
NAT'L INST. OF STAND & TECH R I.C.

AlllDS M7b214

1

1

ofCommerce
I I National Institute ofStandards and Technology

High Performance Systems and Services Division

NISTIR6174 Scalable Parallel Systems and Applications Group

Dielectric Breakdown in a Simplified Parallel Model

Howland A. Fowler, Judith E. Devaney, John G. Hagedom, and Francis E. Sullivan

QC
100
.056
ilO.6174
1998

June 1998



f

1



Dielectric Breakdown in a
Simplified Parallel Model

Howland A. Fowler
Judith E. Devaney
John G. Hagedorn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

High Performance Systems and

Services Division, ITL

Gaithersburg, MD 20899-0001

Francis E. Sullivan

Director

Center for Computing Sciences

Institute for Defense Analyses

Bow/ie, Maryland 20715

June 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director



>

1

i!

'(



Dielectric Breakdown

in a Simplified Parallel Model

Howland A. Fowler* Judith E. Devaneyl and John G. Hagedorn^

High performance Systems and Services Division, ITL
National Institute of Standards and Technology

Gaithersburg, MD 20899

Francis E. Sullivan^

Director, Center for Computing Sciences

Institute for Defense Analyses

Bowie,MD 20715

ABSTRACT

The growth of streamer trees in insulating fluids (a submicrosecond process which

triggers high-voltage breakdown) has been simulated with a combination of parallel-

coding tools. Large grids and arrays display well the multifractal, self-avoiding

character of the streamer trees. Three physical cases have been approximated by

different power-law weightings of the statistical growth filter: dense anode trees,

in uniform field; sparse cathode trees (a rarer experimental case); and ultra-sparse

anode trees (seen in some fluids of higher viscosity).

The model is contained in a software package that is written in Fortran 90

with data parallel extensions for distributed execution. These extensions encapsu-

late an underlying, invisible message-passing environment (MPI), thus enabling the

solution of memory intensive problems on a group of limited-memory processors.

Block-partitioning creates processes of reasonable size, which operate in parallel

like small copies of the original code. The user needs only to express his model in

transparent array-directed commands; parallel interfacing between blocks is han-

dled invisibly. Breakdown is performed in parallel, in each of the local blocks.

Results are presented for experiments run on 9 nodes of the IBM SP2, and 4

nodes of the SGI Onyx, two examples of multiple-processor machines. Display is
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carried out in 3-D. Timing of the growth can be shown by color banding or by frame-

animation of the results. The adequacy of the growth rules and size scaling are

tested by comparing the simulations against snapshots from high-voltage discharge

events.
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1 Introduction

The growth of fast streamer trees in liquid-dielectric insulation provides

the precursor “leader” conduction path through which damaging flashover

between electrodes can take place. The high-speed, variable nature of this

phenomenon has made its detailed mechanism elusive. Nonetheless, a global

description of the process may be useful for its characterization.

We have applied stochastic Laplacian growth as a model for feist streamer

trees in liquid dielectrics. Filamentary dielectric breakdown has been exten-

sively discussed by Pietronero and Wiesmann [1] and others [2, 3, 4, 5]. Here

we construct a practical realization of the algorithm on a large Cartesian

grid, using boundary conditions which confine the electric field. We exam-

ine the effect of parameters (threshold voltage, choice of power law) on the

fractal structure (dense or sparse?) and timing of the growth process.

The calculation of the voltage field throughout the full volume, repeated

after each stage of breakdown growth, is the major computational burden

which calls for parallel methods.

The SIMD (single instruction stream, multiple data) model fits our prob-

lem closely. We had tested an earlier machine-language version of our algo-

rithm on the CM-2 Connection Machine [6]. The SIMD version there was

synchronous and specific to the machine. The present method uses block

partitioning under MPI [7] control, in a SPMD (single program, multiple

data) approach which runs asynchronously. For a data-parallel environment

which is easy to use and transport, we have written the code in array-directed

commands of Fortran 90, together with our library DPARLIB [8, 9] that en-

capsulates the underlying MPI [7] calls. This will run in any environment

that is Fortran 90 and MPI enabled, be it networks of workstations. Sym-

metric Multiprocessors (SMPs), parallel machines, or some combination of

these.

Running Fortran 90 on a single processor does not provide access to the

memory that large data-parallel programs require. Our software has been

designed to fit into the Fortran 90 syntax transparently, but also to run

across the nodes of a group multiprocessor. It extends the array-directed

commands seamlessly, across block boundaries. For development purposes,

the number of processors executing can be reduced to one, like a serial

version of the code using only plain Fortran 90 commands. These features

enable users to test small versions of their code on their workstations. Then,

with only minor changes in the code, much larger versions can be run on

machines like the SP-2, taking advantage of the larger memory and fast

communication network.
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2 Physical Model and Algorithm

The elements of a stochastic fractal model have been demonstrated in nu-

merous examples [10, 11, 12, 13, 14, 15, 16]. The streamer tree is assumed

to be fully conductive, and electrically attached to the electrode from which

it originates. The voltage field is defined over a set of points in a rectangular

grid. The streamer tree is a connected set of those points.

After initialization, the algorithm alternates between a Laplacian con-

vergence procedure and statistically weighted streamer tree growth. Our
algorithm may be summarized as follows:

Initialize voltage field and anode/cathode configuration

Set the streamer tree to be the anode (including steirter needle)

Run Gauss-Seidel over-relaxation on Laplace’s equation for 200 iterations

Do until streamer tree has reached cathode

Set all sites on streamer tree to voltage 0.0

Set all sites on cathode to voltage 1.0

Solve Laplace’s equation via Gauss-Seidel over-relaxation

Find nearest neighbors to tree

Do until the set of breakdown sites is not less than one

Set Breakdown sites equal to the empty set

Choose, locally in each block, red or black (at random)

Set breakdown candidates equal to neighbours of the color

Remove candidates with voltage below a specified threshold

For each remaining site generate a weighted random number

Remove breakdown sites whose voltage is below this number
End Do

Add breakdown sites to streamer tree

End Do

The two stages of this algorithm are the solution of Laplace’s equation,

and the growth of the streamer tree. We now consider these in more detail.

Solution of Laplace’s Equation
Laplace’s equation is fully solved throughout the interior region (filled

with dielectric liquid) using the anode, starter needle, and streamer tree

as one boundary at zero potential, and the plane cathode as the counter-

electrode. Sides of the cube-volume support periodic boundary conditions.
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The quasi-static field approximation (i.e., that the voltage field always “catches

up” with the new boundary condition at each stage of the growth) is phys-

ically reasonable since breakdown streamers are known to advance at su-

personic velocities, still slow by comparison with the speed of light in the

dielectric liquid.

A first-order, six-point-averaging Laplacian operator [17] on red-to-black

and black-to-red checkerboard subgrids advances through Gauss-Seidel over-

relaxation. Initially 200 iterations of convergence bring the smoothing preci-

sion below one part in ten thousand, on a grid of 126 x 126 x 126. (Nominal

single iteration time is roughly 10 seconds.) After this first high-precision

convergence, the epsilon is relaxed (to .001 - .005) in the interests of speed.

Because each growth stage creates only small perturbations on the existing

boundary conditions, the later cycles reconverge rapidly, in five to ten itera-

tions. The changes propagate in rapidly diminishing ripples, away from the

newest growth links on the tree.

Growth of the Streamer Tree

Grid sites immediately adjacent to the tree are examined. If their volt-

ages exceed a specified threshold (or cutoff) level, then the surviving voltages

are compared against a weighted distribution of random numbers. Those

which pass over the statistical hurdle are attached to the tree, and the Lapla-

cian convergence is re-cycled for the new, perturbed boundary condition.

Field and growth stages alternate until the counter-electrode is reached.

By contrast with some of the stochastic fractal models cited earlier,

which recalculate Laplace’s equation after each single new-growth site is

added, our algorithm considers simultaneous, distributed growth possibili-

ties on all “red” or all “black” neighbors of the tree, during each growth

stage. Growth is favored near the tips of the tree, where electrostatic field

lines converge strongly, and the voltage gradients are largest. While the

details of the mechanism for fast streamer growths are still to be deter-

mined from experiment, we ask, “To what laws of shape and timing does

the observed growth conform?”

Weighting of the growth-probability power law, as a function of electric

field strength, determines the degree of bushiness (or fractal dimension) of

the final structure. At one extreme, Sanchez et al. [18] have shown that a

fourth power (or higher) dependence on field strength produces a single, self-

avoiding strand which resembles a directed random walk. Side-branching is

minimized. At the other limit, Witten and Sander [19] showed that a linear

filtering against uniformly-distributed random numbers results in a dense

growth form, which is also found in diffusion-limited aggregation, from a

dififerent mechanism. In this linear regime, a mass of twigs advances with a
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“front” of thickly-spaced growing tips. A recent review by Erzan, Pietronero,

and Vespignani [20] considers ways of characterizing fractal dimension in this

class of problems.

In Figure 1 we see a log-log plot of breakdown probability (for a sin-

gle link between grid vertices) versus power of the electric field strength,

measured as the voltage difference between the conducting tree, at zero po-

tential, and its immediate neighbors on the Cartesian grid. The power law

determines the likelihood of growth from the tip, as against side branching.

Recall that Laplace’s equation is size-scalable without limit. By adopting a

power-law probability, we may expect self-similar growth over large ranges of

both size and field strength. This is not viewed as a microscopic description,

but rather as a law controlling the global growth form.

Notice how miniscule the breakdown probability becomes for cube-law

and higher powers, on the left half of the graph. The range shown, of field

strengths, is that encountered in growth across a 126 x 126 x 126 grid vol-

ume. As the streamer tip advances from anode to cathode, the diminishing

gap leads to progressively higher fields around the leading branches, while

electrostatic screening causes the fields around the base of the tree to drop

back below threshold, so that growth is cut oflF there. Because the electric

field is confined by limiting boundary conditions, and the growth process

starts and stops at an abrupt threshold, we do not expect a “pure” fractal

dimension throughout the growth. The tree is sparser as it leaves the con-

centrating needle on the primary electrode, and denser as it approaches the

counter-electrode.

The algorithm must operate uniformly across a wide range of growth

rates. For square-law and higher powers, the starting probability near the

anode needle (where the field strength only slightly exceeds the threshold

value of 0.015 to 0.10) is very small - tens or hundreds of empty statisti-

cal tries may occur between single breakdown events. By contrast, linear

weighting leads to tens of events per growth stage, in the shorter gaps, ap-

proaching the cathode.

The uniform treatment of slow and fast stochastic processes assumes

that the discretized physical model approximates a Markov-process master

equation [21, 22], whose time variable is proportional to the number of trial

instances.
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3 Implementation

Our code was first implemented in a serial version, on Sun and SGI work-

stations, and was run interactively on small grids. This enabled extensive

testing with visual tracking of detailed printouts to the screen. This serial

code was implemented in standard Fortran 90 and exploits that language’s

array-oriented syntax and intrinsic functions. As examples of the powerful

simplifications available, we describe some of the details.

The code makes extensive use of array arithmetic, the WHERE con-

struct, array functions such as CSHIFT, MAXVAL, COUNT, and the dy-

namic memory allocation features of Fortran 90. Our program logic is ex-

pressed through combinations of real and logical arrays, the WHERE as-

signment mask of Fortan 90, and a selection of spreading and collecting

operations.

For example, our Laplacian-operator subroutine makes vigorous use of

Fortran 90’s CSHIFT operation. The sum of neighbors calculation was

implemented in the serial version with the following code:

biksum = cshift (blkphi, +1, 1) + cshift (blkphi

,

-1. 1) &

+ cshift (blkphi, +1, 2) + cshift (blkphi

,

-1, 2) &

+ cshift (blkphi, +1, 3) + cshift (blkphi

,

-1, 3)

CSHIFT is the standard Fortran 90 intrinsic function that performs cir-

cular shifts. The array (biksum) that results from this calculation con-

tains at each grid point the sum of the six neighbors of that grid point in

the original array, using periodic boundary conditions. The division of the

three-dimensional grid into alternating/adjacent red and black subgrids is

a feature brought over from statistical mechanics simulations. Black-to-red,

and red-to-black averaging steps are carried out across all processes, at each

loop. This routine is global over the entire internal voltage-field array.

We also made extensive use of the “modules” feature of Fortran 90. This

simplified the debugging process by enabling the compiler to catch certain

types of coding errors. In particular, the compiler checked that all subroutine

calls had properly constructed calling sequences.

The statistical selection was coded by the following steps. By contrast

with the Laplacian routine, these are local operations, executed indepen-

dently in each block.

1. Find all nearest neighbor sites to the growth tree, within the process
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block. This procedure produces a logical mask array that is .true, at

the neighbor sites and .false, elsewhere.

2. Select, at random for each block, either the red or black neighbors

within that block. The mask array of neighbors is modified to re-

flect this choice. Since we are considering simultaneous but indepen-

dent growth across the full distributed array of neighbor sites, this

red/black choice discourages selection of adjacent sites, which might

lead to growth concentration or cause a locally enhanced perturbation

of the voltage field.

3. Allocate a one-dimensional REAL array with one element for each

surviving neighbor. If a power law higher than linear is desired, then

additional arrays of the same length are allocated.

4. Fill the one-dimensional array(s) with uniformly distributed random

numbers. The DPARLIB dp_uni is used to generate random numbers

that are independent, across all of the parallel processes.

5. Calculate the MAX array of these random arrays. The resulting array

contains a weighted distribution at one power lower than the desired

breakdown power law. Step 7 below, the statistical filtering, is equiv-

alent to a single order of integration for the distribution of voltages

which will survive this hurdle.

6. UNPACK the MAX array through the neighbor mask array. This

creates a three-dimensional array with the weighted random numbers

at the surviving neighbor sites.

7. Compare the voltages to the weighted random array at the neighbor

sites. WHERE they pass, add new sites to the existing growth tree.

Write out their grid positions, trial numbers, and field strengths.

8. If no sites have been added to the tree, return to Step 2.

9. If a site has been added to the tree, return to the Laplacian-convergence

stage.

Note that the approach used in steps 3 to 6 substantially reduces memory
and computational requirements by generating the weighted distribution of

random numbers in minimally-sized arrays. The resulting linear array is

UNPACKed into the full size three-dimensional array only when necessary.
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The Fortran 90 array instructions which we needed were: WHERE,
CSHIFT, UNPACK, MAXVAL, MAX, MOD, COUNT, ANY, ALLOCATE,
DEALLOCATE. In the block-parallel mode, some are used in local fashion

by the individual processor, addressing only the portions of the major arrays

seen within its own block.

4 Conversion to Parallel Operation

The DPARLIB operations, which were required as substitutions or additions

to enable parallel operation, were dp_cshift, dp_uni, dp_count, dp_any,

dp_synch [8, 9]. In addition, the dpJnitialize and dp_queryJayout
routines were called at the start of the run, to set up the division of domains

between processors.

The adaptation of the serial code was accomplished through the use of

the DPARLIB subroutine library. This is a Fortran 90 library developed at

NIST to facilitate the transition of serial applications to a parallel computing

environment and the development of new parallel programs. DPARLIB is

built on the Message Passing Interface (MPI), an industry-standard library

for passing data and coordinating the activities of multiple processes in a

parallel operating environment.

DPARLIB is designed to be used in a single-program-multiple-data (SPMD)
programming approach. In other words, multiple copies of the same pro-

gram are running simultaneously, and each copy is processing a different

portion of the data. In particular, DPARLIB provides simple mechanisms

to divide very large arrays into blocks, each of which is handled by a sep-

arate copy of the program. In practice, this means that the researcher can

write parallel code that looks almost identical to serial code. In our case,

the code could be written as though addressed to a single active grid-node,

and its immediate neighbors. Fortran 90, extended across block boundaries

by DPARLIB, executed each instruction on all 2 million sites of each array.

In this way, an existing serial program can often be converted to a parallel

program with few changes by using DPARLIB, which plays the role of a

high-level language for block parallelism.

DPARLIB ’s emphasis on array handling is designed to mesh with Fortran

90’s array syntax and intrinsic array-handling functions. Much of DPARLIB
consists of parallel versions of the intrinsic array functions such as CSHIFT
and MAXVAL. Because DPARLIB is coded entirely in standard Fortran 90

and depends only on MPI, it is portable to any environment that provides

those two resources.
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The adaptation of the dielectric breakdown code was straightforward

and involved the following steps:

- Add calls to DPARLIB housekeeping functions for initialization and

specification of the mapping of data arrays to an array of processes. (dpJnitialize

and dp.query-layout)
- Make all distributed data arrays allocatable, and allocate the arrays

based on information provided by DPARLIB calls.

- Change various Fortran 90 intrinsic calls to the corresponding DPAR-
LIB calls. This simply involves changing the name of the called routine;

e.g., cshift becomes dp_cshift and maxval becomes dp_m£ixval.

Once this conversion was complete, each process ran the same program

with its own block of data. It used no explicit reference to data within other

blocks, except as information was received through collecting, spreading,

and shifting operations in DPARLIB. The parallel version could be run at

once, on a network of workstations with the LAM environment of MPI [23].

Our Laplacian operator is first-order, and requires only the exchange of

data for single layers, between domain blocks [25].

A refreshing feature of DPARLIB is that communication between pro-

cesses is handled automatically. Thus, the typical boundary-layer transfers

of data, as described by Gropp, Lusk, and Skjellum [7] do not require ex-

plicit consideration by the code writer. dp_cshift includes - invisibly - the

necessary “shadow” sites and cross-boundary transfers of data which must

take place at the planes between process domains [25, 17]. The user can

ignore this complex and error-prone aspect of code writing.

There were, however, two crucial points in this program at which we

had to take some care about the parallel execution of multiple copies of the

code: writing the streamer tree sites to a disk file, and testing for whether

the streamer tree had reached the cathode. At these points, the application

code must explicitly deal with the fact that multiple copies are executing in

parallel.

At the end of the tree growth part of the algorithm, the grid sites that

have been added to the streamer tree are written to a data file. Because these

sites will be found in multiple processes we have these multiple processes

trying to write to the same output file at the same time. This will result

in errors on many systems, including the SUN, SGI, and IBM systems on

which we were running these tests.

This problem can be solved by having each process write to its own out-

put file. These separate output files could then be merged after the program

is complete. Where multiprocessor access to a common file is possible, we

instead implemented a “round-robin” solution that involves the synchroniza-
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tion of the processes using the DPARLIB routine dp_sync. In this solution,

each process in turn opens the common output file, appends the necessary

information, then closes the file, so that no two processes are writing to the

output file at the same time.

The other point in the algorithm at which the code must explicitly deal

with the parallel execution of the code is in testing whether the streamer

tree has reached the cathode. This is because only a portion of the tree, and

of the cathode may be present in each of the processes. The issue is handled

by a simple test based on the which part of the full data array has been

assigned to each process. If a process contains a portion of the cathode,

then the appropriate part of the streamer tree array that resides in that

process participates in a test of whether the tree has reached the cathode.

5 Results and Interpretation

The crucial test was “Can streamer growth proceed seamlessly through

the defined block boundaries?” Figure 2 illustrates an example of a linear-

weighted streamer simulation, grown with nine process blocks. The block

partition boundaries were crossed as expected, by the DPARLIB version

of the program which contained no explicit reference to boundaries, in the

array-directed commands. Neither the Laplacian nor the statistical-test sub-

routine faltered in crossing - meaning that data transfer had proceeded

successfully.

Each run delivers an output list of vertices, recorded with the index

number of the statistical (red-black) trial. Knowing that they form a singly-

connected tree, we find the links between sites by means of a backward-

search algorithm. Because the statistical trial number - the clock-tick for

“Monte Carlo time”, in a stochastic process [24] - has been recorded for

each breakdown event, a simulation of time progression in the global growth

is possible.

Display is carried out in three dimensions, using color banding to mark

the time history of growth. Animation of frames is also readily achieved.

Visual presentation of the data can be compared against high-speed pho-

tographs from experiments [26, 2], which are two-dimensional shadowgraphs

taken in side view. (In examining the results of very large, dense fractal

growths, the combination of color banding and three-dimensional dynamic

rotation can often call attention to features of the growth which are not

obvious from static projections.)

We include two examples of photography from experiment [26]. Figure
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3 (a and b) shows two separate samples of dense anode streamer formation,

each growing in less than 30 nanoseconds in n-hexane, in a “uniform” field

configuration (meaning that the growth commences close to the anode, in

a small gap between large-radius spheres). The time sequence proceeds

from top to bottom, at 100-nanosecond intervals. The third frame in each

sequence captures the start of the “leader” breakdown, with the central

shock wave growing in diameter in the last two frames.

Figure 2 is one Cartesian projection of a three-dimensional dense growth,

whose isometric view is displayed in Figure 4. Figure 5 shows the orthog-

onal 2-D projection. What we note with some interest is the well-defined

cone-shaped upper envelope to the growth; Stricklett et al. [26] have called

particular attention to this feature of the experimental observations. This

cone represents the boundary at which further lateral growth is cut off by

screening, causing the electric field to drop below the cutoff (threshold)

value for discharge. This feature of the numerical experiment is undergoing

further investigation.

For this case of growth with a uniform (linear) statistical filter, the ma-
jor divisions of the tree have branched laterally to fill the intervening spaces

with twigs. They remain self-avoiding, however. The heavily weighted track

in Figure 4 (and later in Figure 8) is the first continuous connecting path be-

tween electrodes - it simulates the ionization path along which the “leader”

flashover will occur.

Figure 6 displays a sparse fast cathode streamer, formed under similar

conditions, but in the reverse polarity. The positioning of the electrodes has

been reversed; the cathode is at the top, the anode at the bottom. Here

the timing sequence of frames proceeds firom bottom to top. In this Figure

6 case, the fast “secondary” cathode streamer begins from a primary slow-

growing bushy structure; Watson [27] and Fenimore [28] have described the

primary stage by a bubble simulation. (The bipolarity of the anode and

cathode fast streamer processes presents a further challenge for physical

interpretation - how is filamentary tree growth possible in both directions

under like conditions?)

Figures 7 and 8 show growth with a square-law statistical filter, for

comparison against the fast cathode streamer in Figure 6. In this case, we
note that both experiment and simulation show a single major “trunk”

,
or

column of growth, proceeding half way across the gap, then dividing into 3

or 4 major branches, whose envelope lies within a more narrow angle than

the dense anode streamers of Figure 3a and 3b. Here the forward-directed

field is shaping the growth. The lateral twig growth from the major branches

has not filled the intervening gaps; screening does not dominate.
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Figure 9 provides an example of successive growth frames, as a function

of cumulative statistical trial numbers. Development of the growth against

“Monte Carlo time” shows notable acceleration as the gap is shortened and

the resultant electric field (voltage gradient) increases. In fact, the lower

half of the growth takes place in roughly 20 percent of the total elapsed

duration.

The fronts, or growth-tip envelopes for both power-law weightings show

considerable variability from run to run. This is not surprising, if we recall

that the statistical filters are weighted in favor of extreme (high) values of

electric field, producing a runaway tendency. Note that the “leader” con-

duction path from needle to counter-electrode, shown in heavy line weight,

resembles a directed random walk. In some instances, two branches of the

leader may reach the counter-electrode on the same statistical try.

6 Time-compression for higher powers

The extremely low probabilities shown in the lower half of Figure 1 compli-

cate the trial of cube-law and higher powers. For low values of initial field

strength, many thousands of empty statistical trials would be required to

secure a very few steps of growth. Our solution is to re-weight the statis-

tical test, after the manner of the BKL algorithm [24], so that the a-priori

likelihood of at least one discharge-event is increased to one.

The changed routine for higher powers proceeds as follows, after step 3

in the sequence which was described earlier:

• PACK the surviving neighbor-voltage values onto the first linear real

array.

• square, cube, or otherwise exponentiate this array onto a second linear

array. Sum the values of the elements in this array, to a constant

we call ‘sumsq’. It represents the a-priori probability of at least one

discharge-event.

• Fill a third linear array, of the same length, with uniformly random

numbers. Multiply these by the coeflBcient ‘sumsq’ - this is equivalent

to “compressing” Monte Carlo time.

• WHERE the second array fails to exceed the random array, weighted

by the coefficient ‘sumsq’, set the values of the first linear array equal

to zero

13



• UNPACK the revised first array through the position mask of the

original neighbors

• WHERE the unpacked 3-D array is now greater than zero, add new

sites to the existing tree.

• Update the statistical trial number (Monte Carlo time tick) by an

integer equal to FLOOR(1.0/sumsq). Thus we retain an estimate,

rather than a count, of the number of empty trials which would secure

one successful discharge.

• Return to the Laplacian-convergence subroutine.

Again, Fortran 90 has furnished powerful array-directed operations for

composing the program logic. The additional computing burden is small,

since these operations are performed on few elements - numbering only in

the thousands.

The modified algorithm has been successfully run for cube-law and fourth-

power examples. Figure 11 illustrates simulation of a cube-law streamer,

run on a 128 x 128 x 128 grid, with a short anode needle, 2 grid steps in

length. The spareness, restricted lateral branching, and directed alignment

are characteristic of growth with this exponent in the power law.

Recent reports by Miyano and collaborators [29] display fast anode

streamers in D40 perfluoro polyether and FCIO perfluoro carbon. Their

photographs show strong similarities to Figure 11.

Thus, we note that physical counterparts to our power-law simulations

with exponents 1, 2 and 3 are found in the experimental observations on

fast filamentary streamers.

7 Limitations

There are several clear limits in the present realization of the model:

• Diagonal breakdown paths between grid nodes have not been included

in the simulation. Increased flexibility of directional choice, at each

event, would be a step towards greater physical realism, albeit impos-

ing a greater bookkeeping burden.

• The Laplacian-convergence accuracy has been relaxed in a manner

which may tend to favor tip-growth versus sidebranching, to a modest

extent. This was considered acceptable at the present semi-quantitative

condition of comparison against experiment.
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• Visual comparison against experiment is affected by details of the vi-

sual perception, rendering of line-width weight, and 3-D obscuration.

(Thus, comparing Figure 2 with Figure 4, we see that the projection

along the Cartesian axis looks distinctly more transparent.)

8 Summary

The completed program is a robust and flexible tool for investigations of

physics. All communications and coordination between copies of the pro-

gram are hidden within calls to DPARLIB routines. The code is expressed

and compiled in standard Fortran 90, using DPARLIB routines that closely

emulate standard Fortran 90 intrinsic functions.

The MPI complexity is invisible. Thus, DPARLIB has fllled in the

needed elements, for a high-level language of block parallelism.

The use of parallel methods has aflForded improvements in physical re-

alism: large array domains, parallel breakdown across the entire tree struc-

ture, and clocking of Monte Carlo time. Many problems in the physical

sciences are well-adapted to such a SPMD parallel treatment. Large arrays

corresponding to a spatial domain can be partitioned across many processes.

Such algorithms can often be simply expressed in Fortran 90, and DPARLIB
enables a quick transition from a serial to a parallel environment, without

the need to learn complex communications techniques between processes.

For portability, the code was run under SGI (MIPSpro), and IBM (xpf)

compilers. The size of the executable code depends on the choice of grid

bounds. The executable version on the IBM SP-2, for a grid of 126 x 126 x

126, was roughly 15 megabytes for each of 9 processes. Speed was not

the major objective; rather, the ability to handle a large number of very-

large-sized arrays within the local process memory. Often a salient issue

in physics computing is space, not time. To easily spread a problem over

many compute nodes can mean the difference between being able to study

a problem, and not being able to do it at all.

Comparative timings have been carried out for the routine running on

the IBM SP2 and on two SGI multiprocessors (Onyx and Origin). These

are for the linear statistical comparison, running on a (small) 64 x 64 x 64

lattice. Because the choice of random number seeds varies with the number

of processes, the actual executions are for slightly different problems. The

numbers give a general idea of speed on dedicated multiprocessors.

The timings, in seconds, using 1, 2, 4, and 8 processes are as follows:

• IBM SP2: 12445, 5336, 3256, 1770
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• SGI Power ONYX: 7767, 3590, 1588, 824

• SGI Origin: 5467, 2310, 1328, 690

Full run times on the larger 128 x 128 x 128 lattice are roughly ten

times as long, since the larger problem involves a longer path from anode

to cathode, as well as greatly enlarged Laplacian convergence tasks. The

execution of Figure 11, for example, was carried out on four processors of a

shared SGI Power Onyx, with overnight turnaround time.

DPARLIB is based only on standard Fortran 90
[
30

]
and on the Message

Passing Interface (MPI)[7]. MPI is an industry standard library that imple-

ments message passing in parallel computing environments. Both Fortran

90 and MPI are available on a variety of computers and work stations. LAM
is an open cluster enviroment for work stations or multiprocessors

[
23 ].

Our dielectric-breakdown code, named CADMUS, will be available through

our web site

http : //www. itl .nist .gov/div895/sasg/
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11 Figure Captions

Figure 1. Log-log plot of breakdown probability (discharge probability for

an individual link) versus electric field strength, for power laws with integral

exponents. The horizontal scale is electric field strength at the candidate

links, in the discretized step approximation (difference between the zero

voltage of the streamer tree and the voltages at the neighbor grid nodes).

The limit value 1.0, to which all fields are normalized, is the value which

would be reached between flat-plate electrodes separated by one grid step.

Figure 2. Lateral projection of a linear-weighted streamer simulation

on a grid of 126 x 126 x 126, showing the boundary planes between the

nine process blocks. The centered starting-needle extends 15 grid units

from the upper (anode) plane; cathode plane is at the bottom. Periodic

boundary conditions are applied at the side walls of the cube. In this run,

597 statistical tries produced 27203 discharged grid links. Cutoff (threshold)

voltage was set at 0.05. Real time for the calculation on the IBM SP-2 was

5:17:58.

Figure 3 (a and b). two examples of fast anode streamer discharges,

grown in n-hexane in less than 50 nanoseconds [26]. The gap between elec-

trodes is 3 mm; radius of the spherical electrodes is 1.27 cm. Anode at

top, cathode at bottom. Peak voltage was 250 kV. Time sequence is top

to bottom, in 100-nanosecond intervals. The growth occurs in less than

30 nanoseconds, before the third frame shown in each sequence. The dark

volume is filled with fine filaments, incompletely resolved here. Other ex-

periments have shown the filaments to have individual diameters as small

as 4 micrometers. They are composed of individual small straight linear

segments, most being of length 30 micrometers or longer.

Figure 4. Isometric projection of the 3-D dense anode-streamer simu-

lation in Figure 2. The branching structure in 3-D, which was hidden in

the Figure 2 projection, becomes evident. The tree is dense, but the ma-

jor branches remain self-avoiding because the electric field is screened out

of the gaps between. Scaled to the dimensions of Figure 4, the individual

discharged links (each one grid interval) would have length approximately

30 micrometers. Apparent visual density is dependent on the choice of line

width in the graphical reconstruction. Compare against Figure 3. The

leader path connecting the electrodes is shown in heavy line weight.

Figure 5. 2-D projection of the simulation in Figure 4, orthogonal to

Figure 2. Note the well-defined cone angle of the upper envelope, a feature

corresponding to experiment.
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Figure 6. Fast (secondary) cathode streamer, produced under condi-

tions similar to Figure 3. Cathode at top; anode at bottom. The time

sequence now proceeds from bottom to top. The tree structure is notice-

ably sparser. This event occurs with distinctly lower probability than the

fast anode streamer. The bushy growth attached to the cathode at top is

the slower (primary) streamer. Both anode and cathode fast streamers pro-

vide the “leader” breakdown path which leads to high current flow and the

formation of the shock wave.

Figure 7. Lateral projection of a square-law-weighted streamer simu-

lation on a grid of 126 x 126 x 126. 4227 statistical tries produced 4432

discharged links. Threshold voltage was set at 0.015. To compensate for the

very low starting probability, all voltage values on neighbor sites were raised

by 0.020 when comparing against the statistical filter. Real time 13:32:37.

Figure 8. Isometric view of Figure 7. Compare against Figure 6. The
cathode is now at the top; anode at the bottom.

Figure 9. Color-banded version of the streamer tree shown in Figure 8.

The color palette is a linear representation of cumulative statistical tries, a

measure of Monte Carlo time.

Figure 10. Animated screen development of Figure 8, against cumulative

statistical tries (Monte Carlo time). The acceleration of growth across the

second half of the gap is notable. Note that the duration of the full growth

would correspond to a period of around 30 nanoseconds, or less than the

interval between frames in Figure 3 and Figure 6.

Figmre 11. Cube-law streamer simulation on a grid of 128 x 128 x 128.

The concentrating needle is two grid steps in length. Spare appearance of

the filament tree, limited lateral branching, and directed alignment along

the uniform field are characteristic of growth simulations with this power-

law exponent. This simulation was produced with the time-compression

version of the algorithm. It resembles experimental observations by Miyano

et al. [29]
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Figure 1: Log-log plot of breakdown probability versus electric field strength.
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Figure 2; Lateral projection of a linear-weighted streamer simulation on a

grid of 126 X 126 X 126, showing the boundary planes between the nine

process blocks.
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Figure 3: Two examples of fast anode streamer discharges. Anode at top,

cathode at bottom.
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Figure 4; Isometric projection of the 3-D structure in Fig. 2. The leader

path is shown in heavy line weight.
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Figure 5: 2-D projection of Figure 4, orthogonal to Figure 2.
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Figure 6: Fast (secondary) cathode streamer, produced under conditions

similar to Figure 3. Cathode at top; andode at bottom.
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Figure 7: Lateral projection of a square-weighted streamer simulation on

grid of 126 X 126 X 126.
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Figure 8: Isometric view of Figure 7. Compare against Figure 6. The
cathode is now at the top; anode at the bottom.
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Figure 9: (Original showed color-banding of the streamer tree in Figure 8,
to represent statistical tries as a measure of Monte Carlo time.)
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Figure 10: Animated screen development of Figure 8, against cumulative

statistical tries (Monte Carlo time).
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Figure 11: Cube-law streamer simulation on a grid of 128 X 128 X 128.

Spare appearance of the filament tree, limited lateral branching, and directed

alignment along the uniform field are characteristic of growth simulations

with this power-law exponent.
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