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Analysis and Comparison of Various
Image Downsampling and Upsampling Methods^

Abdou Youssef

Department of EECS
The George Washington University

Washington, DC 20052

Tel: (202 994-6569, Fax: (202) 994-0227, Email: yoiissef@seas.gwu.edu

Abstract

Downsampling and upsampling are widely used in image display, and jointly used in com-
pression and progressive transmission. In this paper we examine new down/upsampling meth-

ods using both frequency response analysis and experimental evaluation. Our findings show that

binomial filters and some biorthogonal wavelet filters are among the best filters for down/upsampling,
and significantly outperform the standard down/upsampling methods.

^This research was performed in part at the National Institute of Standards and Technology.
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1 Introduction

Downsampling and upsampling are two fundamental and widely used image operations, with

applications in image display, compression, and progressive transmission. Downsampling is the

reduction in spatial resolution while keeping the same two-dimensional (2D) representation. It

is typically used to reduce the storage and/or transmission requirements of images. -Upsampling

is the increasing of the spatial resolution while keeping the 2D representation of an image. It is

typically used for zooming in on a small region of an image, and for eliminating the pixelation

effect that arises when a low-resolution image is displayed on a relatively large frame.

More recently, downsampling and upsampling have been used in combination; in lossy com-
pression [6], multiresolution lossless compression [1], and progressive transmission [2, 6]. In

MPEG-2 video compression, the two color (chroma) components of every frame are downsam-
pled by a factor of two before compression takes place; at reconstruction, the color components
are upsampled back to their original 2D size. In multiresolution lossless compression, an image

I is downsampled by a certain factor yielding an image D, and then D is upsampled by the

same factor yielding an image afterwards, both D and the residual image R = I — I' are

losslessly coded and stored. Clearly, the quality of the downsampling and upsampling methods
has great impact on the performance (i.e., bitrate) of that compression scheme.

In progressive transmission, which has gained wide use on the Internet, the same downsample-

upsample-residual coding method is used repeatedly to form a pyramid. Specifically, an image

Iq is downsampled by two repeatedly (say m times), yielding /i,/2 , . .

.

,7^ (i-e., R-i is down-

sampled by two to yield R), then each R is upsampled by two to yield and the residuals

Ri = li — I- are losslessly encoded to and stored (note that Rm = Im)- When transmitting,

Tm is sent first, then rm-i, and so on. At the receiving end, Vm is decoded back to Rm — Im
and displayed; then Im is upsampled to J^^t received rm-i is decoded back to Rm-i,
and Im-i = Rm-i + I'm-i computed and displayed; and so on. Here again, the quality of the

down/upsampling methods has great impact on both the quality of the intermediate displays

Im,Im-i, •,Ii and on the sizes (and thus transmission speed) of the rj’s.

The standard methods for downsampling are decimation and bilinear interpolation [6]. Dec-

imation involves dropping every other row and every other column. Bilinear interpolation

replaces every 2x2 window by its average pixel value when downsampling by two. The upsam-

pling counterpart of decimation is duplication: it duplicates every row and every column. The
upsampling counterpart of bilinear interpolation (called with the same name) inserts between

every two pixels in a row (and column) the average value of the those pixels.

The increasing use of downsampling and upsampling, especially in combination, and the ad-

vent of new techniques such as wavelets [4, 8, 9], warrant a new and closer look into the methods
of image downsampling and upsampling. Previous work dealing with down/upsampling [7, 3]

predates wavelets and subband coding, and addresses general signal processing rather than

focusing on visual signals (i.e., images) and related applications. Our goal is to gain a better

understanding of the behavior of the image down/up-sampling processes, and, guided by that

understanding, find better down/up-sampling methods than the ones currently used.

In this paper, we examine the existing methods and propose new methods of down/up-
sampling. We formulate a frequency-response approach for understanding and evaluating

down/upsampling-combination methods. The approach is validated experimentally by run-

ning the examined methods on several different images and computing the signal-to-noise ratio

(SNR) between the original and the down-then-upsampled image. The frequency-response-
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based evaluation correlates well with the experimental evaluation.

Besides the standard methods mentioned above, we examine four classes of finite impulse
response (FIR) filters for down/upsampling. The first two are the biorthogonal and orthogonal
wavelets [4, 9]. The third class is what is termed here binomial filters. The fourth is the class

of least-square filters [5], chosen from among the standard and optimal FIR filters.

Based on the proposed approach and the experimental validation, we identified the best

down/upsampling-combination methods out of the several classes of methods that we investi-

gated. Our findings show that the best down/upsampling filters are the binomial filters and
some well-chosen biorthogonal wavelets. Bilinear interpolation was found significantly inferior,

and decimation/duplication came last. Besides their superior SNR performance, binomial fil-

ters offer the added advantage of having rational coefficients with powers of two denominators
— this improves the computational efficiency on many digital signal processors (DSP).

2 Formulation of the Down/Upsampling Process and Eval-

uation Approach

Consider a signal x = (x^). Downsampling x by two can be generally viewed as pre-filtering

X with a linear filter g = [gk], yielding a signal u = (n^), and then decimating u by two,

getting a signal v = (u„) where Vn = U2n for all n. Upsampling v by two, on the other hand,

can be viewed as zero-upsampling followed by post-filtering. That is, v is zero-upsampled to a

signal w = (wn) where W2n = and W2n+i = 0 for all n; then w is passed through a filter p
yielding an approximation x of the original signal x. This general down/upsampling scheme,

which is the low-pass half of the multirate subband coding scheme [8, 9], is shown in Figure 1.

Note that in the Ccise of 2D images, the downsampling is applied row-wise then column-wise,

and the upsampling column-wise then row-wise. Note also that this general scheme captures

the standard bilinear interpolation and decimation/duplication methods; their filters as well as

other classes of filters will be presented in the next section.

filter decimate zero-upsample filter

X
, {9k)

U V
^

V w .

[Pk)U:7

Figure 1: The Genersd Downsampling/Upsampling Scheme

To understand the behavior of the scheme, we use the z-transform (i.e., frequency-domain

analysis). For any sequence a = (a„), be it a signal or a filter, the z-transform of a is a

complex function A{z) = J2n The z-transforms of x, u, u, it;, x, g and p, will be denoted

A'(z), U(z), U(z), W(z), X{z), G(z) and P(z), respectively. Note that we can and will limit z

to the unit circle, i.e., z = e^, where a; is the frequency variable; A{e^) is the Fourier transform

of a, and is thus periodic with period 27r, and its magnitude is symmetric around the origin.

We now derive the z-transform relation of the down/upsampling scheme of Figure 1. By

the fundamental convolution theorem, U{z) — G{z)X(z) and X{z) = P(z)W(z). Furthermore,

W{z) = En'^nZ^ = = En {z) + U{-z)],

using the facts that W2n+i = 0, W2n = Vn = U2n- Consequently,
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Xiz) = P{z)W{z) = ^Piz)lU{z) + U(-z)] = \P(z)\G(z)X(z) + G(-z)J?(-z)],
yielding

= [lP{z)Giz)]X{z) + [lp{z)G{-z)]X{~z). (1)

The first term on the right hand side of equation (1) is what contributes to the true recon-

structed signal, while the second term is aliasing distortion. A good down/upsampling scheme
yields a reconstructed signal x that is very close to the original signal x, and in the ideal (though

impossible) extreme, f = x, or correspondingly X{z) = X(z), for any input signal x. Equation

(1) reveals that to have an ideal scheme, the filters g and p must satisfy the two identities

P{z)G{z) = 2 and P{z)G{—z) = 0, which is clearly impossible. Nevertheless, knowing what
is desired serves as a yardstick for comparative evaluation of candidate schemes. More impor-

tantly, equation (1), along with the understanding of the relevant characteristics of both the

human visual system and t5q)ical natural images, will help us identify the desirable and more
or less achievable properties of the two filters g and p of the scheme.

The preceding discussion shows that we must have \P{z)G{—z)
\

as close to zero as possible,

and P{z)G{z) as close to 2 as possible. It is well-known that the human visual system is most
sensitive to low-frequency (i.e., low-variation) signals, and that this sensitivity decreases quickly

at higher frequencies (i.e., high-variation data). Therefore, it is desirable to have P{z)G{z)
very close to 2 in the largest low-frequency range possible, while still keeping \P{z)G{~z)\

near zero in the entire range of frequencies. In other terms, P{z)G{z) should form a low-pass

filter. In particular, g and p should be low-pass filters in their own right, especially when the

downsampling and upsampling are to be used as two separate standalone operations and not just

in combination. Fortunately, natural images contain largely low-frequency data, and thus the

data loss incurred by such a scheme tends to be mathematically small and visually acceptable.

It remains to determine how large we can make the low-pass band where P{e'^)G{e^) is near

2. This is addressed next.

Let g and p be two ideal low-pass filters, where \G{e^)\ is 1 over [0 a] and zero over

(a tt] for some a, and |P(e*^)| is 2 over [0 0\ and zero over tt] for some Observe that

\G{—z)\ = \G{e^^‘^~^'>)\ = \G{e^^'^~^^)\ (because of the magnitude symmetry); therefore, \G{—z)\

is 1 over [tt — a tt] and 0 over [0 tt — a). Consequently, \P{z)G{—z)\ is 2 in the frequency range

[tt — a P] and zero in the remainder of [0 tt]. Since the ideal value of \P{z)G{—z)\ is zero over

all [0 tt], it follows that we should ideally have tt — a > P, that is, a + P < tt. On the other

hand, P{z)G{z) is 2 in the frequency range [0 min{a,P)], and so min{a, P) is desired to be as

large as possible. Clearly, when a -f /? < tt, the maximum value of min{a, P) is |, achieved at

a = P = We have thus proved the following theorem.

Theorem 1 The ideal down/upsampling scheme is one where both filters g andp are low-pass

filters with pass-band equal to [0 |]. In that scheme, the aliasing distortion is zero, and the

reconstructed signal preserves the largest possible range of low frequencies.

Ideal low-pass filters are not achievable, especially with finite-length filters, but many fam-

ilies of finite filters approximate ideal filters reasonably well. With realistic low-pass filters g
and p, \P{z)G{z)\ is approximately 2 in the frequency range [0 |] and approximately zero in

(| tt], and \P{z)G{—z)
\

is nearly zero throughout the frequency range [0 tt] except for a “hump”
around the middle of that range. Clearly, the smaller and narrower that hump is, the better.

Those two yardsticks will be the basis of our evaluation of various filters for down/upsampling.
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3 The Classes of Filters to Be Considered

We consider six classes of filters for down/upsampling. An important defining element for

biorthogonal wavelets and binomial filters is the trigonometric polynomial

r? r iLLj\ 2N f^\ ( N — k + 1
RN{e )

= cos^{-)
^

for any positive integer N. The six classes of filters are:

• Biorthogonal wavelets [4]: Their filters g and p are characterized by P{e^)G{e^) =
foi N > 1. The combined length of g and p is 47V.

• Binomial filters: They are characterized by P(e^) = 2G{e^) = 2RN{e^), for TV > 1.

The filters g and p are symmetric of effective length 27V + 1 each (see Remark 1 below)

.

• Orthogonal wavelets: Daubechies well-known wavelets [4], The filters g and p are the

length-7V low-pass analysis and synthesis filters of Pat-

• Least-Square filters [5]: p = 2g where ^ is a symmetric low-pass filter with cutoff at

• Bilinear interpolation: g^i = pQ = 1/2, po = I, pi = p_i = 1/2. Undefined pk Pk are 0.

• Decimation/duplication: = 1, and Po = Pi = 1- All undefined pk and pk are 0.

Remark 1: Because cos^(f) = z and = —z and because the

coefficients of Pat are integers, it follows directly that the coefficients of g (i.e., the 47V — 1

coefficients of the Laurent polynomial Rm{z) for 2: = e^) are all integers divided by powers

of 2. This makes filtering an integer arithmetic process because division by a power of two is

equivalent to shifting the binary representations. Furthermore, it can be shown that Ri^{—z) -f-

Ri^{z) = 1 for all 2: on the unit circle. This implies that go = pk = 0 for all even nonzero

indices k, and g^k = 9k for all k (i.e., g is symmetric around 0). In particular, the effective length

of g, that is, the number of nonzero coefficients of p, is 27V -f 1 rather than 47V — 1. Henceforth,

a binomial filter will be denoted as “BN n”
,
where n designates the effective length.

4 Frequency-Response Evaluation of the Six Classes

In this section the dual frequency responses P{z)G{z) and \P{z)G{—z)\ of the six classes are

evaluated and plotted in Figure 2, where z = in the frequency range [0 tt].

The biorthogonal wavelets form a large class since for any TV there are many ways of fac-

toring Pat into G and P, yielding filters of combined length 4A^ We generated all possible

factorizations for all TV = 2,3, ...,14, resulting in 4297 filter pairs {g,p). We measured the

closeness of their frequency response to that of the ideal low-pass filter with passband [0 7r/2],

and accordingly selected the best 18 wavelets [10] (the majority of the other wavelets have poor

frequency response). In this research, we evaluated the dual frequency responses of those 18

filter pairs; they all have good dual frequency responses, which improve as TV increases. We
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selected three filter pairs for our presentation (2nd row of Fig. 2): a min-Iength filter pair 9/7
(i.e., length(^)=9 and length(p)=7), a mid-length pair 16/16, and a max-length pair 33/19.

The class of binomial filters is very good and exhibit a consistent improvement in its dual

frequency responses as N increases. We tested many members of this class, but we present

here (1st row in Fig. 2) three binomial filter pairs (BN 7/BN 7, BN 15/BN 15 and BN 27/BN
27) whose lengths are comparable to the three biorthogonal filters chosen above,- to simplify

the comparison. As is evident in the Figure, the binomial filters have the best dual responses

among all the classes considered, and the responses approach the ideal quickly as N increases.

The Daubechies orthogonal filter pairs also exhibit a consistent improvement in its dual

frequency responses as N increases. Again, we chose three members (Ds/Dg, Diq/Diq and
D28/D2&) of lengths comparable to those chosen from the other classes. Note that although the

dual response of approaches the ideal as N increases, the orthogonal filters are not linear

phase (unlike all the other classes considered). Therefore, they incur phase distortion which
becomes worse for larger N. This will be evident in the experimental evaluation.

The dual responses of least-square (LS) filters also approach the ideal as the filter length

increases. However, for reasonably short filters, the frequency response is quite far from ideal,

and exhibits familiar ripples which increase in number as the filter length increases. We chose

LS 8/LS 8, LS 16/LS 16, and LS 26/LS 26 for further evaluation (4th row of Fig. 2).

Finally, the dual frequency responses for bilinear interpolation and for decimation/duplication,

shown the in the last row of Figure 2, are quite far from ideal, and very inferior to the first

5 classes. The decimation/duplication is the worst, especially with respect to its aliasing fre-

quency response. The visual effect of that is the highly visible pixelation.

5 Experimental Evaluation and Validation

To validate our dual frequency response evaluation approach, and to get a quantified measure
of the performance of the six classes, we tested them on two different images: the well-know

image of Lena, and a fingerprint image. The test was carried out with three down/upsampling
factors, 2, 4 and 8, where for 4 and 8 the downsampling (and upsampling) by two was performed

twice and three times, respectively. For each filter pair and each sampling factor, the SNR
between the original image and the down-then-upsampled image was computed.

The experimental results, both in objective SNR plots and in visual form as showm in

Figures 3-9, are in agreement with the dual frequency response evaluation. The SNR plots show
that the binomial filters and the selected biorthogonal wavelets are the best. The onhogonal
filters perform well for short filters, but with long filters the phase distortion deteriorates the

performance. Least-square filters perform poorly at short lengths, but improve significantly

at higher length. The standard techniques, bilinear interpolation and decimation/duplication

perform poorly— they are inferior to the binomial filters by about 4 and 6 decibels, respectively,

which is significant.

Considering the efficiency importance of short-length filters, we examined the effect of filter

length on performance within each of the first four classes. We added BN 5 in our testing because

of the superior performance of binomial filters. Figure 4 gives four subfigures, where each

subfigure plots the performance (on Lena) of several filter pairs of various lengths vnthin one

single class. The plots clearly show that for the two winning classes, binomial and biorthogonal,

the length hardly matters, thus favoring short filters without much performance loss. For the
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other two classes, orthogonal and least-square, the length has a big effect.

Figures 5-9 show visually the performance of decimation/duplication, bilinear interpolation,

and binomial filters of effective length 9, on the image Lena, with 5 sampling factorsa (2, 4,

8, 16, and 32). It can be clearly seen that Binomial filters are superior, especially at sampling
factors greater than 2.

We conclude by giving the coefficients of the winner filters in Tables 1, 2 and 3.

BNt 5: go = g±i = ^=3 = ^25 25

BN 7: go
_ 256

29 1

n — 150
^±1 2® ’

n — -25
9±Z — "^5 ^±5 — 29

BN 15: ^0 =

P±9 =

8388608 „ _ 5153148
224 5 y±\ — 224 5

. 26026 _ _ -3549
224 5 i/±ll — 224 5

_ -1288287
5±3 — 024 )

n — 231
^±13 224

9±b
429429 ^ _ -122694
224 ) y±l — 224

t p is implicit: pk = ‘^9k VA:. Also, p2 fc
= 0 for all nonzero integers k.

Table 1: Three Binomial Filters

9/7 wavelet : g-k = 9k and p-k = Pk

go.A-. 0.602949 0.266864 -0.078223 -0.016864 0.026749

P0 ..3 : 1.115087 0.591272 -0.057544 -0.091272

16/16 wavelet : g-k = gk-i and p-k = Pk+i

P0 ..7 : 0.509000 0.036221 -0.094339 0.040131 0.027620 -0.017637 -0.003759 0.002763

P1 ..8 : 0.939274 0.265629 -0.162821 -0.089211 0.031598 0.020993 -0.003148 -0.002314

33/9 wavelet : g-k = gk and p-k = Pk

P0 .. 16 : 0.535998 0.300982 -0.040128 -0.071851 0.033196 0.026008 -0.017695 -0.007066 0.008725

0.002367 -0.002558 -0.000504 0.000523 0.000068 -0.000065 -0.000003 0.000004

P0 ..4 : 0.043307 0.033844 -0.154696 -0.072745 0.622617

Table 2: Filter Coefficients of Three Good Biorthogonal Wavelets

dI i9o.. 7 ): 0.162902 0.505473 0.446100 -0.019788 -0.132254 0.021808 0.023252 -0.007493

-Die (^o..i5)fl.038478 0.221234 0.477743 0.413908 -0.011193 -0.200829 0.000334 0.091038

-0.012282-0.031175 0.009886 0.006184 -0.003444 -0.000277 0.000478 -0.000083

i p is implicit: pk = 2g-k~i VA:.

Table 3: Two Orthogonal Daubechies Filters
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6 Conclusions

In this paper we examined several classes of filters for down/upsampling, and found that bi-

nomial filters and certain biorthogonal filters are best. Considering also the short length and
integer processing afforded by high-performance binomial filters, our single most important con-

clusion is that short-length binomial filters (5 or 7 coefficients) are the best choice. They can

be used effectively in progressive transmission of images. They could also be used in variable-

bandwidth video transmission as well as in prediction-based lossless compression. The latter

two applications need further study, and are the subject of future research.
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- These figures plot the SNR at 3 sampling factors for various filters of various lengths

- The top row of plots is generated from running the scheme on the image Lena

- The bottom row of plots is generated from running the scheme on a fingerprint image

- Notation:

BN=binomial; D=Daubechies; LS=least-square filters;

bilin.=bilinear interpolation; dec.=decimation; dup.=duplication

X/Y designates that the downsampling filter is X and the upsampling filter is Y

n/m wavelet refers to the biorthogonal wavelets in Table 1

- Remark: the bilin./bilin. and dec./dup. schemes are the same in the 3 plots of each row;

they are repeated for clear comparison.

Figure 3: Experimental Evaluation of The Down/Upsampling Schemes
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