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Abstract

During rapid solidification, solute may be incorporated into the solid phase at a concentration

significantly different than that predicted by equilibrium thermodynamics. This process, known as

solute trapping, leads to a progressive reduction in the concentration change across the interface

as the solidification rate increases. Theoretical treatments of rapid solidification using traditional

sharp-interface descriptions require the introduction of separately-derived non-equilibrium models

for the behavior of the interfacial temperature and solute concentrations. In contrast, phase-field

models employ a diffuse-interface description, and eliminate the need to specify interfacial conditions

separately. While at low solidification rates equilibrium behavior is recovered, at high solidification

rates non-equilibrium effects naturally emerge from these models. In particular, in a previous study

we proposed a phase-field model of a binary alloy [Wheeler et al., Phys. Rev. E 47 (1993) 1893]

in which we demonstrated solute trapping. Here we show that solute trapping is also possible in

a simpler diffuse interface model. We show that solute trapping occurs when the solute diffusion

length, Di/V, is comparable to the diffuse interface thickness. Here V is the interface velocity, and

Di characterizes the solute diffusivity in the interfacial region. We characterize the dependence of

the critical speed for solute trapping on the equilibrium partition coefficient ks that shows good

agreement with experiments by Aziz and coworkers [see Aziz, Metall. Mat. Trans. 27A (1996) 671],

We also show that in the phase-field model, there is a dissipation of energy in the interface region

resulting in a solute drag, which we quantify by determining the relationship between the interface

temperature and velocity.
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1 Introduction

Sharp interface models of alloy solidification employ the solution to the conventional diffusion equations

for heat and solute in the bulk phases. The matching of solutions at the solid-liquid interface is obtained

(a) from the flux conditions required for conservation and (b) through constitutive laws for the interface

temperature and the jump in concentration across the interface as functions of velocity. The latter

are obtained from separately-derived models of the solute diffusion across the atomic layers associated

with the interface; see, for example, the continuous growth (CG) model of Aziz and coworkers [1, 2, 3]

as well as others [4, 5, 6, 7, 8, 9]. The velocity dependence of the jump in concentration is termed

solute trapping and provides a mechanism whereby the jump vanishes at high rates of solidification in

a manner consistent with experimental observations (partitionless solidification).

While this modeling approach has met with considerable success, it is clear that at high rates

of solidification V (around 1 m/s), the diffusion length Dl/V ,
where Dl is the diffusion coefficient

in the liquid, that is predicted by the conventional diffusion equation is comparable to the interface

thickness for metals. At such length scales diffuse interface theories (see, e.g., Cahn & Allen [10, 11]

and Cahn & Hilliard [12]) are often found to provide more reasonable descriptions of the diffusion

process in and around the interfacial region. The phase-field model presented in this paper provides

a common framework for modeling both the bulk phases and the interfacial region, and for avoiding

the requirement for separately-derived constitutive laws for the interface conditions. The composition

profile through the interfacial region, as well as in the bulk phases, is obtained through this method.

Many of the ingredients of the phase-field approach to solute trapping can be found in the con-

tinuum interface models of Baker & Cahn [13, 14, 15] and Hillert & Sundman [16] (for solid state

transformations). They compute the velocity-dependence of the concentration profile across a moving

diffuse phase boundary for a prescribed chemical potential profile. The latter also make a separate

analysis of the free energy available for, and that dissipated by, the boundary motion. The energy

dissipated is called solute drag, a subject also treated by Cahn [17]. As we will see in this paper, solute

trapping and solute drag are included in the phase-field governing equations that arise naturally out

of gradient flow thermodynamics.

The phase-field model for modeling solidification uses a scalar variable (/) (the phase field) to describe

the thermodynamic state (liquid or solid) of the various regions of a system. Interfacial regions between

liquid and solid are identified by smooth but highly localized transitions of the phase-field variable. For

numerical calculations, the advantage of the phase-field formulation of solidification is that the interface
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is not tracked but is given implicitly by a contour of the variable 4>. Phase-field models of solidification

for pure materials have existed for many years [18, 19, 20]. With recent advances in supercomputing this

approach has allowed the computation of realistic complicated growth morphologies such as dendritic

growth [21, 22, 23, 24, 25, 26, 27].

For alloys, a model for diffuse interface motion in a system with a miscibility gap in a solid solution

phase has been treated by Langer & Sekerka [28]. However, only recently has the phase-field method

been extended to alloy solidification. Application to alloy solidification was performed for an isothermal

binary alloy by Wheeler, Boettinger, & McFadden [29] (WBMl), who also studied its properties in the

sharp interface limit. Lowen, Bechoefer, & Tuckerman [30] also discuss the formal analogy between an

isothermal binary alloy phase-field model and the non-isothermal phase-field model for a pure material.

Caginalp & Xie [31] described a phase-field model of a non-isothermal binary alloy. They studied a

variety of different sharp interface limits and recovered versions of the equilibrium conditions at a

sharp interface, none of which exhibited solute trapping. Lin & Rogers [32] have also studied an order

parameter model for a binary liquid that is based on the general framework developed by Fried & Gurtin

[33, 34] for order parameter models that describe configurational forces [35]. Realistic simulations of

alloy dendritic growth have been performed by Warren & Boettinger [36]. Phase-field models have also

recently been developed for eutectic alloys, by a number of workers [37, 38, 39, 40, 41].

The phase-field model of a binary alloy in WBMl is based on a single gradient energy term in

the phase-field variable
(f)

and constant solute diffusivity. The phase-field then varies through the

interfacial region on a length scale te that is associated with the gradient energy coefficient e. We

examined the sharp interface limit in which £e is much smaller than the diffusion length Dl/V
,
and

recovered the conventional sharp-interface jump conditions based on local equilibrium assumptions. In

particular, solute trapping was not found to be possible in this limit. In subsequent work [42] (WBM2),

we developed a phase-field model of solute trapping in a binary alloy which included gradient energy

terms in
(f)
and the solute concentration c. In the WBM2 model, the phase field and solute field have

independent length scales £e and is, respectively, in the interfacial region, that are associated with

the corresponding gradient energy coefficients e and 6. We considered a limiting situation £c <C Is,

and demonstrated that in the resulting model solute trapping occurs when the diffusion length Dl/V

becomes comparable to Is- WBMl and WBM2 both considered the case of equal solid and liquid

diffusivities.

In this paper we reconsider our first model (WBMl) and show that solute trapping is indeed

predicted, but in a different limit in which the interface thickness remains finite but the interface
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velocity is large enough that the solute diffusion length is comparable to i£ (first briefly reported in

[43], and described in detail in [44]). In particular, solute trapping can be recovered without the

necessity of introducing a solute gradient energy term. Because we now also include the possibility

of a variable diffusion coefficient through the interface, the relevant diffusion length is D//F, where

Di is a measure of the interface diffusivity. We are able to relate our results to the Aziz CG theory;

in particular, we obtain a prediction for the dependence of the characteristic trapping velocity on the

equilibrium partition coefficient which is in good agreement with recent experiments [45].

Conti [46, 47] has extended the WMB2 model to include nonisothermal and time-dependent ef-

fects and found that the transient solute segregation at the interface can differ significantly from the

predictions of the CG model. Fife & Charach [48] have studied a number of different sharp interface

limits for a class of phase-field models of a binary alloy which include WBM2 as a special case. The

solute trapping they observe is related to the solute gradient energy as in WBM2. Plapp & Gouyet

[49] have considered mean-field equations derived from lattice gas models, and examined numerically

the isothermal dynamics of planar solidification; they observe oscillations of the growth velocity during

solidification.

Conti [50] and Kim, Kim, & Suzuki [51] have also independently considered solute trapping in the

context of the WBM1 model, with similar conclusions concerning the mechanism of solute trapping

based on numerical computations. Conti has extended the model to include nonisothermal effects and

computed one-dimensional, time-dependent solutions for planar growth that show good agreement with

predictions of the CG model. Kim, Kim, & Suzuki derive an approximate analysis for the effect of

trapping at low velocities, and obtain good agreement with low-velocity numerical calculations.

The outline of this paper is as follows. In Section 2 we describe the general characteristics of

existing solute trapping and solute drag models in our notation and compare them in a general way

to the phase-field approach. In Section 3 we summarize the details of the phase-field model that we

consider. Section 4 presents numerical calculations for one-dimensional solutions of the phase-field

equations that exhibit solute trapping at high solidification rates. Some asymptotic results in the high-

velocity limit are given in Section 5 that reinforce the numerical results and provide explicit expressions

for the characteristic velocity at which solute trapping becomes important. A discussion is provided in

Section 6, and conclusions appear in Section 7.
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2 Overview of Trapping and Phase-Field Models

2.1 Trapping Models

Binary alloy solute trapping models are based on an analysis of diffusional jumps across the interface.

For this purpose the driving forces for diffusion and crystallization are required. We consider free energy

densities in the liquid and solid phases, which we denote by fl{cl ,
T) and fs{cs, T), respectively, where

T, cl, and cs represent the temperature and the concentrations (mole fractions) of species B in the

liquid and solid phases at the liquid-solid interface. 1

The chemical potentials of species A and B in each phase are given by

A ~ /l(cl, T) - cl-q^-(cl ,T),

A = fUcL,T) + (1 - cl)~^{cl ,T),

A = fs(cs,T)~ cs^(cs, T),

A - fs( cs, T) + (1 - cs)-t^{cs ,T).

(1)

(2)

(
3

)

(
4

)

Thermodynamic equilibrium at the interface is expressed by equality of the chemical potentials, A —

A and A = A’ which can be represented graphically by a common tangent construction in f-c

space at fixed T. Equivalent conditions are often expressed in terms of the interdiffusion potentials

A — A ~A ~ dfLldcL and A — A ~A ~ dfs/dcs in each phase, and the free energy change on

solidification, AFs, defined by

AFS = fs{cs,T)- {/L(cL ,r) + (cs-cL)|^(ci,T))

= C
1 ~ cs) {A( cs,T) - A( cl,T)

}
+ cs |/i|(c5 ,T) - A( cl,T)

}
. (5)

This expression represents the free energy change per unit volume associated with removing material

of composition cs from the liquid and adding it to the solid phase, and is known as the tangent to

curve rule [14]. Equivalent equilibrium conditions are then given by

A~A = 0, AFs = 0. (6)

1
For simplicity we assume a constant molar volume vm in the system, which eliminates possible convective effects, such

as those associated with a density change on solidification. The free energies and their associated chemical potentials are

measured in units of energy per unit volume.
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In the dilute solution limit, the equation /J.
L — /j,

s = 0 results in the expression cs = that defines

the equilibrium partition coefficient ks in terms of the free energies, and the equation AF$ = 0 results in

an expression for the liquidus temperature T — Tm + ^lcl, that defines the liquidus slope in terms

of the free energies, where Tm is the pure solvent melting point. Under non-equilibrium conditions, non-

zero values of the quantity [i
L — \i

s and the free energy change on solidification AFs are interpreted as

driving forces for solute distribution and phase change, respectively. These lead to response functions

[14] that provide non-equilibrium relations between cl, cs ,
T, and the interface velocity V

.

The

response functions define kinetic laws that reduce to the above equilibrium conditions (6) when V = 0.

2.1.1 Expressions for the Partition Coefficient

A simple example of a non-equilibrium model for solute segregation can be obtained by assuming that

the jump in interdiffusion potential actually occurs over a small interface width l, typically of atomic

dimensions, to create a gradient V/x ~ (fi
L — ^

s
)/i and a diffusion flux J of solute across the interface,

measured in the reference frame of the sample, as

(/ - M
S
) _

/
’

-M0 r NJ = cl{ 1 - CL )-
(
7 )

here we have arbitrarily inserted a “thermodynamic factor” ofc.£,(l — cx,)in order to simplify the result-

ing expressions below, while retaining generality by allowing for a possibly concentration-dependent

mobility coefficient Mo- For steady-state growth at velocity V, the flux must also satisfy a solute

balance law,

j = (cl - Cs),
Vm

where vm is the molar volume. Combining these expressions gives

- fx
s = -V-

(cl - Cs)t

(8)

(
9

)M0cl{ 1 - cl)’

which in the dilute solution limit leads to a relation for the partition coefficient k — cs/cl of the form

Hk/kE ) = A(i _ *), (
10

)

where Vd = Di/l is a characteristic trapping velocity with an interface diffusivity Dj — MqRT

/

vm ,
and

R is the universal gas constant. This expression exhibits the low velocity limit A: « &E for V'/Vd < 1

and the high velocity limit k « 1 for V/Vd > 1.

Baker & Cahn [14] and Hillert & Sundman [16] analyze diffusion through the interface with contin-

uum models that make assumptions about the details of the variation of the interdiffusion potentials
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and the diffusion coefficient through the interface. In contrast, the CG model of Aziz is based on a

model of forward and reverse fluxes across the interfacial region using chemical reaction theory such

that J is nonlinear in the quantity /z
5 — fi

L
. We note that linearization of their expression for J leads

to a prefactor of 05(1 — cE )
in Eq. (7). In the CG model the partition coefficient k depends on the

interface velocity through an expression of the form

kE + V/VD
1 + V/VD

(
11

)

in the dilute solution limit for kE < 1. Here VE represents the characteristic interface velocity scale on

which the solute trapping occurs. The quantity VE is given by Di/

i

where Dj represents an interfacial

diffusivity and i is the thickness of the interface, equal to the atomic jump distance. Since, however,

Di is not subject to direct experimental determination, the value of VE cannot be measured directly.

Instead, values for VE are inferred by fitting the observed dependence of k on V using the expression

(11). By studying trapping in a number of alloys, Smith & Aziz [45] have found that the trapping

velocities VE depend on the particular alloy. In particular, VE was found to correlate most strongly

with the equilibrium partition coefficient kE \
VE was not found to correlate strongly with either the

liquid diffusivity Dl or the solid diffusivity Ds Smith & Aziz [45] also consider a multi-step CG

formulation in which the interface consists of a finite number of discrete layers that, in the proper

limit, resembles a diffuse interface.

The Aziz CG model has been extended to kE > 1 [52]. The appropriate expression for k can also

be derived using the formalism of Ref. [53] to give

1/7 l/kE + V/VD
’

1 + v/vD
(12)

in the dilute solution limit. This form is similar to that of (11), but involves instead the reciprocals of

k and kE . The expressions
(
11

)
and (12) are based on a redistribution potential diagram in which a

barrier height is assumed to maintain a fixed distance above the higher of the two double- well minima

(see [53]). Most of the available experimental data pertain to the case kE < 1
,
although in this paper

we shall also briefly consider the case kE > 1 for completeness.

Note that the CG expression
(
11

)
for kE < 1 can be expressed in the form

k - kE = —(1 - k ), (13)

which exhibits the same high and low velocity limits as the expression (10). Indeed the two become

identical when kE tends to unity.

7



2.1.2 Expressions for the Interface Temperature

Expressions for the interface temperature can be derived from models involving the change in free

energy density upon solidification, AFs- For example, a model that relates the interface velocity to

the driving force AFs [54] is given by

Vm&FSV = Vc 1 — exp
Vm AFSY
RT )_

-vc -

RT (14)

where Vc is the maximum speed of crystal growth at infinite driving force. Such a model assumes that

the entire free energy change upon solidification can be devoted to driving the solidification. So-called

solute drag models assume that a fraction of AFs is dissipated at the interface; the amount dissipated is

denoted by AFd- The driving force for solidification is then assumed to be provided by the remainder,

denoted by AFc — AFs — AFp, leading to an alternate expression of the form

V = VC 1 ,
Vm AFc \

1 ~~ eXp
RT j]

-v.
(Ai(s - AFp)

RT

Aziz & Kaplan [3] consider a specific model for the interface dissipation given by

AFd = (cL - cs) {[h
s
a (cs ,T) - ha (

cl,T)][hb(cs ,T) - Mb( cIoT)]}.

In both cases an expression for the interface temperature of the form

T = Tm +
mLCoo / 1 - k + [A: + (1 - k)a] Inffc/fcg)^ V

(15)

(16)

(17)
k \ 1 - ks J

can be derived in the dilute solution limit [54]. Here a = 1 if solute drag is included and a = 0 if solute

drag is negligible. The parameter a may also be interpreted as a measure of the concentration of the

material transferred from the liquid to the solid state [54]. The equilibrium liquidus slope is mi,, and

the kinetic coefficient Ji is given by

\i =
VcL

Rt2m
(18)

in these dilute models, where L is the latent heat per mole of the pure solvent.

It is useful to consider in more detail the solute drag. The energy dissipated per unit volume per

unit time due to diffusion through the interfacial region is obtained by considering the term

V = — J • V/i. (19)

across the interface. For steady-state solidification, the energy dissipated per unit volume solidified is

given by [16, 3]

dn
-p

_'^rn
f j . ^

V J-oo
J

dx
(20)
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AFd as given by Eq. (16) is an approximation to Eq. (20) (see Aziz & Kaplan [3]). Agren [55] has

proposed a model for AFp where cl in the prefactor in Eq. (16) is replaced by the mean of cl and

cs This yields a value of a = 1/2 in the expression (17). Hillert & Sundman evaluate the solute

drag directly using the solutions to their diffusion equations [16]. Gurtin and Voorhees [56] develop a

general thermodynamic description of a sharp interface far from equilibrium which includes discussion

of forces, fluxes, and solute drag. Liu [57] provides a compact summary of solute drag models for

solidification.

2.2 The Phase-Field Model

The WBM1 model [29] is based on the Helmholtz free energy functional given by

T = /Jn
f(4,,c,T)+- |V0|

:

dV, (21 )

where fi is the volume occupied by the system and the gradient energy coefficient e
2

is assumed to

be constant. The phase-field variable vanishes in the liquid phase, and is unity in the solid phase.

In the phase-field model for a binary alloy, the free energy density f(cf),c,T )
is based on the bulk free

energies fi, and fs and can be written in the form

/(c, T, 0) = r(4>)fs(c, T)+{ 1 - fL (c, T) + (22)

where

g(<t>) = <t>

2

{ 1-<I>)
2

, pW = 4>
2
(3-2<t>); (23)

g(cp) is a double well with minima at cf>
= 0 and 4> — 1, and p(</>) satisfies p(0) = 0 and p( 1) = 1. W(c

)

represents a barrier height that is related to the surface energy and interface thickness [29]. In either

of the bulk phases, g(4>) vanishes and /(</>, c,T) reduces to the bulk free energy density fi, or fs-

The governing equations are chosen to ensure that the Helmholtz free-energy functional T is mono-

tonicly decreasing in time, and to conserve the total solute within the system, by putting

d(f

dt
(24)

| = V.M2 (c(1- £)V§Q. (25)

where Mi > 0 and M2 > 0. The constant M\ is related to the interface kinetic coefficient (see Eq. (48)

below), and the solute mobility coefficient M2 is related to the solute diffusivity D (see Eq. (49) below).
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We now cast these governing equations in a different form to enable comparison to existing trapping

models. In a frame moving with velocity V, the steady-state 1-D phase-field equations have the form

-V d<t>

Mi dz

-V dc

Vm dz

= e
dz2

d(j)

dJ

dz ’

(26)

(27)

and the flux J is defined in terms of the interdiffusion potential fi = df/dc by

vmJ = — c(l - c)M2 (28)

We assume the interfacial layer extends over the range —1/2 < z < 1/ 2, where to a good approximation

the solute field varies from cs to cl and the phase field assumes its far-field values.

2.2.1 Driving Force for Solute Redistribution

The solute equation (27) can be integrated once to yield

— (c - cs )
= J

, (29)%
where we have assumed that the flux vanishes in the solid where c = cs Using the definition (28), this

expression can be manipulated to obtain

dfi _
- vmJ _ -V(c-cs) . .

dz c(l — c)M2 c(l — c)M2
’

and integrating over the layer gives

Kcl) - Kcs) - -vf/
1

'/ iz (31)

This expression has the from of a response function analogous to Eq. (9) that relates the driving force

for solute redistribution, h(cl) — /i(cs), to the interface velocity, with a concentration-dependent factor

given by the integral over the interfacial region. Evaluation of Eq. (31) ultimately leads to the velocity

dependence of the partition coefficient k(V).

2.2.2 Driving Force for Phase Change

Next we multiply the phase-field equation (26) by d(f>/dz and integrate to obtain

—V r
+l12

0 e r 9 i //2 r+H 2

mT
iz =

2 W -m -L/2

dz - (32)
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We then integrate by parts twice to obtain

where we have written
fj.
— df/dc. The latter integral may be rewritten using Eq. (29) to give

(33)

If we set

and

we obtain

where

J_i/2
Mz dz = [f-(c- cs)fc }

l

_!l 2 + vl-
+1/2

1/2

[+1/2
, 2

a = 4>z dz « /
(f>z dz « constant

J—1/2 J— oo

J flz dz.

Aifs = f(cs) - [/(cl) + (cs - Cl)/c(cl)]

(34)

(35)

(36)

(37)

(38)

is the free energy change upon solidification. This expression has the same form as Eq. (15), with a

dissipation term of the form (20).

We anticipate therefore that analysis of solute trapping with the phase-field model will closely

parallel results obtained by previous models. The approximations and/or assumptions made in previous

trapping models regarding the behavior of the interdiffusion potential across the interface arise in a

natural way from the underlying formulation of the phase-field model. Similar expressions for the

difference in chemical potentials across the interface and free energy change upon solidification have

been derived for the WBM1 model independently by Kim, Kim, & Suzuki [51]. We next describe the

phase-field model in more detail.

3 Identification of Material Parameters

The Helmholtz free-energy volume density /(</>, c; T) in Eqn. (22) can be written in the equivalent form

= cfg(4,,T

)

+ (1 - c)fA (tp, T) + —/(c), (39)
Vm
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where the function 1(c) = c In c + (1 - c) ln(l - c) is related to the entropy of mixing. The functions

fA (<f>,T) and /g(<£, T) represent the free energies of the pure materials A and B respectively with cor-

responding freezing temperatures TA and Tg
,
which we assume satisfy Tg < TA - They are represented

by double-well potentials with respect to
(f>,

as used by Kobayashi [21],

T) = Wj
J*

u[u -!][*- 1/2 - MT)] du = ^ g(4> ) + (40)

for j = A, B, where

9(<f>)
= 0

2
(1 ~

<£)
2

, v(<t>) = 0
2
(3 - 2 <£); (41)

note that g(<f>) is a double well with minima at
<f)
= 0 and <j> = 1, and p((f>) satisfies p(0) = 0 and

p( 1) = 1. Here WA and Wg are constants, and the temperature T is a parameter in this isothermal

situation. We assume that Tg < T < TA ,
and that —1/2 < Pa(T) < 0 < /3g(T) < 1/2. The constants

WA and Wg may be related to the surface energies, aa and erg, and the interface thicknesses, la and

.£g, for the pure components [29], e.g.,

aA = Ia =
s/Wj2’

(42)

or

e
2 = 6 aA lA ,

WA = l2aA/lA , (43)

and the functions Pa(T) and /3g(T) may be related to the latent heats, e.g.

™m = LASZd&, (44)

where LA is the latent heat per unit volume of pure component A. Note that since we assume a constant

value for e, we have the constraint oaLa — &bLb', in particular, assuming in addition that any one of

the equalities Wa — Wg, aa = &b, or La — Lb holds implies that the other two hold as well.

For the case of pure A, the one-dimensional phase-field equation

has the traveling-wave solution

for a specific velocity given by

1 d<f> 2 d
2
4>

M\ dt
~ e

dz2 U (45)

i 1 [\ .
( z - VtY

^i 1 tanH 2^ )]’
(46)

V = -MlCf3A (T)^2W2. (47)

12



(48 )

This has the form V = Ha(Ta — T), with a kinetic coefficient /za given by

QMiLa^a
VA =

The solute diffusion coefficient D has the form

Ta

D = M2—

.

(49)

A constant value for the solute mobility coefficient M2 results in a solute diffusion coefficient that is

constant throughout the system.

To treat unequal diffusivities in the liquid and solid phases [36], the solute mobility coefficient must

be assumed to depend on <j>, leading to an expression for D(p) that takes the appropriate limiting

values in each phase. One choice is obtained by linear interpolation of the bulk diffusivity through the

interface,

D{(f)) - Ds r(cf))+ Dl [1 - r (</>)}, (50)

where r(</>) is a suitable smooth function with r(0) = 0 and r(l) = 1; for example, r(<p) = </>. Another

possibility is to linearly interpolate In D through the interface, which is consistent with a linear inter-

polation of activation energies if Arrhenius expressions are assumed for the solid and liquid diffusivity.

This produces the expression

'Ds\rW
D(4>) = DL (

Dl
(51)

which we also examine in our numerical computations.

Our numerical and asymptotic results provide a verification that the solute trapping occurs at a

characteristic velocity Vp ~ Di/Ia ,
where the interfacial diffusivity Di is approximately given by the

value of D(4>) at cf>
= 1/2. This suggests the consideration of a three-parameter model for the diffusivity

in which D{ 1/2) = Di appears as a parameter independent of Ds and Dl, as in

D(<fr) = Dsr(<f) + Dl {1 - t{$)
} + {D, - [DL + Ds ]

r(l/2)} s(0), (52)

where s(0) is a smooth function that vanishes for
<fi = 0 and cp = 1 and is unity for <p = 1/2; an example

is given by the basic double well potential s(p) — 16 g(<f>). We also include numerical results for D(p)

of this form.

4 Numerical Solution

We have numerically integrated the governing equations

-Vd_± _ 2d^_df
r

. ~
M,dz ~ dz 2 (53)

13



-V(c-cs) (54)= c(l - c)M2

d_

dz

d£

dc

We used a finite difference discretization of the derivatives on a large finite interval with Neumann

boundary conditions for
<f)
and a mixed boundary condition for c that admits the appropriate far field

decay for the solute field. The resulting nonlinear equations are solved using Newton’s method; details

are given in Ref. [44]. For the purposes of illustrating the behavior of the phase-field model we used the

material parameters given in Table 1 unless otherwise noted; these values are similar to those employed

in WBMl, but with the same surface energy for each pure component. The far-field concentration was

set to Coo = 0.0717441, which corresponds to a solidus temperature of 1700 K. For these parameters,

the dilute limit of the ideal solution model yields an equilibrium partition coefficient of ks = 0.7965

and an equilibrium liquidus slope of mi = —310.9 K.

4.1 Results for D{<j)) linear in </>

In Figure 1 we show representative computed concentration profiles for several values of the interface

velocity V, holding the other parameters fixed. We have used the expression (50) for with

Ds/Dl = 10~ 5 and r(0) = </>. In a sharp interface model with equilibrium interface conditions, as the

velocity increases the maximum concentration in the liquid at the interface would be fixed at 0.09, and

the length scale Dl/V of the solute profiles in the liquid would progressively shorten. For the phase-

field model, Figure 1 shows that at low velocities the solute profile is similar to that given by the sharp

interface model. However, as the interface velocity increases, not only does the solute decay length

diminish, but the maximum value of the solute concentration decreases as well, indicating a reduction

of the segregation of solute near the interfacial region and therefore the presence of solute trapping. We

observe that solute trapping occurs when the interface velocity is large enough that V^a/Dl becomes

of order unity. Since for this example the diffusion coefficient at the interface position 0 = 1/2 is

given by the arithmetic mean of Dl and Ds, which is approximately Dl /2 in this case, this result is

consistent with the expectation that trapping will occur on a velocity scale Di/£a-

In contrast to the solute profiles shown in Figure 1 the corresponding phase-field profiles are almost

identical over this range of velocities. This is because the velocity-dependent term on the left hand

side of Eq. (53) is negligible for the range of interface velocities employed in Figure 1, because of the

relatively large magnitude of M\. Indeed, this is why it is reasonable to view a in Eq. (35) as nearly

constant.
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For our diffuse interface model with kE < 1 we adopt the definition

k = (55)
cmax

for the nonequilibrium partition coefficient, where cmax is the maximum value of the concentration.

(When kE > 1 an analogous definition is obtained by replacing cmax by the minimum concentration

cminO This definition reproduces the correct limiting behavior in the limit of small growth rates, in

which case c00 = cs and cmax = c-L correspond to the appropriate equilibrium values for the solid and

liquid concentration. It also exhibits the appropriate high-velocity limit k —> 1 as the concentration

becomes uniform with Cmax = This definition for k assumes that the maximum value of the

concentration profile is the appropriate analogue to the liquid interfacial concentration in a sharp

interface model. If significant interface adsorption were to occur, it may be difficult to separate this

effect from the effect of bulk solute segregation at the moving interface. In that case this definition

of the partition coefficient may be inadequate, and an alternative definition must be employed. Our

assumption that aa = aE is intended to circumvent such ambiguities by reducing the driving force for

adsorption at the interface. We will return to this question below.

As can be seen in Figure 1, k increases towards unity as the interface velocity increases. To quantify

this dependence more directly, we have conducted a series of computations in which k was computed

in this way for various velocities. The results are shown as the data points in Figure 2. Also shown by

the solid curve in Figure 2 is the expression given by the CG model,

kE + V/Vp

1 + v/vD ’

(56)

where Ve£a/Dl — 0.232 is the normalized critical velocity predicted by a large-velocity asymptotic

expansion described below. The CG model, coupled with the asymptotic expression for Vd, is seen

to give an excellent description of the numerical results for solidification velocities ranging over six

orders of magnitude. A least squares fit of the numerical data using the CG form with Vd as a fitting

parameter gives a value of Ve£-aIDl — 0.244, which is visually indistinguishable from the large-velocity

result shown in Figure 2.

In Figure 3 the data points show the dependence of the computed interface temperature on the

interface velocity. The three curves show the temperature predicted by the CG model as given in

Eq. (17), with, from top to bottom, a — 0 (no solute drag), a — 24/35, and a — 1 (solute drag). The

other parameters used in the CG model are the equilibrium values of kE = 0.7965 and ttil — —310.9

K, and the value of Vd = 0.232Dl/£a determined from the asymptotic analysis. The intermediate
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value of a — 24/35 results from the asymptotic analysis of the large velocity limit described below, and

is seen to give an excellent comparison with the numerical results for this case.
2 At low velocities the

temperature tends to the solidus temperature of 1700 K. At intermediate velocities the temperature

increases, tending toward the Tq temperature of 1703 K. Before the Tq temperature is reached, the effect

of interface kinetics becomes significant, and the temperature decreases rapidly for larger velocities.

4.2 Results for log D(<j>) linear in
<fi

We next consider a diffusivity D{(p) given by expression (51) with Ds/Dl — 10
-5

and r(</>) =
<f>.

Computed concentration profiles for several values of the interface velocity V are shown in Figure

4. In contrast to the results shown in Figure 1, the solute profiles in Figure 4 show that in this case

trapping occurs at significantly lower values of the interface velocity; in fact, the trapping occurs before

the characteristic length Dl/V of the solute boundary layer has become comparable to the interface

thickness. Since for this example the diffusion coefficient at the interface position
<f>
= 1/2 is given by

the geometric mean (Dl Ds) 1 ^ 2 of the liquid and solid diffusivities, this result remains consistent with

the expectation that trapping will occur on a velocity scale Di/Ia, which in this case is a much lower

velocity due to the influence of Ds <C Dl-

In Figure 5 the data points show the computed partition coefficients for this case. The solid curve

in Figure 5 is the result of the CG model, where VqIa/Dl = 1-942 X 10~ 2
is the normalized critical

velocity predicted by the large-velocity asymptotic expansion described below. The CG model, coupled

with the asymptotic expression for Vd, is found to give an adequate description of the numerical results

for large solidification velocities, but there is significant qualitative disagreement for lower velocities. A

least squares fit of the numerical data using the CG form with Vd as a fitting parameter gives a value

of Vd£a/Dl = 4.467 X 10
-3

,
and is shown as the dashed curve in Figure 5. The least squares value

provides an overall improvement in the fit over the whole range of velocities, although the agreement

is still rather unsatisfactory.

In Figure 6 we show the dependence of the interface temperature on the interface velocity and

compare it to the temperature predicted by the CG model, both with and without solute drag. We

have used the least square value Vd — 4.467 X 10
-3
Dl/Ia which gives better agreement than the

asymptotic value for Vd ,
although here, as in Figure 5, the agreement is rather poor. The CG results

do not appear to give good agreement with the numerical results for a diffusivity of the form (51).

2The asymptotic result for the temperature field assumes that Ds/Dl = 1. The good agreement between this

asymptotic result and the numerical data for Ds/Dl — 10
-6

suggests insensitivity of the temperature to this ratio.
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4.3 Results for Dj independent of DL and Ds

The results shown in Figures 1 and 4 suggest that the onset of trapping behavior occurs at characteristic

velocities that scale with the ratio of the interface diffusivity Dj to the interface width la- In the

previous sections Dj depends on DB and Ds- However, this is not necessarily so. In Figure 7 we show

the effects of varying the interface diffusivity Dj following the form given in Eq. (52) with fixed values

of the bulk diffusivities, Dl = Ds = 10
-5 cm 2

s
-1

. The calculations are performed for a fixed velocity

given by V = 0.86Dl/Ia, which is chosen so that significant trapping occurs for the ratio D//Dl — 1

(dashed curve). The solute segregation across the interface is observed to be quite sensitive to the value

of Di ;
as Di increases, the characteristic trapping velocity Di/Ia becomes larger and the solute profile

tends toward its equilibrium form. For Di/Dl < 1, the trapping effects become more pronounced as

trapping is predicted to occur at lower speeds.

4.4 Results for aA 7^ crB

The CG model predicts that the partition coefficient k varies monotonically with V, which is consistent

with the calculations shown in Figures 2 and 5 and available experimental data. However, Baker

[13, 15] describes the possibility of non-monotonic dependence of the partition coefficient on velocity.

He considers a model which assumes that the non-ideal part of the chemical potential, fx
1 = fx —

(RT/vm )
ln[c/(l — c)], varies through the interfacial region in a prescribed manner. A non-monotonic

dependence for k(V
)

is predicted if fx'(x) assumes a maximum or minimum in the interface region. This

follows a suggestion by Chernov [5] that solute trapping might be associated with a state of low solute

energy near the interface, which leads to a solute driving force in the liquid towards the interface, prior

to incorporation of solute into the solid phase. In our model we have

, „f aB <7*1 LB(T-TB )
La{T-Ta )\

" = 3\^-^S9W +\^^ rA—

}

pW ’ (57)

and nonmonotonic behavior of // occurs if the contribution from the first term, proportional to the

nonmonotonic function g (</>), is large enough. In the calculations discussed so far, we have taken

Oa — gb and Ia — £& [and so Wa = Wb by Eq. (43)]. The first term is then absent, resulting

in a monotonic profile for fx
1

. We now consider the effects of varying the ratio <JaI&b- To avoid

complications with our definition of the segregation coefficient k — c^/cmax when cmax is affected by

positive interface adsorption effects (see discussion), which would be expected to occur for cb/va < 1,

we consider instead the opposite case with ctb/cxa > 1 .
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In Figure 8 we show the partition coefficient k = Coo/cmax versus the normalized interface velocity

V£a/Dl obtained from our numerical computations for various ratios of the surface tensions gbI&a >

1. The calculations are performed with D(<f)) constant to simplify the interpretation of the results

by eliminating the competing effects of diffusivity variation across the interface. As <Jb/&a increases

from unity, the equilibrium solute profile corresponding to a stationary interface develops a minimum in

concentration in the interfacial region, since this produces a lower surface energy while still retaining the

equilibrium concentrations of the bulk phases. This minimum persists under finite rates of solidification,

and the non-equilibrium solute profiles then exhibit both a maximum (due to solute rejection) and a

minimum (due to negative interface adsorption) in concentration near the interfacial region. For a

fixed velocity, as the ratio obIga increases, the maximum concentration increases, and becomes large

enough that the associated partition coefficient can be less than the equilibrium value, k < kE ,
as

shown in the figure for obI^a — 4.

5 Large V asymptotics

In order to help interpret the numerical results presented above in which solute trapping is significant,

we now describe results of an asymptotic expansion of the solution in the large velocity limit. We focus

on the range of velocities for which trapping effects are significant and the effects of attachment kinetics

are small; details are given in the Appendix. Here we summarize the results in the dilute solution limit

Cqo C 1. The phase-field solution is given to leading order by

*(2) = *<
0
>( z

) + O(l/n (58)

where <f>(°) is the planar solution,

4<
(0)(z) = 1 1 — tanh

2tA

The concentration is then given by

, ,
3

C[Z) = Coo + -Coo

and the temperature is given by

V£A
\n(l/kE )

sech
4 + 0(1/V2

),

T - T0 - V/ JtA + — rriLCoo
do

Di

VViA \

ln
2
(l/A'e)

(1 - kE )

+ 0(1/F
2
),

where the Tq temperature is given by

Tq = TA + mi, Coo
(1 - ks)

(59)

(60)

(61)

(62)
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In deriving the expression for the temperature field we have assumed that the diffusivity is constant and

denoted by Di (Di — DE = Ds ); for a general diffusivity D{4>), the 0(1/V) temperature correction is

given by a solvability condition that is difficult to evaluate in closed form.

5.1 Solute Trapping

Prom the definition (55) of the partition coefficient for kE < 1, we find that in the large velocity limi t

k may be represented as

ln(l//^)sech4 + 0(l/V2
), (63)

where we have used the expression (60) to evaluate the maximum value of the solute concentration,

which is assumed to occur at z = zm ,
with c(zm )

= cmax- The appropriate value for zm depends on

the specific form that is assumed for D(4>). If the diffusivity is constant, then the maximum occurs at

Zm — 0, leading to the expression

* =1 -8
VIa

k = 1
3 r

'

8 LVIa.
ln(l/fc£ ) + 0(l/T2

),

where Di denotes the constant value of the diffusivity.
3

The Aziz trapping function for kE < 1,

kE + V/Vp

1 + v/vD ’

can be approximated by

k « 1 - (1 - kE )

'Vd

V + 0

for Vp/V < 1. Comparing Eq. (64) and Eq. (66) gives that

Dj_

Ia\

la(l /*e)

(1 - ks)

(64)

(65)

(66 )

(67)

Comparing the large velocity expansions for the phase-field model and the Aziz trapping function thus

gives a prediction that the trapping velocity VE depends not only on the interface diffusivity and

thickness but also upon the equilibrium partition coefficient, a trend noted experimentally by Smith &

Aziz [45].

3
This expression is also appropriate if the assumed form of a non-constant diffusivity D(<f> )

still gives rise to a maximum

in c(z) at zm = 0; in that case, Di = D( 1/2) denotes the value of the diffusivity at
<f>
= 1/2. For example, this expression

applies for the case (50) with a function r(0) that has r'( 1/2) = 0, which makes dc/dz vanish at z — 0. This expression

also applies to the case (52) with Di = £>(1/2); in this case, the resulting expression is independent of Dl and Ds-
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For the choice r(0) = </> in Eq. (50) for -D(0), the solute maximum generally occurs for zm ^ 0, and

the resulting expression for Vd is more complicated. The result may be expressed in the form

Vb=g[l-(t*)*\2i2
DL [(l + t*)/2] + Ds[{l-f

k
)/2]

Ia

ln(l/fcg)

. (1 - ks) ’

where

2 1 + A

(68 )

(69)

is the value of tanh(z/2fU) for z = zm ,
and A = Ds/Dl Expression (68) has the same general form

as expression (67), with Di given by a weighted arithmetic mean of Ds and Dl- For the limiting case

when the solute diffusivity of both phases are equal, A —» 1, we find that <* —» 0 and —> 0, and the

expression (68) reduces to (67). In the more realistic case when the solid diffusivity is much less that

liquid diffusivity, A < 1, the interface diffusivity may be approximated by setting A = 0 in which case

Vd assumes the form

Vp = B 0.207 (70)
3125 £a (1 -kE ) £a{ 1 - kE )

‘

The expressions (68) and (70) both produce the value Vd£a/Dl = 0.232 that is used in Figure 2 to

compare the numerical computations with the Aziz trapping function.

For the choice r(<£) = $ in Eq. (51) for D (</>), the extremum may be found from Eq. (60), resulting

in the expression
r / ( i _l**\ (

i

"

ln(l /kE )

where now

Vb = g[i - (<*)
2

]

a

t* =

y/o^'D (i -**)'

s

Ia (1 - ks )

’

In A + \ 1 +
ln A

(71)

(72)

Expression (71) has the same general form as expression (67), with Di given by a weighted geometric

mean of Ds and Dl- This expression is used to produce the value Vd£a/&L — 1-942 x 10
-2

that is

used in Figure 5 to compare the numerical computations with the Aziz trapping function for this case.

The two expressions for Vd both involve weighted means of Ds and Dl ,
which are determined by

the specific form of D((f> )
that is assumed through the interface region. This need not be the case; in

particular, the use of a more complicated model for D(4>) such as given by Eq. (52) would produce an

expression for Vd that is independent of Ds and Dl-

The expression for Vd given by Eq. (67) holds for ks < 1. A similar analysis may be conducted for

for ks > 1, in which case we find that

3 Diln(kE)
Vd = tt8^(1-!/^)’

(ks > 1). (73)
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Thus Vd is predicted to increase as Ice deviates from unity in either direction.

Finally, in Figure 9 we compare the experimental data for Vd obtained by Aziz and coworkers (see

[58]) for both silicon and aluminum alloys to the quantity In ks/ikE — 1)- The correlation indicates that

our theory is in qualitative agreement with the experimental results, correctly predicting an increase

in Vd with decreasing equilibrium partition coefficient. The considerable scatter apparent in the plot

may be due to the unknown values of Dj.

5.2 Solute Drag

Here we limit our attention to the case ks < 1 and Ds — Di. The interface temperature in the dilute

limit given by Eq. (61) may be expressed as

24 Vr>
T = To - V/JiA + -^mLCoo ln(l/A*) + . -

. , (74)
oo V

where we have used the expression for Vd in Eq. (67). The temperature in Eq. (17) that is predicted

by the CG model may be expanded for large V/Vd to yield that

Vd
T = T0 - V/fJiA + a—mLCoohL^/ks) + • •

• (75)

in the dilute limit. Comparing these two expressions for the interface temperature we find that a =

24/35, the value used in Figs. 3 and 6 to compare the numerical computations with the predictions of

the Aziz CG model. This nonzero value for a confirms that solute drag is present in the phase-field

model, as is consistent with the analysis of Section 2.2.2. In general, we would expect the specific value

obtained for a to depend on the choice for D{<j>).

6 Discussion

The formulation of a phase transformation using a single free energy function and self consistent

postulates about the kinetics has distinct advantages. Among them the controversy regarding the

necessity to include or exclude solute drag is resolved quite naturally. Early models that treated solute

drag (e.g. Cahn [17]) were applied to grain growth in impure solids. Here a separate driving force for

grain growth was assumed to exist (e.g., induced by curvature differences) and one sought to determine

how much of that driving force remained available for the motion of the grain boundary. Calculation

of the solute diffusion process and the dissipation of energy were thus performed to determine the

reduction of the driving force. In the solidification literature a similar postulate has been made about
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the existence of a separate driving force for solidification [Eq. (5)]. Hence the solute drag is normally

computed separately and used to erode the driving energy. The results of Eqs. (37) and (38) show the

natural reduction of the driving force by the dissipation.

We have investigated the effect of different assumptions regarding the variation of the diffusion

mobility through the interfacial region by varying the form of the function D(</>). These differences

change the velocity at which solute trapping becomes important, and also presumably changes the

amount of dissipation in the interfacial region due to the diffusion processes. Indeed we determined

that a linear interpolation for D between the liquid value and the solid value across the interface

produces predictions quite similar to those of Aziz, a model which has been subject to significant

experimental validation.

We have not investigated the sensitivity of the results to the form of the double well to any significant

degree. We have, however, shown that changing the relative heights of the double-well potential (by

changing aa and <7g) of the two pure components can lead to a nonmonotonic k(V) function. In general

the use of different double well potentials in (40) as well as a non-ideal solution model would likely alter

the quantitative predictions of our analysis. The form (40) that we have chosen for the free energy

function allows the one-dimensional traveling wave solution (46) for all velocities [59]. Replacing the

cubic function p(4>) = <f>

2
(
3 — 2(f) )

used in (40) by the quintic function p((f))
— </>

3
(
10 — 15 (j) + 6cf)

2
)
as

in the treatment of Wang et al. [60] relieves the restrictions \/3(T)\ < 1/2, but also produces a one-

dimensional traveling wave whose shape is no longer independent of velocity; this may require changes

in the interpretation of jl and Vb-

In addition to the more usual case where ks < 1, we briefly investigated the case where ks > 1.

The appropriate form (12) of the Aziz formulation for this case was compared with the present model.

It was established that Vb should be smallest for alloys with ks near unity and increase for alloys with

ks much less than or much greater than unity. A functional form was predicted for the ks dependence

of Vb which seems to correlate well with experiments (Fig. 9).

We have some concerns about our definition of the nonequilibrium partition coefficient as we extract

information about the prediction of the phase-field model. For A:# < 1, our definition of k(V) is based

on identifying the liquid concentration at the interface, C£, with the solute maximum cmax of the entire

solute profile. Alternate definitions were tried, such as equating the total amount of solute above c0

0

in

the interfacial region and in the bulk liquid to the total solute above for an exponential profile at a

sharp interface freezing at the same speed. This was found to be unsatisfactory because this alternate

definition does not reproduce the correct limit k —> 1 for large velocities, as can be seen from the
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form of the asymptotic expansion for c(z) in our model. The concern about our definition was clearly

manifest when we examined situations where significant interface adsorption is present. For example,

for a stationary interface at equilibrium, positive surface adsorption leads to a value of cmax larger

than the equilibrium value of cl present in the bulk of the liquid, so that the definition (55) leads to an

inappropriate value for k in this simple case. We therefore confined our attention to cases of negative

interface adsorption with ks < 1, where the identification of cl with cmax at least does not lead to

trivial inconsistencies.

We have also performed melting simulations to examine whether very small values of the solid

diffusivity Ds lead to significantly smaller values of Vd- The results are identical to those observed

for the solidification case, in that the simulation results for Vp are found to depend on the values

of D(<p) in the interfacial region and not necessarily on the bulk values of Dl and Ds- This is also

clear from the asymptotic analysis results: the large velocity analysis holds for either solidification or

melting, and similar conclusions are obtained for both cases. For example, with the linear form (50)

for D((j)), computed values for Vd are found to scale with the arithmetic mean
(Dl + Ds )/ 2 of the

bulk diffusivities, and with Ds < Dl the numerical values of Vd for both solidification and melting

are roughly Dl/2. In general, the predicted values for Vd are sensitive to the assumed form for D((f>).

Aziz and coworkers (see [58]) have observed that the experimental values of Vd (for solidification) do

not correlate strongly with either Dl or Ds- These findings are consistent with our results for models

of D((j)) in which Di is uncorrelated to Dl or Ds-

7 Conclusions

1. Solutions to phase-field governing equations for alloy solidification with a finite interface thickness

that neglect the gradient energy due to concentration exhibit solute trapping and dissipation due

to solute drag.

2. In particular, it is shown that

(a) the governing equation for the concentration recovers the sharp interface notion

that the jump in interdiffusion potential across the interface depends on the velocity,

leading to the velocity dependence of the partition coefficient,

and

(b) the governing equation for the phase field recovers the notion that the velocity
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depends on the driving force for solidification following the tangent-to-curve rule with

dissipation due to solute drag, leading to the velocity dependence of the interface

temperature.

3. Numerical results as well as high velocity asymptotic results for the velocity dependence of tem-

perature, T(V), and solute partitioning, k(V), were explored for a particular choice of double-well

potential, an ideal solution, linear dependence of the diffusion coefficient on the phase field and

similar barrier heights for the pure components; i.e., Wa and Wb- Under these conditions the

results agree closely with the CG model of Aziz and Kaplan for a particular choice of their values

for:

(a) the critical speed for trapping, Vo, that depends on viz., proportional to

]nkE/(kE —
1) for ks < 1 and approximately proportional to the arithmetic mean

of the liquid and solid diffusion coefficients. Such a trend for the dependence of Vd on

ks has been seen experimentally by Smith & Aziz.

(b) the amount of dissipation due to solute drag, a, of approximately 24/35.

Numerical calculations performed with a linear dependence of the logarithm of the diffusion

coefficient on the phase field did not agree with the CG model of Aziz and Kaplan.

4. Depending on the choice of double well potential; viz., the barrier heights of the two components,

more complex behavior of the effective k(V) relation is predicted by the phase-field model, includ-

ing nonmonotonic behavior similar to that exhibited by the Baker-Cahn and Hillert-Sundman

models.

Appendix

In the limit of high solidification rates it is possible to obtain approximate expressions for the interface

temperature and solute profiles. In order to understand the numerical results presented above in

which solute trapping is significant but the effects of kinetics are comparatively minor, we consider an

asymptotic solution in the limit of large velocities where V is identified as being of a magnitude so that

Dl/La «U« P-aTo- Hence we consider the simplified set of equations in which the effects of interface

attachment kinetics are eliminated by setting 1/Mi = 0. This removes the term V/jia from the leading

order expression for the interface temperature, and simplifies the subsequent analysis. For simplicity
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we also consider the case cra — &b] the more general analysis for the case aa / &b is given in [44].

We find that the resulting large velocity analysis with \/M\ — 0 is a useful limit for understanding

the solute trapping that is observed experimentally in metals for velocities on the order of meters per

second.

We perform an asymptotic expansion for large velocities by expanding the variables in the form

<t>
= 0

(O)

+ ^0
(1) + • (76)

c = c(°) + ic( 1
) + ..., (77)

T = TW + (78)

substituting these expansions into the governing equations, and solving the resulting equations order

by order. The procedure is summarized in dimensional form, although the actual expansion is best

performed in dimensionless variables.

At leading order the solute equation gives that c(°) = c^. The leading-order phase-field equation

then becomes

e
2^ = /^(0).c„.T(0)

),

which admits the planar solution

*
(0H i - tanh Gbj'

where Ia Is the interface width given in Eq. (42), and where

rp(0
)

rrt ^OOLb + (1 - Coo)_La

° {cooLb/Tb + (1 - c„)La/Ta]

is the temperature at which the bulk free energies of the liquid and solid phases are equal.

At first order the solute equation gives that

from which we find that

®

8

Lb (T0 - Tb )
La(T0 - Ta )

Tb Ta

The first order phase-field equation has the form

Cqo( 1 coo )T>(0(°)) 4 f z \

IaRTo/vm \2£a
)'

= Ua^Kc^To)^ + Ut(<P{0\^,T0)T^,

(79)

(80)

(81)

(82)

(83)

(84)

25



which has a solvability condition

/
oo roc

c<», To) c« 4°) dz + TW / Coo , To) 4°) <iz

-oo J— oo

that allows the determination of We have

/
OO

/*tW(0),c0O ,
r0)40)

<iz = -
-OO

and

/“ /#cW
(O)

,coo ,ro)c(
1
)0<°)<iz = jT [/Cw(0),c„,r„i

- r lmw i

— oo L J

, n \^b
C°°

Tg ^ c°°
' 2^

(
85

)

(
86

)

da

2 dz

D(<£(°))'
(87)

Coo(l Cqq
)

The latter integral is difficult to evaluate in closed form for general diffusivities D(4^); for the case

of constant diffusivities D(f>(
0
)) = Di, however, the integral can be evaluated to yield the following

expression for the first order temperature correction,

yf 1
) — -9 Cqo(1 Coo )D!/lA Lb(T0 -Tb )

La(T0 -Ta )

T 2

(88)
35 (RTo/v^Ic^Lb/Tb + {1 - 0^)1A/TA ] [ Tb Ta

To obtain the hmiting forms of these expressions that are given in Section 5, we make use of the

results

ln(l /kE ) =
LB{Ta - Tb )

RTaTb /vm

that hold in the dilute solution limit.

RT\{kE - 1) mLCoo ln(l/fcs ) ,mL - =
, 1q = 1 a -\

, (89)
VmLA l- kE
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Table 1. Thermophysical properties used in calculations

La 2350 J cm

Lb 1725 J cm
-

Ta 1728 K

Tb 1358 K

Oa 2.8 x 10
-5

ob 2.8 x 10
-5

pa 242.8 cm s'

Dl 10
-5 cm 2

s

Ds lO
-10 cm2

!

La 6.48 X 10
-8

Lb 6.48 x 10
-8

3

3

J cm-2

J cm-2

' 1
IC

1

—

i

s
_1

cm

' cm
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Figure 1: The open squares denotes the values of the partition coefficient k — Coo/c^x versus te

normalized interface velocity V£a/Dl obtained from our numerical computations. The solid curve

shows the corresponding dependence of k on the interface velocity that is predicted by the CG model as

given by Eq. (56) with Vd£a/Dl = 0.232 given by the large-velocity asymptotic limit in the expression

Eq. (67).
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Figure 2: The data points denote the temperature obtained from our calculations for different values

of growth velocity V. The upper curve shows the temperature given by Eq. (17) without solute drag

(a = 0), the lower curve shows the temperature given by this expression with solute drag (a = 1), and

the middle curve shows the temperature given by this expression with the asymptotic value (a = 24/35).
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Z/lk

Figure 3: This figure shows the computed solute profiles for six different values of the interface velocity

V obtained by using the logarithmic model Eq. (51) for D(<f>) with Ds/Dl, = 10
-5

. The values of

V£a/Dl are 8.58 x (10
-3

), 8.58 x (10
-2

), 0.429, 0.859, 2.58 and 8.58. The curves are ordered so that

the interface velocity V increases from the top to the bottom curve.
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Figure 4: The open squares denotes the values of the partition coefficient k = versus the

normalized interface velocity VIa/Dl obtained from our numerical computations by using the log-

arithmic model Eq. (51) for D(cj)) with Ds/Dl = 10~ 5
. The solid curve shows the corresponding

dependence of k on the interface velocity that is predicted by the CG model as given by Eq. (56) with

Vd^a/Dl — 1.942 X 10
-2

given by the large-velocity asymptotic limit in the expression Eq. (67). The

dashed curved represents the same CG form but with a least square fit value Vd^-a! Dl, = 4.467 X 10
-3

.
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Figure 5: The data points denote the temperature obtained from our calculations for different values of

growth velocity V by using the logarithmic model Eq. (51) for D(cj)) with Ds/Dl, = 10
-5

. The upper

curve shows the temperature given by Eq. (17) without solute drag (a = 0), the lower curve shows

the temperature given by this expression with solute drag (a = 1), and the middle curve shows the

temperature given by this expression with the asymptotic value (a = 24/35).
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Figure 6: Solute profiles at a fixed growth, velocity VIa/Dl = 0.86 for various values of the interface

diffusivity. The diffusivity is given by Eq. (52) with r(0) = 0 and s(</>) = 160
2
(1 — (f>)

2
. The ratio of

bulk diffusivities is fixed at Dl/Ds = 1- The values of the ratio £>//Dl are, from the top curve to the

bottom curve, Di/Dl = 10, 5, 2, 1 (dashed curve), and 1/2, respectively.
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Figure 7: The partition coefficient k — Coo /c-max versus the normalized interface velocity VIa/Dl

obtained from our numerical computations for various ratios of the surface tensions cb/cta with Ds —

Dl — 10
-5 cm 2

s
-1

. From top to bottom the curves have ob/oa — 1, ^b/^a — 3, and ob/oa — 4,

respectively.
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Figure 8: Experimental values for Vq (see Aziz [58]) plotted versus the quantity In &£;/(&£ — 1). The

line is a linear fit through the origin.
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