problem at hand).

9



6 Preparing graphics

Copy the ‘streamer’ file from the current run (and make a permanent backup

for later use.)

Examine the head end of the ‘streamer’ file. The Cadmus routines will

not have listed the sites on the starting needle from which the first discharge

links form their connection. These may be found by inspection, and added

to the head of the list (with voltage 0.0000 and statistical trial number 0,

to fill the two right-hand columns.)

Examine the tail of the ‘streamer’ file. There will be one (or sometimes

two)discharge sites in the plane adjacent to the cathode. These will show

a voltage reading of 0.6***
,
considerably higher than the others because

of the short remaining gap. One of these should be the last line in the file

(either move it, or erase the lines which follow it), in order for nuldrread

to trace the leader path back correctly.

Call “nuldrread”. Call “wave”, “.RUN xxx.pvw”. PVWave will display a

perspective white-on-black view of the tree. On Silicon Graphics machines,

use snapshot and swapbw to obtain black-on-white. If Showcase is available,

it is convenient for reshaping and printing.

Call “streamer2avs” . Call “de2ucd streamer-avs” to form a similar-

named file with .inp suffix. AVS can call the sample.net to display in its

3-D geometry viewer the cube and streamer, which will be color-banded

to represent Monte-Carlo timing. Rotation and animated growth may be

demonstrated. In the color-banded version, we do not display the heavy

leader path for fixed printout. However, if one is doing an animated demon-

stration, it may be called from the ‘ldr’ file, above, as a separate display

element in the last few frames.

7 Routines for inclusion of diagonal links

The cadmus routines in this ‘diag/’ subdirectory have been modified to

include face-diagonal and body-diagonal links between sites on the cubic

Cartesian lattice. This permits a wider choice of directional angle for each

new link in the tree structure. Instead of the (somewhat rigid) restriction

to 6 neighbor-directions, each growth tip now faces out to 12 “next-nearest”

face-diagonal neighbor directions and 8 “next-next-nearest” body-diagonal

neighbors.

Because these additional neighbors stand off at a greater separation from

the existing tree (which is at zero potential), they will tend to have higher
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voltages (Laplacian-phi values) than the six “nearest” edge-diagonal neigh-

bors. To weight their voltage values to an equivalent statistical level, we

assume that the precise (3-D radial) Laplacian potential field in this “neigh-

bor” or “active-growth” zone falls off inversely with the radius. The electric

field
(
which is the gradient of the potential and which instigates the dis-

charge breakdown
)

will then vary as the inverse square of the radius (or

link-length). Thus, we down-weight the voltage of the face-diagonals by a

factor of 1/2, and the body-diagonals by 1/3, before making the statistical

comparison against weighted random numbers.

An overall result is to increase the a-priori probability of growth per

statistical trial (Monte-Carlo time tick) by a ratio 6 + (1/2 X 12) + (1/3 X
8) : 6 or roughly 2.444:1 .

The augmented choice of angles at each step permits the fractal tree to

grow with more freedom, even to the point of reversing direction.

The effect of selecting a higher exponent for the statistical weighting

procedure, is to concentrate the growth likelihood from the tip towards the

axial center of the solid angle visible to the tip, where the field strength is

highest.

Ambiguity in the choice of path is resolved in favor of the shortest path.

Thus, neighbor candidates alongside a “stem” or “trunk” of the fractal

growth are not reached through a diagonal link, when a shorter diagonal

or an edge connection is found for them.

Method: At each growth stage, the neighbors are chosen by combinations

of dpcshifts on the existing tree. The path direction to each individual site is

recorded by an integer on the corresponding site in the array ‘intnbrs’. Inte-

gers 1-6 are used for the edge-neighbors; 7-18 for the face-diagonal neighbors;

and 19-26 for the body-diagonal neighbors. The order of choice eliminates

ambiguities.

The array ‘intnbrs’ is passed to the statistical comparison routine, which

now weights the Laplacian ‘phi’ values as described above, before making

the statistical tests.

For each discharged link, the directional index integer is recorded in a

separate column of the ‘dgstreamer’ file (note the change from ‘streamer’

label). The post-processing routine dgldrread can then read this file into

the appropriate ‘newtree’ and ‘ldr’ files for graphical display as before.
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Figure 1: Cadmus Directories
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Figure 2: Sample of PVwave black-and-white graphics
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