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Abstract

We apply a model checker to the problem of test gen-

eration using a new application of mutation analysis.

We define syntactic operators, each of which produces

a slight variation on a given model. The operators

define a form of mutation analysis at the level of the

model checker specification. A model checker gener-

ates counterexamples which distinguish the variations

from the original specification. The counterexamples

can easily be turned into complete test cases, that is,

with inputs and expected results. We define two classes

of operators: those that produce test cases from which
a correct implementation must differ, and those that

produce test cases with which it must agree.

There are substantial advantages to combining a model
checker with mutation analysis. First, test case gener-

ation is automatic; each counterexample is a complete

test case. Second, in sharp contrast to program-based
mutation analysis, equivalent mutant identification is

also automatic. We apply our method to an example
specification and evaluate the resulting test sets with

coverage metrics on a Java implementation.

1. Introduction

The use of formal methods has been widely advo-

cated to reduce the likelihood of errors in the early

stages of system development. Some of the chief draw-
backs to applying formal methods is the difficulty of

conducting formal analysis [7] and the perceived or ac-

tual payoff in project budget. Testing is an expensive

part of the software budget, and formal methods of-

fer an opportunity to significantly reduce the testing

costs. We have developed an innovative combination
of mutation analysis, model checking, and test gen-

eration which solves some problems previously plagu-

ing these approaches and automatically produces good
sets of tests from formal specifications. This section

reviews the formal methods and approaches we use.

Generating test inputs, even in sophisticated and
constrained combinations, is straight-forward. How-
ever deriving the corresponding expected results, or

equivalently coming up with an oracle to determine if

the result is right, is often labor intensive. To be clear
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about this point, we define a test case to be both a

set of inputs or stimulus and the expected result or

response. We also use the term complete test case to

emphasize that it includes inputs and results. Our
approach uses formal specifications to automatically

generate complete test cases.

Mutation analysis [12] is a white-box method for

developing a set of test cases which is sensitive to any
small syntactic change to the structure of a program.
The rationale is that if a test set can distinguish a pro-

gram from a slight variation, the test set is exercising

that part of the program adequately.

A mutation analysis system defines a set of muta-
tion operators. Each operator is a pattern for a small

syntactic change. A mutant program, or more simply,

mutant, is produced by applying a single mutation op-

erator exactly once to the original program. Applying
the set of operators systematically generates a set of

mutant programs. Some of these mutants may be se-

mantically equivalent to the original program. That is,

a mutant and the original may compute the same func-

tion for all possible inputs. Such mutants are termed
equivalent. Equivalent mutants present a serious prob-

lem for mutation analysis, since identifying equivalent

mutants is, in general, an undecidable problem. Typi-

cal proofs of this fact reduce equivalent mutant detec-

tion to the halting problem.

SCR (Software Cost Reduction) [18] is a method
used to formally capture and document the require-

ments of a software system. The SCR method is scal-

able and its semantics are easy to understand; this

accounts for the use of the SCR method and its deriva-

tives in specifying practical systems [14, 17, 24].

Research in automated checking of SCR specifica-

tions includes consistency checking and model check-

ing. The NRL SCR toolkit includes the consistency

checker of Heitmeyer, Jeffords, and Labaw [16]. The
checker analyzes application independent properties

such as syntax, type mismatch, missing cases, circular

dependencies and so on, but not application depen-
dent properties such as safety and security. Atlee’s

model checking approach [1, 3, 4] addresses the ap-

plication dependent property of safety in SCR mode
transition tables by expressing an SCR mode transi-

tion table as a logic model, expressing the safety prop-

erties of the specification as logic formulae, and using a



Current Mode Ignited EngRun TooFast Brake Activate Deactivate Resume New Mode
Off ©T — — — — — — Inactive

Inactive ©F — — — — — — Off
Inactive — t f I ©T — — Cruise
Cruise ©F — — — — — — Off
Cruise t ©F — — — — — Inactiv e

Cruise t — ©T — — — — Inactiv e

Cruise t t f 9T — — — Override
Cruise t t f — — ©T — Ov erride

Override ©F — — — — — — Off
Override t ©F — — — — — Inactiv e

Override t t f f @T — — Cruise
Override t t f f — — • ©T Cruise

Initial State : Mode = Off, -ilgnited

Table 1: Mode transition table for cruisecontrol

model checker to determine if the formulae hold in the
model. The NRL SCR toolkit also includes backend
translators to the modelcheckers SMV and SPIN [19],

and it is noteworthy that the translators implement
formal abstractions of the SCR models that allow
counterexamples from the model checker to be traced

back to the SCR specification [6, 5]. Owre, Rushby,
and Shankar [22] describe how the model checker in

PVS can be used to verify safety properties in SCR
mode transition tables.

A model checking specification consists of two
parts. One part is a state machine defined in terms
of variables, initial values for the variables, and a de-

scription of the conditions under which variables may
change value. The other part is invariant conditions

and temporal logic constraints on possible execution

paths. Conceptually, a model checker visits all reach-

able states and verifies that the invariants and tem-
poral logic properties are satisfied. Model checkers

exploit clever ways of avoiding brute force exploration

of the state space, for example, see [8]. In cases where
a property is not satisfied, the model checker attempts
to generate a counterexample in the form a sequence
of states. For some temporal logic properties, no coun-
terexample is possible. For example, if the property
states that at least one possible execution path leads

to a certain state, and in fact no execution path leads

to that state, there is no counterexample to exhibit.

The model checking approach to formal methods
has received considerable attention in the literature,

and readily available tools such as SMV and SPIN
[19] are capable of handling the state spaces associated

with realistic problems [11], Although model check-

ing began as a method for verifying hardware designs,

there is growing evidence that model checking can be
applied with considerable automation to specifications

for relatively large software systems, such as TCAS II

[10]. The increasing utility of model checkers suggests

using them in aspects of software development other

than pure analysis, which is their primary role. In

this paper, we apply model checkers to testing. We
selected the SMV model checker. It is freely available

from Carnegie Melon University.

Model checking has been successfully applied to a
wide variety of practical problems, including hardware
design, protocol analysis, operating systems, reactive

system analysis, fault tolerance, and security. The
chief advantage of model checking over the competing

approach of theorem proving is complete automation.
Human interaction is generally required to prove all

but the most trivial theorems; model checkers can ex-

plore the state spaces for finite, but realistic, problems
without human guidance.

A broad span of research from early work on al-

gebraic specifications [15] to more recent work such
as [23] addresses the problem of relating tests to for-

mal specifications. We are also not the first to rec-

ognize that the counterexamples from model checkers

are potentially useful test cases. In particular, Calla-

han, Schneider, and Easterbrook use the SPIN model
checker to generate tests that cover each block in a
certain partitioning of the input domain [9]. However,
we understand we are the first to define a mutation
model in the context of a model checker and automat-
ically generate mutation adequate tests.

Table 1 is an SCR mode transition table; it corre-

sponds to a state machine description. For instance,

line 7 in the table states that when the current mode
is Cruise

,
if inputs Ignited and EngRun are true, in-

put TooFast is false, and input Brake is false, but

is changes to true, the next mode is Override. For

completeness we give the safety invariants for this ex-

ample in Table 2. Such safety invariants may result

in additional test cases,- but are not necessary for our

technique. Immediately below are the environmental
assumptions. (In the third line, the symbol

|

indi-

cates that that one and only one of the conditions is

true at any given time.)

EngRun => Ignited
TooFast => EngRun
Activate

|

Deactivate
\

Resume

Mode Safety Invariant

Off -i/gnited
Inactive Ignited
Cruise Ignited A EngRun A -iToof ast

A-iBrake A -^Deactivate

Override Ignited A EngRun

Table 2: Safety invariants for cruisecontrol

Sect. 2. presents the example we used as a vehicle

for study. Sect. 3. explains our approach including



Figure 1: Overall system flow

details of the tools we use. Sect. 4. gives results in

terms of tests generated and coverage. Finally Sect. 5.

details our plans for future work, and our conclusions

are in Sect. 6.

2. Cruise control example

We use Cruise Control [20] as a small example with
some complexity. Many variations on this example
exist; we use one from Atlee [3]. The SMV logic model
we use is derived from one generated by Atlee’s tool

[
2]-

We chose to work on the specification at the level

of the input to SMV which is a text format, because
we want our approach to apply to any situation where
a model checker can be used. We specifically do not
wish to limit application of our technique to a single

specification notation, such as SCR. In the SMV tran-

sition model, the seventh line of Table 1 is represented
as the following, which is simply a direct expression of

the constraints in the table.

next(CruiseControl) := case

CruiseControl=Cruise k Ignited k
EngRun k IToofast k
! Brake k next (Brake) : Override;

esac

;

The mode transitions are repeated as temporal
logic constraints. We need this for discrepancies be-

tween the mode transitions and the temporal logic

(one of which will have been mutated) to generate
counterexamples. As an example, here is the logic

equivalent of line seven from Table 1.

SPEC AG(CruiseControl=Cruise -> AX((!PBrake
k Brake k PIgnited k PEngRun k
iPToofast)->CruiseControl=Override)

)

In the SMV notation A is the universal quantifier,

and the notation G means “global.” Hence, AG speci-

fies properties which should hold in every state on all

possible traces. That is, AG specifies invariants. Logi-

cal conjunction is represented by ft, -> is implication,

and ! is logical negation. X is the next state opera-

tor. Variables with a “P” prefix are values from the

previous state. They are implicit in the SCR mode
transition table.

3. Approach

Figure 1 shows our overall approach. In actual use

one would begin with some system specifications and,

through finite modeling and possibly other tools, turn

them into specifications suitable for a model checker.

After this point all processing can be automatic.

We apply mutation operators to the state machine
or the constraints yielding a set of mutant specifica-

tions. The model checker processes the mutants one
at a time. When the model checker finds an incon-

sistency, it generates a counterexample. Equivalent
mutants are, by definition, consistent, and hence pro-

duce no counterexamples.

The set of counterexamples is reduced by elimi-

nating duplicates and dropping any counterexample
which is a “prefix” of another, longer counterexample.
The counterexamples contain both stimulus and ex-

pected values so they may be automatically converted
to complete test cases. The test cases generate exe-

cutable test code, including a test harness and drivers.

This test code is executed with implementation
source which is instrumented to record coverage. The
test code records which tests pass and which fail.

These coverage results are processed to become a fi-

nal report of coverage, to show how comprehensive the
tests are. We also check that the implementation fails

the cases it should fail, and passes those it should pass.

The following sections explain in more detail how
we apply mutation analysis for model checkers, the
mutation operators we use, how we extract and reduce
counterexamples and prepare them to be test cases,

the tool for generating tests, and our measures of code
coverage.



3.1. Mutation analysis

Each mutation operator specifies a pattern for a
small syntactic change to a program’s structure. For
example, the “wrong variable” operator replaces a sin-

gle occurrence of a variable in a program with another
variable of compatible type. The program text if a <

b then . . . might be transformed to if c < b then
. . . The “wrong relational operator” mutation oper-

ator replaces an occurrence of <, <, =, 7^, > or > with
one of the other five possibilities. The program text

if a < b then . . . might be transformed to if a =

b then ... by replacing the < operator with the =
operator.

Program-based mutation analysis relies on the com-
petent programmer hypothesis, which states that com-
petent programmers are likely to construct programs
close to the correct program, and hence test data that

distinguish syntactic variations of a given program are,

in fact, useful. In the current work, we assume an anal-

ogous “competent specifier hypothesis,” which states

that the specifier of an SMV model is likely to de-

scribe a state transition system and set of temporal
logic constraints that are close to what is desired, and
hence test cases which distinguish syntactic variations

of a specification are, in fact, useful.

Equivalent mutants present a serious problem for

program-based mutation analysis, since an equivalent

mutant cannot be distinguished and should be ig-

nored, but all non-equivalent mutant should be consid-

ered. Typically humans must do some analysis to dis-

tinguish between equivalent and non-equivalent mu-
tants in program-based mutation analysis. Alterna-

tively, in an approximation of program-based muta-
tion analysis, some fraction of the mutants are simply

left unexamined. As it turns out, there is a similar

undecidability problem lurking in all of the popular

coverage metrics, notable the path coverage metrics

of statement and branch coverage, data-flow coverage

metrics, and condition coverage metrics [25].

A test input distinguishes a mutant from the orig-

inal program if they produce different results. (Pro-

grams are assumed to be deterministic.) A test set is

mutation adequate if at least one test in the test set

distinguishes each nonequivalent mutant. There are

test data generation systems that, modulo the ever

present undecidability problem, attempt to automati-

cally generate mutation adequate test inputs [13].

One of the interesting aspects of the current work is

that we evade the undecidability problem by working
in the finite state space of the model checker. Not
only is equivalent mutant identification possible in the

context of a model checker, but model checkers are

designed to perform this equivalency check efficiently.

Therefore, equivalent mutants are not a problem for

the specification-based mutation analysis we present

in this paper.

3.2. Mutation analysis & model checkers

In the present work, we switch contexts from pro-

gram based testing to specification based testing, and
we consider specifications expressed as finite models

within the context of a model checker. Clearly, we
require a set of mutation operators that make sense

in the model checking context. When a mutation op-
erator introduces an inconsistency between the finite

state machine transitions and the temporal logic con-
straints, the model checker produces a counterexample
which is a sequence of states from the state machine.
We begin assuming that the state machine and the

constraints are correct, that is, a correct implemen-
tation corresponds to them. Two broad categories of

mutation operator present themselves:

1. Changes to the state machine. Since counterex-
amples comes from the state machine, a good im-
plementation should diverge from corresponding
tests. That is, when given the inputs specified by
such a test, a correct implementation should re-

spond with different results than those recorded

in the counterexample. We refer to these as fail-

ing tests, or tests which we expect our implemen-
tation to fail.

2. Changes to the temporal logic constraints. In this

category, since the counterexample comes from
the original (assumed correct) state machine, a

correct implementation should follow the indi-

cated sequence of states and results. (Note that

the specification must be deterministic for a test

from this type of mutation to be useful.) We refer

to these as passing tests: we expect our implemen-
tation to pass these.

The goal of the present investigation is to show the

feasibility of our approach. Specifically, we wish to

show that it is possible to define a useful set of mu-
tation operators on an SMV specification and subse-

quently generate a useful set of tests via counterex-

amples to mutations of the SMV specification. We
define and use the following mutation operators. This

list is clearly not exhaustive, but it does produce a set

of mutants with reasonable coverage properties, as we
document subsequently.

3.3.

Mutation operators

Explicit transitions in SMV have the following form:

next (v) : =case ci: ei; C2 : e?
;

...ecase;

where each C{ is a predicate on variables declared in

the model and each e* is a corresponding new value

for variable v.

We define a mutation operator M1 that changes

condition c» by conjoining an additional condition

w — e for some variable w and some possible value e.

We define another mutation operator M2 that changes

those conditions c; which are multiple conjoined con-

ditions by deleting one of the conditions. Other candi-

date mutant operators that we may use are changing

the new value et to some other possible value, deletion

of Ci : ei] pairs, and replacing variables in some Ci with

other variables of compatible type.

Both Mi and M2 result in “failing” test cases. That
is, if the implementation has the same results as the



test case, the implementation necessarily violates one

or more of the temporal logic constraints.

We also define mutation operators on the invariants

and temporal logic constraints over the possible states

of the SMV model.
We define mutation operators M3 and M4 on mode

references. Specifically, operator M3 replaces con-

straints of the form:

SPEC AG(i = modei -> ...

with

SPEC AG(z = modej -> ...

where x is a mode variable, modei and modej are valid

modes of x, and modei and modej differ.

Operator M4 replaces constraints of the form:

SPEC AG (x=modei & AX(ci & ( x=modej )))

with

SPEC AG (x=modei & AX(ci & ! (x=modej)))

In terms of the SCR mode transition table that gave

rise to the SMV specification, operator M4 replaces

the destination mode with an incorrect mode.
Since the state machine specification is unchanged,

both M3 and M4 result in “passing” test cases. That
is they yield sequences of state transitions with which
a correct implementation must agree.

There are many possible other mutation operators

on the temporal logic specifications, such as replac-

ing conjunctions with disjunctions, adding conditions,

deleting conditions, etc.

Since we are interested in generating test cases, we
limit our attention to temporal logic properties that,

when violated, yield explicit counterexamples. If a
state machine violates an existential assertion, no use-

ful trace is produced. For instance, suppose the modi-
fied transition table has no way to reach Cruise mode
from a certain state but we assert that there must ex-

ist some way to reach it. A test set consists of traces to

reach every possible subsequent state, and then show
that some execution did reach Cruise mode. To avoid
such difficult-to-generate and effectively useless tests,

we removed all existential assertions.

3.4. Preparing counterexamples

SMV produces one output for each input, or in

our case, mutant. A program scans the output for

counterexamples. When any are found, they are ex-

tracted. Figure 2 is part of a typical SMV output,

edited for brevity. This example came from applying

Mi to the first row of Table 1. The mutation adds
the (contradictory) condition Ignited on the transi-

tion, which has the effect of making the transition to

mode Inactive infeasible. Note that in state 1.2 in

the counterexample, no new value for the mode vari-

able CruiseControl is shown, when in fact the value

should be Inactive.

A test case corresponding to the counterexample
assigns initial values to variables as described in the

— specification AG(CruiseControl=Off ->

AX( ! PIgnited . . . is false
— as demonstrated by the following . .

.

state 1.1:
Ignited = 0

EngRun = 0

Toofast = 0

Brake = 0

Enuml = Resume
CruiseControl = Off

state 1.2:
Ignited = 1

Figure 2: Typical counterexample

first state and then changes values for the inputs as

specified in subsequent states. Verification consists of

checking whether the values of dependent variables,

CruiseControl in this case, agree or disagree with the

those computed by the implementation. It is worth
noting that system level tests can only rely on explicit

inputs and outputs visible at the system level. Mode
variables, which are used in this example, may not

be visible or may be implicit in the implementation
even though they are explicit in the specification. As
a result, the utility of tests depends, in part, on the

visibility of variables in the particular implementation
under test. Explicit function calls “step” the imple-

mentation through each successive state.

Duplicate traces are combined. To further reduce
the test set any trace for a “passing” test which is a

prefix of another passing trace is discarded since it is

unnecessary. Suppose there is a passing trace A, which
is F G, and that there is another, longer passing trace

B, which is F G H. Anything exercised by trace A will

also be exercised by trace B, since we are modeling
deterministic processes.

For failing traces, prefix traces should be retained

and longer traces discarded. This is because if some
prefix, say F G, is incorrect, so is a longer trace, say F
G H. We have found no prefixes among failing traces.

We believe this is because SMV checks shorter se-

quences first.

3.5. Generating test code

TDA (Test Data Assistant) [21] is a software appli-

cation program interface (API) testing environment
under development in the Information Technology
Laboratory at NIST. TDA integrates two popular test

specification technologies, context free grammars and
constraint satisfaction, into a single software test gen-

eration tool. The first version of this tool operated on
C language APIs. A new version under development
tests Java classes.

A TDA test specification is made up of five parts:

1. a reference to the API under test,

2. test scenarios,



3. a test grammar,

4. constraints on inputs, and

5. assertions about results.

Information about the API under test comes from the

source files. A test specification is made up of test

scenarios, or, sequences of calls on the API or ob-

ject under test. Each scenario is defined by a start

symbol in the test grammar. Traditional grammar
notations such as alternation (|), Kleene star (*), or

“one-or-more” (+), are used to write test grammars.
Input parameters such as numbers or strings are either

specified or are generated randomly. Input generation

can be directed by constraint equations which describe

the relationships between inputs. Assertions describe

expected results in terms of outputs and accessible in-

ternal state.

Each test scenario defines one test sequence gram-
mar with terminals which are calls to the API. A re-

sultant sequence can build internal state within the

software being tested via API calls and validate asser-

tions about internal state or results. Instead of test-

ing individual API calls separately (in isolation), we
operate on the whole context of the API or object.

Generating and processing test inputs automatically

but validating results manually is difficult or infeasi-

ble. We refer to the part of a testing system that

automatically validates results as the test oracle. The
assertions section of the test grammar constitutes an
oracle, and addresses the oracle problem by generating

run-time results checking.

The output of TDA is a collection of Java source

code files that embody the tests described in the test

specification including the oracle functions and a test

harness. The test harness is the controlling program
that runs each test scenario, evaluates the outputs,

and reports results to the user.

One test scenario is generated for each trace. Since

a trace gives an explicit list of calls, the grammar is

just the calls with input parameters. Expected results

are written as constraints on each particular state ma-
chine step.

Why use a tool like TDA to orchestrate testing?

TDA offers a consistent interface to a rich test envi-

ronment for evaluating software APIs. Its input lan-

guage is designed to be an intermediate language be-

tween testing tools, although it can be easily written

by hand. For our project, it offers a single simple inter-

face to test specification, management, and reporting

features independent of the language being analyzed.

A graphical interface will be available for TDA in the

future.

3.6. Code coverage

To judge the value of our approach and to deter-

mine which mutation operators to use, we need to

measure the quality of the generated tests. Cover-
age analysis on an implementation is a common way
to measure the quality and judge test adequacy [25].

There are many different coverage methods and met-
rics, but the general categories are statement coverage,

branch coverage, data-flow coverage, path coverage,

and mutation adequacy.- Basically statement coverage

checks which statements are executed, and branch cov-

erage checks that all possible outcomes of a branch are

executed. Data-flow coverage is a measure of execut-

ing paths between creation, modification, and uses of

data values, and path coverage is a measure of exe-

cuting some syntactical or semantically defined paths.

Mutation adequacy checks that the tests “kill” all non-
equivalent mutants of a program.

To briefly explain the differences between these dif-

ferent types of coverage, consider the following exam-
ple of code.

if (P) {
b = c

;

>

if (Q) {
d = e

;

>

Statement coverage is satisfied if the two conditionals

and the two assignments, b = c and d = e, are exe-

cuted. This can be done with one test if P and Q are

both true. Branch coverage is satisfied if both out-

comes of the conditionals are executed. This requires

at least two tests: when P and Q are both true and
when they are both false. Simple path coverage would
require at least four tests: one for each combination of

P and Q. Data-flow requires that every path between,

say, the definition of e and its use in the assignment

are executed. There are many variations and refine-

ments defining different types of data flows and paths,

examining the evaluations of predicates, etc.

Since we generate a test for each non-equivalent

mutant, we achieve 100% mutation coverage at the

specification level with respect to our mutation oper-

ators. (We may have had less than 100% mutation
coverage if the model checker had failed to terminate

on any of the mutant specifications.) At the imple-

mentation level, we chose to examine branch coverage,

which subsumes statement coverage, for now. We im-

plemented the cruise control module in Java and used

an evaluation copy of Sun Microsystems’ JavaScope

1.1 to check coverage 1
. The implementation is less

than 100 lines of code including comments. Here is a

portion of the code (with coverage results and some
omissions); we refer to it in the next section.

if (! Ignited) {

mode = ccMode.Off;
return;

>

if ( ! EngRun) {
mode = ccMode . Inactive

;

return;

}

switch (mode) {
case ccMode.Off:

1 Java and JavaScope are trademarks of Sun Microsystems,

Inc.



Operator Mutants
Counter-

examples
Unique
Traces

Block

(of 12 )

Branch
(of 16)

Logical

(of 21 )

'Mi' 168 192 34 12 13 11

m2 56 31 27 11 13 16

failing tests 224 223 60 12 14 16

Mi 41 13 5 10 10 10

m4 10 10 7 12 11 9

passing tests 51 23 11 12 13 14

All 275 246 ~~7T~ 12 14

Table 3: Coverage results of mutation operators

if (Ignited) {
>»> false branch at line 31 column 17
>>>> is NOT covered,

mode = ccMode . Inactive

;

>

break

;

<*

case ccMode . Inactive: ...

case ccMode . Cruise : ...

case ccMode . Override:
if (! TooFast kk ! Brake) {

if (lever==ccLever. Activate
|

|

lever==ccLever. Resume) {
»» false branch at line 54 column 21
>»> is NOT covered,

mode = ccMode. Cruise;
}

>

break

;

}

4. Results

Table 3 gives the coverage for each mutation opera-
tor. It also gives coverage for all failing tests, all pass-

ing tests, and all tests run together. The “mutants”
column is the total number of mutants generated, and
“counterexamples” is the total number of counterex-
amples found in the SMV runs. “Unique traces” is

the number of traces after duplicates and prefixes are
removed (see Sect. 3.4. for details). The number of
unique tests for failing tests and passing tests is not
the sum of those for Mi +M2 and M3+M4 respectively

because of duplicates.

Briefly, M\ and M2 change the state machine’s
transitions. Recall that a correct implementation
must fail these test cases. M\ adds a condition to a
transition, and M2 deletes a condition from a transi-

tion. (A precise description is in Sect. 3.3.) M3 and M4

change the temporal logic constraints. A correct im-
plementation must pass these test cases. M3 changes
the condition of a temporal logic constraint, and M4
negates the new mode.

The “Block” column gives the number of basic
blocks which the tests execute, and “Branch” gives

the number of branch possibilities executed. For inter-

est, we also provide the number of logical possibilities

covered in the last column. The number of blocks,

branch possibilities, and logical possibilities covered
for all failing tests, passing tests, and everything do
not sum because of overlap.

As discussed earlier, the model checker generates

counterexamples that are necessarily mutation ade-

quate with respect to the mutation operators applied.

In JavaScope a test set achieves complete branch cov-

erage if the guard in each if statement evaluates to

true for some test case in the test set and to false

for some test case. JavaScope evaluates coverage

for switch statements separately; all of the test sets

achieved full switch coverage, so we do not discuss

switch coverage further.

Together the test cases cover 14 of the 16 branches
in the implementation. Further analysis revealed

that one of the uncovered branches, labeled “false
branch at line 31,” is actually infeasible. That is,

no test input can cause this branch to be executed,

since the false condition is intercepted earlier. There-
fore, this branch may be removed from the coverage
analysis. Program structures that cannot be covered

are a frequent occurrence in any code coverage metric.

The remaining uncovered branch, labeled “false
branch at line 54,” is, in fact, feasible. Why didn’t

any test case generated by the model checker cover this

particular branch? Because it requires a test case with
a transition that does not change the mode. However,
the original SCR specification is a mode transition ta-

ble; that is, it explicitly specifies the conditions under
which a mode changes. The conditions under which a
mode does not change are implicit in the mode tran-

sition table. This does not imply any ambiguity in

the table; to the contrary, we can certainly compute
the conditions under which a mode does not change.
However these conditions are implicit in the SCR Ta-
ble 1. In other words, there is no syntactic element in

the table that explicitly describes ‘no change’ cases,

and hence no syntactic element to which a mutation
operator can be applied. The particular SMV logic

model we used for this SCR specification maintains
the distinction between explicit and implicit specifica-

tion. The uncovered branch corresponds to an implicit

aspect of the specification, and hence, no mutation of
the (explicit) specification is likely to force a test to



cover this branch.

Making implicit parts of a specification explicit is a
standard aspect of many formal methods. If applied to

the SCR mode transition or the corresponding SMV
logic model, the result would be mutants that covered
this last branch. We conclude that explicit specifica-

tions are definitely desirable from the perspective of

test coverage.

5. Future work

We plan to devise other mutation operators and
determine which set of mutation operators give the

best coverage with the smallest set of tests.

We also note that some mutation operators could
change the environmental assumptions. Any coun-

terexamples show when an implementation might be-

have incorrectly or unsafely in an unexpected environ-

ment. If the implementation passes resulting tests, it

increases our confidence in its robustness. If the im-
plementation fails, we can reexamine the assumption.
We may decide that the system needs to be engineered

stronger to assure that the assumption will not fail in

the real world.

In the next phase of this project we plan several ex-

tensions. We will apply this technique to a much larger

and richer specification, the Java SmartCard. We also

plan to explore starting with higher level specifica-

tions, say in Z or operational semantics, and automat-
ically generating model checker specifications. Finally

we are looking for industrial or commercial partners

to apply these techniques turning research laboratory

scripts into a generally usable tool set.

Scalability is a concern for all realistic software en-

gineering techniques. The scalability of our technique

depends in part on the success to which model check-

ing can handle large software specifications. The suc-

cesses of SPIN [19], and SMV [10] suggest that test

generation via model checking may apply to a broad
variety of software systems.

6. Conclusions

Testing consumes a significant portion of the bud-
get for software development projects. Formal meth-
ods, typically used in the specification and analysis

phases of software development, offer an opportunity
to reduce the cost of the testing phase. We pursued
this path by applying model checking to the problem
of test case generation.

We defined a mutation model for model checkers,

and used the model checker to automatically generate

mutation adequate tests that distinguish these mu-
tants from the original model. It is noteworthy that

the problem of identifying equivalent mutants, which
is a significant issue for program-based mutation anal-

ysis, is completely handled by the model checker in our

approach. Our approach generates expected results

for each test input, thus taking care of the “oracle”

problem. We defined mutation operators to produce
two types of tests, namely tests from which a correct

implementation must diverge, and tests which a cor-

rect implementation must follow.

We showed the feasibility of our approach on the

cruise control example. We turned the counterexam-
ples produced by the model checker into tests with the

NIST TDA tool and applied the tests to an implemen-
tation ir Java. Branch and other coverage analysis

shows that the tests are quite good, but not perfect.

Analysis of the uncovered branches shows that syntac-

tically implicit aspects of a specification are difficult

to test, suggesting that making all aspects of specifi-

cations explicit are important from the test case gen-
eration perspective.
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