
STAND & TECH R.I.C.

AlllOS 477147
N I STIR 6160

1 i.

Process Specification Language:

An Analysis of Existing Representations

Amy KnutiNa

Craig Schlenoff

Steven Ray
Manufacturing Engineering Laboratory

National institute of Standards and Technology

Gaithersburg, MD 20899

Stephen T. Polyak
Department of Artificial Intelligence

The University of Edinburgh, UK

Austin Tate
Artificial Intelligence Applications Institute

The University of Edinburgh, UK

Shu Chiun Cheah
Department of Computer Science

and Institute for Systems Research
The University of Maryland, College Park, MD

Richard C. Anderson
Department of Engineering Management
George Washington University, Washington, DC

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology
Gaithersburg, MD 20899-0001

1
.1156

No. 61 60

1993





Process Specification Language:

An Analysis of Existing Representations

Amy Knutilla

Craig Schlenoff

Steven Ray
Manufacturing Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Stephen T. Polyak
Department of Artificial Intelligence

The University of Edinburgh, UK

Austin Tate
Artificial Intelligence Applications Institute

The University of Edinburgh, UK

Shu Chiun Cheah
Department of Computer Science

and Institute for Systems Research
The University of Maryland, College Park, MD

Richard C. Anderson
Department of Engineering Management
George Washington University, Washington, DC

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology
Gaithersburg, MD 20899-0001

May 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Robert E. Hebner, Acting Director





Process Specification Language: An Analysis of Existing Representations

PROCESS SPECIFICATION LANGUAGE: An Analysis of

Existing Representations

Amy Knutilla

Manufacturing Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD
E-mail: amy.knutilla@nist.gov

Craig Schlenoff

Manufacturing Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD
E-mail: craig.schlenoff@nist.gov

Steven Ray

Manufacturing Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD
E-mail: steve.ray@nist.gov

Stephen T. Polyak

Department of Artificial Intelligence

The University of Edinburgh, UK
E-mail: Steve_Polyak@ed.ac.uk

Austin Tate

Artificial Intelligence Applications Institute

The University of Edinburgh, UK
E-mail: a.tate@ed.ac.uk

Shu Chiun Cheah

Department of Computer Science

and Institute for Systems Research

The University of Maryland, College Park, MD
E-mail: scheah@cs.umd.edu

Richard C. Anderson

Department of Engineering Management

George Washington University, Washington,DC

E-mail: anderson@seas.gwu.edu

Abstract
The goal of the NIST Process Specification Language (PSL) project is to investigate and arrive at a neutral,

unifying representation of process information to enable sharing of process data among manufacturing

engineering and business applications. This paper focuses on the second phase of the project, the analysis of

existing process representations to determine how well existing process representation methodologies

support the requirements for specifying processes found in Phase One. This analysis will provide an

objective basis from which to develop a comprehensive language and will promote the leveraging of

existing work.

1



Process Specification Language: An Analysis ofExisting Representations

Table of Contents

1. Introduction 3

1.1 The Process Specification Language (PSL) Project 3

12 Phase 1: Requirements for Process Specification 4

1.3 Phase 2: Analysis of Existing Process Representations 5

2. Existing Process Representations 6

2.1 Representations Under Investigation 6

3. Analysis of Process Representations 25

3.1 Comparing Requirements to Representations 25

3.2 Matrix Rating 25

3.3 On-line Matrix 26

4. Findings 27

4.1 Approach to Analyzing the Process Representation Matrix 27

4.2 Interpretation of Findings _ _29

4.3 Conclusions of the Analysis 35

5. Summary 36

Acknowledgment 37

References 38

Appendix: Representations versus Requirements for Specifying

Processes 45

2



Process Specification Language : An Analysis of Existing Representations

1. Introduction

1 .1 The Process Specification Language (PSL) Project
1

Many manufacturing engineering and business software applications use process

information, including production scheduling, manufacturing process planning,

workflow, business process reengineering, simulation, process realization process

modeling, and project management. The problem is that all of these applications represent

process information in their own internal representations, which makes communication

among them, a growing need for industry, nearly impossible without an application-

specific translator. The goal of the PSL project is to create a process specification

language that is common to all manufacturing applications, generic enough to be de-

coupled from any given application, and robust enough to be able to represent the

necessary process information for any given application. This representation would

facilitate process data sharing among various applications because they would all “speak

the same language”, either as a second language or their native language.
2

The project has five major phases:

1. Requirements gathering. This phase, completed September 1996 [Schlenoff et al.

96], involved the identification of the requirements necessary for modeling

manufacturing processes by analyzing process-centered manufacturing software

applications such as production scheduling, manufacturing process planning, and

workflow to determine if there exists a common set of requirements for specifying

processes. For example, a process description should include notions of sequence, data

requirements, resources, duration and time, location, abstraction, etc.

2. Existing process representation analysis. In this phase, completed April 1997,

various process representations, methodologies and languages were analyzed to

determine how well they represent the requirements found in Phase One. The intent of

this analysis was to provide an objective basis from which to develop a comprehensive

language and to leverage existing efforts in the area of process representation.

3. Develop initial PSL scenarios, semantics, syntax, and presentation(s). This phase

involves the, 1) creation or identification of appropriate scenarios relevant to the PSL
objectives, 2) definition of the conceptual (semantic) concepts that will be modeled in

1

This project is funded by NIST’s Systems Integration for Manufacturing Applications (SIMA) Program.

Initiated in 1994 under the federal government’s High Performance Computing and Communications effort,

SIMA is addressing manufacturing systems integration problems through applications of information

technologies and development of standards-based solutions. With technical activities in all of the NIST’s

laboratories covering a broad spectrum of engineering and manufacturing domains, SEMA is making

information interpretable among systems and people within and across networked enterprises.
2
For a detailed description of the PSL project and its background, the reader is referred to [Schlenoff et al.

96] and http://www.nist.gov/psl.

3



Process Specification Language: An Analysis ofExisting Representations

the PSL, 3) specification of one or many appropriate syntaxes, depending on the

chosen implementation(s), and 4) development of one or many presentations

(notations). Because the language is independent of any predetermined notation, it

becomes possible to use multiple alternative notations to convey the same information,

thus enabling multiple “views”. The initial specification of the semantics, syntaxes,

and presentations will be defined further in an iterative approach as the project

progresses.

4. Pilot Implementation and Validation. During this phase, several application-related

process models will be constructed within a pre-defined scenario, translation software

developed and process information exchanged using the PSL, to test its robustness and

completeness. An iterative approach will be followed until the specification becomes

stable.

5. Submission as a Candidate Standard. At this point, the validated, documented

language will be submitted to the appropriate organization as a candidate international

standard.

During each phase, a series of interactions with related communities have been and will

continue to be vigorously pursued. These include workshops, formal and informal

collaborations, active use of Internet-based tools for collaborative research and

development, and attendance at standards meetings. Such interactions assure both

technical feedback and the commitment to the specification as it evolves. This external

collaboration is the key to ensure that the language will be complete and robust.

1.2 Phase 1: Requirements for Process Specification

The completion of the first phase resulted in a comprehensive set of requirements for

specifying process that were grouped into four major categories [Schlenoff et al. 96].

• Core: The most basic, essential requirements inherent to all processes. To represent

process, it is either critical that these requirements be included, or these requirements

are so common that every application either explicitly or implicitly uses them. While

all processes contain core requirements, the core requirements provide the basis for

representing only the simplest of processes, e.g., resource, task.

• Outer Core: The pervasive, but not essential, requirements for describing processes

common to most applications, e.g., temporal constraints, resource grouping,

alternative tasks.

• Extensions: The groupings of related requirements, common to some, but not all,

applications that together provide an added functionality. Although the requirements

listed within the extensions are not inherently necessary for representing processes,

they are useful during implementation to provide their respective functionality. They

are included here because the PSL must be able to represent information that will

ultimately allow this functionality. The six extensions are Administrative/Business,

Planning/Scheduling/Quality/Analysis, Real-Time/Dynamic, Process Intent,

Aggregate Resources/Processes, and Stochastics/Statistics.

4



Process Specification Language: An Analysis ofExisting Representations

• Application Specific. The requirements only relevant within specific applications,

e.g., dynamic rescheduling for the production scheduling environment.

A full description of this phase and the defined set of process specification requirements

can be found at [Schlenoff et al. 96]'. These process specification requirements provided

the context for analyzing existing process representations.

1.3 Phase 2: Analysis of Existing Process Representations

Twenty-six representations (i.e., languages, methodologies, tools, standards, etc., used to

specify processes) were identified as candidates for analysis by the PSL team.
2

With help

from other experts, these representations were studied and analyzed with respect to the

requirements identified in the first phase of the PSL project.

The original objectives for analyzing existing approaches for representing process

included:

• gain an improved understanding of existing approaches for representing process

• identify how process specification requirements are represented within existing

approaches

• determine the strengths and limitations of existing approaches

• identify the existing representations or combination of representations that provide

the best coverage of all process specification requirements

• understand and define what types of representations (e.g., object-oriented) provide the

best coverage of all requirements

As the analysis progressed, additional benefits to conducting this type of analysis arose:

• determine the completeness of process specification requirements identified in the

first phase

• refine the technical approach for developing a process specification language

• identify the need as well as the candidates for PSL semantic concepts and their

definitions

• provide a basis for developing mappings between PSL and existing presentations

1

Also available at http://www.nist.gov/psl/.
2
The PSL team that participated in the identification of representations is an informal collaboration of

researchers including representatives from NIST, University of Maryland, College Park, George

Washington University, the Artificial Intelligence Applications Institute at the University of Edinburgh, and

Knowledge Based Systems, Inc.

5



Process Specification Language: An Analysis ofExisting Representations

This paper describes this analysis. Section 2.0 provides brief descriptions of the

representations studied and provides references for more detailed discussion. Section 3.0

describes the approach to the analysis. Section 4.0 discusses the results of the analysis.

Section 5.0 provides a summary. The full matrix containing the analysis can be found on-

line at http://www.nist.gov/psl/. The matrix has also been printed in the appendix.

2. Existing Process Representations 1

During the second phase of the PSL project, twenty-six process representations were

analyzed to determine their applicability for representing the set of process requirements

found in the first phase of the project. The term “representation” is used as an all-

encompassing term to include languages, methodologies, tools, standards, etc. In general,

a representation is an approach to specifying process models. This may include semantic

definitions, methods, and/or syntax (which may be textual, graphical, or both). In addition

to these twenty-six representations, five supporting representations were also identified.

These five representations, although not analyzed directly, were found to play a

supporting role in the other representations that were analyzed. In many cases, these

twenty-six representations integrated the concepts and constructs of these supporting

representations to represent information requirements that the supporting representations

captured especially well.

These representations are not intended to be an exhaustive list of every process

representation currently available. It does, however, represent a sample of representations

that provide some insight into different ways of representing process information.

2.1 Representations Under Investigation

Included in this section is a brief description of and references for all representations.
2

ACT

ACT [Wilkens & Meyers 95] was created at the SRI International Artificial Intelligence

Center as part of research into systems that select and execute appropriate actions for

achieving goals in dynamic and uncertain environments. Traditionally, plan generation

and reactive execution have been considered as separate activities, with few attempts to

integrate them within a single system. The ACT formalism is a language for representing

the knowledge required to support both the generation of complex plans and reactive

1 No approval or endorsement of any commercial product in this paper by the National Institute of

Standards and Technology is intended or implied. This paper was prepared in part by United States

Government employees as part of their official duties and is, therefore, a work of the U. S. Government and

not subject to copyright.
2 Two of these representations, PAct (Parts and Actions) and EPFL’s petri net representations, were only

minimally analyzed because of lack of available expertise and literature, and are therefore not discussed in

this section.

6



Process Specification Language: An Analysis ofExisting Representations

execution of those plans in dynamic environments. ACT has been used as the interchange

language in an implemented system that links a previously implemented planner (System

for Interactive Planning and Execution Monitoring (SIPE-2) [Georgeff & Ingrand 89])

with a previously implemented executor (Procedural Reasoning System (PRS) [Wilkens

84]).

ACT is intended to serve as a general-purpose representation language that could be used

to share knowledge between many different execution and planning systems. The

representational and computational adequacy of ACT has been validated by

implementing the Cypress system [Wilkens and Myers 95], which uses ACT as an

interlingua to enable runtime interactions between planning and execution subsystems.

ACT focuses on a practical, yet sufficiently expressive representation that can address a

variety of needs. Sample domains that ACT has been used in include controlling an

indoors mobile robot and military operations planning.

The ACT formalism is a domain-independent language for representing the kinds of

knowledge about activity used by both plan generation and reactive execution systems.

The basic unit of representation is an Act, which can be used to encode both plan

fragments and standard operating procedures (SOPs). An Act describes a set of actions

that can be taken to fulfill some designated purpose under certain conditions. The purpose

could be either to satisfy a goal or to respond to some event in the world. The purpose and

applicability criteria for an Act are formulated using a fixed set of environmental

conditions. Action specifications are called the plot, and consist of a partially ordered set

of actions and sub-goals. The environmental conditions and plots are specified using goal

expressions, each of which consists of one of a predefined set of meta-predicates applied

to a logical formula. The meta-predicates permit the specification of many different

modes of activity, including goals of achievement, maintenance, and testing. ACT can be

used to build a very strong model of the relationships between actions, temporal

requirements, and resources. It has been shown to have expressive and computational

adequacy in several applications. Specific manufacturing elements would need to be

added as extensions to support these domain-specific requirements.

A Language for Process Specification (ALPS)

ALPS [Catron & Ray 9 1 , Ray 92] was designed to serve as a generic model to support

process plans used within the discrete-process manufacturing industry. The need for such

a generic model became apparent in the context of a series of projects initiated at the

National Institute of Standards and Technology during the late 1980’s addressing various

aspects of Computer Integrated Manufacturing (CIM). One of the key elements for

factory integration was consensus on the structure of the underlying information used and

generated by component systems. One such body of information is the process plan.

ALPS is based on a directed graph notation to indicate the temporal relationships between

process tasks. Directed graphs were chosen because they provide the required attributes of

7



Process Specification Language: An Analysis ofExisting Representations

expression: simplicity, clarity, basic precedence, alternative sequences, parallelism, and

abstraction. The design goals of ALPS included the support for task decomposition,

parallel tasks, synchronization of tasks, alternative tasks, sequences, resource allocation,

critical (uninterruptable) task sequences, and information manipulation operatives.

AP213

AP213 [ISO 92, ISO 95a] is an application protocol (AP) within STEP (STandard for the

Exchange of Product model data) [ISO 92] whose scope is the exchange, archiving, and

sharing of computer-interpretable numerical control process plans for machines parts,

focusing on the sharing of data between dissimilar Computer-Aided Process Planning

(CAPP) systems. STEP is an international standard (International Standards Organization

(ISO) 10303) for the exchange of product information. Application protocols describe the

use of a predefined group of resource constructs to satisfy the scope and information

requirements for specifying the intended use of information within an application.

AP213 specifies the data contained within a process plan as opposed to the data necessary

to perform process planning functions. Included within AP213 are the relationships that

exist between the different process plan data items as well as those that exist between

these data items and the product definition data. Within the scope of this AP are:

information from the planning activity that is contained in the NC process plan for

machined parts; work instructions for the tasks required to manufacture the part such as

references to resources required to perform the work; the sequence of work instructions

and relationship of the work to part geometry; information required to support NC
programming of processes specified in the process plan; information required to support

in-process inspection specified in the process plan; shop floor information specified in the

process plan. AP213 builds off of STEP Part 49 (see Part 49 description on page 17).

AP213 is captured in the EXPRESS language [ISO 93]. EXPRESS is a formal data

specification language that provides the mechanism for the normative description of

information while allowing a complete description of the data and constraints applicable

to that information. EXPRESS permits the definition of resource constructs from data

elements, constraints, relationships, rules, and functions.

Behavior Diagrams

Behavior Diagrams [Ballard 89, Alford 90], developed by Mack Alford of Ascent Logic

Corporation, are the primary notations for describing system functionality within RDD-
100® systems engineering software. They combine the features of Functional Flow Block

Diagrams and Data Flow Diagrams, capturing data flows (functional interfaces) as well as

control transitions and sequences. These diagrams are used to describe the functional

behavior of a system design with a time sequence of functions indicating functional

inputs and outputs, strict precedence relationships, control flow and data flow, as well as

completion conditions for purposes of time-based simulation and analysis.

8



Process Specification Language: An Analysis ofExisting Representations

Behavior diagramming provides a number of basic constructs and features that can be

used to model functional behavior. Most of these make use of one or more Control Flow

Nodes , which are logical symbols that indicate:

• selection of one or more alternate paths,

• iteration and looping of a function or sequence of functions,

• concurrency, or simultaneous activation of a number of functions, and

• replication (i.e., simultaneous or parallel instances) of a function.

As is the case with many other process-related representations, Behavior Diagrams are

hierarchically decomposable. The elements of the diagrams (particularly function blocks)

can also be linked to related textual documents that contain detailed information about

such things as performance requirements, requirements traceability, and so on.

Behavior Diagrams were designed, and best suited, for the behavioral modeling of

physical artifacts (i.e., the operational behaviors of well-defined physical systems) as

oppose to capturing the more abstract and complex programmatic elements (such as non-

machine, human activities like design) that are seen in the product realization process

modeling and workflow domains.

Core Plan Representation (CPR)

The DARPA-sponsored Object Model Working Group (OMWG) is currently developing

a “core plan representation” (CPR) [Pease & Carrico 97] which is aimed at supporting the

representational needs of many types of planning systems. The OMWG’s stated goal is:

“...to leverage common functionality and facilitate the reuse and sharing of

information between a variety of planning and control systems” [Pease & Carrico

97]

CPR has utilized ARPI (Advanced Research Planning Agency (ARPA) Rome Planning

Initiative) work on Knowledge Representation Source Language (KRSL) [Lehrer 93], the

Planning Ontology Construction Group (POCG) [Tate 96a], the O-Plan project [Currie &
Tate 91], and the <I-N-OVA> representation (see below). CPR is composed of a set of

basic plan concepts that have been assembled into a refined design framework. The initial

minimal set of concepts included Action Resource, Actor, and Objective. This set was

then expanded with more entities (e.g. Plan, TimePoint etc.), defined with individual

properties (e.g. an Actor has an Objectives slot, etc.), and structured with stated relations

(e.g. a Plan contains Actions, Actions contain TimePoints, etc.)

CPR’s intended application might involve the Joint Task Force Advanced Technology

Demonstration (JTF-ATD) and Joint Forces Air Component Commander (JFACC)
programs that are two DARPA joint-force military planning applications. The OMWG

9



Process Specification Language: An Analysis ofExisting Representations

has also identified the possibility of applying CPR to non-military applications as well.

Entity Relationship (E-R)

The Entity-Relationship model was originally proposed by P. Chen in 1976 [Chen 76,

Chen 81] as a way to unify the network and relational database views. This model allows

one to model information and data that may be conceptualized as having components that

are inter-related. Moreover, the relations among components are captured as well as their

respective components and attributes. The E-R model also gave rise to the Entity-

Relationship diagram, which is its graphical representation.

In the E-R model, data components are represented as entities. These entities may have

relationships with other entities. Furthermore, the mapping cardinalities of these

relationships may be one-to-one, one-to-many, many-to-one, and many-to-many. Entities

can be denoted weak or strong. A weak entity is one whose existence is solely dependent

on a strong entity that has a relationship with the weak entity. This construct is

particularly useful for consistency maintenance of a database. Attributes may be

associated with each entity, usually representing the properties of the component

represented by the entity. Furthermore, these attributes provide one with a mechanism to

identify each of the entities uniquely.

Since it was first introduced, the E-R model has been widely used in information systems

design, especially in systems involving relational databases.

Functional Flow Block Diagrams (FFBD)

Functional Flow Block Diagrams (FFBDs) [Grady 93, Scotti 94, DSMC 86] are a

fundamental representational tool within the systems engineering community. It is used

to define and illustrate graphically the functions that must be performed by a system as

well as the sequential relationships among the functions. They are used in functional

analysis to gain, in an organized way, insight into what a system (or system element) is

required to do and in what sequence it must be done. Systems engineers have

traditionally used FFBDs to provide a graphical view of system behavior as sequences,

selections, and concurrences of functions. An FFBD is perceived as an analog of actual

system operation where a function is performed by a set of system resources that are not

yet fully specified. As such, the activities of a process model and the functions of an

FFBD are very closely related constructs.

The primary benefit of FFBDs is their ability to support analyses of the process flow or

behavior of a system with respect to time. However, while they do show all the possible

sequences of system behavior, they ignore data flows, including those that trigger a

transition from one behavior state to another. As well, FFBDs are like IDEFO diagrams

[Wisnosky & Batteau 90] in that they are not intended to show the time duration of

activities/functions, nor do they convey the time between functions. Equally importantly.

10



Process Specification Language: An Analysis ofExisting Representations

from a process modeling perspective, FFBDs are not, by definition, resource- or

equipment- oriented. That is, they identify “what” must happen and do not assume a

particular answer to “how” a function will be performed.

Gantt Charts

Named for its developer, Henry Laurence Gantt, the Gantt chart (also known as a bar

chart) [Avallone & Baumeister 87, PMI 96] provides a graphic display of schedule-

related information, including the relative and absolute durations and start/finish of

activities. They can be used to schedule resources as well as activities. In the typical

Gantt chart, activities or other project elements are listed down the left side and dates or

other suitable time intervals are shown across the top. In the area formed between these

two axes, individual activities or project elements are shown as bars. Each bar has a

length corresponding to the duration of its corresponding activity, and is placed on the

diagram in a location consistent with its designated start or finish time. When used in

conjunction with PERT [Avallone & Baumeister 87], any delayed critical-path activities

can be highlighted by some kind of differently shaded or colored bars.

Gantt charts are a simple but effective means to convey schedule-related information

graphically. They allow a recognition of the tasks that must be performed sequentially

and those that may be performed in parallel. They also provide an easily understandable

description of the workflow throughout an entire project.

Generalized Activity Network

The Generalized Activity Network (GAN), as defined by Elmaghraby [Elmaghraby 77],

is an example of an activity-on-arc representation (see discussion on PERT charts).

Activities are represented as arcs, each denoting a particular transition between some

initial and final state. These states are shown as nodes.

Activity arcs in a GAN are treated as vectors having at least three associated parameters:

the probability that the activity will occur given that its precedent node has been realized;

the duration of the activity (a random variable); and, the cost of the activity as a function

of activity duration and defined resource usage. In the standard nomenclature for GANs,
an activity has receiver and emitter logical conditions associated with its initial and final

states, which are graphically displayed as nodes split into two corresponding halves. One
half of each node accepts the receiver connections of one activity in a chain, while the

other half connects to the emitter of another activity.

One noteworthy element of the graphical presentation of GANs that may be useful in the

development of a process specification language is its use of the activity-on-arc

technique. This allows the possibility of allowing arc lengths to correspond to activity

duration, in a similar fashion to that in Gantt charting. Also important is its explicit

11



Process Specification Language: An Analysis ofExisting Representations

graphical representation of start/finish conditions and states for activities. [Lyons et al.

95]

Hierarchical Task Networks (HTN)

HTN [Erol et al. 94] was developed by AI researchers as a representation mechanism for

AI planning. Variations of it have been used by many researchers in the planning

community. Despite its long existence, it was not until recently that HTN was formalized.

AI researchers from the University of Maryland carried out the formalization work. A
task network is a collection of tasks that need to be carried out, together with constraints

on the order in which tasks can be performed, the way variables are instantiated, and what

conditions must be true before or after each task is performed. The collection of tasks

may be all primitives in the sense that they cause a simple state transition to the world, or

they may contain compound tasks that could be decomposed during planning to primitive

tasks. Essentially, an HTN may represent a plan ranging from a partial plan to a fully

instantiated plan.

In HTN, a task can be a primitive task, a compound task, or a goal. A primitive task

corresponds to some operation that can be readily done and can change the state of the

world. A compound task is one that is decomposable to other compound tasks or

primitive tasks. And, a goal is something that needs to be achieved by assigning it a

compound task or a primitive task. The decomposition of compound tasks is

accomplished by a method. A method is a construct associating a compound task to a task

network consisting of sub-tasks of the compound task. Conceivably, one can have

multiple methods for each compound task. Finally, an operator is a construct that consists

of a primitive task, pre-conditions, and post-conditions. It describes the conditions under

which the task is executable and those that result from executing the task.

IDEFO

IDEFO [Wisnosky & Batteau 90] is a standard for functional modeling derived from the

Structured Analysis and Design Technique (SADT)™ [SofTech 81], a well-established

cell modeling technique for system analysis and a graphical language for communication

of the results, developed for the United States Air Force by Douglas T. Ross and

SofTech, Inc. An extension of the representation scheme known as Functional

Decomposition Diagramming (FDD), IDEF techniques emerged in the mid-1970s as part

of the United States Navy ICAM (Integrated Computer-Aided Manufacturing) initiative

to increase manufacturing productivity. [CSDC 94]

IDEFO is one of the original three IDEF methodologies (IDEFO, IDEF1, and IDEF2), and

is used to model systems from the functional/organizational perspective. Today, IDEFO

is being used in both the public and private sectors for the modeling of a wide range of

enterprises and application domains, and has been formally standardized in Federal

Information Processing Standards 183 [FIPS183 93]. FIPS 183 describes the IDEFO

12



Process Specification Language: An Analysis ofExisting Representations

modeling language (semantics and syntax) and associated rules and techniques for

developing structured graphical representations of a system or enterprise.

As described in an analysis of the strengths and weaknesses of IDEFO by Knowledge

Based Systems, Incorporated: “The primary strength of IDEFO is that the method has

proven effective in detailing the system activities for function modeling, the original

structured analysis communication goal for IDEFO. Activities can be described by their

inputs, outputs, controls, and mechanisms (ICOMs). Additionally, the description of the

activities of a system can be easily refined into greater and greater detail until the model

is as descriptive as necessary for the decision-making task at hand. In fact, one of the

observed problems with IDEFO models is that they often are so concise that they are

understandable only if the reader is a domain expert or has participated in the model

development.”.
1

IDEF3

Another member of the IDEF “family,” EDEF3, or, “Process Flow and Object State

Description Capture Method,” was developed under the Information Integration for

Concurrent Engineering (DCE) project, funded by the U. S. Air Force. [Mayer et al. 92]

Knowledge Based Systems, Inc., is the prime contractor for IICE and developer of

IDEF3. 2 IDEF3 is designed to capture the behavioral aspects of an existing or proposed

system, including descriptions of precedence (activity sequence) and causality

relationships, in a structured way. This has the intended effect of enabling a domain

expert to intuitively express his knowledge of the operation of a particular system or

organization. The resulting descriptions that are captured by the IDEF3 can then be used

to facilitate the construction of analytical and design models. The methodology stops

short of providing the ability to construct predictive simulation-based models ; rather, it is

a method to obtain structured descriptions of what a system actually can or will do in

practice.

The 1DEF3 methodology is capable of providing different user views of temporal

precedence and causality relationships via two main diagram types, or “description

modes.” One, the Process Flow Network (PFN), provides a process-centered view of a

system, while the other, the Object State Transition Network (OSTN), allows an object-

centered view. Both of these complementary representations employ the same basic

diagrammatic notation scheme, featuring series of boxes (either square or oblong),

circles, and interconnecting arcs. Textual “elaboration forms” are also attached to each of

the graphical icons, providing additional information. The meanings and usage (i.e..

1

Knowledge Based Systems, Inc., “IDEFO Function Modeling Method,”

http://www.kbsi.com/idef/idefO.html, April 1997.
2
Knowledge Based Systems, Inc., “IDEF3 Process Description Capture Method,”

http://www.kbsi.com/idef/idef3.html, April 1997.

13



Process Specification Language: An Analysis ofExisting Representations

semantics and syntax) of these graphical entities is dependent upon which of the two

description modes is being viewed.'

<I-N-OVA> Constraint Model

<I-N-OVA> [Tate 96a, Tate 96b, Tate 97] is a constraint model of tasks, plans, processes,

and activities which adopts the perspective that all of these sources are “constraints on

behavior”. This model can be used as an ontology for shared representations amongst

various operations in the planning and execution process including: knowledge

acquisition, formal analysis, user communication, and system manipulation.

The acronym, <I-N-OVA>, stands for: Issues, Nodes, Ordering, Variable, and Auxiliary

constraints. Issues and nodes are also expressed as constraints and can be thought of as

implied constraints and activity constraints, respectively. The inclusion of “issues” in the

specification of a plan or process is unique and allows the “state” of the planning process

to be captured and communicated throughout the life cycle of a plan. Tate relates these

various constraint types together by stating:

“Planning is the taking of planning decisions (I) which selects the activities to

perform (N) which creates, modifies or uses the plan objects or products (V) in

the correct time (O) within the authority, resources and other constraints specified

(A).”
2

<I-N-OVA> is not a representation language like some of the other candidates discussed

in this paper (e.g. ACT, O-Plan TF; see below). Rather, it is a conceptual model that can

provide an underpinning to languages that describe activities, plans and processes. O-

Plan’s widely used domain description language, Task Formulation (TF) (see below), can

be seen as an implementation that rests upon the more general <I-N-OVA> model. The

different types of constraints in the <I-N-OVA> model reflect the different types of

components in an O-Plan agent (issue controller, issue handlers, and plug-in constraint

managers) [Tate et al. 96].

Knowledge Interchange Format (KIF)

KIF [Genesereth & Fikes 92, Patil et al. 92] is a computer-oriented language aimed at

knowledge sharing among disparate programs developed by the Interlingua Working

Group of the DARPA Knowledge Sharing Effort. Disparate applications refer to

programs that are written by different programmers at different times in different

languages. In the DARPA knowledge sharing effort, one of the important research topics

was to figure out an “interlingua” (neutral exchange language) for knowledge

1

Terri Lydiard, AIAI, University of Edinburgh, “Using IDEF3 To Capture The Air Campaign Planning

Process,” http://www.aiai.ed.ac.uk/~arpi.
2
See <I-N-OVA> rationale at http://www.aiai.ed.ac.uk/~oplan/inova.html

14



Process Specification Language: An Analysis ofExisting Representations

interchange. KIF was bom under research in this area. At the beginning stage of design,

KIF needed to have a formally defined declarative semantics, sufficient expressive power,

and a structure that enables semi-automatic translation into and out of conventional

knowledge representation language. Furthermore, KIF was needed to decrease the number

of translators per knowledge base to one: local language to KIF and back.

KIF has a tree-like, structured syntax as well as a corresponding linear, ASCII, list-based

syntax. Intuitively, KEF terms denote objects in the universe of discourse, and every

sentence is either true or false. One may define objects and the relations and functions

pertaining to the objects and the world. KIF provides the user with a set of basic objects,

which are described by its standard vocabulary on numbers, lists, sets, functions, and

relations. Thus, all KIF users must, at least, abide by the KIF conceptualization of these

objects, but they are free to define other worlds of discourse otherwise. Besides the basic

objects, KIF also allows expressions of meta-linguistic knowledge as well as provides

supports for representations necessary for non-monotonic reasonings.

O-Plan Task Formulation

The O-Plan (Open Planning Architecture) Project [Currie & Tate 91, Tate et al. 96] is

exploring issues of coordinated command, planning and control. The objective of the O-

Plan Project at the Artificial Intelligence Applications Institute (AIAI) and the University

of Edinburgh is to develop an architecture within which different agents have command
(task assignment), planning, and execution monitoring roles. O-Plan is a domain

independent planning system. The agents in this system require the input of a domain

representation in order to complete their respective tasks. Task Formalism (TF) is used to

provide this detailed knowledge. TF is a language that is used to convey a detailed

description of permissible actions or operations within an application area, including

information about how constraints imposed on the use of these actions should be

satisfied, and their effects on the domain if the actions are used. It was originally

developed for the NONLIN planner [Tate 77] in 1975 and has been extended and refined

for use in O-Plan.

Task Formalism is used to give an overall hierarchical description of an application area

by specifying the possible activities within the application domain and describing how
those activities can be “expanded” into sets of sub-activities with a wide range of

constraints imposed. Plans are generated by choosing suitable expansions for activities in

the plan (i.e. refining those activities as in F1TN planning) and including the sets of more

detailed sub-activities described by the chosen expansions. Ordering and variable

constraints are then satisfied to ensure that asserted effects of some actions satisfy, and

continue to satisfy, conditions on the use of other actions. Other temporal and resource

constraints are also included in the descriptions. These descriptions of actions form the

main structure within TF, the schema. Schemas are also used in a completely uniform

manner to describe tasks set to the planning system, in the same formalism. Other TF
structures hold global information of various sorts and heuristic information about

15



Process Specification Language: An Analysis ofExisting Representations

preferences for choices to be made during planning. TF can be used to represent complex

knowledge about a domain. This “rich” knowledge includes action effects and conditions,

hierarchical relationships, temporal requirements, authority, resource needs, etc. Its

constraint-based approach provides a strong, extensible approach to domain

representation. O-Plan TF is a specific language for planning and lacks some of the

generality provided by a conceptual model such as <I-N-OVA> on which it is based.
1

OZONE

OZONE [Smith & Becker 97] is a toolkit for configuring constraint-based scheduling

systems developed at The Robotics Institute, Carnegie Mellon University. A central

component of OZONE is its scheduling ontology, which defines a reusable and extensible

base of concepts for describing and representing scheduling problems, domains and

constraints.

There is commonality in scheduling system requirements and design at several levels

across application domains. Many of the concepts and constraints in the problem domain

could be considered to be reusable and extensible. The OZONE ontology provides a

framework for analyzing the information requirements of a given target domain, and a

structural foundation for constructing an appropriate domain model. Through direct

association of software component capabilities with concepts in the ontology, the

ontology promotes rapid configuration of executable systems and allows concentration of

modeling efforts on those idiosyncratic aspects of the target domain. The OZONE
ontology and toolkit represent a synthesis of extensive prior work in developing

constraint-based scheduling models for a range of applications in manufacturing, space

and transportation logistics.

OZONE adopts an activity-centered modeling viewpoint. There are five basic concepts of

the ontology - Demand, Activity, Resource, Product, and Constraint. The ontology also

defines specific inter-relationships and properties for these entities. Scheduling is defined

as a process of feasibly synchronizing the use of resources by activities to satisfy

demands over time, and application problems are described in terms of this abstract

domain model. OZONE has a powerful architecture that permits a domain modeler to

focus on those items that are special for a specific instance. The use of constraint

managers assists in rapid identification of aspects to consider. While the work on OZONE
reflects years of experience in the scheduling field, the ontology is still relatively new.

PAR2

PAR2 (Product-Activity-Resource Model for Realization of Electro-Mechanical

Assemblies: Version 2) was developed by M.R. Duffey and J.R. Dixon in the late 1980s

[Duffey 93] at the Mechanical Design Automation Laboratory of the University of

1

O-Plan Task Formalism (TF) Manual, http://www.aiai.ed.ac.uk/release.

16



Process Specification Language: An Analysis ofExisting Representations

Massachusetts as a proof-of-concept object-based implementation designed to explore

representational issues related to the interdependencies of product, process, and resource

representations within the domain of electro-mechanical design. Additionally, PAR2 was

designed to explore the modeling of cash flow uncertainty for the product realization

process for electro-mechanical assemblies using activity network simulation.

PAR2’s process representation includes an activity-on-arc representation based on the

Generalized Activity Network (GAN) model of Salah Elmaghraby that allows stochastic

branching and other features that enable iteration.

According to Duffey, “the implementation of PAR2 uses crude but effective object-based

representations and an associated simulation engine written in common lisp. It included a

(now extinct) SunView graphical interface for 1) hierarchical decomposition of product

instance, activity class, and resource class representations, 2) relational matrices for

product-activity and activity-resource relationships, 3) a Gantt-type chart of activity

subgroups that could be manipulated to explore effects of overlapping/concurrency

alternatives, and 4) a cash flow diagram dynamically created during the process

simulation.”

Duffey contends that “PAR2 is not meant to be a robust language, but was a doctoral

research experiment. It is quite ad-hoc in its modeling of stochastic networks and lacks

rigorous grounding in mathematical formalisms.” Nonetheless, it features a number of

important elements that can be of use in future modeling of the relationships between

products, processes, resources, and even requirements.

Part 49

Part 49 (Process structure and properties) is an integrated generic resource of STEP
(Standard for the Exchange of Product model data) [ISO 92, ISO 95b]. STEP is an

international standard (International Standards Organization (ISO) 10303) for the

exchange of product information. An integrated generic resource is a group of context-

independent resource constructs used as the basis for future information. Part 49 includes

the information necessary to specify the actions or potential actions to realize a process.

This includes the relationships between the actions or potential actions in the process and

the relationships between the processes that are used to realize a product. This part does

not specify any particular process, but defines the elements to exchange process

information. This part is applicable to all types of process definitions that can be

represented in a discrete manner.

The constructs define the structure for specifying: relationships between processes, when
a process is used, the properties of a process, the resources required for the process, the

properties of the resource, the representation of process, the representation of the

resource, and the relationship of the process to the product. Together, these constructs can

be combined to create a process plan.

17



Process Specification Language: An Analysis ofExisting Representations

Part 49 is captured in the EXPRESS language [ISO 93]. EXPRESS is a formal data

specification language that provides the mechanism for the normative description of

information while allowing a complete description of the data and constraints applicable

to that information. EXPRESS permits the definition of resource constructs from data

elements, constraints, relationships, rules, and functions.

PERT Networks

PERT (Program Evaluation and Review Technique) [Avallone & Baumeister 87] was

developed in the late 1950s to manage scheduling for the Polaris missile project. Today,

PERT and its numerous descendant methodologies are widely used, especially in the

project management and product development domains. According to the Project

Management Body ofKnowledge (PMBOK) [PMI 96], PERT is “an event-oriented

network analysis technique used to estimate project duration when there is a high degree

of uncertainty with the individual activity duration estimates.”

Part of the technique is the application of the Critical Path Method (CPM), which

attempts to complete projects in a minimum time by finding the particular sequence of

events for which a delay in any one event in the sequence will cause a delay in overall

project completion. For such a critical path, a critical event is defined as one that has no

scheduling “slack;” that is, it has identical earliest possible start and latest possible start

times and identical earliest possible finish and latest possible finish times. These

determinations are based upon as many as three time estimates that are assigned to each

activity in the PERT network: optimistic (early) completion time; most likely (average)

completion time; and longest (pessimistic) completion time. However, most of the time

only one time is given and it is assigned to be deterministic.

In modem practice, PERT is represented graphically by some form of project network

diagram displaying a schematic of a project’s activities and the logical relationships

between them. According to PMBOK, the term “PERT Chart” is actually a misnomer,

stating that “The project network diagram is often incorrectly called a PERT chart. A
PERT chart is a specific type of project network diagram that is seldom used today.”

Petri Nets

A Petri Net [Reisig 92, Peterson 81] is a graphical language that is appropriate for

modeling systems with concurrency.
1

Petri Nets have been under development since the

beginning of the 60’ s, when Carl Adam Petri defined the language in his PhD thesis

(Kommunikation mit Automaten). The language was created to represent a net-like,

mathematical tool for the study of communication with automata such that the concept of

concurrently occurring events could be expressed. It was the first time a general theory

1

Petri Nets, http://www.pisa.intecs.it/products/PnNICE/petrinet.html, and Petri Net WWW Pages,

http://www.daimi.aau.dk/~petrinet/

18



Process Specification Language: An Analysis of Existing Representations

for discrete, parallel systems was formulated. Petri Nets are a suitable model for a wide

variety of applications. Successful areas are, for example, modeling and analysis of

concurrent and parallel systems, communication protocols, performance evaluation, fault-

tolerant systems, and manufacturing control systems. Since it was first introduced, Petri

Nets have been modified and extended by various researchers to allow for more powerful

modeling capabilities. The variations include Timed Petri Nets, Stochastic Petri Nets,

Predicate/Transition Nets, Colored Petri Nets, Object Petri Nets, Compact Petri Nets,

Role-based Extended Petri Net Models, Hierarchical Petri Nets, and Queueing Petri Nets.

A Petri Net is a particular kind of directed graph with an initial state called initial

marking. The underlying graph of a Petri Net is a directed, bipartite graph consisting of

two kinds of nodes, called places and transitions. Arcs represent connections between

nodes. An arc can only connect from a place to a transition or from a transition to a place.

Connections between two nodes that are of the same kind are not allowed. In graphical

representation, places are drawn as circles and transitions as bars or boxes. A marking

(state) is an assignment of tokens to the places of the Net. A transition is enabled if each

place connected to the transition input arc (input place), contains at least one token. The

firing of an enabled transition removes a token from each input place and deposits a token

on each place connected with its output arcs (output place). At any given time instance,

the distribution of tokens on places defined the current state of the Petri Net; thus, the

modeled system. Petri Nets also allow the determination of reachability (if a

reachable/obtainable from a given state) and deadlocking (if a state could be reached

where the process can not proceed).

Process Flow Representation (PFR)

PFR 1 was designed as an extensible, computer- and human-readable language for

describing semiconductor processing. It was created at the Massachusetts Institute of

Technology to be used with the Computer-Aided Fabrication Environment (CAFE).

[Boning et al. 92, Mcllrath et al. 92] PFR was developed to explore some ideas about

process modeling, design synthesis, and manufacturing.

The PFR language is a text language with a parenthesis grammar adapted from Lisp and

is intended to be read and possibly interpreted (executed) by various programs for the

purpose of simulation, manufacturing, or analysis. In most cases today, such programs

run in CAFE, which is used to operate the MIT semiconductor fabrication facilities and

includes an object oriented database. PFR includes a turing-complete programming

language (adapted loosely from scheme). It also includes an extension language for

accessing the environment of the executing program (e.g., the CAFE database).

1

Process Flow Representation (PFR), http://www-mtl.mit.edu/CIDM/SemiAnnual/02.PFR.html, February

27, 1997.

19



Process Specification Language: An Analysis ofExisting Representations

Process Interchange Format (PIF) Core

Critical in Business Process Reengineering or Enterprise Integration is the ability to share

and link heterogeneous process models. The goal of the PIF (Process Interchange Format)

project [Lee et al.. 96]' is to support the exchange of business process models across

different formats and schemas. The project pursues this goal by developing PIF (a

common translation language that serves as a bridge among heterogeneous process

representations), translators between PEF and local process representations, and a

mechanism for extending PIF to accommodate different expressive needs in a modular

way (Partially Shared Views).

At the heart of PIF is a core set of classes. Some of these classes are described in the

following excerpt:

In PIF, everything is an ENTITY; that is, every PIF construct is a specialization of

ENTITY. There are four types of ENTITY: ACTIVITY, OBJECT, TIMEPOINT, and

RELATION. These four types are derived from the definition of process in PIF: a

process is a set of ACTIVITIES that stand in certain RELATIONS to one another and

to OBJECTS over TIMEPOINTS [Lee et al. 96].

It is the feeling of the PIF group that the Core be reduced to a bare minimum of concepts

(as described above) to enable translation among those who cannot agree on anything

else. Another characteristic of the Core is that it contains modules that build on one

another. This way, groups with different expressive needs can share a subset of the

modules, rather than the whole monolithic set of constructs. As a result of this, the Core

is reduced to the minimum that is necessary to translate the simplest process descriptions

and yet has built-in constructs for “hanging off’ modules that extend the core in various

ways.

A PIF process description consists of a set of frame definitions that are typically

contained in a file. Each frame definition refers to an entity instance and is typed, and

they form a class hierarchy. A frame definition has a particular set of attributes defined

for it. Each of these attributes describes some aspect of the entity. The syntax of PIF

adopts that of KIF (Knowledge Interchange Format). KDF is a language that has been

developed by Interlingua Working Group, under the DARPA Knowledge Sharing

Initiative to facilitate knowledge sharing.

Quirk Model

W. J. Quirk and R. Gilbert originally developed the Quirk Model [Motus & Rodd 94] in

1977 at the Atomic Energy Research Establishment in Harwell.
2
In its original form, it is

a specification methodology for the design of distributed computer control systems. This

has since been extended for the specification of real-time software. Real time in this sense

1

PIF Process Interchange Format and Framework, http://soa.cba.hawaii.edu/pif/
2
Quirk Model, http://faith.swan.ac.uk/~eegoodw/quirk.html

20



Process Specification Language: An Analysis of Existing Representations

is taken as what is sometimes referred to as “hard” real time, i.e. all timing constraints

placed upon the system must be met under all circumstances. The main concern in this

model is the temporal aspect of the problem rather than the logical aspect of it. The model

provides a graphical representation. The basic purpose of the model is to show the timing

constraints on each of the processes in the system represented so that one can analyze the

overall system performance and determine the upper and lower bounds on processing

time.

A system is described in terms of sequential processes connected by channels. A channel

is a link that serves as a pathway for communication/data-flow between processes. Two
types of processes can be represented here: common processes and selector processes. In

its graphical representation, common processes are represented as circles while selector

processes are rectangles. Timing constraint parameters can be associated with each of the

processes. This is denoted by a list of two parameters, min and max, which correspond to

lower bound and upper bound of processing time respectively. Channels are drawn as

directed links from one process to another. A channel can be asynchronous or null. A null

channel (labeled with n) carries synchronization signals to a process while an

asynchronous channel (labeled with a) carries information. Channels are linked to ports

on the processes. Processes in the system may be concurrent or sequential. Common
processes execute as data/information comes in through a channel. On the other hand,

selector processes only execute when a synchronization signal comes in.

Visual Process Modeling Language (VPML)

VPML is the underlying language for the ProSLCE™ Process Editor and the Process

Simulator. ProSLCSE™ is a software package developed by ISSI (International Software

Systems, Inc.)
1

. Its goal is to help a company perform process engineering, which is

defined as a long-term, whole system approach to help identify, analyze, and improve a

business’s key processes. The hopeful result is a streamlined organization able to respond

quickly and effectively to the changing business environment. This will entail a totally-

integrated, process-driven environment composed of tools and services to support process

capture, analysis, refinement, enforcement/enactment, and improvement.

VPML is a graphical language for defining process. Within VPML, a process is defined

as a set of partially ordered steps toward meeting a goal. The components of a process

diagram are activities, products, resources, and the connections between them. Activities

represent work that is performed in a process and is the central focus of VPML. Products

represent items (information) that are used, created, modified, and transferred among
activities in a process. Resources are real-world resources that are required to perform an

activity. Connections are used to establish relationships between constructs, pass product

information between activities, and coordinate the scheduling of activities

1

Visual Process Modeling Language, http://www.issi.com/proslcse-3.5i/vpml.html, August 22, 1997.

21



Process Specification Language: An Analysis ofExisting Representations

2.2 Basic Knowledge/Supporting Representations

Besides the representations discussed above, five supporting representations were

identified. These representations, although not analyzed directly, were found to play a

supporting role in the other twenty-six representations that were analyzed. In many cases,

these twenty-six representations integrated the concepts and constructs of these

supporting representations to represent information requirements that the supporting

representations captured especially well. For this reason, these supporting representations

were only analyzed with respect to the representations into which they were incorporated

and not included in the matrix analysis.

AND/OR Graphs

An AND/OR graph [vanderBrug & Minker 75, Moses 71] is a representation of a

problem together with all the possible situations and options involved in solving this

problem. In other words, one can think of it as representing a problem that is divided into

sub-problems. These sub-problems may, in turn, be further divided. AND/OR graphs had

been developed as a general mathematical tool that could be applied to various Artificial

Intelligence problems such as planning and game playing. AND/OR graphs provide a

flavor of task decomposition (divide and conquer), and thus, have inspired many
traditional Artificial Intelligence planning methods.

An AND/OR graph consists of a set of nodes and a set of directed links. There are two

kinds of links: the AND link and the OR link. Each node represents a problem to be

solved, or a goal to be achieved. Directed links connect each node to nodes representing

its sub-goals or sub-problems. If a set of links originating from a node N are made to be

AND links, then all the sub-problems connected to by those links need to be solved

before N is considered solved. Otherwise, the links are OR links that denote that at least

one of the sub-problems need to be solved. AND links are denoted graphically by

drawing an arc across them, and OR links are simply left alone. If one were to denote

readily solved problems by nodes which are colored black, an AND/OR graph may
potentially represent a solution to the main problem. If one can find a path leading from

the main problem node to a set of black nodes, provided that the siblings of any AND
links in the path must also be in the path, then the path represents a solution to the

problem.

Data Flow Diagrams (DFD)

Data flow Diagrams (DFDs) [Grady 93, Scotti 94] are another staple of the system

engineer’s toolbox, and have also found extensive usage in many other fields including

software and information design. They are primarily used as a tool for performing

structured systems analyses to explore the relationships between processes and the data

that they transform or create.

22



Process Specification Language: An Analysis ofExisting Representations

DFDs represent the flow of data throughout a process or between processes, depicting a

system from a data perspective (of those who use the data), as opposed to a control

perspective (of those who act upon the data), or a resource perspective (what is needed by

whom and why, to do what). DFDs include specifications of the boundaries of a system,

sources and destinations of data, flows of data, transformation processes, and stores of

data for later use. DFDs are a graphical/diagrammatic representation with processes

rendered as circles, or “bubbles.” Directed arcs indicate that data move from one process

to another with the name of the data labeling the arc. For each process element (bubble)

in a DFD, an engineer must identify all of the inputs required, all of the outputs that the

bubble must produce, and the data stores the bubble must access.

A Data Flow Diagram consists of arrangements of the following graphical entities
1

:

• Directed Arcs: capturing information flows, or the “movement” of information within

the system;

• Circles/Bubbles: representing transforms, the transformation or processing of

information from one physical form to another;

• Straight Lines: denoting the storage of information (e.g., data file or data base);

• Boxes: indicating either the “sources” where information comes from or the “sinks”

where information goes or terminates.

DFDs are also hierarchically decomposable - each DFD at a given level can be seen to

“explodes” a process bubble from a preceding level.

Directed Graphs (Digraphs)

Directed Graph [Lewis et al. 81, Schneider & Bruell 92] is a mathematical structure that

has been widely used in many Computer Science related areas. It allows for theoretical

modeling of certain kinds of computing machineries, such as Finite State Automata and

Finite State machines. Besides that, it has also been frequently used to model flow of

information/data within a finite number component system (e.g. network communications

within a system of networked computers). As a matter of fact, due to its generality as a

mathematical structure, it does not have specific semantics that limit its use to certain

purposes. Directed Graphs have inspired a lot of modeling structures in various fields not

limited to Computer Science, such as manufacturing and work flow management.

A Directed Graph structure consists of a set of nodes and a set of directed links. Each

directed link is identified by a head node, the node pointed to by the link, and a tail node,

the node from which the link originates. For each pair of nodes (A & B), there can only

be one link whose tail node is A and head node, B. Furthermore, one is allowed to assign

weights to each of the links.

1

The Elements of a Data Flow Diagram, http://www.cs.pdx.edu/beta/SE_Course/Design/elements.html

23



Process Specification Language: An Analysis ofExisting Representations

State Transition Diagrams (STD)

State transition diagrams [Harel 87, Rumbaugh et al. 91] are one of the commonly used

techniques in the software engineering community to model the dynamics of systems.

One person who has had much success coming up with a formalization of this

representation technique is David Harel. The representation is based on the concepts of

finite state machines that are closely related to finite state automata. STD provides a

graphical presentation that makes it a good visualization tool during the analysis phase of

software development.

An STD consists of a set of states and a set of transitions. Actions that do not change the

state of the system may be associated to a state. Each transition must be associated with

an event. Furthermore, it may be associated with a set of attributes, conditions, and

actions to be performed during the transition. All the states, except the start state and the

final state, must be the result of an event, and upon its exit, an event must occur. Every

transition must be an output of some state and the input to another state. Moreover, all

transitions leaving a state must correspond to different events. Some other features of an

STD include its allowance for generalizations of states and events, its ability to represent

concurrent process synchronization, internal actions within a state, event sending, and

automatic transitions.

Tree Structures

Tree structures [Moses 71, Sedgewick 90, Shapiro 92] are among the most commonly

used data structures in Computer Science. Variations of tree structures have been found

very useful in many algorithms including sorting, searching, and indexing. Among the

variations are binary trees, the heap structure, B-trees, KD-trees, Quad-trees, and red-

black trees. Tree structures are also used in programming languages to specify certain

semantics of a language. Furthermore, compilers make use of such tree structures in

parsing sentences in a program. In AI planning and game playing, tree structures are used

to represent possible outcomes of some states, e.g. minimax trees and decision trees.

A tree structure consists of a set of nodes, a set of links, and a root node. Cycles are not

allowed in a tree structure. The root node is a node which does not have any parent nodes.

A node N is the parent of another node M ifN and M are connected by a link and M is

connected to the root node by less links than N is. Nodes that do not have any child nodes

are called leaf nodes of the tree. By definition, each node may have multiple child nodes,

but only one parent node.

24



Process Specification Language: An Analysis ofExisting Representations

3. Analysis of Process Representations

3.1 Comparing Requirements to Representations

In the initial phase of this work, a set of requirements was gathered by inspecting a

number of applications that utilize process knowledge [Schlenoff et al. 96, Gruninger et

al. 97]. These requirements were categorized into core, outer core, extension, and

application-specific groupings. The first two categories of requirements drove most of the

analysis work that was done in Phase 2. The “core” reflected those requirements that the

PSL group concluded were either essential, critical, or typically common for all of the

identified uses of process knowledge. The “outer core” contained requirements that were

considered to be “pervasive” but not necessarily essential. The approach for Phase 2 was

to identify existing representations that were believed to address some reasonable subset

of these requirements. In this context, the term “representation” is used in a general sense

to include languages, methodologies, standards, tools, etc. PSL working group members

that were familiar with possible representations offered them as candidate sources for

analysis. These candidates were then analyzed by providing both an evaluation of how
well the representation addressed each of the requirements and a description of the

constructs and features used.

All of the evaluations were then gathered into a cross-comparison matrix to view the

results side-by-side. This approach helped to derive an overall picture of how existing

representations met various process requirements in a variety of ways. It was thought

that candidates that were “strong” in certain areas might suggest good representational

approaches to consider for the Phase 3 development.

3.2 Matrix Rating

The evaluation of a representation was composed of: a set of “ratings”, one for each

requirement; a listing of constructs or structures from the representation which supported

the rating; and a set of comments to further describe why a requirement received a

particular rating. The possible values for each requirement rating were:

• completely satisfies

• partially satisfies

• cannot satisfy

• uncertain

It is obvious that this is a very large-grained measure and is subject to a number of

perspectives on what it “means” to satisfy a requirement. A more fine-grained scale

could have been used but it was concluded that it would be even harder to explain why a

representation received a “kind of does satisfy” versus a “kind of doesn’t satisfy”, for

example. In most cases a single member of the PSL working team or an outside expert

25



Process Specification Language: An Analysis ofExisting Representations

who was familiar with the representation performed the analysis and the comments

section was used to record the various perspectives as well as changes for a particular

rating suggested by additional reviewers.

An issue that made interpretation of the results more difficult involved the varying

perspectives on how to rate the individual entries. Some members performing the analysis

made the judgment that a requirement could only be completely met if there was a

specific construct that was specifically designed to meet a given requirement. So, for

example, if a representation used a frame-based syntax and did not have a slot specifically

designed for “deadline management”, then it did not “completely satisfy” the

requirement. Another perspective was to look at the available constructs of a

representation and to determine if there was a way in which the requirement could be

expressed (e.g. deadlines can be achieved through an association of an activity status and

a specific time point). A number of cross-check analyses were performed between

different analysts who confirmed this difference. This led to a skewing of any attempted

comparisons (based solely on the ratings) between analyses performed by different

analysts. It is important to stress here though that the intent of the analysis was not to rate

which representation was better overall, but to act as a generator of candidate ideas for

Phase 3. The constructs identified and the comments made were very helpful for this

purpose. These results demonstrated that much of the identified existing work is relevant

and will be helpful inputs for meeting the required project objectives.

3.3 On-line Matrix

A number of operational issues relating to the administration and coordination of this

approach were identified, including the need to:

• accept new analyses

• share results with the geographically-dispersed PSL working group and other

interested researchers in the community

• see cross-comparisons between two or more analyses by different people

• view the entire results for a single representation

• comment on or change the rating for a specific entry

Addressing these issues involved the provision of a structure for a standard, centralized,

and accessible collection of the analyses. This structure was provided via a dynamic,

World-Wide-Web-based (WWW) tool that was implemented on the NIST PSLWWW

26



Process Specification Language: An Analysis ofExisting Representations

server.
1

All participants then used the on-line matrix to submit their evaluations as well as

to view, comment on, and maintain this data. Since a number of the contributors were

operating on heterogeneous platforms and machines, it was decided that the WWW
would be the best environment for collaboration.

4. Findings

4.1 Approach to Analyzing the Process Representation Matrix

Upon completion of the matrix, the challenge was to further organize the vast amount of

information that had been collected to draw conclusions on the types of approaches useful

in representing certain kinds of process specification requirements. To simplify the task

of analyzing 26 approaches to over 50 process specification requirements, the set of

requirements were categorized according to both their common characteristics and the

commonality of representation approaches used to address the requirements.

The core and outer core PSL requirements were grouped into the following categories.

1

The World-Wide-Web-based tool, developed by Shu Chiun Cheah at the University of Maryland, College

Park consisted of a data repository, a web interface, and a set of CGI (Common Gateway Interface) scripts

for handling transactions. All these components resided and ran on a web server. Although this later turned

out to be rather inefficient when the data set got bigger, it enabled a temporary homogeneous user interface

for data collection. The data repositories were simply files stored in a UNIX file system, containing ratings,

comments, and construct descriptions. The CGI scripts, written in Perl, provided services allowing the user

to begin the analysis of a new representation, to enter ratings, to enter textual comments and descriptions of

constructs, and to make changes to existing data. This was all done with an interactive web interface that

prompted inputs from the user. The CGI scripts handled reading and writing data to and from the data

repository, were responsible for the organization of the data into files and directories, and facilitated the

web interface to the data repository. Two different views of the data were provided by some of the scripts:

the user was allowed to view the whole matrix as well as individual representations in table form on the

web.

27



Process Specification Language: An Analysis ofExisting Representations

Resource Representation and

Characteristics

• resource representation

• resource capability and characteristics

• product representation

• product characteristics

• resource grouping

Task/Process Representation and Basic

Characteristics

• task representation

• task characteristics

• grouping of tasks

Resource/Task Characteristics

• task executor

• resource requirements for a task

• level of effort

• cost data

• ad hoc notes

Precedence/Sequences

• simple precedence

• simple sequences

• alternative tasks

• concurrent tasks

• conditional tasks

• iterative loops

• parallel tasks

• serial tasks

Constraints

• general constraints

• pre- and post- conditions

• state existence constraints

• temporal constraints

Date/Time

• date and time

• task duration

The matrix was analyzed across all representations to identify the constructs or features

used for modeling each category of requirements. The descriptions of approaches were

further reviewed to determine common representation categories. These constructs and

features were then grouped into various “approaches” to help characterize the different

ways that satisfaction of requirements were achieved. These results are summarized in

Table 1. This table captures the high-level findings of the analysis of the on-line matrix,

which documents the detailed, uninterpreted data for all representations versus

requirements for process specification. Table 1 shows requirement categories in columns

and construct categories in rows. For each column, the entries show whether the types of

constructs are used for the particular requirement category. In this way, constructs can be

associated with requirements at a high level. More detailed discussion is found in Section

4 .2 .

28



Process Specification Language: An Analysis ofExisting Representations

Table 1: Summary of Requirement Categories versus Representation Approaches

Constructs Resource Task/Process Resource/Task Precedence Constraints Date/Time

Rep’n Rep’n Characteristics /Sequences

Object-Based xxxxxx XXXXXX XXXXXX XXXXXX XXXXXX xxxxxx

Constraint-

based

xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx

Graph-based - - - xxxxxx xxxxxx xxxxxx

Relationships - - - xxxxxx xxxxxx xxxxxx

Conditions - - - xxxxxx xxxxxx -

Inference - - - xxxxxx - -

Task Decom-

position

- xxxxxx xxxxxx - - -

Annotations - xxxxxx - - - -

Activity-

Resource

Matrix

xxxxxx

Task-Network - - - - xxxxxx -

Classes

(Groups)

- xxxxxx - - - -

Timer - - - - - xxxxxx

Time Intervals

/Timepoints

- - - - - xxxxxx

4.2 Interpretation of Findings

General categories of approaches were identified for the requirements. Often,

requirements were addressed through a combination of approaches. For example, a

representation may use both simple, pre-defined attributes and task decomposition to

address the requirement for task characteristics. Following is a discussion of general

approaches for each requirement category. Note that while these explanations may refer

to specific representations as examples, all representations that use an approach may not

be stated. It is best to refer to the matrix containing the analysis to understand how
specific representations address the process specification requirements.

29



Process Specification Language: An Analysis ofExisting Representations

Task/Process Representation

Obiect-based. A task is an object that has a name, and is linked to other objects via

relationships and associations. Relationships can be constraints. (Units of Behavior have

description, facts and objects to describe them - IDEF3) The objects and the links can be

pre-defined or user-defined. Tasks as objects, or entities, can have associated attributes.

These entities and attributes are either pre-defined (like Part 49), user-defined, or some
combination of both.

Constraint-based. Tasks are constraints on behavior. (Node constraint - Name of Activity

<I-N-OVA>)

Task Decomposition. Tasks are entities that are further described by decomposing each

task. (ALPS, HTN, EDEFO)

Annotations. Tasks are further described via annotations. (O-Plan TF)

Groups of Tasks

Hierarchy / Decomposition . The most common method of grouping tasks is via a

hierarchy of task flows (e.g., an ACT’s plot consists of a directed graph of nodes that

represents a group of actions, IDEF3 calls a hierarchy of Process Flow Diagrams a

scenario, HTN calls them task networks, O-Plan TF - Action Schemas. ALPS, PIF,

IDEFO use sub-plans or task decomposition.

Classes. The other common related approach is to group classes of tasks (Part 49, AP213,

PAR2) or have sets or lists of tasks (KIF).

Resource Representation and Basic Characteristics

Obiect-based. In this approach, resource classes, or simply entities, may be defined,

which contain attributes that describe the resource. Furthermore, the resource/product

characteristics can be defined as separate objects, which can then be associated to the

resource objects. Among the representations that present this approach are Entity

Relationship, AP213, IDEF3, O-Plan TF, JTF CPR, KIF, Petri Nets, and PAR2. ACT
makes use of this approach as well except that the resource characteristics requirement is

not supported. Some representations using this approach provide explicit constructs,

which one may think of as some pre-defined class hierarchies, to describe resources.

Hence, “resource” becomes a distinct concept within these representations. These include

Part 49, ALPS, VPML, AP213, and OZONE. The resource groupings requirement is

handled in three different ways. First, more specific resources can be derived from high-

level resource classes. Thus, groupings by categories can be achieved through these high

level classes. O-Plan TF, ACT, and PAR2 use such approach. Another approach involves

30



Process Specification Language: An Analysis of Existing Representations

the definition of a resource group, object/class, or relation. KIF and Entity Relationship

use this approach. Part 49, ALPS, and OZONE have such objects/entities defined

explicitly as resource groups. A third way is presented by Colored Petri Nets in which

tokens that represent resources that are to be grouped under the same category are colored

the same. This approach does not provide explicit information on the categories.

Constraint-based . This approach represents resources and characteristics by applying

certain constraints on objects that are resources. <I-N-OVA> and IDEF3 present this

approach. Some representations, like HTN, PIF Core VI 1, and IDEFO, represent

resources within functional constructs or activities. Resources are things that will be used

under certain circumstances, e.g., instead of “Resource A,” the existence of resource A is

evident in something like “Use Resource A.” Within this approach, only PIF Core V.1.1

is able to support characteristics by allowing attributes to be added to the resources. It

supports grouping indirectly as resources are referred to as in a group by activities when

being used. So, one is able to infer a resource’s group/category that way.

Product Representation

Object-based. These include Entity Relationship, AP213, IDEF3, JTF CPR, KIF, Petri

Nets, and PAR2. These representations provide ways of defining/creating general purpose

entities and links/relationships, to describe products and their characteristics. Some
representations have entities and attributes pre-defined explicitly for products. These

include PFR, Part 49, and VPML.

Constraint-based. Another approach for representing products is shown in <I-N-OVA>
in which various constraints are used to capture the information pertaining to products. O-

Plan TF, HTN, and IDEF3 both make use of constraints/conditions to describe product

characteristics.

Input and results of functional constructs. Finally, there is the approach in which products

are the effects/output of some functional block and the input to some other functional

block. This can be seen in O-Plan TF. Also, in IDEFO, PACT, and Behavior Diagrams.

FFBDs has the same idea, but it simply conveys the concept of product flow. This kind of

approach describes products in terms of the functional units in the representations rather

than describing the product as a stand-alone object. Products, in this case, are

intermediate products that exist between functional units, or are results of such functional

units.

31



Process Specification Language: An Analysis ofExisting Representations

Resource/Task Combined Characteristics and Associations

This category of requirements includes specialized characteristics of tasks and/or

resources that imply some association between resource and task (i.e., the role of a

particular resource for a particular task is task executor).

Object-based. All these requirements are objects associated via links, relationships, and

associations that can be pre-defined (e.g., ConsumableResource - JTF-CPR) or user-

defined. Also, action objects can contain resource objects (JTF-CPR). Specialized

requirements like cost data are handles as property/value or attribute/value pairs. These

attributes or properties could be pre-defined (Part 49) or user-defined.

Constraint-based. These requirements were addressed as conditions or constraints on the

task or resource. These constraints could be properties of the entity and could be pre-

defined (Act) or user-defined.

Activity-Resource Matrix. PAR2 uses an activity-resource matrix that allows

hierarchical decomposition.

Precedence

Object-based. This is accomplished through the use of explicit entities/attributes. In the

case of Part 49, an attribute is used to specify a number describing where the activity falls

in a sequence. For example, the second activity in a sequence would have the number 2 in

the appropriate attribute, which implies it must be preceded by activity number 1.

Constraint-based. Constraints, e.g., temporal constraints, can be used to capture

precedence.

Graph-based. Graph-based involves the use of a pictorial representation to convey the

precedence relationships. Although there is certainly an underlying representation, the

usual way of conveying precedence is by modifying graphical objects. Precedence is

usually shown though process flow diagrams, acyclic graphs, and directed arcs.

General Relationships. General relationships include things like affects (causal) and

expands (decomposition) relations. In a sense, they are the miscellaneous relations that

are not as prevalent as the conditions and constraints (which can also be considered

relationships).

Conditions. With respect to precedence, preconditions are the most prevalent types of

conditions. Although conditions are related to constraints, they are usually very distinct in

the representations under investigation.

32



Process Specification Language: An Analysis ofExisting Representations

Sequences

Obiect-based. This is accomplished through the use of explicit entities/attributes. Almost

all of the representations that have explicit constructs are EXPRESS-based (with the

exception of VPML). Although the representation is explicit, it is limited (what is defined

is all you can do). In the case of sequences, there would need to be (and is, in most

representations under study) an explicit construct to handle alternative tasks, concurrent

tasks, iterative loops, conditional tasks, parallel tasks, and serial tasks. The attributes

within these entities define what characteristics these entities have (usually a name,

description, relating task, and related task).

Constraint-based. Constraints are a very robust way of representing sequences. In one

sense, they are generic enough to be able to represent just about anything if defined at a

high enough level. On the other hand, they can be specialized to be as detailed as desired.

There are a number of ways constraints are used to represent sequences, including timing

constraints, ordering constraints, disjunctive constraints, constraints on execution, schema

filters (use_only_if), precedence and control flow constraints. All of these constraints can

be combined in some fashion to handle all of the requirements under sequences.

Graph-based. Probably the most common mechanism to show all types of ordering. As
mentioned above, although there is certainly some type of underlying representation,

most of the editing is done using graphical means. Within this, logic gates seem to be a

common way of representing alternative tasks, concurrent tasks, conditional tasks, and

parallel tasks. Some types of graph-based representations are process flow diagrams,

directed graphs that use conditional arcs/branching, arrows, linearly connected places and

transitions, and channels.

General Relationships . There are a number of general relationships that can be used to

describe the sequences of activities. Interval relationships can be used to show where

activities lie with respect to one another, temporal relationships can show time spacing

between activities (this is by far the most common), or even the lack of a relationship can

show a parallel task.

Conditions. There is a fine line between conditions and constraints. Conditions can

include things such as conditional branching (arcs), general if_then_else statements,

conditions to determine exit criteria for a node, test metapredicates (rules), for_each

iteration conditions, and pre- and post- conditions. Again, all of these can be combined in

some fashion to handle all of the requirements under sequences.

Inference. One representation, PFR, allows you to infer task relationships by looking at

which wafers are to be processed at which time.

33



Process Specification Language: An Analysis ofExisting Representations

Time

Relationships . ACT, for example, deals with timing issues by having temporal elements

(including time windows to capture duration) relative to other temporal elements.

Another variation (O-Plan TF) can have metric temporal relationships relative to an

initial or zero baseline time as well.

Constraint-based. With<I-N-OVA>, metric temporal constraints are used to relate defined

time points to absolute (or actual) date/time references, and ordering constraints can give

relationships between time points. With HTN, task duration can be specified by

constraint. LDEF3 captures duration as a UOB fact or constraint.

Obiect-based. HTN associates dates and times with methods, while Entity-Relationship

represents them simply as attributes. Duration is captured as an explicit

attribute/slot/entity by Behavior Diagrams, OZONE, Entity-Relationship, and PERT.

Part 49 can also represent duration by defining a specific action_property entity, while

AP213 could include it as part of an activity description. KIF would define duration as a

function of a task.

Timer. Absolute references to specific dates and times are set up and recorded according

to a “timer,” usually as part of a simulation package or module (VPML, Behavior

Diagrams, ACT). Timed Petri nets handle task duration by associating delays with either

places or transitions.

Time Points and Time Intervals . OZONE and PIF capture date and time information with

defined time points and time intervals. PIF,<I-N-OVA>, and JTF-CPR derive duration

from defined timepoints for activity start and end times. O-Plan TF also derives task

duration from metric timepoints, but all are relative to a baseline (zero) time.

Graphical. Gantt Charts show date and time information for activity start and finish times

by displaying activities as bars shown within a time scale. Duration is simply correlated

to the length of each activity bar against the time scale.

Constraints

Inherently Constraint-based. Many of the representation schemes examined (O-Plan TF,

<I-N-OVA>, IDEF3, IDEFO, and OZONE) handle constraints “naturally”, as these

representation schemes are fundamentally constraint-based. This may seem a bit of a

cyclical or redundant definition/explanation, but there seems no better way to explain it

succinctly - constraints are the stock-in-trade media for these representations. Various

types of pre-defined or user-defined condition types are typically available for specifying

particular kinds of constraints.

34



Process Specification Language: An Analysis ofExisting Representations

Object-based. JTF-CPR handles constraints as objects, while PIF, Entity-Relationship,

Behavior Diagrams, and PAR2 features constraints as attributes or slots. Behavior

Diagrams can handle state existence constraints by defining “State Items” that can serve

as “messages” between tasks - the condition of the message will dictate the state of the

“receiving” task. KIF can handle temporal constraints by defining start/ end point

objects.

Relationships. KEF implements pre-and post-processing constraints through the

definition of relations. VPML and PIF handle temporal constraints through the various

finish/start relationships between tasks.

Task-Network Constraint . HTN can capture constraints by creating a constraint formula

for a task network, while Generalized Activity Networks, ACT, and Functional Flow

Block Diagrams employ defined constraints for channeling control flow in the form of

nodes (including logical gates, etc.).

Graphical. IDEFO uses specialized constraint arrows to show the constraint-based

relationships that exist between functions/tasks/activities.

Conditional . Many of the representations feature a conditional approach to handling

pre/post processing and state existence constraints, regardless of which of the above

implementation approaches they otherwise belong to. In other words, there is a technique

for representing these kinds of constraints that is common to several of the approaches, be

they object-based, constraint-based, etc. Many of the representations (PIF,<I-N-OVA>,

F1TN, Behavior Diagrams, Petri Nets, OZONE, O-Plan TF, ACT) all use some kind of

true/false or other similar pre/post conditional arrangements as the basis for setting a

particular set of pre/post or state constraints on a task. An example is a Petri Net, where

the absence or presence of tokens in an activity’s input places determines the state of the

activity upon its execution.

4.3 Conclusions of the Analysis

This study has revealed many different ways of meeting the prescribed process

representation requirements. One challenge to drawing any broad conclusions from the

analysis is that some representations are general approaches (e.g., Petri Nets), while

others are more specialized, domain and application-focused (e.g.. Part 49). By their very

nature, the general approaches are more widely applicable and flexible, but require the

building of additional, specialized constructs to capture some of the specific

requirements. Overall results show that object-based and constraint-based approaches, in

their most general form, meet all classification of requirements. However, once these

approaches are instantiated and specialized (as in the case of Part 49’s representation of

the object-based approach), their ability to capture process requirements becomes limited

by the way they are represented. This conclusion can be misleading, however, as it is

difficult to make distinctions between the various approaches because they can be seen as

35



Process Specification Language: An Analysis ofExisting Representations

representing the same thing in only slightly different ways. For example, other

approaches like “graph-based”, “relationships”, and “conditions” could all be viewed as

alternative ways of expressing constructs in the “constraint-based” approach. This

analysis and its associated observations will serve to steer the PSL project during its

study of suitable constructs when building specific language presentations (syntaxes), as

well as to prioritize which existing languages will be mapped to the semantic model

currently being defined. The overall results from this analysis effort were presented in the

April 1997 PSL Roundtable discussion [Schlenoff et al. 97]. A subset of the analyses that

included the DARPA/Rome Laboratory Planning Initiative (ARPI) work 1

has been

summarized as well [Polyak et al 97].

5. Summary

The original intended result of this phase of the PSL project was essentially the

identification of one or more existing process representations that could be adapted for

the PSL. The process of the analysis itself, however, produced a different set of results.

First, the resulting in-depth understanding of the many existing approaches to

representing processes provided further definition of what was required to exchange

process information. Nearly all representations studied focused on the syntax of process

specification rather than the semantics, or meanings, of terms. This may be sufficient

when process information exchange is occurring within a single domain (e.g., process

planning). However, exchange of process models among different domains creates

situations where the same terms can have different meanings. A process specification that

is developed for exchange must have an unambiguous set of semantic terms. For

example, a concept like work-in-progress must have a clear, unambiguous definition in

an exchange language (e.g., PSL) so that information associated with equivalent terms,

such as material in one application and workpiece in another application, after being

mapped to work-in-progress , can be exchanged. The discussion prompted by the analysis

discussed in this paper focused the PSL project on defining semantic concepts inherent in

process models.

The in-depth review of current process representations also provided a basic

understanding of the many existing notations and presentations. This will be useful in

future phases of PSL development when it is necessary to develop mappings between

PSL and existing presentations of process models.

An exciting outcome of this phase of the project was the increased involvement of many
related researchers. On-line email discussions involving dozens of interested parties are

rapidly resolving the issues surrounding the development of an unambiguous core for the

PSL. This widespread involvement is an indication of the growing momentum in the

development of a neutral representation for process exchange that could result in a

worldwide process specification standard.

1

The representations described in [Polyak et al. 97] are: ACT, CPR, <I-N-OVA>, OZONE, PIF, Part 49,

O-Plan TF.

36



Process Specification Language: An Analysis of Existing Representations

Acknowledgment

The authors wish to thank key contributors to the process representation analysis,

including: Florence Tissot, Knowledge Based Systems, Inc.; Adam Pease, Teknowledge,

Inc.; Dimitris Kiritsis, Swiss Federal Institute of Technology at Lausanne (EPFL),

Switzerland; Michael Mcllrath, MIT; Michael Duffey, George Washington University;

Shaw Feng, NIST.

37



Process Specification Language: An Analysis ofExisting Representations

References

[Alford 90] Mack Alford, “Strengthening the Systems Engineering

Process”, Ascent Logic Corporation, San Jose, CA, 1990.

[Avallone & Baumeister 87] E. Avallone and T. Baumeister EH, Marks’ Standard

Handbook for Mechanical Engineers Ninth Edition .

McGraw-Hill Inc., 1987.

[Ballard 89] Carl W. Ballard, “Basics of Behavior Diagrams”, Ascent

Logic Corporation, San Jose, CA, 1989.

[Boning et al. 92] D. S. Boning, M. B. Mcllrath, P. Penfield, Jr., and E. M.
Sachs, “A General Semiconductor Process Modeling

Framework”, IEEE Transactions Semiconductor

Manufacturing, pp. 266-280, November, 1992.

[Nebel et al 92] Bernhard Nebel, Charles Rich, and William Swartout, Ed.,

PrinciDles of Knowledge Representation and Reasoning.

Cambridge, MA, Morgan Kaufmann, 1992.

[Catron & Ray 91] Bryan A. Catron and Steven R. Ray, “ALPS: A Language

for Process Specification”, Int. J. Computer Integrated

Manufacturing, 1991, Vol. 4, No. 2, 105-113.

[Chen 76] P. P. Chen, “The Entity-Relationship Model - Toward a

Unified View of Data”, ACM Transactions on Database

Systems, Vol. 1, No 1, March 1976, p 9-36.

[Chen 81] Peter P. Chen (Ed.), “Entity-Relationship Approach to

Information Modeling and Analysis”, Proceedings of the

Second International Conference on Entity-Relationship

Approach, Washington, D.C., October 12 - 14, 1981.

North-Holland Publishers, Amsterdam & New York City,

1981

[CSDC 94] Computer Systems Development Corporation, Flexible

Computer Integrated Manufacturing (FCIM) Reverse

Engineering/Re-Engineering Process Improvement, Phase 1

Report, CSDC Document Number: TR-FCM-0004-01-01,

U.S. Army CECOM Contract Number DAAB07-93-D-
B009, May 1994.

38



Process Specification Language: An Analysis ofExisting Representations

[Currie & Tate 91] K. Currie and A. Tate, “O-Plan: The Open Planning

Architecture”, Artificial Intelligence, 52:49-86, 1991.

[DSMC 96] Systems Engineering Management Guide, Defense Systems

Management College (DSMC), December 1986.

[Duffey 93] Michael R. Duffey, “Managing the Product Realization

Process: A Model for Aggregate Cost and Time-to-Market

Evaluation,” with J.R. Dixon, Concurrent Engineering:

Research and Applications, London, UK no. 1, vol. 1,

1993.

[Elmaghraby 77] S. E. Elmaghrabv. Activity Networks: Project Planning and

Control bv Network Models, John Wiley & Sons, New
York: 1977.

[Erol et al. 94] Kutluhan Erol, James Hendler, Dana S. Nau, “Semantics

for Hierarchical Task Network Planning”, Technical

Report, Computer Science Dept., ISR, UMIACS,
University of Maryland, College Park, March 1994.

[FIPS 183 93] Integration Definition for Function Modeling (EDEFO).

Federal Information Processing Standards (FIPS)

Publication 183, National Institute of Standards and

Technology, December 21, 1993.

[Genesereth & Fikes 92] M. Genesereth and R. Fikes, “Knowledge Interchange

Format Version 3.0 — Reference Manual”, Logic Group

Report Logic-92- 1, Stanford University, 1992.

[Georgeff & Ingrand 89] M. P. Georgeff and F. F. Ingrand, Decision-Making in an

embedded reasoning system, In proceedings of the 1989

International Joint Conference on Artificial Intelligence,

American Association for Artificial Intelligence, Menlo

Park, CA, 1989.

[Grady 93] Jeffrey O. Gradv. System Reauirements Analysis. New
York: McGraw-Hill, 1993.

[Gruninger et al. 97] M. Gruninger, C. Schlenoff, A. Knutilla, S. Ray, “Using

Process Requirements as the Basis for the Creation and

Evaluation of Process Ontologies for Enterprise Modeling”,

39



Process Specification Language: An Analysis ofExisting Representations

ACM SIGGROUP Bulletin Special Issue on Enterprise

Modelling , Vol. 18, No. 3, 1997.

[Hard 87] D. Hard, “State Charts: A Visual Formalism for Complex

Systems”, Science of Computer Programming, Vol. 8, p.

231 -274(1987).

[ISO 92] ISO, “Product data representation and exchange: Part 1:

Overview and fundamental principles”, ISO Standard

10303-1, 1992.

[ISO 93] ISO, “Product data representation and exchange: Part 11:

EXPRESS language reference manual”, ISO Standard

10303-11,1993.

[ISO 95a] ISO, “Product data representation and exchange: Part 213:

Application Protocol: Numerical Control process plans for

machined parts”, ISO Standard 10303-213, 1995.

[ISO 95b] ISO, Product data representation and exchange: Part 49:

Integrated generic resources: Process structure and

properties, ISO Standard 10303-49, 1995.

[Lee et al. 96] J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, and G.

Yost, “The PIF Process Interchange Format and

Framework Version 1.1”, Technical Report Working Paper

No. 194, MIT Center for Coordination Science, 1996.

[Lehrer 93] N. Lehrer, ARPI KRSL Reference Manual 2.0.2, Technical

Report February, ISX Corporation, 1993.

[Lewis et al. 81] Harrv R. Lewis and Christos H. Papadimitriou. Elements of

the theorv of computation. Prentice Hall. 1981.

[Lyons et al. 95] Kevin W. Lyons, Michael R. Duffey, and Richard C.

Anderson, “Product Realization Process Modeling: A study

of requirements, methods and research issues”, NISTER

5745, National Institute of Standards and Technology,

Gaithersburg, MD, June 1995.

[Mayer et al. 92] R. Mayer etal., “IDEF3 Process Description Capture

Method Report”, Technical Report AL-TR- 1992-0057 for

40



Process Specification Language: An Analysis ofExisting Representations

Armstrong Laboratory Contract No. F33615-90-C-0012,

May 1992.

[Mcllrath et al. 92] M. B. Mcllrath, D. E. Troxel, M. L. Heytens, P. Penfield,

Jr., D. S. Boning, and R. Jayavant, “CAFE - The MIT
Computer-Aided Fabrication Environment ”, IEEE
Transactions: Computers, Hybrids, and Manufacturing

Technology, pp. 353-360, June 1992.

[Moses 71] J. Moses, “Symbolic Integration: The Stormy Decade”,

CACM, 14(8), 548-560 (1971).

[Motus & Rodd 94] L. Motus and M. G. Rodd. Timing Analysis of Real-time

Software, Pergamon Press, Oxford, UK, 1994

[Patil et al. 92] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay,

T. Finin, T. R. Gruber, and R. Neches, “The DARPA
Knowledge Sharing Effort: Progress Report”, In [Nebel et

al. 92], pp. 777-788, 1992.

[Pease & Carrico 97] R. A. Pease and T. Carrico, “The JTF ATD Core Plan

Representation: A Progress Report”, Proceedings of the

AAAI Spring Symposium on Ontological Engineering, to

appear, 1997.

[Peterson 81] J. Peterson. Petri Net Theory and Modeling Systems.

Prentice Hall, NJ, 1981.

[PMI 96] PMI Standards Committee, William R. Duncan, Director of

Standards. A Guide to the Proiect Management Body of

Knowledge. Proiect Management Institute, Upper Darby.

PA, 1996. Also available on-line

http://www.pmi.org/pmi/publictn/pmboktoc 1 .htm

[Polyak & Tate 97] S. T. Polyak and A. Tate, “Analysis of Candidate PSL
Process/Plan Representations”, AIAI-PR-66, Artificial

Intelligence Applications Institute (AIAI), 80 South Bridge,

EH1 1HN, Edinburgh, United Kingdom, 1997.

[Ray 92] S. R. Ray, “Using the ALPS Process Plan Model”,

Proceedings of the ASME Manufacturing International

Conference, Dallas, TX, 1992.

41



Process Specification Language: An Analysis ofExisting Representations

[Reisig 92] W. Reisig. A Primer on Petri Net Design. Soringer-Verlag.

New York, 1992

[Rumbaugh et al.9Y\ J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Obiect-Oriented Modeling and Design, Prentice

Hall, 1991.

[Schlenoff et al. 96] C. Schlenoff, A. Knutilla, S. Ray, “Unified Process

Specification Language: Requirements for Modeling

Process”, NISTIR 5910, National Institute of Standards and

Technology, Gaithersburg, MD, 1996.

[Schlenoff et al. 97] C. Schlenoff, A. Knutilla, S, Ray, “Proceedings of the

Process Specification Language (PSL) Roundtable”,

NISTIR 6081, National Institute of Standards and

Technology, Gaithersburg, MD, 1997.

[Schneider & Bruell 92] G. Michael Schneider and Steven C. Bruell. Concepts in

Data Structures & Software Development, West Publishing

Company, 1992.

[Scotti 94] Richard Scotti, Lecture Notes for Engineering

Management 281 (Systems Engineering and Management),

The George Washington University, Washington, DC,

1994.

[Sedgewick 90] R. Sedgewick, Algorithms in C. Addison Weslev, 1990.

[Shapiro 92] S. Shapiro. Encvclooedia of Al. 1992.

[Smith & Becker 97] S. F. Smith and M. Becker, “An Ontology for Constructing

Scheduling Systems”, Working Notes of 1997AAAI
Symposium on Ontological Engineering, Stanford, CA,

March, 1997, AAAI Press.

[SofTech 81] SofTech, Inc., “Integrated Computer-Aided Manufacturing

(ICAM) Architecture Part II: Volume IV - Function

Modeling Manual (IDEFO),” Air Force Materials

Laboratory, Wright-Patterson AFB, OH, (DTIC-B062457),

June 1981.

42



Process Specification Language: An Analysis ofExisting Representations

[Tate 77] A. Tate, “Generating Project Networks,” Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAI-77), pp. 888-893, Cambridge, MA, 1997.

[Tate 96a] A. Tate, “Representing Plans as a Set of Constraints - the

<I-N-OVA> Model”, Proceedings of the Third

International Conference on Artificial Intelligence

Planning Systems (AIPS-96), Edinburgh, May 1996.

[Tate 96b] A. Tate, “Towards a Plan Ontology”, AI*IA Notiziqe

(Quarterly Publication of the Associazione Italiana per

ITntelligenza Artificiale), Special Issue on Aspects of

Planning Research, 9(1): 19-26, March 1996.

[Tate 96c] A. Tate, editor. Advanced Planning Technology:

Technological Advancements of the ARPA/Rome
Laboratory Planning Initiative, Menlo Park. CA, AAAI
Press, 1996.

[Tate 97] A. Tate, “Mixed Initiative Interaction in O-Plan”, in

Proceedings of the AAAI Spring Symposium on Computer

Modelsfor Mixed Initiative Interaction, Standford, CA,

March 1997.

[Tate et al. 96] A.Tate, B. Drabble, and J. Dalton, “O-Plan: A Knowledge-

based Planner and its Application to Logistics”, in [Tate

96c], pp. 259-266, 1996.

[vanderBrug & Minker 75] G. B. vanderBrug and J. Minker, “State Space, Problem-

Reduction, and Theorem-Proving — Some Relationships,”

CACM 19(2), 107-115 (1975).

[Wilkens 84] D. E. Wilkens, “Domain-independent planning:

representation and plan generation,” Artificial Intelligence

(22), 1984.

[Wilkens & Myers 95] D. E. Wilkens and K. L. Myers, “A Common Knowledge

Representation for Plan Generation and Reactive

Execution,” Journal of Logic and Computation 5(6), pp.

269-301, 1995.

[Wilkens & Meyers 95] D. E. Wilkins and K. L. Myers, “A Common Knowledge

Representation for Plan Generation and Reactive

43



Process Specification Language: An Analysis ofExisting Representations

[Wisnosky & Batteau 90]

Execution”, SRI International Artificial Intelligence Center,

8 luly 1994, Journal ofLogic and Computation, 1995.

Dennis E. Wisnosky and Allen W. Batteau, “IDEF in

Principle and Practice,” Gateway, May/June 1990, pp 8-1 1.

44



Process Specification Language: An Analysis ofExisting Representations

Appendix: Representations versus Requirements for Specifying

Processes
This appendix contains the information found in the on-line matrix (http://www.nist.gov/psl/) developed

through the PSL project. Note that these analyses are based on the opinions and knowledge of the individual

participants and are, therefore, subjective. The value of these tables and the matrix is the information

resulting about the types of constructs and features used to specify process characteristics. No approval or

endorsement of any commercial product is intended or implied.

ACT
Requirements ACT Descriptions

ad hoc Notes Completely An individual ACT’s environment conditions contain a comment slot where text

can be inserted. This may include a file reference to drawings, etc. Also, there is

a property slot that holds property/value pairs that can be used-defined.

Cost Data Partially ACT permits a reusable resource model that could be utilized to represent some

aspects of cost. Also, cost can be treated as a property/value pairing in the

properties slot.

Level of Effort Cannot No construct/feature specified.

Product

Characteristics

Cannot No construct/feature specified.

Resource Completely Resources can be logically represented for use in ACTs.

Resource

Requirements for a

Task

Completely A simple association of resources and an ACT is established with the resource

slot.

Simple Groupings Completely An ACT’s plot consists of a directed graph of nodes that represents a grouping of

actions.

Simple Resource

Capability/Characteri

sties

Partially A rough approximation of characteristics of a resource can be inferred by the

typed system used in ACT. (i.e., an Airplane. 1 has different characteristics than

a Boat.2).

Simple Sequences Completely An ACT’s plot consists of a directed graph. The nodes in this graph represent

actions and the links represent a partial ordering that can provide simple

sequences.

Simple Task

Representation and

Characteristics

Completely An individual ACT’s environment conditions contain a comment slot where text

about the actions can be inserted. Also, there is a property slot for user-defined

property/value pairing that can also annotate characteristics.

Task Duration Completely Time-constraints impose any of the 13 Allen relations between actions. In

addition to these constraints, time windows can be setup for start/end, duration,

etc.

Task Executor Completely While there isn’t an explicit slot for task executor, this property/value could be

inserted into the properties slot.

Extensibility Completely The ACT properties slot provides a mechanism to allow additional user-defined

information to be added to the representation.

Resource

Allocation/deallocatio

n for one or many

tasks

Completely An ACT USE-RESOURCE statement is used to provide a representation for

resource allocation/deallocation.

Simple Precedence Completely Various constraints can be placed on the precedence orderings of actions.

Temporal constraints can be used to create specific time windows, preconditions

can be used to express situational constraints that must be satisfied in order to

apply the act.

45



Process Specification Language: An Analysis ofExisting Representations

Requirements ACT Descriptions

Composition/Decomp

osition

Completely ACTs can be arranged in a hierarchical fashion that links through the Cue gating

slot in a plot. In fact, an ACT is an abstraction of a set of actions and those

actions may be abstractions of other ACTs.

Incompleteness/Vagu

eness

Completely ACTs can be defined for a task at various levels. These elements may be

incomplete or vague. More detailed ACTs can be used to further elaborate a

model where necessary.

Alternative Task Completely ACTs support alternative tasks in a variety of ways. A set of ACTs may share

the same cue environment conditions offering alternative choices. Within a plot,

conditional arcs can offer disjunctive paths.

Associated

Illustrations and

Drawings

Completely Property/value slots can be assigned to ACTs that contain filename pointers to

graphical files, etc.

Complex Groups of

Tasks

Completely An ACT is essentially a complex grouping of tasks (in a plot). ACTs are also

connected together via Achieve, Achieve-by, etc.

Complex Resource

Characteristics

Partially Since ACT uses typed variables, resources could be grouped as instances of

certain classes. Characteristics of a class could then be inferred.

Complex Sequences Completely ACTs (and plot nodes) can be ordered in complex relationships that support a

variety of conditional, temporal possibilities.

Complex Task

Representation and

Parameters

Completely Plots provide a very detailed expression of how a task (or grouping of actions)

may be completed.

Concurrent Tasks Completely Concurrency is possible with parallel nodes in plots that can split/join the

network.

Conditional Tasks Completely ACTs (and plot nodes) can use test metapredicates to provide conditional

processes.

Confidence Levels Partially While there isn’t direct support for this within ACT itself, there is a subsystem in

the implementation (Gister-CL) that can reason about uncertain information

about the world and actions.

Constraints Completely A variety of constraints can be placed on an ACT that can control things like

applicability, temporal limits, etc.

Multiple Duration(s) Cannot No construct/feature specified.

Date(s) and Time(s) Partially The temporal elements (windows, durations, etc.) are all relative points to other

temporal elements in the representation.

Implicit/Explicit

Resource Association

Partially This can partially be achieved implicitly. For instance, whenever we wish to say

that if you use x, you must have y as well. (USE-RESOURCE (x y))

Iterative Loops Completely Looping is possible by linking a plot node back to an ancestor node in the graph.

Test metapredicates control the number of times.

Manual vs.

Automated Tasks

Completely Precondition gating slots can filter which ACT is applicable.

Manufacturing

Product Quantity

Cannot This is not part of ACT.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely Parallel tasks can be defined using parallel plot nodes.

Parameters and

Variables

Completely ACT has a typed variable system that can be bound and rebound as needed.

Pre- and Post-

processing

Constraints

Completely Preconditions and effects provide both of these.

Queues, Stacks, Lists Partially ACTs support lists of items.

46



Process Specification Language: An Analysis ofExisting Representations

Requirements ACT Descriptions

Resource

Categorization and

Grouping

Completely Logical categorization and grouping can be done because resource can be

considered to belong to a class of resource, (e.g. airplane. 1 is an airplane, etc.)<

Resource Location Completely On pg. 23 of the cited paper, there is an example ACT that tracks resource

locations.

Resource/Task

Combined

Characteristics

Completely Multiple ACTs can be defined with different gating conditions and effects that

can be used to express this requirement.

Serial Tasks Completely Serial ordering of tasks is supported.

State Existence

Constraints

Completely The test metapredicate can be used to evaluate state existence.

State Representations Completely State representations are central to the ACT representation.

Temporal Constraints Completely A rich set of temporal constraints can be used to cover all 13 relations.

Uncertainty/Variabilit

y/Tolerance

Partially There are many ways that ACTs can express tolerance or variability of values.

(For example, you can define an earliest/latest starting time, etc.)

Ability to Insert or

Attach a

Highlight(milestones)

- Partially This can be roughly approximated by adding property/value entries that are user-

defined as milestones.

Complex Precedence Completely ACT provides a rich set of gating conditions and plot node orderings.

Convey the Ancestry

or Class of a Task

Completely An ACT’s plot is essentially a specialization of the overall task.

Deadline

Management

Completely Time windows can express a variety of deadlines (e.g. x must happen before

timel, etc.)

Dispatching Partially There isn’t an explicit mechanism that is designed for this purpose, but looping,

rebinding of variables and a test metapredicate should be sufficient for partial.

Eligible Resources Completely The same mechanism used to describe location of a resource can be used to

create custom eligibility needs.

Exception Handling

and Recovery

Completely This is a central concern for PRS (which uses ACT). Conditional actions provide

means to describe recovery procedures.

Information Exchange

Between Tasks

Completely Information is exchanged via variable bindings.

Mathematical and

Logical Operations

Completely ACT supports FOL as its representation system.

Support for

Task/Process

Templates

Completely ACTs are essentially a process templates become further detailed by other

ACTs.

Support for

Simultaneously

Maintained

Associations of Mult

Lev of Abstraction

Completely Information can be associated with an ACT that is appropriate for that ACT’s

relative level in the process representation.

Synchronization of

Multiple, Parallel

Task Sequences

Completely Parallel nodes in ACT plots’ serve to synch parallel task sequences where

necessary.

47



Process Specification Language: An Analysis ofExisting Representations

A Language for Process Specification (ALPS)
Requirements ALPS Descriptions

ad hoc Notes Partially Ad hoc comments are supported for an entire plan. Since ALPS
supports decomposition of plans, an entire plan could be the

decomposition of a single task in a higher plan.

Cost Data Partially Any attribute associated with a task (including cost), is supported via a

general association of a task with any number of typed attribute-value

pairs

Level of Effort Partially Same support as for cost data

Product Characteristics Cannot No explicit support of product information

Resource Completely Can support the representation of resource type, instance, or capability

Resource Requirements for a

Task

Partially Cannot explicitly support resource quantity. ALPS assume a task

requires "one of' a stated resource (either by type, instance or

capability). It can support the notion of alternative resources

Simple Groupings Completely Supported using task decomposition

Simple Resource

Capability/Characteristics

Completely Explicitly supported, with capability lists, capability names, and

descriptions, associated with resource types.

Simple Sequences Completely Directed graph representation

Simple Task Representation

and Characteristics

Partially Supported using task decomposition to characterize a task.

Alternatively, uses the notion of "work element" to reference a member
of an external library of tasks.

Task Duration Completely Explicitly supported.

Task Executor Completely Explicitly supported.

Extensibility Cannot

Resource

Allocation/deallocation for

one or many tasks

Completely Explicitly supports resource allocation for individual or groups of

tasks, including the notion of resource preemptability across several

tasks.

Simple Precedence Completely Directed graph approach.

Composition/Decomposition Partially Supports the compositional notion of abstraction - i.e. a higher level

description of a set of tasks which themselves are described in more

detail (hierarchical task decomposition). Does not formally support

ambiguity/vagueness, or partial specification.

Incompleteness/Vagueness Cannot No construct/feature specified.

Alternative Task Completely Explicit support for 1, M, or all task alternatives, where M is between

1 and all.

Associated Illustrations and

Drawings

Partially Supports it only by defining a variable associated with an illustration

or drawing.

Complex Groups of Tasks Partially Tasks can be grouped in any manner desired. You cannot, however,

have the same task grouped from multiple perspectives at the same

time.

Complex Resource

Characteristics

Completely Resources can be characterized by capability; resource instances can

be members of "eligible resource sets" for possible allocation to a given

task (one resource chosen from each set). Finally, resources are

associated with a resource type. This allows ALPS to allocate resources

to tasks by instance, type, or capability.

Complex Sequences Completely ALPS specifically supports alternatives, concurrent, and parallel tasks,

as described in the requirement document. (In fact, this is where this

requirement came from).

48



Process Specification Language: An Analysis ofExisting Representations

Requirements ALPS Descriptions

Complex Task

Representation and

Parameters

Partially Uninterruptability is supported. The ability of describing task limits is

not specifically supported, other than the value of any control variable

may be an expression (possibly a predicate, but it hasn’t been

implemented, and thus would depend on the underlying arithmetic and

symbolic manipulation language (currently TCL)).

Concurrent Tasks Completely Yes. See complex sequences.

Conditional Tasks Completely Yes. See complex sequences.

Confidence Levels Cannot

Constraints Cannot

Multiple Duration(s) Partially Could generate this behavior only by defining ad hoc variables to

contain these values.

Date(s) and Time(s) Partially No explicit support for dates/times. One could use an arbitrary attribute

to contain the information.

Implicit/Explicit Resource

Association

Cannot

Iterative Loops Completely Yes, by using the SPLIT and JOIN nodes in reverse order, you can

easily create iterative loops (even nested iterative loops).

Manual vs. Automated Tasks Cannot

Manufacturing Product

Quantity

Partially Can create a variable to be used within a plan, passed among plans,

etc. but it is not explicitly supported.

Material Constraints Cannot

Parallel Tasks Completely Yes. See complex groups of tasks.

Parameters and Variables Completely Explicitly supported. Contains input, output, and in/out parameters to a

plan, plus dynamic variable binding within a plan.

Pre- and Post-processing

Constraints

Cannot Only supports explicit task invocations.

Queues, Stacks, Lists Cannot

Resource Categorization and

Grouping

Partially Resource grouping by capability, type is supported. Not by location.

Resource Location Cannot

Resource/Task Combined

Characteristics

Partially Preemptability of a resource in connection with a task is supported.

Other task/resource properties, such as described in the document, are

not.

Serial Tasks Completely

State Existence Constraints Cannot

State Representations Cannot

Temporal Constraints Partially ...other than the simplest - task precedence.

Uncertainty/Variability/Toler

ance

Cannot

Ability to Insert or Attach a

Highlight!milestones)

Cannot

Complex Precedence Partially Cannot support partially ordered graphs, but can support conditional

precedence. Cannot explicitly support arbitrary constraints on

precedence.

Convey the Ancestry or

Class of a Task

Partially 1 am not interpreting this as task decomposition, which ALPS can

support. I interpret this as supporting the expression of the class to

which a given task belongs, such as with task templates. ALPS does

support the notion of a "work element" which some might interpret as

the task template.

Deadline Management Cannot No explicit support for this.

Dispatching Cannot No explicit support.

49



Process Specification Language: An Analysis ofExisting Representations

Requirements ALPS Descriptions

Eligible Resources Completely Use the Eligible Resource Set entity to contain eligible resources by

instance, type (class) or capability.

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Completely Support the use of variables that are global in scope within a given

plan, plus parameters for passing of information between tasks in

different plans.

Mathematical and Logical

Operations

Partially ALPS is designed to operate with an embedded mathematical and

logical engine. Thus, it doesn’t explicitly define the behavior, but does

prescribe the requirements for math and logic operations.

Support for Task/Process

Templates

Cannot No construct/feature specified.

Support for Simultaneously

Maintained Associations of

Mult Lev of Abstraction

Cannot No construct/feature specified.

Synchronization of Multiple,

Parallel Task Sequences

Completely Uses various kinds of semaphores (rendezvous, lock, unlock...) to

accomplish a variety of synchronization scenarios.

Business Practices, Rules,

Constraints

Cannot No construct/feature specified.

Configuration Management

Information and Processes

Cannot No construct/feature specified.

Customer-driven Process

Specification and Constraints

Cannot No construct/feature specified.

Forecast and Customer

Orders

Cannot No construct/feature specified.

Priorty Attributes Cannot No construct/feature specified.

Representation of the Origin

of Task(s)

Cannot No construct/feature specified.

Analysis Characteristics Cannot No construct/feature specified.

Critical Task Cannot No construct/feature specified.

Predictive and Time-

dependent Resource

Availability

Cannot No construct/feature specified.

Prescriptive Task Behavior Cannot No construct/feature specified.

Task/Process Performance

Measurement

Cannot No construct/feature specified.

Co-existence of Plans and

Resolution of Conflicts

Cannot No construct/feature specified.

Dynamic Model

Modification

Cannot No construct/feature specified.

Optimization Cannot No construct/feature specified.

Resource/System/Process

Monitoring and Feedback

Partially Can support the acquisition of sensor feedback through variables.

Support for Validation of the

Entire Process Plan

Cannot No construct/feature specified.

Tracking of Changes in the

System

Cannot No construct/feature specified.

What-if Analysis Cannot No construct/feature specified.

Resource Amount and

Availability

Cannot No construct/feature specified.

Resource Interruptions Cannot No construct/feature specified.

Process Yield Cannot No construct/feature specified.

50



Process Specification Language: An Analysis ofExisting Representations

Requirements ALPS Descriptions

Dynamic Model

Modification

Cannot No construct/feature specified.

Event Signaling and

Notification

Completely Achieved through the use of semaphores.

Resource Behavior During

Processing Time

Cannot No construct/feature specified.

Resource/System/Process

Monitoring and Feedback

Cannot No construct/feature specified.

Tracking of Changes in the

System

Cannot No construct/feature specified.

Track In-progress Goods Cannot No construct/feature specified.

Decision Rationale Cannot No construct/feature specified.

Intentional Dimension of

Processes, or Goals

Cannot No construct/feature specified.

Relationship between Task

and Goal and Resource and

Goal

Cannot No construct/feature specified.

Task/Process Purpose Cannot No construct/feature specified.

Value-added Attributes Partially ALPS supports arbitrary variables to be associated with any task

Access to Past and Present

Decision Rationales

Cannot No construct/feature specified.

Characteristics of Groups of

Resources

Partially Only insofar as eligible resources can be grouped in association with a

task, and grouped by capability and through a resource class taxonomy.

Implicit Task Association Cannot No construct/feature specified.

Parallelism Cannot No construct/feature specified.

Descriptive

Manufacturing/Performance

Variability

Cannot No construct/feature specified.

Prob of Down Times Cannot No construct/feature specified.

Stochastic Properties Cannot No construct/feature specified.

Uncertainty of Sequences Cannot No construct/feature specified.

Account for Randomness Cannot No construct/feature specified.

Stochastic Functionality Cannot No construct/feature specified.

Prod Scheduling -

production type data

Cannot No construct/feature specified.

Prod Scheduling - dynamic

rescheduling

Cannot No construct/feature specified.

Process Planning - clamping

surfaces

Cannot No construct/feature specified.

Process Planning - datums

and offsets

Cannot No construct/feature specified.

Process Planning - features

to be machined

Cannot No construct/feature specified.

Process Planning -

production type date

Cannot No construct/feature specified.

Simulation - queue entry and

exit rates

Cannot No construct/feature specified.

Enterprise Eng. and Bus

Process Re-Eng. - conceptual

entities

Cannot No construct/feature specified.

Workflow - manual vs.

automatable tasks

Cannot No construct/feature specified.

51



Process Specification Language: An Analysis ofExisting Representations

Requirements ALPS Descriptions

Workflow - invoked tool

capability

Cannot No construct/feature specified.

Workflow - support

specifications of task

structure (control flow)

Cannot No construct/feature specified.

Project Management - work

breakdown ids

Cannot No construct/feature specified.

AP213
Requirements AP213 Descriptions

ad hoc Notes Partially Notes on the process plan can be entered in the Entity

Auxiliary_header_information. Notes on any activity can be entered in the

Attribute Description of the Entity Activity.

Cost Data Cannot None. Costing data is out of the scope of AP 213.

Level of Effort Cannot None.

Product Characteristics Partially The entity Part_version captures the high-level description of the product.

Resource Completely The AP213 model captures resources of machines, fixtures, fixture

assemblies, tools, tool assemblies, and their spatial relationships.

Resource Requirements

for a Task

Completely Machine, tool, and fixture requirements for an operation are supported.

Simple Groupings Completely Activity_group and Activity are used together for grouping tasks in AP213.

Simple Resource

Capability /

Characteristics

Completely High-level description of machining resource is modeled in AP213, e.g.,

machine and tool description and parameters are captured in model.

Simple Sequences Completely Each activity is numbered. Activities are linearly sequenced.

Simple Task

Representation and

Characteristics

Completely Attributes name and description of Entity Activity are used for the high-level

description of a task.

Task Duration Partially Task duration can be stated in the Description of Activity.

Task Executor Partially Executor information can be stated in Description of Activity.

Extensibility Partially The entity Ancillary_action is a catch-all for all other possible machining

activities.

Resource

Allocation/deallocation

for one or many tasks

Partially AP 213 includes the allocation of resource but not deallocation.

Simple Precedence Completely The precedence is defined by the activity number.

Composition /

Decomposition

Completely Entities Activity and Activity_group and assertions is_an and

is_composed_of are used for composition and decomposition of tasks.

Incompleteness /

Vagueness

Cannot AP213 does not capture resource availability information.

Alternative Task Completely Entity Altemate_activity can be used to capture alternative tasks.

Associated Illustrations

and Drawings

Completely Drawing entity and its assertions provide pointers that point to part, tool, and

fixture drawing information.

Complex Groups of

Tasks

Partially Activity entity points to machine and tools, not the other direction.

(However, complex grouping of tasks can be perform in software.)

Complex Resource

Characteristics

Partially Resource-related entities, such as machine, tool_assembly, fixture_assembly,

etc.

Complex Sequences Partially Activity and Alternate_activity entities.

52



Process Specification Language: An Analysis of Existing Representations

Requirements AP213 Descriptions

Complex Task

Representation and

Parameters

Cannot No construct/feature specified.

Concurrent Tasks Cannot No construct/feature specified.

Conditional Tasks Cannot No construct/feature specified.

Confidence Levels Cannot No construct/feature specified.

Constraints Cannot No construct/feature specified.

Multiple Duration(s) Cannot No construct/feature specified.

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit

Resource Association

Cannot No construct/feature specified.

Iterative Loops Cannot No construct/feature specified.

Manual vs. Automated

Tasks

Cannot No construct/feature specified.

Manufacturing Product

Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Cannot No construct/feature specified.

Parameters and

Variables

Partially Process parameter entities are specified in AP213.

Pre- and Post-

processing Constraints

Cannot No construct/feature specified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Partially AP213 specifies task-resource requirement relationship.

Serial Tasks Completely Activity entity has a number attribute, which specifies that tasks should be in

sequence.

State Existence

Constraints

Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Cannot No construct/feature specified.

Uncertainty/Variability/

Tolerance

Cannot No construct/feature specified.

Ability to Insert or

Attach a

Highlight(milestones)

Cannot No construct/feature specified.

Complex Precedence Cannot Tasks hierarchy can be specified using Activity_group and Activity entities

in the ARM.
Convey the Ancestry or

Class of a Task

Completely No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling

and Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Cannot No construct/feature specified.

53



Process Specification Language: An Analysis ofExisting Representations

Requirements AP213 Descriptions

Mathematical and

Logical Operations

Cannot No construct/feature specified.

Support for

Task/Process

Templates

Cannot No construct/feature specified.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Cannot No construct/feature specified.

Synchronization of

Multiple, Parallel Task

Sequences

Cannot No construct/feature specified.

Behavior Diagrams
Requirements Behavior Diagrams Descriptions

ad hoc Notes Completely Attached Text

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Completely Every function/ activity within the diagram can have input and

output items associated with them. These are intermediate

products of the whole process, as the diagrams are

hierarchically decomposable.

Resource Cannot No construct/feature specified.

Resource Requirements

for a Task

Cannot No construct/feature specified.

Simple Groupings Completely Time-Items and R-nets can be used to group several discrete

activities.

Simple Resource

Capability /

Characteristics

Cannot No construct/feature specified.

Simple Sequences Completely No construct/feature specified.

Simple Task

Representation and

Characteristics

Completely Each activity is named according to its function - what the

activity is supposed to do/produce. Further description can be

supplied in attached text.

Task Duration Completely Time Duration is a standard attribute that can be populated for

any activity.

Task Executor Not sure No construct/feature specified.

Extensibility Completely Slots for additional attributes can be defined; time items can be

used as placeholders for future definition of parts of the

network.

Resource

Allocation/deallocation

for one or many tasks

Cannot No construct/feature specified.

Simple Precedence Completely ordering of connected functions in the diagram specifies

precedence constraints, subject to defined conditions and logic

nodes.

54



Process Specification Language: An Analysis ofExisting Representations

Requirements Behavior Diagrams Descriptions

Composition /

Decomposition

Completely R-Nets can be used as summary tasks. Functions can be

decomposed into more primitive functions. Time-Items can be

decomposed down until reaching Discrete Items at lowest level.

Incompleteness /

Vagueness

Not sure No construct/feature specified.

Alternative Task Completely Logic Gates/ conditional branching

Associated Illustrations

and Drawings

Cannot No construct/feature specified.

Complex Groups of

Tasks

Cannot No construct/feature specified.

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Completely Fully supported by logic gates/nodes: Concurrency Node (and).

Selection Node (or), Iteration, Loops, Exit Loops.

Complex Task

Representation and

Parameters

Cannot No construct/feature specified.

Concurrent Tasks Completely Concurrency Nodes (and gates)

Conditional Tasks Completely Each function can have multiple exit or completion criteria

defined. Depending on the conditions at the time a function

would be completed, certain exit paths will be followed.

Confidence Levels Cannot No construct/feature specified.

Constraints Partially Each functions can have entrance and exit criteria defined. All

types of constraints are covered, except for resource

constraints. While resource constraints are not directly

supported, they could be "fudged" by defining an input item

that is actually a resource.

Multiple Duration(s) Completely Various Probability distributions can be used to capture

multiple possible durations.

Date(s) and Time(s) Completely No construct/feature specified.

Implicit/Explicit

Resource Association

Cannot No construct/feature specified.

Iterative Loops Completely Iteration is used to represent *a specified number* of repetitive

sequences or functions. A feedback path connects iteration

nodes at either end of the repetitive behavior. The number of

times the behavior is to be repeated is specified by definition of

a "domain set." Loops are like iterations but repeats infinitely.

Exit loops iterate until a specified exit condition is satisfied.

Manual vs. Automated

Tasks

Cannot No construct/feature specified.

Manufacturing Product

Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely Concurrency nodes (when simultaneous), or multiple exit paths

from a function.

Parameters and

Variables

Not sure This might be possible. Would involve further investigation and

experiment.

Pre- and Post-

processing Constraints

Completely Entrance and exit conditions are fully supported.

Queues, Stacks, Lists Not sure No construct/feature specified.

55



Process Specification Language: An Analysis ofExisting Representations

Requirements Behavior Diagrams Descriptions

Resource Categorization

and Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Not sure While resources are not explicitly represented, their effects on

functions could possibly be simulated by defining particular

entrance/exit conditions, or by the definition of input items.

Serial Tasks Completely Functions can be lined up one after the other to form a serial

process.

State Existence

Constraints

Completely A Function can send a message embodied as a "State Item."

Various states can be recorded, depending on the state of the

"transmitting" function. This State Item can then be used to

control or influence subsequent functions, as an input item.

State Representations Not sure It may be possible, although definitely not in terms of resource

state.

Temporal Constraints Completely No construct/feature specified.

Uncertainty/Variability/

Tolerance

Completely Probability distributions for durations and exit conditions.

Ability to Insert or

Attach a

Highlight(milestones)

Completely Dummy (duration zero) tasks are allowed.

Complex Precedence Completely Yes on all counts. See previous descriptions.

Convey the Ancestry or

Class of a Task

Cannot No construct/feature specified.

Deadline Management Not sure No construct/feature specified.

Dispatching Not sure Construct for this specific feature not present, but might be able

to come up with something that simulates it using the constraint

features.

Eligible Resources Cannot No construct/feature specified.

Exception Handling and

Recovery

Completely See descriptions of constraints and complex sequences, etc.

Exit looping, conditional features, multiple exit conditions, etc.

should allow this.

Information Exchange

Between Tasks

Completely This is a key feature of Behavior Diagrams. While functional

(precedence/control) flow moves downward in the diagram,

"Items" (which can represent I/O products, messages, data,

information, state conditions, etc.) flow between functions

horizontally.

Mathematical and

Logical Operations

Completely Logic Nodes (and, or, looping, etc.) are present. Also,

criteria/conditions for multiple exit paths can be expressed

mathematically.

Support for

Task/Process Templates

Not sure No construct/feature specified.

Support for

Simultaneously

Maintained Associations

of Multiple Levels of

Abstraction

Not sure Items can be set up to flow across/between different levels of

the decomposition, but I’m not sure how the representation

would satisfy this particular requirement.

Synchronization of

Multiple, Parallel Task

Sequences

Completely Concurrency nodes can be used to insure that two sub-processes

start together. Once started, messages or other items can

connect functions further along in the respective parallel

processes that can be used to insure that things proceed in a

coordinated way.

56



Process Specification Language: An Analysis of Existing Representations

EPFL’s Petri net Representation 1

Requirements EPFL Descriptions

ad hoc Notes Not sure No construct/feature specified.

Cost Data Partially No construct/feature specified.

Level of Effort Not sure No construct/feature specified.

Product Characteristics Not sure No construct/feature specified.

Resource Not sure No construct/feature specified.

Resource Requirements for a Task Partially No construct/feature specified.

Simple Groupings Completely No construct/feature specified.

Simple Resource

Capability/Characteristics

Not sure No construct/feature specified.

Simple Sequences Completely No construct/feature specified.

Simple Task Representation and

Characteristics

Completely No construct/feature specified.

Task Duration Completely No construct/feature specified.

Task Executor Not sure No construct/feature specified.

Extensibility Not sure No construct/feature specified.

Resource Allocation/deallocation

for one or many tasks

Not sure No construct/feature specified.

Simple Precedence Completely No construct/feature specified.

Composition/Decomposition Not sure No construct/feature specified.

Incompleteness/Vagueness Not sure No construct/feature specified.

Alternative Task Completely No construct/feature specified.

Associated Illustrations and

Drawings

Not sure No construct/feature specified.

Complex Groups of Tasks Not sure No construct/feature specified.

Complex Resource Characteristics Not sure No construct/feature specified.

Complex Sequences Completely No construct/feature specified.

Complex Task Representation and

Parameters

Not sure No construct/feature specified.

Concurrent Tasks Completely No construct/feature specified.

Conditional Tasks Not sure No construct/feature specified.

Confidence Levels Not sure No construct/feature specified.

Constraints Partially No construct/feature specified.

Multiple Duration(s) Not sure No construct/feature specified.

Date(s) and Time(s) Not sure No construct/feature specified.

Implicit/Explicit Resource

Association

Not sure No construct/feature specified.

Iterative Loops Not sure No construct/feature specified.

Manual vs. Automated Tasks Not sure No construct/feature specified.

Manufacturing Product Quantity Not sure No construct/feature specified.

Material Constraints Not sure No construct/feature specified.

Parallel Tasks Partially No construct/feature specified.

1

PAct (Parts and Actions) and EPFL’s petri net representations, were only minimally analyzed because of

lack of expertise and literature available at the time of analysis, therefore, there were many “not sure”

ratings.

57



Process Specification Language: An Analysis ofExisting Representations

Requirements EPFL Descriptions

Parameters and Variables Not sure No construct/feature specified.

Pre- and Post-processing

Constraints

Not sure No construct/feature specified.

Queues, Stacks, Lists Not sure No construct/feature specified.

Resource Categorization and

Grouping

Not sure No construct/feature specified.

Resource Location Not sure No construct/feature specified.

Resource/Task Combined

Characteristics

Not sure No construct/feature specified.

Serial Tasks Not sure No construct/feature specified.

State Existence Constraints Not sure No construct/feature specified.

State Representations Not sure No construct/feature specified.

Temporal Constraints Completely No construct/feature specified.

Uncertainty/Variability/Tolerance Not sure No construct/feature specified.

Ability to Insert or Attach a

Highlight(milestones)

Not sure No construct/feature specified.

Complex Precedence Not sure No construct/feature specified.

Convey the Ancestry or Class of a

Task

Not sure No construct/feature specified.

Deadline Management Not sure No construct/feature specified.

Dispatching Not sure No construct/feature specified.

Eligible Resources Not sure No construct/feature specified.

Exception Handling and Recovery Not sure No construct/feature specified.

Information Exchange Between

Tasks

Not sure No construct/feature specified.

Mathematical and Logical

Operations

Not sure No construct/feature specified.

Support for Task/Process

Templates

Not sure No construct/feature specified.

Support for Simultaneously

Maintained Associations of

Multiple Levels of Abstraction

Not sure No construct/feature specified.

Synchronization of Multiple,

Parallel Task Sequences

Partially No construct/feature specified.

Entity-Relationship

Requirements Entity-Relationship Descriptions

ad hoc Notes Cannot

Cost Data Partially A task could be represented as an entity of which the cost data are

attributes.

Level of Effort Partially Resources can be represented as attributes of a task. Their respective

levels of effort would simply be the values of these attributes.

Product

Characteristics

Partially A product could be represented as an entity whose characteristics are

simply its attributes.

Resource Partially Resources can be represented as entities. For example, "people" is

represented by an entity labeled "people." Similarly, "milling

machine" can be an entity labeled "milling machine."

58



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

Resource

Requirements for a

Task

Partially A resource can be associated with a task by drawing a "relationship"

between these two entities.

Simple Groupings Completely Tasks may be grouped together using the "relationship" construct if

we represent tasks as entities.

Simple Resource

Capability /

Characteristics

Partially By representing resources as entities, we can specify the

characteristics and capabilities of these resources as the attributes of

the entities.

Simple Sequences Partially Tasks as entities; then, we can draw "executed before" relationships

from one entity to another, thus, forming a simple sequences.

Simple Task

Representation and

Characteristics

Partially Similar to resources, the characteristics of a task may be represented

as the attributes of the task entity.

Task Duration Partially Can be represented as attributes of a task.

Task Executor Partially A task executor can be represented as a separate entity with a

relationship drawn to some task entities.

Extensibility Completely One can certainly add more entities, relationships, and attributes to

the existing data structures.

Resource Allocation

/ deallocation for

one or many tasks

Cannot

Simple Precedence Partially Precedence is just another type of relationship between task entities.

The distinction can be made by labeling the relationship links

differently.

Composition /

Decomposition

Partially One can make use of the "isa" relationship to specify

generalization/specialization of a task or a resource. This is similar to

composition/decomposition in the sense that it provides one with the

construct of representing a hierarchical structure of information.

Incompleteness /

Vagueness

Partially One can assume that an entity that is not linked with any “isa”

relationships is good by itself. And, if in the future, more details are

to be added, they can be added using the "isa" relationship. Thus,

these additions become the breakdowns of the task into further

details. However, there is no way of saying that these breakdowns are

complete or not.

Alternative Task Partially Alternative tasks can be represented as entities, each of which has a

relationship link to an entity which is labeled as the function that all

of them are meant to be able to perform.

Associated

Illustrations and

Drawings

Cannot

Complex Groups of

Tasks

Partially A group of tasks that are related in some way may be tied together by

relationship links. However, there is no construct for drawing

relationship to a group of tasks without having to draw link to each of

the entities in that group.

Complex Resource

Characteristics

Partially By representing resources as entities, their characteristics may be

represented as attributes.

Complex Sequences Partially These can all be represented by drawing the appropriate relationship

links among the tasks involved.

Complex Task

Representation and

Parameters

Partially Entities with attributes can represent tasks and their respective

parameters and characteristics.

59



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

Concurrent Tasks Partially Concurrent tasks can be represented as entities which are linked by

some sort of "begin at same time" relationship.

Conditional Tasks Cannot

Confidence Levels Partially Confidence levels of a task may be represented as attributes of that

task entity.

Constraints Partially Tasks or resources can be represented as entities, and the constraints

can then be the attributes of those entities.

Multiple Duration(s) Partially Multiple durations associated to a task or a resource may be

represented as attributes to the task/resource entity. One can simply

have attributes such as "duration 1," "duration 2," and so on.

Date(s) and Time(s) Partially Similar to multiple durations, these can be represented as attributes as

well.

Implicit/Explicit

Resource

Association

Partially The association may be represented as relationship link between the

resource entities involved.

Iterative Loops Cannot

Manual vs.

Automated Tasks

Partially One could have manual vs. automated as a flag attribute for the task

entity involved.

Manufacturing

Product Quantity

Partially The products can be represented as entities, and the quantities as the

attributes.

Material Constraints Partially Materials as entities, constraints as attributes.

Parallel Tasks Partially With tasks represented as entities, we can designate some sort of

"occurrence time" attribute for each of the task. With no time

constraint relationship linked between these tasks, they may occur at

any time, as specified in the attribute.

Parameters and

Variables

Partially Attributes to entities are certainly placeholders for values.

Furthermore, updates may be performed on these attribute values at

any time.

Pre- and Post-

processing

Constraints

Partially These can be specified as attributes.

Queues, Stacks,

Lists

Partially Queues may be represented by having a "front flag" attribute and an

"end flag" attribute for each entity. Thus, the entity at the front would

have a true for "front flag." Likewise for the end entity. The entities

may be linked together with "next" relationship links. Stacks, the

same way with a "top flag" and a "bottom flag." Lists, the same way

without any flags.

Resource

Categorization and

Grouping

Partially This can be achieved by having an entity for the particular

characteristic of interest, and all the resources that share this

characteristic will have entities linked to this characteristic entity via

some relationship links.

Resource Location Partially Location of a resource may be specified as an attribute of that

resource entity.

Resource/Task

Combined

Characteristics

Partially Such characteristics may be specified as the attributes to the

relationship links connecting tasks to their associated resources.

Serial Tasks Partially Serial tasks may be linked, one after another, by some sort of

"performed after" relationship links.

State Existence

Constraints

Partially This can be represented as an attribute of a task.

60



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

State

Representations

Cannot No construct/feature specified.

Temporal

Constraints

Partially Can be represented using attributes of entities.

Uncertainty /

Variability /

Tolerance

Partially This can also be represented as an entity’s attributes.

Ability to Insert or

Attach a Highlight

(milestones)

Partially This may be accomplished by having a highlight flag as an attribute

to the entities to be highlighted.

Complex

Precedence

Partially The tasks to which the precedence constraints are applied to can be

linked with relationship links whose attributes specify the details of

the constraints.

Convey the Ancestry

or Class of a Task

Completely "ISA" relationship links can represent specialization/generalization

of tasks. Furthermore, the attributes of the higher-level tasks(entities)

are automatically inherited by the specialized tasks.

Deadline

Management

Partially Deadlines can be written as attributes of an entity or a relation. Thus,

the user of E-R model is able to consider any sort of predetermined

deadline when making any decisions.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling

and Recovery

Cannot No construct/feature specified.

Information

Exchange Between

Tasks

Cannot No construct/feature specified.

Mathematical and

Logical Operations

Cannot No construct/feature specified.

Support for

Task/Process

Templates

Partially The attributes of entities and relations are basically data stores to

which the user can enter values. However, the values need to be

shown in a separate table rather than on the E-R diagram itself.

Support for

Simultaneously

Maintained

Associations of Mult

Lev of Abstraction

Completely Associations of information with a task are accomplished by linking

the task entity with other entities representing the information (e.g.

resource) with relations. At each level of the "ISA" generalization

structure, the entities are allowed to be linked to other entities by

relations. Thus, information can be associated at multiple levels.

Synchronization of

Multiple, Parallel

Task Sequences

Cannot No construct/feature specified.

Business Practices,

Rules, Constraints

Cannot No construct/feature specified.

Configuration

Management

Information and

Processes

Cannot No construct/feature specified.

Customer-driven

Process

Specification and

Constraints

Cannot No construct/feature specified.

Forecast and

Customer Orders

Partially Orders may be represented as entities in an E-R model. Their

attributes can represent any information related to the orders.

61



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

Priorty Attributes Partially These could be represented as the attributes of the respective task

entities.

Representation of

the Origin of Task(s)

Cannot No construct/feature specified.

Analysis

Characteristics

Partially Analysis results may be represented separate entities. The attributes

of these entities are, then, the different characteristics of the analysis.

Critical Task Partially Critical task entity can have a "critical task flag" attribute that

indicates such characteristic.

Predictive and

Time-dependent

Resource

Availability

Cannot No construct/feature specified.

Prescriptive Task

Behavior

Cannot No construct/feature specified.

Task/Process

Performance

Measurement

Cannot No construct/feature specified.

Co-existence of

Plans and

Resolution of

Conflicts

Cannot No construct/feature specified.

Dynamic Model

Modification

Cannot No construct/feature specified.

Optimization Cannot No construct/feature specified.

Resource/System/Pr

ocess Monitoring

and Feedback

Cannot No construct/feature specified.

Support for

Validation of the

Entire Process Plan

Cannot No construct/feature specified.

Tracking of Changes

in the System

Cannot No construct/feature specified.

What-if Analysis Cannot No construct/feature specified.

Resource Amount
and Availability

Partially With resources represented as entities, the amount and availability of

a resource can be specified in the attributes of the resource entity.

Resource

Interruptions

Cannot No construct/feature specified.

Process Yield Cannot No construct/feature specified.

Dynamic Model

Modification

Cannot No construct/feature specified.

Event Signaling and

Notification

Cannot No construct/feature specified.

Resource Behavior

During Processing

Time

Cannot No construct/feature specified.

Resource/System/Pr

ocess Monitoring

and Feedback

Cannot No construct/feature specified.

Tracking of Changes

in the System

Cannot No construct/feature specified.

Track In-progress

Goods

Cannot No construct/feature specified.

62



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

Decision Rationale Cannot No construct/feature specified.

Intentional

Dimension of

Processes, or Goals

Cannot No construct/feature specified.

Relationship

between Task and

Goal and Resource

and Goal

Cannot No construct/feature specified.

Task/Process

Purpose

Cannot No construct/feature specified.

Value-added

Attributes

Cannot No construct/feature specified.

Access to Past and

Present Decision

Rationales

Cannot No construct/feature specified.

Characteristics of

Groups of Resources

Cannot No construct/feature specified.

Implicit Task

Association

Partially Tasks may be associated to one another through relationship links.

Parallelism Cannot No construct/feature specified.

Descriptive

Manufacturing/Perfo

rmance Variability

Cannot No construct/feature specified.

Probability of Down
Times

Partially A "probability of down times" attribute can be added to the resource

entity for which such information needs to be specified.

Stochastic

Properties

Cannot No construct/feature specified.

Uncertainty of

Sequences

Cannot No construct/feature specified.

Account for

Randomness

Cannot No construct/feature specified.

Stochastic

Functionality

Cannot No construct/feature specified.

Prod Scheduling -

production type data

Cannot No construct/feature specified.

Prod Scheduling -

dynamic

rescheduling

Cannot No construct/feature specified.

Process Planning -

clamping surfaces

Cannot No construct/feature specified.

Process Planning -

datums and offsets

Cannot No construct/feature specified.

Process Planning -

features to be

machined

Cannot No construct/feature specified.

Process Planning -

production type date

Cannot No construct/feature specified.

Simulation - queue

entry and exit rates

Cannot No construct/feature specified.

Enterprise Eng. and

Bus Process Re-eng

- conceptual entities

Cannot No construct/feature specified.

63



Process Specification Language: An Analysis ofExisting Representations

Requirements Entity-Relationship Descriptions

Workflow - manual

vs. automatable

tasks

Partially The task entities may have a flag attribute signifying whether the task

is manual or automatable.

Workflow - invoked

tool capability

Cannot No construct/feature specified.

Workflow - support

specifications of task

structure (control

flow)

Cannot No construct/feature specified.

Project Management
- work breakdown

ids

Partially The ids can be an attribute of some entity acquiring such an id.

Functional Flow Block Diagrams (FFBD)
Requirements FFBD Descriptions

ad hoc Notes Completely Attached text

Cost Data Cannot Cannot represent cost data in current form - could possibly be made to carry

costs if modified, but would also require the addition of an explicit

representation of duration and resources.

Level of Effort Cannot FFBDs represent functional/ activity flows - no constructs for resources at

present time.

Product

Characteristics

Partially Directed Arcs between function blocks could be used to represent product

flow (each function would have inputs and outputs that are intermediate

products).

Resource Cannot Would require modifications & enhancements to capture resource info,

(might be included in attached text in practice).

Resource

Requirements for a

Task

Cannot No construct/feature specified.

Simple Groupings Completely Hierarchical Decomposition. At the highest level of abstraction, an entire

process can be specified as one single all-encompassing functional block.

Lower-level sets of activities/functions can always be summarized by a

simpler set of higher level tasks.

Simple Resource

Capability/Character

istics

Cannot No construct/feature specified.

Simple Sequences Completely Arrows between function blocks denote logical sequencing

Simple Task

Representation and

Characteristics

Completely Function Blocks represent discrete tasks. Each block carries a name to

denote what its function is (what it "does").

Task Duration Partially FFBDs were not intended to carry explicit duration times, but it would be

very easy to modify them so they could.

Task Executor Cannot FFBDs are traditionally used at a point in the design process where specific

resources and executors have not yet been defined or assigned to specific

functions.

Extensibility Completely Associated Text

64



Process Specification Language: An Analysis ofExisting Representations

Requirements FFBD Descriptions

Resource

Allocation/deallocati

on for one or many

tasks

Cannot No construct/feature specified.

Simple Precedence Completely Directed Arcs (arrows)

Composition/Decom

position

Completely Hierarchical Decomposition. For FFBDs, this applies to functions and the

flows between them. These are described in increasing detail at lower

levels.

Incompleteness/Vag

ueness

Completely FFBDs have been traditionally used to describe product & process

functionality, and operate within a framework of uncertainty.

Alternative Task Completely Logic Gates. Contingent or alternative courses of action

(activities/functions) can be specified by using a simple or inclusive or gate

to switch activity flow.

Associated

Illustrations and

Drawings

Cannot FFBDs (as traditionally used) capture what a process need to do and the

sequence by which to do it, but do not assume a particular answer to "how"

a function will be performed.

Complex Groups of

Tasks

Cannot No construct/feature specified.

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Partially Logic Gates. Alternative, serial, and parallel tasks are fully supported.

However, concurrent tasks are not explicitly supported. FFBDs, as typically

used, do not include the kind of timing constraints required. Could easily be

modified to enforce concurrency.

Complex Task

Representation and

Parameters

Not sure Some information might wind up on the associated text entries, but there is

no explicit mechanism in the representation for satisfying this requirement.

Concurrent Tasks Partially tasks can be parallel, but FFBDs would need modification in order to force

concurrency.

Conditional Tasks Completely Each branch (arrow) diverging from an "or" gate can be annotated with the

conditions that would cause the process to flow along it.

Confidence Levels Cannot No construct/feature specified.

Constraints Partially Diagrams capture precedence/ control-flow constraints, but no other types

of constraints explicitly supported.

Multiple Duration(s) Cannot No construct/feature specified.

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit

Resource

Association

Cannot No construct/feature specified.

Iterative Loops Completely An output arrow from a function block can point back to previously

completed functions, including itself.

Manual vs.

Automated Tasks

Cannot FFBDs do not capture how a task is to be implemented.

Manufacturing

Product Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely (see complex sequences)

Parameters and

Variables

Cannot No construct/feature specified.

Pre- and Post-

processing

Constraints

Not sure FFBDs could be made to satisfy this requirement, but I have not yet seen it

done.

65



Process Specification Language: An Analysis ofExisting Representations

Requirements FFBD Descriptions

Queues, Stacks,

Lists

Cannot No construct/feature specified.

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely (see constraints).

State Existence

Constraints

Not sure Constraints that force various operational modes for a process could

possibly be captured by denoting conditions at the exits of logic gates.

State

Representations

Not sure (see state existence constraints)

Temporal

Constraints

Partially FFBDs can capture the relative timing of activities with respect to one

another (precedence), but do not allow for enforcing that activities occur at

a specific, absolute time (e.g., 3:05pm on Thursday).

Uncertainty /

Variability /

Tolerance

Partially Logical "or" gates portray uncertainty or variability in process flow, but no

other mechanisms for representing tolerance, etc. is observed.

Ability to Insert or

Attach a Highlight

(milestones)

Cannot No construct/feature specified.

Complex

Precedence

Cannot No construct/feature specified.

Convey the Ancestry

or Class of a Task

Cannot No construct/feature specified.

Deadline

Management

Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling

and Recovery

Completely Conditional alternative paths can be specified, including iteration. Some of

these could be defined so that they activate on a contingency basis if a

failure or anomaly occurs. Such situations would need to be designed into

the process from the start - not run-time.

Information

Exchange Between

Tasks

Cannot No construct/feature specified.

Mathematical and

Logical Operations

Partially FFBDs capture logical operations of AND, OR, IOR. The diagrams, in their

current state of evolution, are not executable, and thus do not perform actual

calculations or operations. It is not a run-time representation. It merely

captures what is known about required tasks and the logical flows that must

occur between them.

Support for

Task/Process

Templates

Not sure The prescribed FFBD methodology does not include a mechanism for

creating or using templates, but couldn’t just about anything be made into

some kind of template?

66



Process Specification Language: An Analysis ofExisting Representations

Requirements FFBD Descriptions

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Cannot No construct/feature specified.

Synchronization of

Multiple, Parallel

Task Sequences

Cannot No construct/feature specified.

Business Practices,

Rules, Constraints

Cannot No construct/feature specified.

Configuration

Management

Information and

Processes

Cannot No construct/feature specified.

Customer-driven

Process

Specification and

Constraints

Cannot No construct/feature specified.

Forecast and

Customer Orders

Cannot No construct/feature specified.

Priority Attributes Cannot No construct/feature specified.

Representation of

the Origin of Task(s)

Cannot No construct/feature specified.

Analysis

Characteristics

Cannot No construct/feature specified.

Critical Task Cannot No construct/feature specified.

Predictive and

Time-dependent

Resource

Availability

Cannot No construct/feature specified.

Prescriptive Task

Behavior

Cannot No construct/feature specified.

Task/Process

Performance

Measurement

Cannot No construct/feature specified.

Co-existence of

Plans and

Resolution of

Conflicts

Cannot No construct/feature specified.

Dynamic Model

Modification

Cannot In current form/implementation, FFBDs are not run-time. They help in

designing a process, but is not capable of simulating the process’ execution.

Optimization Cannot No construct/feature specified.

Resource/System/Pr

ocess Monitoring

and Feedback

Cannot No construct/feature specified.

Support for

Validation of the

Entire Process Plan

Cannot No construct/feature specified.

Tracking of Changes

in the System

Cannot No construct/feature specified.

67



Process Specification Language: An Analysis ofExisting Representations

Requirements FFBD Descriptions

What-if Analysis Cannot No construct/feature specified.

Resource Amount

and Availability

Cannot No construct/feature specified.

Resource

Interruptions

Cannot No construct/feature specified.

Process Yield Cannot No construct/feature specified.

Dynamic Model

Modification

Cannot No construct/feature specified.

Event Signaling and

Notification

Cannot No construct/feature specified.

Resource Behavior

During Processing

Time

Cannot No construct/feature specified.

Resource/System/Pr

ocess Monitoring

and Feedback

Cannot No construct/feature specified.

Tracking of Changes

in the System

Cannot No construct/feature specified.

Track In-progress

Goods

Cannot No construct/feature specified.

Decision Rationale Not sure Different output branches from a logic gate can be annotated to include

reasons/scenarios governing why a particular path might be taken; however,

the representation does not track real-time process execution - it cannot

track the *results* of decisions, nor the reasoning to support having made

one.

Intentional

Dimension of

Processes, or Goals

Completely Each function block is defined as a particular function that needs to be

carried out within the process. Each one is then an expression of a

functional requirement for the process. More detailed parametric

requirements can be attached via text annotation.

Relationship

between Task and

Goal and Resource

and Goal

Not sure Eventually, all of the tasks/functions in an FFBD are assigned, or allocated

to a variety of resources. Thus, the possibility exists to satisfy this

requirement, but FFBDs in their current form do not involve resource

representations.

Task/Process

Purpose

Partially Hierarchical decomposition of functions within the diagrams allows the

visualization of how a detailed task fits in with the overall (highest-level)

process obiectives. Complete details of the exact interfaces between the

functions are not explicitly captured in an FFBD - they are traditionally

captured in an accompanying N-squared diagram, or the like.

Value-added

Attributes

Cannot No construct/feature specified.

Access to Past and

Present Decision

Rationales

Cannot No construct/feature specified.

Characteristics of

Groups of Resources

Cannot No construct/feature specified.

Implicit Task

Association

Cannot No construct/feature specified.

Parallelism Cannot No construct/feature specified.

Descriptive

Manufacturing/Perfo

rmance Variability

Cannot No construct/feature specified.

68



Process Specification Language: An Analysis ofExisting Representations

Requirements FFBD Descriptions

Probability of Down
Times

Cannot No construct/feature specified.

Stochastic

Properties

Cannot No construct/feature specified.

Uncertainty of

Sequences

Cannot No construct/feature specified.

Account for

Randomness

Cannot No construct/feature specified.

Stochastic

Functionality

Cannot No construct/feature specified.

Prod Scheduling -

production type data

Cannot No construct/feature specified.

Prod Scheduling -

dynamic

rescheduling

Cannot No construct/feature specified.

Process Planning -

clamping surfaces

Cannot No construct/feature specified.

Process Planning -

datums and offsets

Cannot No construct/feature specified.

Process Planning -

features to be

machined

Cannot No construct/feature specified.

Process Planning -

production type date

Cannot No construct/feature specified.

Simulation - queue

entry and exit rates

Cannot No construct/feature specified.

Enterprise Eng. and

Bus Process Re-eng

- conceptual entities

Cannot No construct/feature specified.

Workflow - manual

vs. automatable

tasks

Cannot No construct/feature specified.

Workflow - invoked

tool capability

Cannot No construct/feature specified.

Workflow - support

specifications of

task structure

(control flow)

Completely Arrows and logic gates specify control flow. Although probabilistic

branching is not directly supported, it could be easily added.

Project Management
- work breakdown

ids

Not sure No construct/feature specified.

Gantt Charts

Requirements Gantt Charts Descriptions

ad hoc Notes Cannot No construct/feature specified.

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Cannot No construct/feature specified.

Resource Cannot No construct/feature specified.

69



Process Specification Language: An Analysis ofExisting Representations

Requirements Gantt Charts Descriptions

Resource Requirements for a Task Cannot No construct/feature specified.

Simple Groupings Partially only diagrammatic representation of sequence

Simple Resource Capability/Characteristics Cannot No construct/feature specified.

Simple Sequences Partially diagrammatic only

Simple Task Representation and Characteristics Cannot No construct/feature specified.

Task Duration Partially No construct/feature specified.

Task Executor Cannot No construct/feature specified.

Extensibility Cannot No construct/feature specified.

Resource Allocation / deallocation for one or

many tasks

Cannot No construct/feature specified.

Simple Precedence Partially diagrammatic only

Composition/Decomposition Cannot No construct/feature specified.

Incompleteness/Vagueness Cannot No construct/feature specified.

Alternative Task Cannot No construct/feature specified.

Associated Illustrations and Drawings Cannot No construct/feature specified.

Complex Groups of Tasks Cannot No construct/feature specified.

Complex Resource Characteristics Cannot No construct/feature specified.

Complex Sequences Cannot No construct/feature specified.

Complex Task Representation and Parameters Cannot No construct/feature specified.

Concurrent Tasks Cannot No construct/feature specified.

Conditional Tasks Cannot No construct/feature specified.

Confidence Levels Cannot No construct/feature specified.

Constraints Cannot No construct/feature specified.

Multiple Duration(s) Cannot No construct/feature specified.

Date(s) and Time(s) Partially No construct/feature specified.

Implicit/Explicit Resource Association Cannot No construct/feature specified.

Iterative Loops Cannot No construct/feature specified.

Manual vs. Automated Tasks Cannot No construct/feature specified.

Manufacturing Product Quantity Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Cannot No construct/feature specified.

Parameters and Variables Cannot No construct/feature specified.

Pre- and Post-processing Constraints Cannot No construct/feature specified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource Categorization and Grouping Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task Combined Characteristics Cannot No construct/feature specified.

Serial Tasks Partially No construct/feature specified.

State Existence Constraints Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Cannot No construct/feature specified.

Uncertainty/Variability/Tolerance Cannot No construct/feature specified.

Ability to Insert or Attach a Highlight(milestones) Cannot No construct/feature specified.

Complex Precedence Cannot No construct/feature specified.

Convey the Ancestry or Class of a Task Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling and Recovery Cannot No construct/feature specified.

Information Exchange Between Tasks Cannot No construct/feature specified.

70



Process Specification Language: An Analysis of Existing Representations

Requirements Gantt Charts Descriptions

Mathematical and Logical Operations Cannot No construct/feature specified.

Support for Task/Process Templates Cannot No construct/feature specified.

Support for Simultaneously Maintained

Associations of Multiple Levels of Abstraction

Cannot No construct/feature specified.

Synchronization of Multiple, Parallel Task

Sequences

Cannot No construct/feature specified.

Generalized Activity Network (GAN)
Requirements GAN Descriptions

ad hoc Notes Cannot No construct/feature specified.

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Cannot No construct/feature specified.

Resource Cannot No construct/feature specified.

Resource Requirements for a

Task

Cannot No construct/feature specified.

Simple Groupings Cannot No construct/feature specified.

Simple Resource

Capability/Characteristics

Cannot No construct/feature specified.

Simple Sequences Completely Essentially a superset of PERT sequence capabilities, see other

aspects of sequencing capabilities in outer core write-up

Simple Task Representation

and Characteristics

Cannot No construct/feature specified.

Task Duration Completely No construct/feature specified.

Task Executor Cannot No construct/feature specified.

Extensibility Cannot Not in original definition of GAN. Capability may have been

included in later implementations.

Resource

Allocation/deallocation for

one or many tasks

Cannot No construct/feature specified.

Simple Precedence Completely No construct/feature specified.

Composition/Decomposition Cannot No construct/feature specified.

Incompleteness/Vagueness Cannot No construct/feature specified.

Alternative Task Cannot No construct/feature specified.

Associated Illustrations and

Drawings

Partially GANs use explicit activity-on-arc diagrams, but lack any "how to

perform” diagrammatic help.

Complex Groups of Tasks Cannot No construct/feature specified.

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Completely 6 possible node conditions enable complex sequencing logic

Complex Task Representation

and Parameters

Cannot No construct/feature specified.

Concurrent Tasks Completely "and" node conditions in activity-on-arc representation

Conditional Tasks Completely conditional branching constructs at nodes

Confidence Levels Completely probabilistic activity realizations and durations

Constraints Completely node conditions enable temporal, pre and post, and state existence

constraints

71



Process Specification Language: An Analysis ofExisting Representations

Requirements GAN Descriptions

Multiple Duration(s) Partially probabilistic activity durations

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit Resource

Association

Cannot No construct/feature specified.

Iterative Loops Completely conditional branching in cyclic graph segment

Manual vs. Automated Tasks Cannot No construct/feature specified.

Manufacturing Product

Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely "and" node conditions, etc.

Parameters and Variables Cannot No construct/feature specified.

Pre- and Post-processing

Constraints

Cannot No construct/feature specified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely node conditions in activity-on-arc representation

State Existence Constraints Partially node conditions in activity-on-arc representation

State Representations Partially node conditions in activity-on-arc representation

Temporal Constraints Partially node conditions in activity-on-arc representation

Uncertainty / Variability /

Tolerance

Partially time tolerances only using random activity durations

Ability to Insert or Attach a

Highlight(milestones)

Cannot No construct/feature specified.

Complex Precedence Partially node conditions in activity-on-arc representation

Convey the Ancestry or Class

of a Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Cannot No construct/feature specified.

Mathematical and Logical

Operations

Partially node conditions in activity-on-arc representation

Support for Task/Process

Templates

Cannot No construct/feature specified.

Support for Simultaneously

Maintained Associations of

Multiple Levels of

Cannot No construct/feature specified.

Abstraction

Synchronization of Multiple,

Parallel Task Sequences

Cannot No construct/feature specified.

72



Process Specification Language: An Analysis of Existing Representations

Hierarchical Task Network (HTN)
Requirements HTN Descriptions

ad hoc Notes Cannot No construct/feature specified.

Cost Data Partially Cost can be thought of as a constraint; thus, it can be specified in the constraint

formula.

Level of Effort Partially Can be specified as constraints.

Product

Characteristics

Partially Can be specified in the constraints as well as the conditions parts in the

operators.

Resource Partially Methods can be used to represent appropriate resources.

Resource

Requirements for a

Task

Partially A method can be used to associate a task to various resources.

Simple Groupings Completely A task network is, by itself, a group of tasks, sub-tasks to achieve a certain

goal.

Simple Resource

Capability /

Characteristics

Cannot No construct/feature specified.

Simple Sequences Completely A task network is specified by a set of tasks followed by a constraint formula.

To represent linear, time-sequential sequences, one can simply specify the

order in which the tasks are to be executed in the constrain formula, e.g. (nl <

n2) and (n2 < n3) would specify the sequence nl - n2 - n3 in which nl, n2, and

n3 are all tasks.

Simple Task

Representation and

Characteristics

Completely A task network can represent the sub-tasks that make up the current, the

constraints that apply to the sub-tasks, conditions that need to be true before

and after the task, etc.

Task Duration Partially Can be specified in constraint.

Task Executor Partially Can be specified within the tasks and compound tasks.

Extensibility Completely One can certainly add more tasks into a task network.

Resource

Allocation/deallocati

on for one or many

tasks

Partially The use of a method for a certain task can be thought of as allocating the

resource included in the method to the task. When the task is completed, the

resource can be thought of as de-allocated.

Simple Precedence Completely Within a constraint formula, one can specify exactly which group of tasks needs

to precede some other groups of tasks.

Composition /

Decomposition

Completely A compound task network is essentially a high level description of a task. With

decomposition, one can then find out more details of the task.

Incompleteness /

Vagueness

Partially Method. When no further detail regarding a task is available, we can have a

method that decomposes into "unknown" sub-tasks. These “unknowns” can

later be decomposed into sub-tasks that make sense when the appropriate

information is available.

Alternative Task Completely One can certainly have different task networks that achieve the same goal.

These different task networks are the alternative tasks for achieving the goal

function.

Associated

Illustrations and

Drawings

Cannot No construct/feature specified.

Complex Groups of

Tasks

Partially Methods could be used to group tasks as well as resources allocated to them. A
task network can also group tasks related to achieving a certain task. The

restriction, however, is that, for example, two tasks sharing the same resource

but have nothing else in common may not be grouped under HTN.
Complex Resource

Characteristics

Cannot No construct/feature specified.

73



Process Specification Language: An Analysis ofExisting Representations

Requirements HTN Descriptions

Complex Sequences Partially HTN cannot explicitly represent concurrent tasks. There is no explicit construct

for synchronizing the begin time of multiple tasks.

Complex Task

Representation and

Parameters

Partially Parameters are represented by having variables within a task network. The
constraint formula allows one to specify the capabilities, behavior, restrictions,

etc. associated with a task. The made up of a task is explicitly represented by

decomposition.

Concurrent Tasks Cannot No construct/feature specified.

Conditional Tasks Completely One can certainly specify the conditions within the constraint formula of a task

network. The conditions can be the state of the world, the execution of other

tasks, etc.

Confidence Levels Cannot No construct/feature specified.

Constraints Partially Constraints can be specified in the constraint formula of a task network.

Multiple Duration(s) Partially Durations may be specified in each of the methods, and multiple methods may
be used to accomplish a certain task; thus, multiple durations may be

represented.

Date(s) and Time(s) Partially One can associate dates and times with methods. When there are multiple dates

and times associated to a task/resource, we can simply have multiple methods,

each of which with the respective dates and times.

Implicit/Explicit

Resource

Association

Partially Methods can associate resources with tasks, and within the constraint formula,

one can specify what other resources are needed when the current resource is

used to accomplish a certain task, and so on.

Iterative Loops Cannot No construct/feature specified.

Manual vs.

Automated Tasks

Partially One can certainly say that a certain task is to be accomplished by a human, or

machine A, etc.

Manufacturing

Product Quantity

Partially This could be represented as a task, eg. produce n products. The number, n,

could be a variable in the task.

Material Constraints Partially See the annotation in Constraints, above.

Parallel Tasks Cannot No construct/feature specified.

Parameters and

Variables

Completely Task networks can contain variables and parameters since each of the tasks

could contain variables. One is certainly allowed to change the bindings of

these variables at any point of time.

Pre- and Post-

processing

Constraints

Completely Within an operator, one can specify the pre- and post-conditions of executing

the task. The pre- and post-processing constraints can go here.

Queues, Stacks, ListsPartially No construct/feature specified.

Resource

Categorization and

Grouping

Cannot

No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely A task network can contain a series of tasks to be performed in a particular

order specified in the constraint.

State Existence

Constraints

Partially The pre-condition part in an operator could contain such state information.

State

Representations

Partially The current state of the world is reflected in the constraint formula of a task

network. If a process is to be represented as a combination of states, one could

use multiple different task networks, each of which may have different state

information in its constraint formula.

74



Process Specification Language: An Analysis ofExisting Representations

Requirements HTN Descriptions

Temporal

Constraints

Partially Can be specified in constrain formula.

Uncertainty /

Variability /

Tolerance

Partially One may specify this in the constraint formula.

Ability to Insert or

Attach a Highlight

(milestones)

Partially Since HTN represents a process as a task network, one can certainly highlight

each of the individual subtasks in the network. This can be done by specifying,

in those subtasks that are to be highlighted, their importance to the process, or

by having an extra variable to accommodate a flag of some sort.

Complex Precedence Partially Such constraints may be specified within the constraint formula of a compound

task network.

Convey the Ancestry

or Class of a Task

Partially Even though decomposition provides representation of hierarchy of tasks,

generalization, and specialization, there is no guarantee of inheritance of

characteristics of tasks through decomposition to each of the subtasks.

Deadline

Management

Partially A task network provides ways to specify deadlines of each of the subtasks;

however, the management needs to be performed by external programs which

utilize the HTN representation.

Dispatching Partially The items could be represented as methods while the rules and guidelines for

releasing these items are represented in the constraint formula in these methods.

The process of dispatching, however, will need to be performed by some

program.

Eligible Resources Partially Resources are represented as methods. Their eligibility for being selected are

specified in the constraints.

Exception Handling

and Recovery

Partially A task network can certainly be decomposed into several different task

networks, each of which is capable of achieving the goal task. These networks

may serve as fallbacks for the planner; however, HTN does not have explicit

constructs that specify which ones to use if some other ones fail.

Information

Exchange Between

Tasks

Cannot No construct/feature specified.

Mathematical and

Logical Operations

Partially One may use mathematical and logical operators while writing the conditions as

well as the constraints in HTN. However, there really isn’t any construct that

performs the operations.

Support for

Task/Process

Templates

Partially It is certainly reasonable to think of a task network, whose variables are not yet

bound, as a template. One can reuse a task network in multiple problems with

different variable bindings.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Partially This can be represented using methods with decomposition of tasks.

Synchronization of

Multiple, Parallel

Task Sequences

Cannot No construct/feature specified.

IDEFO
Requirements IDEFO Descriptions

ad hoc Notes Completely associated text and glossary

Cost Data Partially Via control arrow or as data flow on input and output arrows

Level of Effort Cannot Amount of resource needed not covered

75



Process Specification Language: An Analysis ofExisting Representations

Requirements IDEFO Descriptions

Product

Characteristics

Partially Via input/output arrows, can show products created, modified or used

during a function.

Resource Completely Mechanism arrow is a person or device that carries out the function.

Resource

Requirements for a

Task

Completely Via control and mechanism arrows

Simple Groupings Completely Via decomposition

Simple Resource

Capability /

Characteristics

Cannot No construct/feature specified.

Simple Sequences Cannot Sequence is often implied, but a function’s "position" is determined by the

input constraints.

Simple Task

Representation and

Characteristics

Completely Boxes represent activities, actions, processes or operations, and arrows

represent Input, Control, Mechanism and Output constraints on these

activities.

Task Duration Cannot No construct/feature specified.

Task Executor Completely Mechanism arrow represents person or device that carries out a function.

Extensibility Partially Can extend anything in terms of additional ICOMs (Input, Control, Output,

Mechanism arrows)

Resource Allocation /

deallocation for one or

many tasks

Cannot Can only show requirements for a functions

Simple Precedence Cannot Shows "precedence" only in terms of constraints

Composition /

Decomposition

Partially Composition/Decomposition handled with Subfunctions (submodules) of

single parent modules

Incompleteness /

Vagueness

Cannot No construct/feature specified.

Alternative Task Completely Via output and control arrows

Associated

Illustrations and

Drawings

Not sure IDEFO representation includes "text" and "glossary".

Complex Groups of

Tasks

Cannot Can only group tasks via decomposition

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Cannot IDEFO represents activities and relationships independent of sequence and

timing

Complex Task

Representation and

Parameters

Completely Via function boxes and ICOMs

Concurrent Tasks Partially Arrows may branch and join. Cannot associate timing.

Conditional Tasks Completely Via input and control arrows

Confidence Levels Cannot

Constraints Partially Temporal constraints not included

Multiple Duration(s) Cannot Temporal aspects of process not represented

Date(s) and Time(s) Cannot

Implicit/Explicit

Resource Association

Not sure This could probably be done implicitly (and partially satisfy requirement)

through mechanisms and controls, and decompositions.

Iterative Loops Partially This can be done via output and input arrows. Temporal aspects of

iterations are not represented

76



Process Specification Language: An Analysis ofExisting Representations

Requirements IDEFO Descriptions

Manual vs. Automated

Tasks

Partially All functions of a process can be represented.

Manufacturing

Product Quantity

Cannot No construct/feature specified.

Material Constraints Cannot Constraints on functions (tasks) are represented.

Parallel Tasks Cannot Temporal aspects of sequences not represented.

Parameters and

Variables

Partially The output of a function could be a value which could be an input

requirements of another function.

Pre- and Post-

processing Constraints

Completely Input, control, and mechanism arrows are for representing pre- and post-

processing constraints.

Queues, Stacks, Lists Cannot Concepts can be used to represent any type of object or type of object,

although not in any kind of detail.

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Cannot Cannot represent temporal sequences. Tasks may appear to be serial in that

the output of one is required as input to another, but serial task

representation is not explicit.

State Existence

Constraints

Completely The Control arrow could represent state existence constraints.

State Representations Partially State changes for functions, but not resources, can be represented via input

and output arrows.

Temporal Constraints Cannot No construct/feature specified.

Uncertainty/Variabilit

y/Tolerance

Partially Tolerances for an activity could be represented by control arrows.

Ability to Insert or

Attach a

Highlight(milestones)

Cannot No construct/feature specified.

Complex Precedence Cannot Temporal sequences not represented.

Convey the Ancestry

or Class of a Task

Completely With decomposition, ICOMs can be maintained from parent to child.

Deadline Management Cannot Temporal aspects of process not addressed. The deadline management

function could be modeled.

Dispatching Cannot Dispatching functions and rules could be represented, but real-time,

temporal aspects cannot be represented.

Eligible Resources Partially Via output and mechanism arrows. A function whose output is "eligible

resources" could provide mechanism for another functions.

Exception Handling

and Recovery

Partially Output of functions can indicate the exception that is input and controls of

"exception handling" functions.

Information Exchange

Between Tasks

Completely Via output and input arrows.

Mathematical and

Logical Operations

Cannot No construct/feature specified.

Support for

Task/Process

Templates

Partially While this cannot be done explicitly, elements can be reused.

77



Process Specification Language: An Analysis ofExisting Representations

Requirements EDEFO Descriptions

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely Decomposition and tunneling allows ICOMs to be associated, or not

association with various levels of functions.

Synchronization of

Multiple, Parallel Task

Sequences

Cannot No construct/feature specified.

IDEF3
Requirements IDEF3 Descriptions

ad hoc Notes Partially Facts and constraints on model elements or description of model elements.

IDEF3 supports the concept of fact and constraint. Notes can be captured as

facts or constraints or in the description of the model element they apply to.

Process flow diagrams, and scenarios also have facts, constraints, and a

description. Models have a model summary, a purpose and a context.

Cost Data Partially Notes Facts Constraints. IDEF3 does not explicitly support the notion of cost

but allows users to specify notes, facts, or constraints on any model element

in a model.

Level of Effort Partially Notes, Constraints, Facts. IDEF3 enables the representation of facts,

constraints, and notes that can be used to specify the level of effort needed to

accomplish a task.

Product

Characteristics

Partially Constraints and facts on objects and description of objects. In IDEF3, a

product can be represented as a special type of object. Characteristics of the

product can be specify using constraints and/or facts on the object or the

description field of the object.

Resource Partially Objects and Object types. IDEF3 supports the concept of objects. Hence,

resources can be represented as objects of the type ’resource’.

Resource

Requirements for a

Task

Completely Association of objects with tasks (UOBs in IDEF3). In IDEF3, objects can

be associated with a UOB to indicate their participation to that UOB. Objects

associated with a UOB can be given a role such as: agent, created, destroyed,

affected, etc.

Simple Groupings Completely Scenarios and Process Flow Diagrams. A process flow diagram enables users

to describe a sequence of tasks. The tasks in the sequence are related through

temporal relationships. A scenario is a set of process flow diagrams (PFDs)

that describe a process or plan. Typically, a PFD represents a high level

description of the plan. Each task in that PFD can have one or more PFDs

associated with it that detail the task further. The hierarchy of PFD
constitutes the scenario.

Simple Resource

Capability /

Characteristics

Partially Facts and Constraints on objects. The characteristics and capability of a

resource can be expressed using facts and constraints associated with the

object representing the resource

Simple Sequences Completely Process Flow Diagrams.

78



Process Specification Language: An Analysis of Existing Representations

Requirements IDEF3 Descriptions

Simple Task

Representation and

Characteristics

Completely UOBs (Units Of Behavior) are used in IDEF3 to represent events, tasks,

activities, situations, etc. Note that a UOB describes a type of task, not a

specific task that occurred at a particular point in space and time. UOBs have

a description, facts, constraints, and objects that are used to describe them.

They can be further described by associating process flow diagrams with

them.

Task Duration Partially Facts and constraints on a UOB. The time it takes to complete a task can be

captured in a fact or constraint on the UOB.
Task Executor Completely Associate an object with role agent or executor on a UOB. Objects can be

associated with UOBs and can have a role defined on them.

Extensibility Cannot The only way for users to add information to a model is by using the

predefined facts and constraints constructs.

Resource Allocation /

deallocation for one or

many tasks

Partially Association of objects with UOBs with appropriate roles and facts and

constraints. Facts and constraints can be used to record how resources are

allocated to tasks.

Simple Precedence Completely Process Flow Diagrams.

Composition /

Decomposition

Completely Decomposition on UOBs. UOBs can be further described by associating

process flow diagrams to them. Note that this requirement is very ambiguous,

as it seems to confuse abstraction with the token/type distinction. IDEF3 does

not support the representation of instance level tasks.

Incompleteness /

Vagueness

Completely IDEF3 supports the representation of both process descriptions and process

models. Process descriptions, by definition, can be incomplete.

Alternative Task Partially Facts and constraints.

Associated

Illustrations and

Drawings

Completely Source, facts, constraints, and descriptions. IDEF3 supports the concept of

source. A source enables users to describe any material that was used to

individuate a model element.

Complex Groups of

Tasks

Completely Process Flow Diagrams and Scenarios.

Complex Resource

Characteristics

Partially Facts and constraints on objects.

Complex Sequences Completely Junctions enables to specify that some tasks must be performed in parallel.

Junctions have a logic associated with them to enable users to specify

whether tasks must be performed concurrently, tasks are mutually exclusive,

etc.

Complex Task

Representation and

Parameters

Completely Facts, constraints, referents ("call and wait" and "call and continue").

Referents can be used in IDEF3 to indicate that a task must be interrupted

and that a task will trigger the beginning of another task.

Concurrent Tasks Completely An AND junction indicates that the following tasks are performed in parallel.

The junction can be specified as synchronous to indicate that the tasks must

all start at the same time.

Conditional Tasks Completely OR and XOR junctions.

Confidence Levels Partially Confidence levels can be expressed using facts and constraints.

Constraints Completely IDEF3 constraints allow for the capture of any type of constraints. However,

some special types of constraints (e.g., temporal) can be captured in a more

structured way using appropriate constructs provided by the method.

Multiple Duration(s) Partially Facts can be used to express estimated, actual, and average duration. Note

that IDEF3 does not support the representation of task instances (i.e., actual

events).

Date(s) and Time(s) Cannot

Implicit/Explicit

Resource Association

Completely Facts and constraints on objects. Resources in IDEF3 are captured using the

’Object’ construct. Facts and constraints can be used to capture these kinds of

dependencies.

79



Process Specification Language: An Analysis ofExisting Representations

Requirements IDEF3 Descriptions

Iterative Loops Completely Junctions and ’go to’ referents can be used to capture loops. Conditions for

exiting the loop can be captured using facts and constraints on junctions.

Manual vs. Automated

Tasks

Partially Facts, constraints, or description.

Manufacturing

Product Quantity

Partially Facts and constraints.

Material Constraints Partially Facts and constraints.

Parallel Tasks Completely ’AND’junctions enables modelers to specify that some tasks are performed in

parallel. The junction can be synchronous or asynchronous to indicate

whether the tasks start at the same time.

Parameters and

Variables

Cannot No construct/feature specified.

Pre- and Post-

processing Constraints

Completely Constraints

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Partially Facts and constraints on objects.

Resource/Task

Combined

Characteristics

Partially Facts and constraints.

Serial Tasks Completely Precedence links in process flow diagrams.

State Existence

Constraints

Completely State transition diagrams and state transition conditions.

State Representations Completely State transition diagrams.

Temporal Constraints Completely Process flow diagrams.

Uncertainty

fWariability/Tolerance

Cannot No construct/feature specified.

Ability to Insert or

Attach a Highlight

(milestones)

Cannot No construct/feature specified.

Complex Precedence Completely Using a combination ofjunctions enables the representation of complex

temporal constraints between tasks.

Convey the Ancestry

or Class of a Task

Cannot This requirement is satisfied in the integrated IDEF3/5 method.

Deadline Management Partially Could be represented as a task itself that determines what path is taken is a

process flow diagram.

Dispatching Partially Can be captured using facts and constraints.

Eligible Resources Completely Association of resource objects with UOBs.

Exception Handling

and Recovery

Partially Facts and constraints and referents.

Information Exchange

Between Tasks

Completely Object flow links represents the flow of an object from one task to another.

Mathematical and

Logical Operations

Partially Facts, constraints, notes.

Support for

Task/Process

Templates

Completely Pool items that can be used in process flow diagrams.

80



Process Specification Language: An Analysis ofExisting Representations

Requirements IDEF3 Descriptions

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely UOB decomposition hierarchy. Mult. Level of Abst. is supported mainly for

decomposing tasks into subtasks.

Synchronization of

Multiple, Parallel

Task Sequences

Partially Facts and constraints and junctions.

<I-N-OVA>
Requirements <I-N-OVA> Descriptions

ad hoc Notes Completely A - Misc-Annotation constraint.

Cost Data Completely A - Misc constraint in global <I-N-OVA model if not specific to a given

process or plan, or in plan’s <I-N-OVA representation if it is specific to that.

Level of Effort Completely A - Resource (or A-Resource-Agent) constraint.

Product

Characteristics

Completely V - entity/variable constraint.

Resource Completely A - object used in resource constraint.

Resource

Requirements for a

Task

Completely A - Resource constraint.

Simple Groupings Completely N - include activity constraint.

Simple Resource

Capability /

Characteristics

Completely V - global <I-N-OVA entity/variable constraint for object to be used as a

resource.

Simple Sequences Completely 0 - Ordering constraint on time point associated with begin or end of any

activity.

Simple Task

Representation and

Characteristics

Completely N - Name of activity.

Task Duration Completely 0 - Metric temporal constraint between time points associated with begin

and end of an activity.

Task Executor Completely A - Resource-Agent constraint. This allows for a specific "performer” of an

activity.

Extensibility Completely A - Open framework for adding any information in the form of a constraint

or annotation.

Resource Allocation

/ deallocation for one

or many tasks

Completely A - resource constraints are expressive enough to support this.

Simple Precedence Completely 0 - Ordering constraints.

81



Process Specification Language: An Analysis ofExisting Representations

Requirements <I-N-OVA> Descriptions

Composition /

Decomposition

Completely A,N - Constraints of various types (in particular A-World State constraints)

may be modeled at any abstraction level. Activity decompositions (Include

activity constraints in process or activity description library) (N). Missing

constraints just imply a wider allowed space of behavior. The <I-N-OVA
model is specifically designed to allow for incompleteness and uncertainty

in process and activity descriptions. The <I-N-OVA model is specifically

designed to allow for incompleteness and uncertainty in process and activity

descriptions. Specific constraints would need to have uncertainty in their

formulation and expression <I-N-OVA makes no commitment to this.

Incompleteness /

Vagueness

Completely Missing constraints just imply a wider allowed space of behavior. The <I-N-

OVA model is specifically designed to allow for incompleteness and

uncertainty in process and activity descriptions.

Alternative Task Completely Disjunctive constraints may be included in the <I-N-OVA model in any

place - and this is not limited to disjunctions within any one specific

constraint type or sub-type. An other node can also represent conditional

activities.

Associated

Illustrations and

Drawings

Completely A - Associated information and annotations may be stated as "annotation

constraints" or more generally "Miscellaneous constraints".

Complex Groups of

Tasks

Completely N - other nodes that contain sub-plans can be used to group a task for a

common purpose (i.e. the detailed expression of an activity).

Complex Resource

Characteristics

Completely A - Resource constraints or Agent constraints can describe these

characteristics.

Complex Sequences Completely 0 - ordering constraints can describe a variety of necessary relationships.

Complex Task

Representation and

Parameters

Completely N - Nodes that include activities can take into account concepts such as

applicability, performance limits, resource usage, number of constraints on

its conditions, suitable parameter bindings, etc.

Concurrent Tasks Completely 0 - activities can be constrained to have "concurrent" execution.

Conditional Tasks Completely N - other nodes may also represent a conditional "if then else" within the

plan.

Confidence Levels Cannot

Constraints Completely <I-N-OVA views a plan as a set of constraints.

Multiple Duration(s) Partially Thinking more about your examples, there is probably only partial support,

predicted duration / worst case duration Yes. Time windows are defined

with a min/max and projected value. This would result in a best, worst, and

most likely durations for a specific implementation of a task. If you do have

a case where you know that a task might take "around an hour" or "around 2

hours" (e.g. if you use machine A or machine B to accomplish the task),

then you’d go with my first example of an "or-split". average duration I was

originally thinking of "average" in the context of a predicted value, but

obviously they mean two different things. I’d say no to this one. actual

duration Again, I was thinking about actual duration in terms of, "Task A
will actually take lhr (at most/at least/probably)" as opposed to Task A will

last from timepoint.l to timepoint.2. TF is not used in recording the

execution time of a task, so no to this one as well.

Date(s) and Time(s) Completely 0 - metric temporal constraints can relate a given time point to an actual

time or calendar reference.

Implicit/Explicit

Resource

Association

Completely A,N - Resource constraints can explicitly be attached to an activity. A node

that contains sub-plans implicitly constrains resource usage though its sub-

constraints.

Iterative Loops Completely N - other nodes can represent an encapsulation of iteration or for-each.

82



Process Specification Language: An Analysis ofExisting Representations

Requirements <I-N-OVA> Descriptions

Manual vs.

Automated Tasks

Completely A - Misc. constraints can be created to characterize specialized attribute

requirements.

Manufacturing

Product Quantity

Completely A - Resource constraints can be used to control the maximum allowable

amount of the resource.

Material Constraints Completely A - resource constraints can be used to describe specialized characteristics,

"always" constraints can be used to declare unchanging global information.

Parallel Tasks Completely 0 - ordering constraints can describe activities that occur in parallel.

Parameters and

Variables

Completely V - entity/variable constraints can be used to manage "place holders" that

can take on a range of values.

Pre- and Post-

processing

Constraints

Completely 0 - input and output temporal constraints are used to describe what should

hold immediately before or after a given timepoint.

Queues, Stacks, Lists Partially <I-N-OVA does not have an explicit representation for data structures such

as queues or stacks.

Resource

Categorization and

Grouping

Completely It is anticipated that a representation language that expresses the <I-N-OVA
model will use a sorted first order logic.

Resource Location Completely A, V - A-Resource constraints can add information such as location,

entity/variables can be used to update a location attribute.

Resource/Task

Combined

Characteristics

Completely 0,N - This requirement can be met by creating alternate "include activity"

nodes that utilize the same resources, but may have different input temporal

constraints.

Serial Tasks Completely 0 - ordering constraints are used to declare activities in serial.

State Existence

Constraints

Completely 0 - input temporal constraints specify those things that are required to hold

before a given time point (which may be attached to an activity).

State

Representations

Completely A - World State constraints act on the plan state representation.

Temporal

Constraints

Completely 0 - Temporal modeling is performed by using time points and ordering

constraints.

Uncertainty/Variabili

ty/Tolerance

Completely The <I-N-OVA model is specifically designed to allow for incompleteness

and uncertainty in process and activity descriptions. Specific constraints

would need to have uncertainty in their formulation and expression <I-N-

OVA makes no commitment to this.

Ability to Insert or

Attach a Highlight

(milestones)

Partially A - Misc or Annotation constraints can be attached to nodes to give them

"milestone significance".

Complex Precedence Completely 0 - Ordering constraints can be generally specified to establish node

precedence.

Convey the Ancestry

or Class of a Task

Completely N - other node constraints can be used to encapsulate specialized sub-plans.

Deadline

Management

Completely 0 - Ordering constraints are used to arrange activities within specified

temporal constraints.

Dispatching Completely O - Input temporal constraints can be placed on activities that release

represent releasing items for production.

Eligible Resources Completely A - Resource constraints for an activity describe a sorted requirement for

resource usage.

Exception Handling

and Recovery

Completely 0 - input and output temporal constraints can be used to specify what

should hold before and after a time point (therefore an activity).

Information

Exchange Between

Tasks

Completely V - Information is shared between nodes through entity/variable constraints.

83



Process Specification Language: An Analysis ofExisting Representations

Requirements <I-N-OVA> Descriptions

Mathematical and

Logical Operations

Completely The expressions in <I-N-OVA are considered to be based in first order logic

that will allow for logical and mathematical manipulation.

Support for

Task/Process

Templates

Completely N - other nodes and include activity nodes are linked in a "generic process

template" that is applicable for use assuming the constraints are satisfied.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely A - Constraints can be attached at any level of a node hierarchy that would

be appropriate for that model.

Synchronization of

Multiple, Parallel

Task Sequences

Completely 0 - Temporal constraints can be attached to activities that make the hard

requirement that begin/end timepoints are equal.

JTF - Core Plan Representation (CPR)
Requirements JTF-CPR Descriptions

ad hoc Notes Completely Annotation object is contained in PlanObject superclass.

Cost Data Cannot

Level of Effort Completely Contained in the CPR specialization objects of ConsumableResource

Product Characteristics Partially Work products can been given as the underspecified object DomainObject.

Resource Completely Resource object or its specializations

Resource Requirements

for a Task

Completely Action objects (tasks) may contain Resource objects

Simple Groupings Completely Actions may contain sub-Actions

Simple Resource

Capability /

Characteristics

Partially A suggested set of specializations to Resource is provided including

Consumable, Reusable, SynchronouslyReusable, ExactCapacity and

NonSharable.

Simple Sequences Completely Constraints may be assigned to Actions that enforce parallelism or

serialism.

Simple Task

Representation and

Characteristics

Cannot No construct/feature specified.

Task Duration Completely Actions have start and end times

Task Executor Completely Actions have associated Actors

Extensibility Cannot No construct/feature specified.

Resource

Allocation/deallocation

for one or many tasks

Cannot No construct/feature specified.

Simple Precedence Cannot No construct/feature specified.

Composition /

Decomposition

Completely Actions, Plans, and Actors may all have sub-entities

Incompleteness /

Vagueness

Completely There is no implied enforcement of completeness. Uncertainty and

Imprecision (fuzzy logic) constructs are included.

Alternative Task Partially Actions can be given arbitrary constraints but there is no specified

construct to describe one as an alternative to another.

Associated Illustrations

and Drawings

Completely Arbitrary Annotations may be linked to any plan object

84



Process Specification Language: An Analysis ofExisting Representations

Requirements JTF-CPR Descriptions

Complex Groups of

Tasks

Cannot No construct/feature specified.

Complex Resource

Characteristics

Partially A hierarchy of resource types is provided

Complex Sequences Partially Arbitrary types of constraints may be given to specify parallelism or

serialism.

Complex Task

Representation and

Parameters

Cannot No construct/feature specified.

Concurrent Tasks Completely Actions may be constrained to run concurrently or may be unconstrained

allowing concurrent execution if possible.

Conditional Tasks Completely Actions may have constraints on execution. Assumptions may also be

included which trigger new Actions if the assumptions are violated.

Confidence Levels Completely All low level data may be tagged with Uncertainty or Imprecision

measures. High level objects like Entity or Action may be encapsulated in

an UncertainEntity object which has an associated uncertainty or

imprecision

Constraints Partially Examples are given for temporal and pre- and post-condition constraints

but the Constraint object is relatively underspecified.

Multiple Duration(s) Partially Action may be specialized to contain other durations but the base class

only contains start and end.

Date(s) and Time(s) Completely CPR includes TemporalPoint a specialization of which is the OMG
universal time object that has both time and date.

Implicit/Explicit

Resource Association

Partially A Resource may contain a Constraint that specified dependency on another

Resource.

Iterative Loops Cannot No construct/feature specified.

Manual vs. Automated

Tasks

Cannot No construct/feature specified.

Manufacturing Product

Quantity

Partially DomainObjects with associated quantity may be specified as products of

Actions.

Material Constraints Partially Constraints may state ranges about arbitrary attributes of an Entity.

Parallel Tasks Partially Arbitrary types of constraints may be given to specify parallelism or

serialism.

Parameters and

Variables

Cannot No construct/feature specified.

Pre- and Post-processing

Constraints

Partially Examples are given for temporal and pre- and post-condition constraints

but the Constraint object is relatively underspecified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource Categorization

and Grouping

Cannot Resources may have subResources but only hierarchical arrangements are

currently allowed

Resource Location Completely Resources may be constrained to have a particular SpatialPoint

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Partially Arbitrary types of constraints may be given to specify parallelism or

serialism.

State Existence

Constraints

Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Completely Actions have associated TimePoints which constrain their execution

Uncertainty/Variability/

Tolerance

Completely Uncertainty and Imprecision (fuzzy logic) constructs are included and may
be specified for any object including TimePoints.

85



Process Specification Language: An Analysis ofExisting Representations

Requirements JTF-CPR Descriptions

Ability to Insert or

Attach a Highlight

(milestones)

Cannot No construct/feature specified.

Complex Precedence Cannot No construct/feature specified.

Convey the Ancestry or

Class of a Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Cannot No construct/feature specified.

Mathematical and

Logical Operations

Cannot No construct/feature specified.

Support for

Task/Process Templates

Cannot No construct/feature specified.

Support for

Simultaneously

Maintained Associations

of Multiple Levels of

Abstraction

Cannot No construct/feature specified.

Synchronization of

Multiple, Parallel Task

Sequences

Cannot No construct/feature specified.

Knowledge Interchange Format (KIF)

Requirements KIF Descriptions

ad hoc Notes Partially Text documentation may be represented using quote. Its association

with some plan component may be represented by defining an object

whose name says that it’s a note of the component, and whose term is

the quote (the actual documentation).

Cost Data Partially Costs associated to a resource or a task can be hardcoded into a

function.

Level of Effort Partially KIF supports numbers, which can represent the amount of a resource

needed.

Product Characteristics Partially A product may be represented by defining an object, which has the

characteristics of the product as its definition.

Resource
Partially

resources may be represented as objects.

Resource Requirements for a

Task

Partially The resources required for a task can be made returned by a function in

the form of a set/list/object.

Simple Groupings Completely Tasks may be grouped in terms of sets or lists. Or, one may simply

define a new object for task groupings.

Simple Resource

Capability/Characteristics

Partially New objects can be defined to describe resource

capabilities/characteristics. These objects may then be associated to the

resources they describe by defining new relations.

Simple Sequences Partially Time linear, sequential sequences can be grouped in lists.

86



Process Specification Language: An Analysis ofExisting Representations

Requirements KIF Descriptions

Simple Task Representation

and Characteristics

Partially tasks can be defined as objects

Task Duration Partially Duration can be defined as a function of the task

Task Executor Partially Task executors can be defined as objects.

Extensibility Completely These constructs allow further information to be added to the existing

data.

Resource

Allocation/deallocation for

one or many tasks

Partially Resources allocated to a task may be put in a list. Thus, deallocation

can be represented by removing the resource from the list.

Simple Precedence Partially We can define a binary relation for tasks, which returns true if one task

is to precede another.

Composition/Decomposition Partially information at various levels can be defined as separate objects. Later

on, a function can be defined to return the information given the

respective level.

Incompleteness/Vagueness Partially it is certainly possible to make definitions which contain unspecified

information.

Alternative Task Partially these alternative tasks can be defined as objects or functions. One may
use a certain naming convention so that it is clear that these separate

functions/objects are alternatives for the same job.

Associated Illustrations and

Drawings

Cannot No construct/feature specified.

Complex Groups of Tasks Partially task groupings can be represented as sets/lists. Lists probably is more

appropriate.

Complex Resource

Characteristics

Partially By defining an object for each resource, we will be able to provide as

much detail as we want for the resource.

Complex Sequences Partially All the sequencing types can be represented. See their respective cells

for constructs.

Complex Task

Representation and

Parameters

Partially Tasks or groups of tasks can be defined as objects using logical

sentences and quantity sentences.

Concurrent Tasks Martially a relation can be defined to return true when given concurrent tasks.

Besides that, we can also specify,within the object definitions, that the

starting point of the execution times much be the same.

Conditional Tasks Completely These constructs can specify the conditions under which a certain task,

represented as an object are to be executed.

Confidence Levels Partially Confidence levels can be represented as numbers.

Constraints Partially All constraints can be represented

Multiple Duration(s) Partially "event begin" and "event end" can be defined as objects. These objects

can then be included in the definition of tasks or resources to specify

multiple durations.

Date(s) and Time(s) Partially Dates and times can be represented as lists of numbers. Better yet, we

can define them as objects.

Implicit/Explicit Resource

Association

Partially the dependency can be represented as a relation defined over resources.

Iterative Loops Partially KIF allows recursive definitions. Thus, iterative loops can be converted

into recursion.

Manual vs. Automated

Tasks

Partially can be defined as a relation over tasks.

Manufacturing Product

Quantity

Partially The quantity can be represented as numbers.

Material Constraints Partially This can be represented by defining a function over materials, which, in

turn, are defined as objects.

87



Process Specification Language: An Analysis ofExisting Representations

Requirements KIF Descriptions

Parallel Tasks Partially A relation can be defined over tasks. This relation may return a true if

the given tasks are parallel, and false otherwise.

Parameters and Variables Completely Variables in KIF are words preceded by a ? or a @.

Pre- and Post-processing

Constraints

Partially Within a definition, one can specify conditions with cond or if. The pre-

post-cond constraints can be represented by defining them as new
relations.

Queues, Stacks, Lists Partially Lists are readily defined in KIF. Queues and stacks can be defined in

terms of lists by defining the necessary functions, relations, and objects.

Resource Categorization and

Grouping

Partially A new object can be defined to represent the categorization and

grouping. The resources may be grouped by means of a list or a set.

Their common characteristics may be specified within the definition

under cond or if.

Resource Location Partially Locations can be defined as objects. Then, relations can be defined to

relate resources to these locations.

Resource/Task Combined

Characteristics

Partially Resources and tasks may be combined by defining them as a new

object. Then, some functions can be defined over this new object to

return the characteristics of this task/resource combination in some

form of logical sentences.

Serial Tasks Partially Serial tasks can be put in a list. To be clearer, this list can be defined as

an object.

State Existence Constraints Partially The requirements can be put within the cond statement that allows the

execution of the task only if the requirements are satisfied. The

requirements can be some sort of relation that is defined over some

objects that define states.

State Representations Partially States can be represented as objects. The combination of the states can

be put in a list. Thus, the list would describe a process in terms of some

states.

Temporal Constraints Partially Start point and end point can be defined as objects. These objects can,

in turn, be used within the definition of the task or resource objects.

Uncertainty / Variability /

Tolerance

Partially Uncertainty etc. can be represented as numbers. A function can also be

defined over tasks to return such information.

Ability to Insert or Attach a

Highlight(milestones)

Cannot No construct/feature specified.

Complex Precedence Partially Precedence can be represented by defining a relation over tasks. The

conditions are specified within the definition.

Convey the Ancestry or

Class of a Task

Partially Specialization relationships, ancestry relationships, etc. can be defined

using defrelation over tasks. Tasks at different levels can be defined as

different objects, with the lower level ones defined using higher-level

objects and some more information. Inheritance of characteristics can

be represented as rules such as "if characteristic A is in a higher-level

task, then there exists A in all lower-level tasks."

Deadline Management Partially Decision-making can be represented as functions. Deadlines can be

considered during decision making by means of cond statements, or if

statements.

Dispatching Partially KIF is capable of logic programming; thus, rules and guidelines for

dispatching can certainly be represented.

Eligible Resources Partially Again, rules can be represented. Furthermore, relations may be defined

to relate resources to these rules that determine the resources’

eligibility.

Exception Handling and

Recovery

Partially One can define functions that return corrective actions in the form of a

list or a quote. Exceptions or error can be specified as some kind of

conditions within the definition of the function.

88



Process Specification Language: An Analysis ofExisting Representations

Requirements KIF Descriptions

Information Exchange

Between Tasks

Partially Functions can be defined for tasks, the parameters will represent

information flowing into the task and the returned parameters will be

information flowing out of the task. Furthermore, a list with embedded

lists can be used to represent a chain of tasks through which

information flows.

Mathematical and Logical

Operations

Completely KIF has all of these built in.

Support for Task/Process

Templates

Partially Functions can contain variables. Thus, it is, in itself, a template.

Support for Simultaneously

Maintained Associations of

Multiple Levels of

Abstraction

Partially A relation can be defined to associate a resource with a task. Multiple

objects or relations can be defined to represent multiple levels of

abstraction for such association.

Synchronization of Multiple,

Parallel Task Sequences

Cannot Functions that perform certain things upon receiving events can be

defined. However, it is up to the application that makes use of KIF to

synchronize executions of any sort of functions or relations.

O-Plan Task Formalism
Requirements O-Plan TF Descriptions

ad hoc Notes Completely Notes via comments and "tf_info" items. Individual plan items can contain

"annotation-constraints". Extended documentation for schemas can be

achieved by linking "info" attribute/value pairs with filenames of associated

drawings, etc.

Cost Data Partially O-Plan TF can be used to describe an action that consumes a resource (e.g.

money, in the case of cost). Uncertainty costs, variability, etc. is incorporated

by the use of upper/lower bounds on numerical values.

Level of Effort Completely O-Plan TF has a rich set of resource elements that can describe the units,

types, and number of resource items that are required by an action.

Product

Characteristics

Partially O-Plan TF can be used to model a class of resources that are "producible"

when an action is applied. This "produced" item can be an intermediate

product that is used to supply a condition for another action.

Resource Completely O-Plan TF can be used to describe resources and resource types.

Resource

Requirements for a

Task

Completely O-Plan TF resource statements can quantify an action’s usage of a resource.

Simple Groupings Completely Action schemas can define partially ordered sub-actions and action schemas

can be arranged hierarchically through the use of "expands" action patterns.

Simple Resource

Capability /

Characteristics

Completely O-Plan TF can give resource characteristics that can be used to select the

appropriate resource for a task. (e.g. attributing "wolf-proof characteristics to

"bricks" in a sample domain.)

Simple Sequences Completely O-Plan TF has a number of ways to express temporal relationships. "At" links

actions to a specific timepoint. "Duration" specifies a range. TF can also

express "delay_between" as a means to specify a latency period between the

end and begin of two actions.

Simple Task

Representation and

Characteristics

Completely Simple high-level descriptions can be attached via the schema annotations that

were described in the annotations.

89



Process Specification Language: An Analysis ofExisting Representations

Requirements O-Plan TF Descriptions

Task Duration Completely As per Tate (22-Nov): In O-Plan a user can express duration in metric time

points against a reference basis of zero time. (e.g. day 45 12:00:00 for

example for noon on day 45 of a project.)

Task Executor Completely O-Plan TF can select modeled resources to be associated with an instantiated

action, (e.g. selecting vehicles in pacifica sample domain). TF can also be

used to directly model the "contracting" relationship using [un]supervised

conditions.

Extensibility Completely O-Plan "other-constraints" can be used to record additional information.

Resource Allocation

/ deallocation for one

or many tasks

Completely O-Plan TF can be used to model assignment and release of resources.

Simple Precedence Completely O-Plan TF conditions, effects, and expands can be used to form interschema

relationships while orderings are used to define intraschema sub-action

relationships.

Composition /

Decomposition

Completely Schemas arranged in a hierarchical fashion can abstract the details of various

plan expansions. TF can be arranged into plan levels/phases that allows O-

Plan to control how far to plan (incompleteness). More than 1 schema can be

appropriate (ambiguity).

Incompleteness /

Vagueness

Completely Schemas arranged in a hierarchical fashion can abstract the details of various

plan expansions. TF can be arranged into plan levels/phases that allows O-

Plan to control how far to plan (incompleteness). More than 1 schema can be

appropriate (ambiguity).

Alternative Task Completely More than one TF schema may be appropriate for a plan node expansion.

Associated

Illustrations and

Drawings

Completely Textual items (comments) can be attached to O-Plan TF items and extended

documentation for the domain can be achieved by linking tfjnfo

attribute/value pairs with filenames of associated drawings, etc.

Complex Groups of

Tasks

Completely O-Plan TF can describe an explicit grouping of actions (e.g. install services).

TF can also address constraints related to the overall group, (e.g. describing

how much resource an action and its expansions can consume.)

Complex Resource

Characteristics

Completely Resources can have a "specific" type that affects how the planning system may
use the resource. (movable_objects vs. objects, etc.)

Complex Sequences Completely O-Plan TF schemas can explicitly represent complex sequences as well as

express the elements necessary to create more ordering relationships during

generative planning.

Complex Task

Representation and

Parameters

Completely Action schemas can take into account concepts such as applicability

(only_use_if), performance limits (time windows, resource consumption), and

a number of constraints on its conditions, suitable parameter bindings, etc.

Concurrent Tasks Completely 20-Nov-96 via Tate: "Two actions can be constrained to have the same begin

and end times by giving a zero duration link between their begin points and

the same zero duration link between their end points."

Conditional Tasks Completely TF schema filters (only_use_if) control the applicability of a specific schema.

Confidence Levels Cannot O-Plan TF does not have a means to express certainty degrees.

Constraints Completely O-Plan has a rich set of constraint types to limit the plan behavior (this

includes actions and resource usage).

90



Process Specification Language: An Analysis ofExisting Representations

Requirements O-PIan TF Descriptions

Multiple Duration(s) Partially Thinking more about your examples, there is probably only partial support,

predicted duration / worst case duration Yes. Time windows are defined with

a min/max and projected value. This would result in a best, worst, and most

likely durations for a specific implementation of a task. If you do have a case

where you know that a task might take "around an hour" or "around 2 hours"

(e.g. if you use machine A or machine B to accomplish the task), then you’d go

with my first example of an "or-split". average duration I was originally

thinking of "average" in the context of a predicted value, but obviously they

mean two different things. I’d say no to this one. actual duration Again, I was

thinking about actual duration in terms of, "Task A will actually take lhr (at

most/at least/probably)" as opposed to Task A will last from timepoint.l to

timepoint.2. TF is not used in recording the execution time of a task, so no to

this one as well.

Date(s) and Time(s) Completely O-Plan TF can be used to express relative temporal relationships that are tied

to an initial zero date/time.

Implicit / Explicit

Resource

Association

Cannot There are no dependency relationships between resource types in O-Plan TF.

Iterative Loops Cannot While the use of an "iterate" or "foreach” node type is planned, TF version 2.3

does not contain this functionality. (Now in O-Plan version 3.1 January 1997.)

Manual vs.

Automated Tasks

Completely Separate action schemas can be designed with constraints on agent binding

types. If a schema is instanitated with an agent binding of type "machine"

there will be a certain seq. whereas the type "human" schema would be

different.

Manufacturing

Product Quantity

Completely The amount of product to be produced can be expressed as an achieve

condition in a task schema and the action schemas can be designed to

"produce" the resource based on constraints.

Material Constraints Partially Materials can be qualified through the use of resource types and "always"

assertions, (e.g. bricks are wolf-proof, etc.)

Parallel Tasks Completely O-Plan actions are arranged in a partially ordered fashion that can represent

parallel tasks.

Parameters and

Variables

Completely O-Plan plan state variables can be used to bind values to various aspects of the

plan.

Pre- and Post-

processing

Constraints

Completely This is achieved through the use of O-Plan conditions (pre) and effects (post).

Queues, Stacks, Lists Partially O-Plan TF utilizes "sets" but does not have specific data structures such as

queues or stacks.

Resource

Categorization and

Grouping

Completely Logical resource grouping is created by using specific resource types.

Resource Location Completely The "pacifica" TF sample shows how resource location can be represented

using an "{at OBJ} = LOC".

Resource/Task

Combined

Characteristics

Completely The simplest way to address this requirement is to create alternate action

schemas that utilize different resources and can also thereby have different

time constraints.

Serial Tasks Completely O-Plan TF can be used to impose a total ordering between actions where

necessary.

State Existence

Constraints

Completely This requirement can be expressed in detail by selecting an appropriate

condition type in O-Plan TF.

State

Representations

Completely O-Plan uses a state-based approach for plan domain representations (i.e.

conditions and effects relative to a world state)

91



Process Specification Language: An Analysis ofExisting Representations

Requirements O-Plan TF Descriptions

Temporal

Constraints

Completely Time "windows" can be expressed for actions in O-Plan TF.

Uncertainty/Variabili

ty/Tolerance

Completely Numerical variables can be represented via Min/Max pairs and a "computed"

value that must lie within this range. This allows for tolerance and variability

of a value.

Ability to Insert or

Attach a Highlight

(milestones)

Partially As per Tate: O-Plan can support the attachment of milestones or statements

(effects) about some point in the plan. But the ability to "highlight" or

annotate some area of the plan is outside of what TF is trying to do.

Complex Precedence Completely O-Plan action orderings can be specified within an action schema or implied

through the conditions and effects.

Convey the Ancestry

or Class of a Task

Completely The "expands" entry in an action schema denotes how it extends a higher level

action.

Deadline

Management

Completely O-Plan can handle tasks with relative time constraints, durations, etc.

Dispatching Completely The preconditions of an action can be utilized as a mechanism for stating

dispatching rules.

Eligible Resources Completely In O-Plan TF, conditions on using resources can be defined that meet this

requirement.

Exception Handling

and Recovery

Partially Alternative schemas (and orderings) can be chosen to satisfy a task when a

suggested course of action fails.

Information

Exchange Between

Tasks

Completely Information is "passed" between actions via plan state variables.

Mathematical and

Logical Operations

Completely O-Plan TF can be used to express the necessary mathematical and logical

operations for this requirement.

Support for

Task/Process

Templates

Completely via Tate (22-Nov): All Task Formalism schemas are "generic processes" or

"task descriptions" that meet this requirement.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely Constraints can be attached at any level of an action hierarchy that would be

appropriate for that schema.

Synchronization of

Multiple, Parallel

Task Sequences

Completely See concurrent tasks.

92



Process Specification Language: An Analysis ofExisting Representations

OZONE
Requirements OZONE Descriptions

ad hoc Notes Not sure No construct/feature specified.

Cost Data Partially There is no explicit cost property for resources or tasks in OZONE,
but some aspects of cost can be treated as a property that is a function

of the domain (i.e. the same was as LAND or SPEED are noted in the

paper).

Level of Effort Completely Demands can be defined that explicitly represent the quantity required.

Activity RESOURCE-REQUIREMENTS impose resource

usage/consumption constraints for the activity to execute.

Product Characteristics Completely OZONE uses a distinct concept definition for a product. Intermediate

product information and work item characteristics can be attached

directly to a product.

Resource Completely A resource is a distinct concept definition in OZONE. A variety of

resource types are supported.

Resource Requirements for

a Task

Completely An activity can be defined with relationships to resources that it

requires.

Simple Groupings Completely OZONE supports the grouping of tasks in a variety of ways. Tasks

(activities) can be grouped into those that fulfill a demand, produce a

product, or are involved in a hierarchical ordering.

Simple Resource

Capability/Characteristics

Completely A variety of capabilities/characteristics can be assigned to a resource

via properties, (e.g. capacity, amount of set-up time needed, etc.)

Simple Sequences Completely OZONE contains INTERVAL-RELATIONS that can easily handle

simple linear sequencing.

Simple Task Representation

and Characteristics

Not sure No construct/feature specified.

Task Duration Completely OZONE activities contain a "duration" property for this purpose.

Task Executor Completely A task executor can be modeled as a required resource for the activity.

Extensibility Completely OZONE puts forward a concept of model specialization. Elements can

be added that specialize the representation for a target domain.

Resource

Allocation/deallocation for

one or many tasks

Completely Resources provide Allocate-Capacity and Deallocate-Capacity

capabilities and Activities provide reserve-resources and ffee-

resources capabilities.

Simple Precedence Completely Various constraints can be defined to regulate precedence

relationships of activities.

Composition/Decompositio

n

Completely Compositional relationships can be defined via sub-activity

relationships that form hierarchical networks of activities.

Incompleteness^agueness Partially To a degree, it can be stated that a constraint-based approach permits a

model to be incomplete and vague on everything, except those items

that are necessary to meet requirements, (e.g. Schedule these tasks in

any order you like, but just make sure C is after B, etc.) What is

described in the requirement though is more of a runtime test

condition.

Alternative Task Completely Two activities can be defined that have the same effects. The

scheduler can then select an alternative that satisfies the requirement.

Associated Illustrations and

Drawings

Not sure No construct/feature specified.

Complex Groups of Tasks Completely OZONE supports complex grouping of tasks. For example, a set of

tasks can be grouped that meet the requirements for a specific demand,

a set of tasks that produce a work item can be attached to the specific

product as well.

93



Process Specification Language: An Analysis ofExisting Representations

Requirements OZONE Descriptions

Complex Resource

Characteristics

Completely OZONE provides a variety of ways to assign characteristics to

resources. For example: associating state information with a resource,

physical properties (range, speed), capacity models, etc.

Complex Sequences Completely Complex ordering relationships can be defined via INTERVAL-
RELATIONS. (e.g. BEFORE, SAME-END, CONTAINS, etc.)

Complex Task

Representation and

Parameters

Completely An activity can be defined with a complex set of properties. OZONE
activities support an explicit set of parameters that can influence the

representation of the task.

Concurrent Tasks Completely An activity can contain temporal relationships to other activities. If a

relationship of same-start and same-end is defined then the two

activities are constrained to be concurrent.

Conditional Tasks Partially At a high level, we can say that an activity is conditional because its

execution is dependent on outstanding demands. However, there does

not seem to be an explicit conditional structure.

Confidence Levels Cannot

Constraints Completely OZONE presumes an underlying constraint-based solution framework.

Multiple Duration(s) Partially While there is support for multiple durations (e.g. duration of an

activity, duration of setup-time for a resource, etc.), a specific

requirement of multiple durations for the overall activity does not

seem possible.

Date(s) and Time(s) Completely OZONE uses various date/time relationships and assumes the

existence of TIME-POINTS, and TIME-INTERVALS.

Implicit/Explicit Resource

Association

Completely Various levels of implicit/explicit resource associations can be made

(i.e. sub-resources for aggregation, dynamic compatibility between 2

resource assignments, etc.)

Iterative Loops Cannot OZONE does not appear to support iteration or looping constructs.

Manual vs. Automated

Tasks

Completely OZONE does not make an explicit distinction of this type, but it would

seem possible to create two activities, one that represented the manual

task and one that represented the automatic task and any "differing"

would be defined by each respective activity.

Manufacturing Product

Quantity

Completely An explicit slot for specifying product quantity is part of a demand in

OZONE.
Material Constraints Completely OZONE has an explicit slot for material constraints as part of a

demand (i.e. the type of material to be used).

Parallel Tasks Completely Nodes in OZONE’S networks of activities can be ordered in parallel.

Parameters and Variables Completely The OZONE ontology has parameters (e.g. an activity accepts a

quantity from demand) and variables (e.g. recording changes in state).

Pre- and Post-processing

Constraints

Completely A variety of pre and post processing constraints apply to activities.

(e.g. (pre) state existence (post) duration before next activity, etc.)

Queues, Stacks, Lists Partially Lists of elements only.

Resource Categorization

and Grouping

Completely OZONE supports a rich set of categories and groupings of resources

based on their usage, atomicity, capacity, etc.

Resource Location Completely OZONE has an explicit slot in a demand for the ORIGIN and

DESTINATION for a material.

Resource/Task Combined

Characteristics

Completely Combined activity/resource characteristics are utilized in evaluating

static and dynamic compatibility constraints.

Serial Tasks Completely Simple serial assignment falls under a "before" interval.

State Existence Constraints Completely Activities and resources can be in a given state and requirements about

state existence can be applied.

State Representations Completely Activities and resources can be represented as being in certain states.

94



Process Specification Language: An Analysis of Existing Representations

Requirements OZONE Descriptions

Temporal Constraints Completely A variety of constraints: absolute-time-constraint, relative-time-

constraint (interval-relations, duration-constraints)

Uncertainty/Variability/Tole

ranee

Partially Various upper/lower bounded values support variability and tolerance

of assignment values, but probabilistic uncertainty is not supported.

Ability to Insert or Attach a

Highlight (milestones)

Cannot No construct/feature specified.

Complex Precedence Completely Duration-Constraints, interval-relations, state requirements, and

aspects of demand management all combine to provide complex

precedence mechanisms.

Convey the Ancestry or

Class of a Task

Completely Class ancestry in OZONE is expressed through its extension

mechanism of model specialization.

Deadline Management Completely Deadline management is possible via RELEASE-DATE, DUE-DATE
properties of a demand.

Dispatching Completely Dispatching is encompassed in the demand-product combined

capabilities. Work item generation is linked to explicit elements of

demand.

Eligible Resources Completely OZONE maintains the "eligibility" of resources and also provides

other USAGE-RESTRICTIONS that can allow a richer model of

restrictions (e.g. UNAVAILABILITY-INTERVALS reflect time

periods where a resource is not eligible, etc.)

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Completely OZONE supports parameters passing to exchange information

between various elements (e.g. demand information is passed to an

activity, etc.)

Mathematical and Logical

Operations

Completely Constraint expressions use mathematical and logical constructs in

OZONE.
Support for Task/Process

Templates

Completely The ontological element "activity" is a template for what a task should

be. The various properties are expected to be filled in and new slots

can be added to extend this base concept.

Support for Simultaneously

Maintained Associations of

Multiple Levels of

Abstraction

Completely Constraints can be added at any level of abstraction to further define

the requirements on the target space. In the example listed, you would

require 5 people (resources). Next you may add a constraint on those

resources (special ability). Next you may add a very specific constraint

(who they are), etc.

Synchronization of

Multiple, Parallel Task

Sequences

Completely Multiple activities can be synchronized when parallel via

INTERVAL-RELATIONS.

95



Process Specification Language: An Analysis ofExisting Representations

Parts and Actions (PAct) 1

Requirements PAct Descriptions

ad hoc Notes Not sure No construct/feature specified.

Cost Data Not sure No construct/feature specified.

Level of Effort Not sure No construct/feature specified.

Product Characteristics Completely PAct focuses on describing the state of a part at all times. The
construct is a graphical box.

Resource Not sure No construct/feature specified.

Resource Requirements for a

Task

Cannot Only resources that will become part of a product appear to show
up in PAct diagrams. No manufacturing equipment, for example,

appears.

Simple Groupings Completely Can be grouped by agent, or simply combined into a higher-level

node.

Simple Resource

Capability/Characteristics

Not sure No construct/feature specified.

Simple Sequences Not sure No construct/feature specified.

Simple Task Representation

and Characteristics

Completely Represented by a circle in the graph-based notation.

Task Duration Not sure No construct/feature specified.

Task Executor Completely This is the principal strength of PAct. Each task, or group of tasks,

is associated with one or more "agents" who "engage in a value

added flow" [see Control of Parts, by Stephen Holmes Kendall,

Ph.D. Thesis, MIT, Department of Architecture, 1990], The role

can be executor, or responsible, or contractor. When multiple

agents are related to a single task, only one agent can control a part

at a time.

Extensibility Not sure No construct/feature specified.

Resource

Allocation/deallocation for

one or many tasks

Not sure No construct/feature specified.

Simple Precedence Completely Achieved through a part liaison line.

Composition/Decomposition Completely Achieved by expansion of a box (part) or circle (operation) into an

entire sub-graph of operations and parts.

Incompleteness/Vagueness Not sure No construct/feature specified.

Alternative Task Not sure No construct/feature specified.

Associated Illustrations and

Drawings

Not sure No construct/feature specified.

Complex Groups of Tasks Not sure No construct/feature specified.

Complex Resource

Characteristics

Not sure No construct/feature specified.

Complex Sequences Not sure No construct/feature specified.

Complex Task Representation

and Parameters

Not sure No construct/feature specified.

Concurrent Tasks Not sure No construct/feature specified.

Conditional Tasks Not sure No construct/feature specified.

Confidence Levels Not sure No construct/feature specified.

Constraints Not sure No construct/feature specified.

1

PAct (Parts and Actions) and EPFL’s petri net representations, were only minimally analyzed because of

lack of expertise and literature available at the time of analysis, therefore, there were many “not sure”

ratings.

96



Process Specification Language: An Analysis of Existing Representations

Requirements PAct Descriptions

Multiple Duration(s) Not sure No construct/feature specified.

Date(s) and Time(s) Not sure No construct/feature specified.

Implicit/Explicit Resource

Association

Not sure No construct/feature specified.

Iterative Loops Not sure No construct/feature specified.

Manual vs. Automated Tasks Completely Easily accomplished since the executing and/or specifying agent is

explicitly shown.

Manufacturing Product

Quantity

Not sure No construct/feature specified.

Material Constraints Not sure No construct/feature specified.

Parallel Tasks Completely All tasks not shown as having a precedence relationship are

implicitly parallel

Parameters and Variables Not sure No construct/feature specified.

Pre- and Post-processing

Constraints

Not sure No construct/feature specified.

Queues, Stacks, Lists Not sure No construct/feature specified.

Resource Categorization and

Grouping

Not sure No construct/feature specified.

Resource Location Not sure No construct/feature specified.

Resource/Task Combined

Characteristics

Not sure No construct/feature specified.

Serial Tasks Completely Precedence relationship between tasks.

State Existence Constraints Not sure No construct/feature specified.

State Representations Not sure No construct/feature specified.

Temporal Constraints Not sure No construct/feature specified.

Uncertainty / Variability /

Tolerance

Not sure No construct/feature specified.

Ability to Insert or Attach a

Highlight (milestones)

Not sure No construct/feature specified.

Complex Precedence Not sure No construct/feature specified.

Convey the Ancestry or Class

of a Task

Not sure No construct/feature specified.

Deadline Management Not sure No construct/feature specified.

Dispatching Not sure No construct/feature specified.

Eligible Resources Not sure No construct/feature specified.

Exception Handling and

Recovery

Not sure No construct/feature specified.

Information Exchange

Between Tasks

Not sure No construct/feature specified.

Mathematical and Logical

Operations

Not sure No construct/feature specified.

Support for Task/Process

Templates

Not sure No construct/feature specified.

Support for Simultaneously

Maintained Associations of

Multiple Levels of

Abstraction

Not sure No construct/feature specified.

Synchronization of Multiple,

Parallel Task Sequences

Not sure No construct/feature specified.

97



Process Specification Language: An Analysis ofExisting Representations

PAR2
Requirements PAR2 Descriptions

ad hoc Notes Completely object attribute in activity, resource, and product representations

Cost Data Partially extensive cost attributes for activity, resource objects, and

mechanisms for consolidating and analyzing cost data in network

Level of Effort Partially scalar attribute for allocated resource objects

Product Characteristics Partially Hierarchical feature representation of products using object

class/instance, emphasis on mechanical parts/assemblies of limited

complexity

Resource Partially Extensible library of resource classes for people, machine objects.

Resource Requirements for a

Task

Completely activity-resource matrix which allows hierarchical decomposition

Simple Groupings Completely Activity groupings by class membership, pre-defined "templates" of

activity groupings for detailed design, prototyping, mfg. processes,

etc. which can be hierarchically decomposed.

Simple Resource

Capability/Characteristics

Completely No construct/feature specified.

Simple Sequences Completely based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Simple Task Representation

and Characteristics

Completely object attribute in activity, resource, and product representations

Task Duration Completely No construct/feature specified.

Task Executor Completely hierarchically decomposable activity-resource matrix

Extensibility Completely extensible lisp-based objects and methods

Resource

Allocation/deallocation for

one or many tasks

Partially dynamic resource tracking during process simulation, but limited

mechanism for resolving resource conflicts

Simple Precedence Completely based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Composition/Decomposition Completely Fairly sophisticated decomposition capabilities for product, activity,

and resource objects. Network can be decomposed not only

hierarchically, but keyed by relationships in product-activity and

activity-resource matrices.

Incompleteness/Vagueness Partially Incompleteness can be specified, but not dynamically during process

simulation.

Alternative Task Partially using conditional branching with extensible calls to object data

structure

Associated Illustrations and

Drawings

Partially Diagrammatic subset of Generalized Activity Network. Also can

show tree hierarchies for product, activity, resource objects

Complex Groups of Tasks Completely Using object inheritance mechanism, both for pre-defined attributes

(e.g., activities performed by a given resource or specific to a given

product element), by "templates," and other mechanisms.

Complex Resource

Characteristics

Partially Specific resource attributes include ability of a resource to provide

multiple functions, etc.

Complex Sequences Completely GAN-based sequencing includes iteration capabilities, etc.

Complex Task

Representation and

Parameters

Partially some ability to use task attributes for dynamic alteration of network

flow, extensible

98



Process Specification Language: An Analysis ofExisting Representations

Requirements PAR2 Descriptions

Concurrent Tasks Completely based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Conditional Tasks Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Confidence Levels Completely probabilistic activity durations, branching

Constraints Partially both network logic constraints (GAN subset) and using states of

product and resource attributes

Multiple Duration(s) Completely representation of probabilistic activity durations, and subjective input

of worst/nominal/best parameters used to construct distribution

Date(s) and Time(s) Completely Dynamic tracking of date/time used after simulation for process

analysis.

Implicit/Explicit Resource

Association

Partially implicit dependency in activity-resource matrix

Iterative Loops Completely GAN-based iterative looping with dynamic changes to branching

probabilities at nodes

Manual vs. Automated Tasks Partially implicit in activity-resource matrix

Manufacturing Product

Quantity

Cannot

Material Constraints Cannot

Parallel Tasks Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Parameters and Variables Completely Highly flexible but computationally inefficient manipulation of

product/activity/resource class attributes during simulation and/or

process enactment.

Pre- and Post-processing

Constraints

Partially No construct/feature specified.

Queues, Stacks, Lists Partially No construct/feature specified.

Resource Categorization and

Grouping

Completely resource multiple class inheritance and links in activity-resource

matrix

Resource Location Cannot No construct/feature specified.

Resource/Task Combined

Characteristics

Partially activity-resource matrix keyed by object attributes

Serial Tasks Completely based on Generalized Activity Network (GAN) representation (see

entry for GAN)
State Existence Constraints Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
State Representations Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Temporal Constraints Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Uncertainty/Variability/Toler

ance

Partially Temporal uncertainty in probabalistic duration and branching

attributes

Ability to Insert or Attach a

Highlight (milestones)

Cannot No construct/feature specified.

Complex Precedence Partially based on Generalized Activity Network (GAN) representation (see

entry for GAN)
Convey the Ancestry or Class

of a Task

Completely object attributes in activity representations

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

99



Process Specification Language: An Analysis ofExisting Representations

Requirements PAR2 Descriptions

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Cannot

Mathematical and Logical

Operations

Completely GAN network logic with extensible calls to the object structures for

branching decisions, etc.

Support for Task/Process

Templates

Completely Pre-defined process templates for different design, testing,

prototyping activities.

Support for Simultaneously

Maintained Associations of

Multiple Levels of

Abstraction

Cannot

Synchronization of Multiple,

Parallel Task Sequences

Cannot

Part 49
Requirements Part 49 Description

ad hoc Notes Partially most entities have a name and description attribute which have few

restrictions

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Partially through the product_defmition entity - this information would be

accessed through a different Part of STEP
Resource Completely through the action_resource and resource entities this information would

be accessed through a different Part of STEP

Resource Requirements for

a Task

Completely through the action_resource_requirements and

requirement_for_action_resource entities the

action_resource_requirement specifies a requirements of a resource for

the performance of an action. It can specify either a particular type of

resource or a characteristic possessed by a resource. The

requirement_for_action_resource specifies the resources which can

satisfy the requirement(s). No quantity is explicitly included.

Simple Groupings Partially through the action_method_to_select_ffom eneity this specifies the

number of action_methods that are available to choose from. A context

can be applied by using the context_dependent_action_

method_relationship entity instead of the action_method_relationship

entity.

Simple Resource

Capability/Characteristics

Completely Through the resource_property entity this is a characteristic of a

resource. NOTE: This is the same construct used for complex resource

characteristics in the outer core.

Simple Sequences Completely through the sequential_method entity each set of action_methods are

completed in a certain order

Simple Task Representation

and Characteristics

Completely through the action, action_method, product_definition_process, and

product_property_process entities an action can be defined by how it

contributes to the creation of a product (product_definition_process) or

in a more general sense by what it is expected to produce irrespective of

what product it is used for (property_property_process)

Task Duration Completely through the action_property entity, you can associate any characteristic

with an action entity

100



Process Specification Language: An Analysis ofExisting Representations

Requirements Part 49 Description

Task Executor Cannot except if you assume a task executor is only a type of resource with no

unique properties

Extensibility Completely Through the creation of an AP that expands on Part 49. Once this AP is

created, it is not extensible.

Resource

Allocation/deallocation for

one or many tasks

Cannot only resource requirements, not allocation

Simple Precedence Partially through the serial_action_method and sequential_action_method entities

the order of the operations can be specified but specific details such as

information requirements scan not

Composition /

Decomposition

Cannot No construct/feature specified.

Incompleteness/Vagueness Cannot No construct/feature specified.

Alternative Task Completely through the replacement_relationship entity an action_relationship that

specifies that a specific action may replace an existing action

Associated Illustrations and

Drawings

Completely through the action_method_with_specification_reference and

action_method_ with_specification_method_constrained entities an

action_method_with_specification_reference is a subtype of an

action_method which specifies a related document an

action_method_with_specification_reference_constrained is a subtype of

an action_method_with_specification_reference that specifies portions

of a document or a constraint on the whole document

Complex Groups of Tasks Completely through the action_method_to_select_ffom entity this just specifies the

number of action_methods that are available to choose from. A context

can be applied by using the context_dependent

_action_method_relationship instead of the action_method_relationship

Complex Resource

Characteristics

Completely Through the resource_property, resource_property_representation, and

resource_ property_relationship entities represents a characteristic of a

resource, this description may include the behavior, capability, or

performance measures that are pertinent to the process or the actions to

effect a process which the resource is used. A way of representing

(realizing) the property is also included.

Complex Sequences Partially through the sequential_method, concurrent_action_method,

context_dependent_ action_method, and serial_action_method entities

Complex Task

Representation and

Parameters

Completely Through the action_property and action_property_relationship entities

description of the behavior, capabilities, or performance measures of

some property (aspect) of the action along with some way of

representing (realizing) the property.

Concurrent Tasks Completely Through the concurrent_action_method entity the individual

action_method in this collection shall be completed during completion

of the action_method with the greatest duration (no start-to-start, finish-

to-finish, etc.)

Conditional Tasks Completely Through the context_dependent_action_relationship and context_

dependent_action_method_relationship entities an association between

two action(_methods)_relationships that specifies a context for the

completion of the action(_method). It uses the

context_dependent_relationship_condition to specify the context and/or

condition.

Confidence Levels Cannot No construct/feature specified.

Constraints Cannot temporal - not really (only through concurrent, serial, and sequential

actions) material - no existence - no

Multiple Duration(s) Cannot no aspects of time are explicitly represented

101



Process Specification Language: An Analysis ofExisting Representations

Requirements Part 49 Description

Date(s) and Time(s) Cannot

Implicit/Explicit Resource

Association

Partially through teh requirements_for_action_resource only explicit associations

which are represented as a set of possible resources

Iterative Loops Cannot can possibly use the context_dependent_action_method_relationship

entity but I have doubts that this will work

Manual vs. Automated

Tasks

Cannot only in the generic description of the action

Manufacturing Product

Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Partially although there is no explicit "parallel task” entity, Part 49 allows you to

specify two separate tasks that are not related to each other

Parameters and Variables Partially EXPRESS - the language Part 49 is written in, can handle them

Pre- and Post-processing

Constraints

Cannot No construct/feature specified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource Categorization

and Grouping

Partially through the requirement_for_action_resource entity there is an attribute

in this entity called ’resources’ which points to a set of action_resources

that can satisfy the requirement(s) of the action

Resource Location Not sure information might be accessible through another Part of STEP but

unsure

Resource/Task Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely through the serial_action_method entity the individual action .methods

shall be complete when the collection of action_methods is complete

State Existence Constraints Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Cannot No construct/feature specified.

Uncertainty / Variability /

Tolerance

Cannot No construct/feature specified.

Ability to Insert or Attach a

Highlight (milestones)

Partially through the action entity you can insert an additional action which just

described the milestone since task durations are not represented in Part

49

Complex Precedence Partially through teh serial_action_method and the sequential_action_method

entities the order of the operations can be specified but specific details

such as information requirements can not

Convey the Ancestry or

Class of a Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Completely through the requirements_for_action_resource entity there is an attribute

called ”resources’ which list the possible resources which can fulfill the

requirements for an action

Exception Handling and

Recovery

Cannot No construct/feature specified.

Information Exchange

Between Tasks

Cannot No construct/feature specified.

Mathematical and Logical

Operations

Completely EXPRESS (the language that Part 49 is written in) can do mathematical

and logical operations using DERTVEd attributes

Support for Task/Process

Templates

Cannot No construct/feature specified.
j

102



Process Specification Language: An Analysis ofExisting Representations

Requirements Part 49 Description

Support for Simultaneously

Maintained Associations of

Mult Lev of Abstraction

Cannot No construct/feature specified.

Synchronization of

Multiple, Parallel Task

Sequences

Cannot No construct/feature specified.

PERT Networks (assuming standard PERT networks,

not probabilistic PERT, GERT, etc. variations)

Requirements PERT Networks Descriptions

ad hoc Notes Cannot No construct/feature specified.

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Cannot No construct/feature specified.

Resource Cannot No construct/feature specified.

Resource Requirements for a Task Cannot No construct/feature specified.

Simple Groupings Cannot No construct/feature specified.

Simple Resource

Capability/Characteristics

Cannot No construct/feature specified.

Simple Sequences Completely No construct/feature specified.

Simple Task Representation and

Characteristics

Cannot No construct/feature specified.

Task Duration Partially deterministic or 3-parameter approx, to beta distribution

typical of most PERT variants

Task Executor Cannot No construct/feature specified.

Extensibility Cannot No construct/feature specified.

Resource Allocation/deallocation for

one or many tasks

Cannot No construct/feature specified.

Simple Precedence Completely precedence in simple directed acyclic graph

Composition/Decomposition Cannot No construct/feature specified.

Incompleteness/Vagueness Cannot No construct/feature specified.

Alternative Task Cannot No construct/feature specified.

Associated Illustrations and

Drawings

Cannot No construct/feature specified.

Complex Groups of Tasks Cannot No construct/feature specified.

Complex Resource Characteristics Cannot No construct/feature specified.

Complex Sequences Cannot No construct/feature specified.

Complex Task Representation and

Parameters

Cannot No construct/feature specified.

Concurrent Tasks Partially parallel tasks in directed acyclic graph

Conditional Tasks Cannot No construct/feature specified.

Confidence Levels Cannot No construct/feature specified.

Constraints Cannot No construct/feature specified.

Multiple Duration(s) Cannot No construct/feature specified.

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit Resource

Association

Cannot No construct/feature specified.

103



Process Specification Language: An Analysis ofExisting Representations

Requirements PERT Networks Descriptions

Iterative Loops Cannot No construct/feature specified.

Manual vs. Automated Tasks Cannot No construct/feature specified.

Manufacturing Product Quantity Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Cannot No construct/feature specified.

Parameters and Variables Cannot No construct/feature specified.

Pre- and Post-processing Constraints Cannot No construct/feature specified.

Queues, Stacks, Lists Cannot No construct/feature specified.

Resource Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Partially No construct/feature specified.

State Existence Constraints Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Partially No construct/feature specified.

Uncertainty/Variability/Tolerance Cannot No construct/feature specified.

Ability to Insert or Attach a

Highlight (milestones)

Cannot No construct/feature specified.

Complex Precedence Cannot No construct/feature specified.

Convey the Ancestry or Class of a

Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling and Recovery Cannot No construct/feature specified.

Information Exchange Between

Tasks

Cannot No construct/feature specified.

Mathematical and Logical

Operations

Cannot No construct/feature specified.

Support for Task/Process Templates Cannot No construct/feature specified.

Support for Simultaneously

Maintained Associations of Multiple

Levels of Abstraction

Cannot No construct/feature specified.

Synchronization of Multiple, Parallel

Task Sequences

Cannot No construct/feature specified.

Petri Nets

Requirements Petri Nets Descriptions

ad hoc Notes Partially you can add any notes you want to a transition or place, it is not

restricted

Cost Data Partially you can add any notes you want to a transition or place, it is not

restricted

Level of Effort Cannot No construct/feature specified.

Product Characteristics Partially colored petri nets, a product can be associated with a specific type of

token and that token can have characteristics

Resource Partially tokens in a coloured petri net. a specific color or type of token in a

coloured petri net can represent resources

104



Process Specification Language: An Analysis ofExisting Representations

Requirements Petri Nets Descriptions

Resource Requirements

for a Task

Partially in a colored petri net, all tokens that are need for a transition to fire, if

different resources are represented by different colors, a transition may

state that it needs a green, red, and yellow token to fire. These are the

resource requirements for the task (transition).

Simple Groupings Completely an entire petri net can be considered a process plan (a simple grouping

of tasks) and can be referenced by other petri nets

Simple Resource

Capability/Characteristics

Partially colored petri nets, a resource can be associated with a specific type of

token and that token can have its respective characteristics

Simple Sequences Completely combination of transitions and places, you can have a simple sequence

by linearly having a place, transition, place, transitions, etc.

Simple Task

Representation and

Characteristics

Completely using an transition box. tasks are called transitions and are represented

by a box

Task Duration Completely with a timed petri net, you can associate delays with either places or

transitions

Task Executor Cannot No construct/feature specified.

Extensibility Completely petri nets have been extended by many people including: stochastic

petri nets colored petri nets predicated petri nets timed petri nets etc.

Resource

Allocation/deallocation for

one or many tasks

Partially when a transition is occurring, not only transition can use the tokens in

which it needed to fire. If these token represents resources, resource

allocation is accomplished.

Simple Precedence Partially you can represent a transition (task) that must be done before another

transition by having the first transition output a token that the second

transition needs in order to fire

Composition /

Decomposition

Completely by having nested and expandable petri nets

Incompleteness /

Vagueness

Cannot No construct/feature specified.

Alternative Task Completely by having multiple output transitions from any given state with only

one token in that state

Associated Illustrations

and Drawings

Cannot No construct/feature specified.

Complex Groups of Tasks Cannot task can be grouped into a system using a petri net but that’s it (this is

more simple than complex)

Complex Resource

Characteristics

Partially if a token represents a resource, you can associate anything you want

with that token

Complex Sequences Completely see conditional tasks, alternative tasks, parallel tasks, concurrent tasks,

serial tasks

Complex Task

Representation and

Parameters

Partially assuming that a transition represents a task, one can associate anything

they want with the transition

Concurrent Tasks Partially only if you use timed petri nets and include the same delays

Conditional Tasks Partially interpreted petri nets, in an interpreted petri net, one can state a

condition that must be true for a transition to fire

Confidence Levels Cannot No construct/feature specified.

Constraints Partially see various constraints listed separately

Multiple Duration(s) Cannot timed petri nets only allow for a single duration associated with any

transition or place

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit Resource

Association

Cannot No construct/feature specified.

105



Process Specification Language: An Analysis ofExisting Representations

Requirements Petri Nets Descriptions

Iterative Loops Completely by having a event that is both the input and output to a transition with

a corresponding criteria

Manual vs. Automated

Tasks

Partially although there are no constructs that convey this, anything can be

associated with a task - including an attribute which states if it is

manual or automatable

Manufacturing Product

Quantity

Partially colored petri nets, the number of a certain type of token which

represents the number of products to be manufacturing can represent

this

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely combination of places and transitions, two transitions don’t have to be

related to each other to be in the same system

Parameters and Variables Completely predicated petri nets, the tokens can themselves be parameters which

are attributed

Pre- and Post-processing

Constraints

Completely places (circles), places represent pre- and post- conditions

Queues, Stacks, Lists Partially FIFO petri nets. First-In-First-Out (FIFO) petri nets keep track of

when a token is put in a place and lets out the first token that came in

first

Resource Categorization

and Grouping

Partially A specific color of token in a colored petri net. All resources that can

perform a specific operation may be represented by a red token. All

red tokens would make up a resource group.

Resource Location Partially if a certain type of token represents a resource, you can associate any

type of attributes you like with that token - including location

Resource/Task Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely place 1 -transition l-place2-transition2 when transition 1 fires, it moves a

token from place 1 to place2. Transition2 cannot fire until place2 has a

token.

State Existence

Constraints

Completely a transition can not fire until all of the tokens in the input places are

present. If you want a state existence constraint, include it as an input

place.

State Representations Completely circles represent states, the tokens in the circles at any given time

represent the state of the system at that time

Temporal Constraints Cannot No construct/feature specified.

Uncertainty / Variability /

Tolerance

Partially stochastic petri nets, uncertainty can be associated with time

Ability to Insert or Attach

a Highlight(milestones)

Partially one can consider any state (place) a milestone. Therefore, any state

can have a milestone associated with it.

Complex Precedence Not sure No construct/feature specified.

Convey the Ancestry or

Class of a Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Partially colored petri nets, one can use colored tokens which represent

resources. Those resources which are of a certain color are eligible.

Exception Handling and

Recovery

Not sure No construct/feature specified.

Information Exchange

Between Tasks

Partially tokens, information can be partially exchanged by using the tokens as

the exchange mechanism

Mathematical and Logical

Operations

Completely interpreted petri nets, can be used for conditions

106



Process Specification Language: An Analysis ofExisting Representations

Requirements Petri Nets Descriptions

Support for Task/Process

Templates

Cannot No construct/feature specified.

Support for

Simultaneously

Maintained Associations

of Multiple Levels of

Abstraction

Partially one can have nested petri nets to represent multiple levels of

abstraction

Synchronization of

Multiple, Parallel Task

Sequences

Completely places, token, and transitions, have the two or more transitions rely on

the same token (output from another transition) to begin

Process Flow Representation (PFR)
Requirements PFR Descriptions

ad hoc Notes Completely :advice. Used for both stylized and completely free form notes in a

property list style. No direct support for non-text (graphics, audio); have

to name a file.

Cost Data Partially quality control, e.g. applications have been written that associate cost of

variation with a process step

Level of Effort Partially no specific construct

Product Characteristics Completely :change-wafer-state

Resource Partially imachine specifies equipment to be used by its name. PFR does not have

sophisticated descriptions of resources (handled in CAFE by a separate

representation language)

Resource Requirements

for a Task

Partially see resource

Simple Groupings Completely (flow (:body stepl step2 ...))

Simple Resource

Capability /

Characteristics

Cannot not in PFR language itself (PFR does not have any sophisticated

descriptions of resources. This is handled in CAFE be a separate

representation language.)

Simple Sequences Completely flow is hierarchically recursive concept (see groups of tasks)

Simple Task

Representation and

Characteristics

Completely all process steps (flow) attributes can be specified at any hierarchical

level

Task Duration Completely :time-required

Task Executor Partially instructions, specify operator instructions

Extensibility Completely :advice

Resource

Allocation/deallocation

for one or many tasks

Partially :machine. specifies equipment to be used by a step

Simple Precedence Completely No construct/feature specified.

Composition /

Decomposition

Completely No construct/feature specified.

Incompleteness /

Vagueness

Completely No construct/feature specified.

Alternative Task Not sure No construct/feature specified.

Associated Illustrations

and Drawings

Partially must point to a file or database object

Complex Groups of

Tasks

Not sure No construct/feature specified.

107



Process Specification Language: An Analysis ofExisting Representations

Requirements PFR Descriptions

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Partially :wafers. specified which wafers (sublot) are to be processed. Thus
serial/parallel can be inferred

Complex Task

Representation and

Parameters

Partially (:delay :minimal) -- flow is uninterruptible see also radvice

Concurrent Tasks Cannot PFR does not have a way to say "these two operations MUST be

performed concurrently". (It would not be hard to add; we have just never

found a specific need for it here.)

Conditional Tasks Partially (if) extension language :advice

Confidence Levels Completely (:mean range) (rgaussian :mean :variance). numerical values can have

uncertainty

Constraints Partially see :advice, confidence level

Multiple Duration(s) Completely see confidence level

Date(s) and Time(s) Partially these are stored in the CAFE database

Implicit/Explicit

Resource Association

Cannot No construct/feature specified.

Iterative Loops Partially (in practice we find operator intervention is always required anyway

Manual vs. Automated

Tasks

Cannot No construct/feature specified.

Manufacturing Product

Quantity

Partially (see rwafer :advice)

Material Constraints Partially named materials

Parallel Tasks Completely

Parameters and

Variables

Completely CAFE database

Pre- and Post-

processing Constraints

Partially (see :advice)

Queues, Stacks, Lists Partially sequence

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely No construct/feature specified.

State Existence

Constraints

Not sure No construct/feature specified.

State Representations Not sure No construct/feature specified.

Temporal Constraints Completely No construct/feature specified.

Uncertainty/Variability/

Tolerance

Completely see confidence level

Ability to Insert or

Attach a

Highlight(milestones)

Completely radvice, "dummy" tasks

Complex Precedence Partially No construct/feature specified.

Convey the Ancestry or

Class of a Task

Partially maybe, not quite sure what you mean by specialization here.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

108



Process Specification Language: An Analysis ofExisting Representations

Requirements PFR Descriptions

Eligible Resources Partially :machines — can specify list of possible resources

Exception Handling

and Recovery

Partially runtime mechanism, usually involves operator intervention

Information Exchange

Between Tasks

Completely use database

Mathematical and

Logical Operations

Completely all standard math plus function (lambda) abstraction

Support for

Task/Process

Templates

Completely functional abstraction to create parameterized flows library/database

search/load mechanism for source/object inclusion

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely No construct/feature specified.

Synchronization of

Multiple, Parallel Task

Sequences

Partially (extension language)

Process Interchange Format (PIF) Core Version 1.1

Requirements PIF Core V. 1.1 Descriptions

ad hoc Notes Partially This requirement is partially filled through the use of the

"documentation" slot and the "user-attributes" that can be attached to

PIF entities.

Cost Data Cannot PIF does not address resource or task cost.

Level of Effort Cannot PIF can say that an activity uses some object, but does not have a

mechanism to quantify the usage.

Product

Characteristics

Partially While PIF can represent objects that are created, modified, or used

during an activity, there is no provision for attaching characteristics to

that object. Represent [a] dependency via Precondition and

Postcondition of an activity. A resource X requires another resource Y if

the Use activity that uses X has as a precondition the availability of the

resource Y
Resource Completely Activities can specify which objects (resources) were created, modified

or used.

Resource

Requirements for a

Task

Partially PIF cannot represent quantity of an object (resource).

Simple Groupings Completely PIF can express grouping of activities through decomposition

relationships, satisfied if the grouping is a deterministic activity, but is

not satisfied in general for nondeterministic activities.

Simple Resource

Capability /

Characteristics

Partially PIF Core does not have an explicit mechanism to describe the

"capability" of an object (when used in the role of resource) but it does

allow for attributes of such objects to be stated. Capability limited to

agents.

109



Process Specification Language: An Analysis ofExisting Representations

Requirements PIF Core V. 1.1 Descriptions

Simple Sequences Completely The use of timepoints and temporal relationships will provide simple

sequences. This requirement is satisfied insofar as we can write the

definition of an activity for simple and complex sequences. However, we
cannot express the definition of simple and complex sequences using

PEF-Core.

Simple Task

Representation and

Characteristics

Completely PIF can represent a task with its effects, conditions, etc. Also, textual

high-level descriptions can be attached via the documentation attribute.

Task Duration Completely An activity can contain begin and end points, but PIF Core itself does

not support quantities for duration. This can be captured, since the

axiomatization of time points in the situation calculus means that time

points are isomorphic to the real numbers.

Task Executor Completely PDF can describe a "performs" relationship between activities and agents.

Extensibility Completely PIF has a "user-attributes" slot defined at the highest level of the

hierarchy that can store user-defined information.

Resource Allocation

/ deallocation for

one or many tasks

Partially Tate’s input that pointed out that specifying individual resource units are

not part of the requirement. PIF can represent objects that are created,

modified, or used during an activity.

Simple Precedence Completely PIF can provide a detailed description of activities’ relationships to other

activities. Temporal, causal, and decompositional relationships can be

used to impose constraints on the precedence.

Composition/Decom

position

Completely PIF supports decompositional relationships between activities. Therefore

activities can be arranged in an abstract, incomplete, or ambiguous

fashion.

Incompleteness/Vag

ueness

Completely PIF supports decompositional relationships between activities. Therefore

activities can be arranged in an abstract, incomplete, or ambiguous

fashion.

Alternative Task Completely PIF’s use of decisions allows for a selection of alternative tasks.

Although decisions can be used to select an activity based on state, this

cannot be used to define arbitrary nondeterministic choices e.g. do A or

doB.

Associated

Illustrations and

Drawings

Partially [a PIF user] can use the documentation or user attribute slots for this.

Complex Groups of

Tasks

Partially This requirement asks for information that goes beyond specifying which

sub-activities occur in a group and asks whether there is explicit

representation about the overall group (total cost, total resources used in

decomposition, etc.) satisfied if the grouping is a deterministic activity,

but is not satisfied in general for nondeterministic activities.

Complex Resource

Characteristics

Cannot See annotation at "simple resource capability/characteristics".

Complex Sequences Completely PIF can handle concepts such as: alternative, parallel, serial, concurrent

activities. Timepoints and temporal relationships provide these

requirements. This requirement is satisfied insofar as we can write the

definition of an activity for simple and complex sequences. However, we

cannot express the definition of simple and complex sequences using

PIF-Core.

Complex Task

Representation and

Parameters

Partially PDF’s highly expressive pif-sentences can be used to give a detailed

representation of what an activity needs and does (hierarchical activities

are considered "grouped"). More specialized charac. (e.g.

uniterruptability) cannot be expressed.

Concurrent Tasks Completely See Complex Sequences Annotation.

110



Process Specification Language: An Analysis ofExisting Representations

Requirements PIF Core V. 1.1 Descriptions

Conditional Tasks Completely PIF uses the entity, decision, to represent a conditional activity.

Confidence Levels Cannot PIF sentences are boolean.

Constraints Completely Activities and objects (resources) inherit constraint slots for such

purposes.

Multiple Duration(s) Partially Activities can express durations through relative begin and end

timepoints.

Date(s) and Time(s) Partially relative begin and end timepoints can be specified.

Implicit/Explicit

Resource

Association

Completely PIF representation of object (resource) component can be interpreted to

some extent as a dependency, (e.g. Object A has components Object B
and C. Therefore using Object A implies using Object B and C as well.)

Represent [a] dependency via Precondition and Postcondition of an

activity. A resource X requires another resource Y if the Use activity that

uses X has as a precondition the availability of the resource Y.

Iterative Loops Completely This can be satisfied using decisions or preconditions and postconditions

of activities.

Manual vs.

Automated Tasks

Cannot No information is explicitly captured for this in the PIF-CORE.

Manufacturing

Product Quantity

Cannot Not in PIF-CORE, sounds like a PSV.

Material Constraints Cannot PDF contains no support for material constraints.

Parallel Tasks Completely See Complex Sequences Annotation. This requirement is satisfied

insofar as we can write the definition of an activity for parallel or serial

tasks. However, we cannot express the definition of parallel or serial

tasks using PIF-Core.

Parameters and

Variables

Completely PIF activities utilize variables in pif-sentences.

Pre- and Post-

processing

Constraints

Completely PIF declares what must be true before an activity is performed and also

asserts what must be true after the activity completes.

Queues, Stacks,

Lists

Partially PIF provides a list structure.

Resource

Categorization and

Grouping

Partially To some extent, PIF can address this by explicitly listing which objects

(resources) each activity uses/creates/modifies. PIF can also describe

which objects are components of other objects, but logical grouping

(outside of activity) seems to be absent.

Resource Location Cannot There is no facility in the PIF-CORE to address this relationship.

Resource/Task

Combined

Characteristics

Cannot There is no facility in the PIF-CORE to address this relationship.

Serial Tasks Completely PDF can order activities in serial. This requirement is satisfied insofar as

we can write the definition of an activity for parallel or serial tasks.

However, we cannot express the definition of parallel or serial tasks

using PIF-Core.

State Existence

Constraints

Completely PIF can constrain when activities can be executed using activity

preconditions.

State

Representations

Partially PIF can describe state changes for activities but not for objects

(resources).

Temporal

Constraints

Partially PIF can relate activities through shared begin/end points, but a PSV is

required to appropriately address temporal relationships (other than

"before"). X to #, BEFORE is available and ... some temporal

constraints can be expressed using the begin and end timepoints.

111



Process Specification Language: An Analysis ofExisting Representations

Requirements PIF Core V. 1.1 Descriptions

Uncertainty/Variabil

ity/Tolerance

Cannot PIF does not have a facility for managing uncertainty.

Ability to Insert or

Attach a Highlight

(milestones)

Cannot Not in PIF-CORE.

Complex

Precedence

Completely The use of preconditions and decisions allows for complex, conditional

activity orderings. This requirement is satisfied insofar as we can write

the definition of an activity for simple and complex sequences. However,

we cannot express the definition of simple and complex sequences using

PIF-Core.

Convey the Ancestry

or Class of a Task

Completely PDF’s decompositional relationships define a hierarchy of specialization.

Deadline

Management

Partially PIF’s activities utilize an activity-status relation which is linked to

timepoints. Therefore PIF can set timepoints for when an activity must

be at a certain status.

Dispatching Cannot This level of object detail is not explicitly represented in PIF.

Eligible Resources Partially In terms of agents (as resources) PIF can explicitly describe their

capability, thus making them eligible. PIF does not provide the

"eligibility" of other non-agent objects.

Exception Handling

and Recovery

Completely PEF’s conditional activities can respond to exception handling and

recovery. Depends on interpretation. PIF cannot (a) while the (b) is

simply a decision activity, (see below) There are two interpretations of

this construct: a) global occurrence constraint which must be satisfied

regardless of what activities are occurring at any point in time.b) a

conditional activity which occurs at specific points during a complex

activity.

Information

Exchange Between

Tasks

Partially The flow can be partially mapped out by illustrating which activities

create/modify/use objects.

Mathematical and

Logical Operations

Completely PIF has a mechanism to derive boolean results for conditionals, etc.

Support for

Task/Process

Templates

Partially PIF does not provide this explicit form of meta element, but PIF design

elements can be reused.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Completely PIF decomposition allows a designer to attach/modify activity

relationships at any level of abstraction.

Synchronization of

Multiple, Parallel

Task Sequences

Partially PDF does not contain any real-time event signaling and notification that

could manage multiple, parallel, activities. X to #: The definition of

synchronized activities does not depend on real-time event signaling and

notification; this only becomes an issue when coordinating agents within

an organization.

112



Process Specification Language: An Analysis of Existing Representations

Quirk Model
Requirements Quirk Model Descriptions

ad hoc Notes
Cannot

No construct/feature specified.

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product

Characteristics

Cannot No construct/feature specified.

Resource Cannot No construct/feature specified.

Resource

Requirements for a

Task

Cannot No construct/feature specified.

Simple Groupings Partially A Q-model consists of a group of processes, which can be thought of as

tasks. Thus, the model itself is a group of tasks. The tasks may only be

grouped provided that they make up a plan, or algorithm, or a system.

Hence, we can’t use Q-model to group tasks based on their functionality,

execution durations, etc.

Simple Resource

Capability /

Characteristics

Cannot No construct/feature specified.

Simple Sequences Partially By lining up the processes connected by synchronous channels, we can

represent a time-sequential groups of tasks.

Simple Task

Representation and

Characteristics

Cannot No construct/feature specified.

Task Duration Partially This may be specified as an "interval estimate for process execution time"

of the process which represents the particular task in question. All time

intervals in a Q-model are supposed to be estimates. Thus, there’s no

explicit construct for actual duration, etc.

Task Executor Partially A task executor can be represented as a "common process" which simply

sends activation signals to the process that is the task it executes.

Extensibility Partially One can certainly change the Q-model as long as the application that

implements it allows. However, changes are not guaranteed to be local, i.e.,

one may need to alter other processes and channels when a new process is

introduced into the model.

Resource

Allocation/deallocat

ion for one or many

tasks

Partially A "selector process" can decide which input channel’s input it wants. Thus,

we can connect the input channels to "common processes" representing

resources, and the input channels that are selected would correspond to

allocated resources.

Simple Precedence Cannot The constraints that apply to the processes in a Q-model are assumed to be

implicit to the processes, and thus, constraints of any sort cannot be

represented by a Q-model.

Composition /

Decomposition

Cannot No construct/feature specified.

Incompleteness /

Vagueness

Cannot No construct/feature specified.

Alternative Task Partially Using "common processes" with channels connected to an "input selector

process," we can represent a list of alternative tasks as those "common
processes."

Associated

Illustrations and

Drawings

Cannot No construct/feature specified.

113



Process Specification Language: An Analysis ofExisting Representations

Requirements Quirk Model Descriptions

Complex Groups of

Tasks

Partially A Q-model consists of a group of processes, which can be thought of as

tasks. Thus, the model itself is a group of tasks. The tasks may only be

grouped provided that they make up a plan, or algorithm, or a system.

Hence, we can’t use Q-model to group tasks based on their functionality,

execution durations, etc.

Complex Resource

Characteristics

Cannot No construct/feature specified.

Complex Sequences Partially Serial tasks can be represented as "common processes" which are

connected, one after another, via synchronous channels. Alternative tasks, as

mentioned above, can be represented with the help of an "input selector

process." Parallel tasks can sort of be represented because two Q-models are

basically two groups of tasks that can occur at any time independent of each

other. Concurrent tasks cannot be represented.

Complex Task

Representation and

Parameters

Cannot No construct/feature specified.

Concurrent Tasks Cannot No construct/feature specified.

Conditional Tasks Partially A "common process" can be thought of as conditional if it receives input

from an "output selector process" which, based on certain algorithm,

determines whether output will be sent to this process.

Confidence Levels Cannot

Constraints Partially Only temporal constraints can be represented. This will be explained below

under "temporal constraints."

Multiple Duration(s) Partially A task’s or a resource’s duration can be represented as the "estimate interval

of execution time" of a process which denotes the task or resource. Multiple

Q-model "processes" are needed to represent multiple durations of one

task/resource.

Date(s) and Time(s) Cannot No construct/feature specified.

Implicit/Explicit

Resource

Association

Cannot No construct/feature specified.

Iterative Loops Partially Iterative loops can be represented by connecting a channel from the last

process back to the first one. The problem is that it is assumed that the

processes have some way of generating output that will cause the

termination of the loop. This terminal condition is not explicitly represented

in a Q-model.

Manual vs.

Automated Tasks

Cannot No construct/feature specified.

Manufacturing

Product Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Partially No explicit construct, but two tasks represented as two different Q-models

can presumably occur at any time independent of each other. Thus, they are

parallel.

Parameters and

Variables

Cannot No construct/feature specified.

Pre- and Post-

processing

Constraints

Cannot No construct/feature specified.

Queues, Stacks,

Lists

Cannot No construct/feature specified.

114



I

Process Specification Language: An Analysis of Existing Representations

Requirements Quirk Model Descriptions

Resource

Categorization and

Grouping

Cannot No construct/feature specified.

Resource Location Cannot No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

Serial Tasks Completely can be represented by connecting that processes serially with channels.

State Existence

Constraints

Cannot No construct/feature specified.

State

Representations

Cannot No construct/feature specified.

Temporal

Constraints

Partially The estimate interval of execution time of a process and dely of input/output

of a process can be used to represent some sort of temporal constraints.

Uncertainty /

Variability /

Tolerance

Cannot No construct/feature specified.

Ability to Insert or

Attach a Highlight

(milestones)

Cannot No construct/feature specified.

Complex

Precedence

Cannot No construct/feature specified.

Convey the Ancestry

or Class of a Task

Cannot No construct/feature specified.

Deadline

Management

Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Cannot No construct/feature specified.

Exception Handling

and Recovery

Cannot No construct/feature specified.

Information

Exchange Between

Tasks

Partially Channels connecting processes allow flow of information among processes.

The problem here is that it can only specify that some information is passed

around, but exactly what it is not explicit in the model.

Mathematical and

Logical Operations

Cannot No construct/feature specified.

Support for

Task/Process

Templates

Cannot No construct/feature specified.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Cannot No construct/feature specified.

Synchronization of

Multiple, Parallel

Task Sequences

Partially Multiple processes may receive inputs from synchronous channels

connected to the same process. These processes may, thus, begin at around

the same time as they receive the same input.

115



Process Specification Language: An Analysis ofExisting Representations

Visual Process Modeling Language (VPML)

1

Requirements VPML Descriptions

ad hoc Notes Completely This is handled by the ’annotations’ construct which is described as text

used for explanation

Cost Data Cannot No construct/feature specified.

Level of Effort Cannot No construct/feature specified.

Product Characteristics Completely These are items that are used, created, modified, and transferred among
activities in a process. This includes documents, messages, and artifacts (a

default category). All of these are modeled using some "subtype" of the

’product’ construct.

Resource Completely through the ’resource’ construct. These are used to model real-world

resources that are required to perform an activity. This could be either

human or non-human resources.

Resource

Requirements for a

Task

Partially a resource type is associated with an activity early on and then a resource

instance is associated later. Resource amount is not explicitly represented

but can be added if necessary.

Simple Groupings Completely grouping of tasks can be done with the ’composite activity’ construct

grouping of resources can be done with the ’group’ construct which is part

of the ’resource’ construct

Simple Resource

Capability /

Characteristics

Completely through the ’resources’ construct

Simple Sequences Completely through the ’finsh_start’ connection

Simple Task

Representation and

Characteristics

Completely through the ‘activity
4

construct. Included in this construct is only the

name of the activity.

Task Duration Cannot No construct/feature specified.

Task Executor Partially each resource can have a ’role’ that specifies how it is related to an

activity. A role for a resource could be ’task executor’.

Extensibility Cannot this is a language requirement anayway so it is insignificant

Resource

Allocation/deallocation

for one or many tasks

Cannot No construct/feature specified.

Simple Precedence Partially you can use the ’data flow’ construct to show the direction that data or

products are moving through the system. Since an activity can’t start until

it receives this data or product, precedence is inferred.

Composition /

Decomposition

Partially composition/decomposition is handles by the ’composite activity’

construct. This allows hierarchial decomposition of activities, which

allows process definers to represent the same process in varying levels of

detail.

Incompleteness /

Vagueness

Cannot Using the ’composite activity’ construct, process definers can represent the

same process in varying levels of detail. Thus, a process with incomplete

information can be represented at a very high level, and so on.

Alternative Task Completely through the ’output_or’ construct

1 An earlier version of VPML was used in the analysis that is described in this paper. Just prior to

publication, ISSI, the developers ofVPML and related tools, contributed a second analysis ofVPML based

on a more recent version. This additional analysis is included here for completeness.

116



Process Specification Language: An Analysis ofExisting Representations

Requirements VPML Descriptions

Associated Illustrations

and Drawings

Completely this is captured by the ’document’ construct which is part of the product’

construct. A document is something that is created, modified, or used as

an activity is carried out.

Complex Groups of

Tasks

Cannot No construct/feature specified.

Complex Resource

Characteristics

Completely through resource attribute specifications

Complex Sequences Partially and/or split can be accomplished through the Input_and’, lnput_or’,

’output_and’, and ’output_or’ constructs. There are no constructs for

conditional tasks. Serial tasks can be represented with the ’finish_start’

construct. Concurrent tasks can be represented with the ’timer’ which

models periodic events of events that happen at a specific time. If two

events happen at the same specific time, they are concurrent.

Complex Task

Representation and

Parameters

Completely allows for attribute specifications

Concurrent Tasks Completely supports temporal synchronization using the ’timer’ construct

Conditional Tasks Completely supports conditional paths using the ’output_or’ branching data flow

Confidence Levels Cannot

Constraints Partially in the simple case yes - when you get to more detailed constraints, no

material constraints - no temporal constraints - yes pre and post condition

- kind_of, in the simple cases state existence constraints - no

Multiple Duration(s) Cannot durations are not represented

Date(s) and Time(s) Completely dates and times are handled by the ’timer’

Implicit/Explicit

Resource Association

Cannot No construct/feature specified.

Iterative Loops Completely iteration is described as a feature ofVPML in the ProSLCSE homepage

Manual vs. Automated

Tasks

Completely an activity can either be a leaf activity (manual) or an automatic activity

(automated)

Manufacturing Product

Quantity

Cannot No construct/feature specified.

Material Constraints Cannot No construct/feature specified.

Parallel Tasks Completely tasks can be in any order with respect to each other

Parameters and

Variables

Not sure No construct/feature specified.

Pre- and Post-

processing Constraints

Cannot No construct/feature specified.

Queues, Stacks, Lists Partially These can be handled by the folder (composite product) construct which

is part of the product construct. A folder is a dynamic collection of

products. When a folder is connected to an automatic activity, the

activity’s script specifies the procedure by which products are extracted

from or inserted into the folder.

Resource

Categorization and

Grouping

Partially resource grouping can be done at both the type and instance level using

the ’group’ construct in the ’resource’ construct resource categorization can

not be represented explicitly but the ’group’ construct can be used to do

this in an ad hoc way

Resource Location Completely the location’ construct in the ’resource’ construct is used to model a

physical place that is need to perform an activity. This could be a location

type (a meeting room) or a location instance (meeting room 200).

Resource/Task

Combined

Characteristics

Cannot No construct/feature specified.

117



Process Specification Language: An Analysis ofExisting Representations

Requirements VPML Descriptions

Serial Tasks Completely through the ’finish_start’ data flow construct

State Existence

Constraints

Cannot No construct/feature specified.

State Representations Cannot No construct/feature specified.

Temporal Constraints Completely the following temporal relationship can be represented: finish_to_start

start_to_start finish_to_finish start_after_start finish_after_finish

Uncertainty/Variability

/Tolerance

Cannot No construct/feature specified.

Ability to Insert or

Attach a

Highlight(milestones)

Completely through the ’milestone’ construct which is described as ’modeling

significant events in a process’

Complex Precedence Cannot simple precedence can be accomplished through data dependencies with

the ’data flow’ constructs but this is the extent of what it can do

Convey the Ancestry

or Class of a Task

Cannot No construct/feature specified.

Deadline Management Cannot No construct/feature specified.

Dispatching Cannot No construct/feature specified.

Eligible Resources Partially you can create a resource group which satisfy a given requirements but

this can only be done manually

Exception Handling

and Recovery

Cannot only through the use of alternative tasks but this really doesn’t cover it

Information Exchange

Between Tasks

Completely This is handled with the ’message’ construct that is a type of the ’product’

construct. Messages are defined as information that is output from or

input to an activity.

Mathematical and

Logical Operations

Not sure insignificant - this is a language characteristic

Support for

Task/Process

Templates

Cannot only machine, tool .location, and group types (or templates) are supported

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Partially For the association of resources with activities, a resource type is

associated with an activity early on and it is instantiated closer to

execution.

Synchronization of

Multiple, Parallel Task

Sequences

Completely This is accomplished through the ’timer’ construct. Temporal

synchronization is a feature advertised in the ProSLCSE homepage.

118



Process Specification Language: An Analysis ofExisting Representations

VPML (Latest release and supporting tools)
1

Requirements VPML Old VPML New Comments

ad hoc Notes Completely Completely No construct/feature specified.

Cost Data Cannot Completely The cost data for each activity and total cost can be

found after process simulation.

Level of Effort Cannot Completely The data of effort can be found after process

simulation

Product

Characteristics

Completely Completely No construct/feature specified.

Resource Completely Completely No construct/feature specified.

Resource

Requirements for a

Task

partially Completely Resource type and amount can be set in process

definition, and be used in process simulation.

Simple Groupings Completely Completely No construct/feature specified.

Simple Resource

Capability/Characteris

tics

Completely Completely No construct/feature specified.

Simple Sequences Completely Completely No construct/feature specified.

Simple Task

Representation and

Characteristics

Completely Completely No construct/feature specified.

Task Duration Cannot Completely Activity duration is an attribute of activities, which

can be set in activity specification in process

definition, and be used in process simulation

Task Executor Partially Completely One or more different roles can be assigned to an

activity. The number of persons in the role should be

specified to indicate how many people would execute

the activity.

Extensibility Cannot Cannot No construct/feature specified.

Resource Allocation /

deallocation for one

or many tasks

Cannot Completely Explicitly support resource allocation for one or more

activities.

Simple Precedence Partially Completely directed graph approach

Composition /

Decomposition

Partially Partially No construct/feature specified.

Incompleteness /

Vagueness

Cannot Completely VPML provides completeness check to ensure a

process is completed or not.

Alternative Task Completely Completely No construct/feature specified.

Associated

Illustrations and

Completely Completely No construct/feature specified.

1 An earlier version ofVPML was used in the analysis that is described in this paper. Just prior to

publication, ISSI, the developers of VPML and related tools, contributed a second analysis of VPML based

on a more recent version. This additional analysis is included here for completeness. This analysis shows

the changes made and comments where there are differences. No approval or endorsement of any

commercial product in this paper by the National Institute of Standards and Technology is intended or

implied.

119



Process Specification Language: An Analysis ofExisting Representations

Requirements VPML Old VPML New Comments

Drawings

Complex Groups of

Tasks

Cannot Completely Via composite activities and logical connectors.

Complex Resource

Characteristics

Completely Completely No construct/feature specified.

Complex Sequences Partially Partially No construct/feature specified.

Complex Task

Representation and

Parameters

Completely Completely No construct/feature specified.

Concurrent Tasks Completely Completely No construct/feature specified.

Conditional Tasks Completely Completely No construct/feature specified.

Confidence Levels Cannot Cannot No construct/feature specified.

Constraints Partially Partially No construct/feature specified.

Multiple Duration(s) Cannot Completely Duration is an attribute of an activity, there are six

kinds of distributions are available for users to

describe task duration.

Date(s) and Time(s) Completely Completely No construct/feature specified.

Implicit/Explicit

Resource Association

Cannot Not Sure One or more resources can be assigned to one or more

manual activities. The amount for each resource can

also be specified.

Iterative Loops Completely Completely No construct/feature specified.

Manual vs.

Automated Tasks

Completely Completely No construct/feature specified.

Manufacturing

Product Quantity

Cannot Completely The number of products that will be produced can be

calculated in process simulation.

Material Constraints Cannot Cannot No construct/feature specified.
,

Parallel Tasks Completely Completely No construct/feature specified.

Parameters and

Variables

Not sure Partially There are many parameters can be filled in for

activities, products, resources, etc. in process

definition. The process will be simulated based on

these parameters

Pre and Post-

Processing

Constraints

Cannot Not Sure The basic pre-condition of an activity is required

resource and input product available; The basic past

condition of an activity is output product produced

and takes the amount of duration time.

Queues, Stacks, Lists Partially Completely Each data flow between an activity and leaf product

has a queue to indicate how many instances in the

product at simulation time.

Resource

Categorization and

Grouping

Partially Partially No construct/feature specified.

Resource Location Completely Completely No construct/feature specified.

Resource/Task

Combined

Characteristics

Cannot Cannot No construct/feature specified.

Serial Tasks Completely Partially Through timer and timer connection.

State Existence

Constraints

Cannot Partially If an activity does not get enough input product, it in

pending state; If it gets get enough input and wait for

resource, it is in ready state; An activity can be active,

it must have enough resource and input product.

State Representations Cannot Partially An activity has following states at least: Pending,

120



Process Specification Language: An Analysis ofExisting Representations

Requirements VPML Old VPML New Comments

Ready and Active.

Temporal Constraints Completely Partially Using timer and timer connection.

Uncertainty /

Variability /

Tolerance

Cannot Partially Output-or connector is introduced in current VPML,
which can be connected with activity and product. The

probability can be set for each output branch of the

connector. Which product will be produced depends

on the execution of process simulation.

Ability to Insert or

Attach a Highlight

(milestones)

Completely Completely No construct/feature specified.

Complex Precedence Cannot Not Sure No construct/feature specified.

Convey the Ancestry

or Class of a Task

Cannot Cannot No construct/feature specified.

Deadline

Management

Cannot Cannot No construct/feature specified.

Dispatching Cannot Cannot No construct/feature specified.

Eligible Resources Partially Not Sure No construct/feature specified.

Exception Handing

and Recovery

Cannot Cannot No construct/feature specified.

Information Exchange

Between Tasks

Completely Completely No construct/feature specified.

Mathematical and

Logical Operations

Not sure Partially VPML has input-or, input-and, output-or, output-and

to represent the logical connection.

Support for

Task/Process

Templates

Cannot Partially User can build template in one process, and

copy/paste to another process.

Support for

Simultaneously

Maintained

Associations of

Multiple Levels of

Abstraction

Partially Not Sure No construct/feature specified.

Synchronization of

Multiple Parallel Task

Sequences

Completely Completely No construct/feature specified.

Business Practices,

Rules, Constraints

Partially Timers can be connected to activities. While batch

activities include by-time and/or by-amount controls

Configuration

Management

Information and

Processes

Partially Resource types can be defined and assigned.

Customer-driven

Process Specification

and Constraints

Completely Stream-like source products can be defined.

Priority Attributes Completely Each activity has a priority attribute.

Representation of the

Origin of Task(s)

Partially Can be described in activity’s specs.

Analysis

Characteristics

Completely ProSimulator provides simulation and analysis

capability.

Critical Task Completely At modeling time, the priority attribute can be used to

describe activity’s significance; while at simulation

121



Process Specification Language: An Analysis ofExisting Representations

Requirements VPML Old VPML New Comments

time, the statistic report shows the data such as costs,

waiting time, running times and so on.

Predictive and Time-

dependent Resource

Availability

Partially Timer, activity and resource types can be used.

Prescriptive Task

Behavior

Partially Common activities have an attribute describing the

estimated procedure.

Task/Process

Performance

Measurement

Completely ProSimulator can be used to simulate a process model.

Dynamic Model

Modification

Cannot No construct/feature specified.

Optimization Partially Optimization can be done manually according to the

simulation analysis.

Resource/System/Proc

ess Monitoring and

Feedback

Partially ProSimulator provides animation capability.

Support for

Validation of the

Entire Process Plan

Completely via simulation

Tracking of Changes

in the System

Cannot No construct/feature specified.

Resource Amount and

Availability

Completely Resource planning in ProBuilder

Resource

Interruptions

Completely Resource can be deprived when needed by a higher

priority activity.

Event Signaling and

Notification

Partially Timer event can be triggered to control the input of an

activity. Activities can be connected by dataflow

and/or reference controls via products

Resource Behavior

During Processing

Cannot No construct/feature specified.

Track In-progress

Goods

Cannot No construct/feature specified.

Task/Process Purpose Partially Each activity has a text attribute for its description of

purpose.

Characteristics of

Groups of Resources

Completely Resource types can be defined from categories such as

Role, Machine Type, Location Type and Tool Type.

Implicit Task

Association

Partially via connections like dataflows and references.

Parallelism Completely Activity cloning happens whenever enough resources

are available.

Stochastic Properties Partially Different distributions such as constant, normal, etc.

can be defined in stream-like source products.

Output connector can be used to conduct activity’s

output to different out-going paths.

Uncertainty of

Sequences

Completely A given seed can be used to create a stream for each

random variable.

Simulation - queue

entry and exit rates

Completely Available from simulation reports.

Workflow - manual

vs. automatable tasks

Completely Manual activities can be accomplished by human

roles, while automatic activities can be performed by

122



Process Specification Language: An Analysis of Existing Representations

Requirements VPML Old VPML New Comments

machines and tools.

Workflow - invoked

tool capability

Completely Tool types can be connected to any product.

Workflow - support

specifications of task

structure (control

flow)

Completely Composition and decomposition of activities.

Project Management -

work breakdown ids

Completely Each activity can be numbered by a work breakdown.

123







$


