
NAT L INST. OF STAND & TECH R.I.C.

A111DS 35473^

NIST

PUBLICATIONS
feta

N I STIR 6140
1

Fault Classes and Error Detection in

Specification Based Testing

D. Richard Kuhn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

QC

100

.U56

NO. 61 40

1998

N1ST

Fault Classes and Error Detection in

Specification Based Testing

D. Richard Kuhn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

February 1998

in\T OF rv-s

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Fault Classes and Error Detection in

Specification Based Testing

D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

kuhn@nist.gov

February 24, 1998

Abstract

Specification based testing relies upon methods for generating test

cases from predicates in a software specification. [1] [2] [3] [4] [5] [6] [7].

These methods derive various test conditions from logic expressions,

with the aim of detecting different types of faults. Some authors have

presented empirical results demonstrating their effectiveness of the

test generation methods [1] [2] [7] [8].

This paper examines the conditions under which a particular fault

class will cause an error for a given predicate. These conditions must

be covered by a test set for the test set to guarantee detection of the

particular fault class. By deriving the general conditions under which

various fault classes cause an error, we show that there is a coverage

hierarchy to fault classes. The fault hierarchy is then used to explain

experimental results on fault based testing. This work is significant

because it provides a method for comparing the effectiveness of test

sets designed for various fault models.

General Terms: THEORY, VERIFICATION, TESTING
Categories and Subject Descriptors: D.2.4: Software, soft-

ware engineering, program verification. D.2.1: Software, software en-

gineering, requirements/specifications. D.2.5: Software, software en-

gineering, testing and debugging.

1

1 Introduction

A number of methods have been proposed for generating test cases from

predicates in a specification or program. [1] [2] [3] [4] [5] [6] [7] [9] [10]. These

methods derive various test conditions from logic expressions, with the aim

of detecting a variety of fault types. This approach is analogous to standard

digital circuit test methods [11]. In circuit testing, typical manufacturing

flaws are hypothesized, then test sets are derived to detect these flaws. For

example, a common flaw is a stuck-at-zero fault, in which a logic gate always

produces a zero value. This flaw is modeled by replacing the variable that

represents the gate in the circuit specification with a zero value. Using the

correct specification and the specification with the flaw inserted, tests sets

can be constructed automatically to detect the flaw.

With software, the situation is similar, but the set of possible fault

classes is much larger. Because the difference between an implementation

and its specification is the result of human error, some types of faults may be

virtually impossible to predict in advance. Nevertheless, some fault classes

can be hypothesized and test sets can be constucted to detect them. The

fault classes defined in [2], [10], and [12] are the following:

• Variable Reference Fault - a boolean variable x is replaced by another

variable y, x ^ y.

• Variable Negation Fault - a boolean variable x is replaced by x.

• Expression Negation Fault - a boolean expression p is replaced by p.

• Associative Shift Fault - a boolean expression is replaced by one in

which the association between variables is incorrect, e.g. x A (y V z)

replaced by x A y V z.

• Operator Reference Fault - a boolean operator is replaced by another,

e.g., x A y replaced by x V y.

Additional types of faults are defined in [8] :

• Incorrect relational operators - a relational operator (e.g., >, <) is

replaced by a different relational operator.

• Incorrect parentheses;

2

• Incorrect arithmetic expression;

• Extra binary operators;

• Missing binary operator.

Experimental results have demonstrated the effectiveness of the test genera-

tion methods [1] [2] [7] [8].

In this paper, the conditions under which a particular fault class will

cause an error for a given predicate are calculated. We show that the calcu-

lated conditions must be covered by a test set for the test set to guarantee

detection of the particular fault class. By deriving the conditions under which

various fault classes will cause an error, we show that there is a hierarchy

to fault classes. The ordering of the hierarchy matches the ordering of effec-

tiveness of fault-based testing techniques established in empirical studies by

Weyuker et al. [2], and Vouk et al. [8]. Thus the fault hierarchy explains

experimental results on fault based testing. The existence of this hierarchy

also helps to explain the effectiveness of fault based testing techniques for

detecting a broad range of fault conditions.

The results presented in this paper also have some implications for the

coupling effect hypothesis [13], [14], one of the principles of mutation testing.

The coupling effect hypothesis states that tests which detect simple types of

faults will also detect more complex faults. Some empirical evidence exists

to show that the coupling effect hypothesis does in fact hold, providing some

assurance that fault-based testing is an effective strategy [14]. The existence

of a fault hierarchy implies that a limited class of simple tests will also detect

faults of other types.

2 Detection Conditions

The detection conditions for a predicate P are the conditions under which a

change to P will affect the value of the predicate P. A test will detect an

error if and only if a faulty predicate P 1 evaluates to a different value than

the correct predicate P. That is, where ->(P <=> P'), or P © P', where © is

exclusive-or.

This is simply the boolean difference (see Appendix) of P with respect

to P1

[15] [16], also called the boolean derivative [17] [18],or predicate differ-

ence [19] when P contains expressions rather than strictly boolean terms.

3

To determine, for example, the conditions under which a variable

negation fault for variable v will be detected, we simply compute P © P^,

where Pe

x
is predicate P with all free occurrences of variable x replaced by

expression e. (Px may also be written as P[x := e].)

Other types of faults can be analyzed in the same way, letting P' be

the predicate P with the fault inserted. Given a particular fault hypothesized

for a particular specification, it is possible to compute the conditions under

which the fault will cause an error, i.e., conditions under which the fault will

cause the expression to evaluate to a different value than if the fault had not

occurred. For example, suppose the specification is S = p A q V r, we can

compute the conditions under which a variable negation fault for variable q

will cause an error, by computing the boolean difference:

dS| = (p A -><? V r) © (p A q V r)

= p A f

Table 1 shows the correct expression 5, the incorrect implementation

I and the value of S and I for possible values of p, q and r. Note that only

where p A f = 1 (marked with ‘*’) does the fault make a difference between

the value of S and I.

pqr p A q V r p A q V r

000 0 0

001 1 1

010 0 0

Oil 1 1

100 *
1 0

101 1 1

110 *
0 1

111 1 1

Table 1.

Weyuker, Goradia and Singh [2] describe an algorithm that computes

test conditions for detecting variable negation faults, and propose various

strategies to generate data for these conditions. Although their algorithm

was designed to detect variable negation faults, Weyuker et al. show that

their approach detects other fault types as well.

4

3 Hierarchy of Fault Classes

This section develops a hierarchy of fault classes based on the conditions

under which a particular type of faults are detected. It is then shown that

this hierarchy can be used to explain the empirical results for fault based

testing described by Foster [1], Weyuker et al., [2], and Vouk et al. [8].

3.1 Fault Classes

We first determine the detection conditions for the various fault classes under

different assumptions. Let 5 be a specification in disjunctive normal form:

S = xli A xl 2 A ... (1)

Vx2i A x22 ...

\fxrii A xn2 ...

In general, the xij variables may not be distinct. For example, we

could have a A b V a A c.

Then the conditions under which, for example, a variable negation

fault for variable a will be detected are S ® Sf . The conditions for detecting

variable negation faults
(Svnf), variable reference faults

(Svrf)
and expres-

sion negation faults
(Senf)

are given below:

Svnf = S © S^.

Svrf = S ® ,
where xki is the variable substituted for xij

Senf = S © S*x.,

where Xi is the conjuction xi\ A xi 2 A ... A xin .

It can readily be shown that Svrf => Svnf => Senf under very

minimal restrictions. Figure 1 shows the relationship between detection con-

ditions for these fault classes.

Theorem 3.1 If the variable replaced in Svrf is the same variable negated

in Svnf then Svrf ^ Svnf •

5

Figure 1: Fault Detection Condition Relationships

Proof:

For readability, the variables in formula(l) will be abbreviated as a\

for xli, a2 for xl 2 ,
for x2i, etc.

P = ai A a2 A ... A a* V 61 A b2 A ... A bm V ... V z\ A z2 A ... A 2n

We want to establish that detection conditions for an arbitrary vari-

able reference fault, a! := b2 ,
in this predicate imply the detection conditions

for the variable negation fault ai := ai, i.e.:

dP£ =* dPg

The left hand side, dP{£ reduces to:

[a-i A a2 A ... A a*. ® A a2 A ... A a*]

A (&! V 62 V ... V 6m)

A ... A (21 V z2 V ... V 2n)

The right hand side dP°^ reduces to:

a2 A ... A a* A
(
bx V 62 V ... V 6m)

A ... A (21 VI2 V ... V 2n)

Note that

6

[ai A a2 A ... A ak © h A a2 A ... A a*] A (bx V b2 V ... V 6m)
A ... A (zi V z2 V ... V zn)

= [a! © 62]
A a2 A ... A a* A (6j V 62 V ... V 6m)

A ... A (zj V z2 V ... V zn),

and that [ai © 62]
A a2 A ... A a* => Aa2 A ... A a*,, which establishes the result.

Q.E.D.

Corollary 3.2 Any test that detects a variable reference fault for a variable

x in a predicate will also detect a variable negation fault for the same variable.

Now consider the relationship between variable negation faults and

expression negation faults.

Theorem 3.3 If all expressions containing the variable negated in Svnf are

negated in Senf then Svnf Senf

Proof:

We want to establish that detection conditions for a variable nega-

tion fault in this predicate for an arbitrary variable ax imply the detection

conditions for an expression negation fault for expressions including a^.

where Ei, i?2 , ...Ek are all expressions containing a\.

We assume that variable a\ may occur in more than one clause. That

is, some of bj
, dk, etc., may be the same variable as a\. Let the formula be

rearranged so that all clauses containing ai occur first, followed by clauses

not containing a\. Then abbreviate clauses containing ai by Ei
1
E2 ^..., and

clauses not containing a1 by R\,R2 ,

The detection conditions for the variable negation fault are then given

by:

E1 [a1 := 01] V E2 [a 1 := ai] V ... V Ek[ai := ai] V Ri V ... V Rm
@E1 V E2 V ... V V V ... V Rm

which is

7

(.Ei V E2 V ... V Efc ® Ei[ai :— ai] V E2 [ai :— ai] V ... V Efcjai := ai])

A~i(Ri V ... V Rm

The detection conditions for the expression negation fault are then

given by:

Penf = Ex V E2 V ... V Efc V Rx V ... V Rm ®
-(Ei V E2 V ... V Efc) V V ... V Rm

Since Penf reduces to simply ->(Ei V ... V R^f)
,
clearly dP^

dP^'% Q-E'D-

Corollary 3.4 Any test that detects a variable negation fault for a variable x

in a predicate will also detect an expression negation fault for the expression

in which the variable occurs.

3.2 Examples

This section provides two examples. The first one is simple enough to make
the hierarchy of fault detection conditions obvious. The second is a realistic

example, taken from the FAA Traffic Collision Avoidance System software

specification, as reported in [2].

3.2.1 Example 1

Consider the expression from Section 2: p A q V r. A variable reference fault

where q is replaced by r can be detected with conditions shown below:

Svrf • dS* = (p A q V r) ® (p A r V r)

= p A q A f

A variable negation fault where q is replaced by q is dected with these con-

ditions:

Svnf dS? = (p A ~>q V r) ® (p A q V r)

= p A f

8

An expression negation fault where (pAq) is replaced with ~^(pAq) is detected

by f:

Senf : dS<!$Q = (pAn9 Vr)©(n(p Aq)Vr)

— f

Clearly, Svrf => Svnf Senf ,
i-e., the following relationship holds:

pAqAr=$>pAr=>r

3.2.2 Example 2

For a realistic example, consider the following formula from [2] :

P:aAcA(dVe)A/iVaA(dVe)AAV6A(eV/)

A variable reference fault where e is replaced by c is detected by the

conditions Pvrf'-

Pvrf = cl A ((c V h) A (d V e)) V b A (e V /)

©a A (c A h V (d V c) A V b A (c V /)

A variable negation fault where e is replaced by e is detected by the

conditions Pvnf-

Pvnf — a A ((c V h) A (d V e)) V b A (e V /)

©a A ((c V &) A (d V e)) V 6 A (e V /)

Penf = cl A ((c V h) A (d V e)) V b A (e V /)

©a A ((c V h) A -.(d Ve))Vi A ->(e V /)

It can then be shown that:

=*• => dP&l)

9

4 Analysis of Empirical Data

The empirical data presented in [2] show that tests detected 100% of ENF
and a slightly smaller percentage of the other faults. Testing detected fewer

variable negation faults than expression faults, and fewer variable reference

faults than variable negation faults. For variable reference faults
(
VRF),

variable negation faults
(
VNF), and expression negation faults

(
ENF), the

relationship is VRF < VNF < ENF. Including the less well defined associa-

tive shift faults (ASF) and operator reference faults
(
ORF), the relationship

is ASF < VRF < VNF < ORF < ENF.
Why does this relationship hold? We will consider only the conditions

for VNF, VRF
,
and ENF as the conditions for ASF and ORF are some-

what arbitrary and depend on the particular operators or association faults

chosen by the tester. Note that the conditions under which a particular fault

will cause a failure are defined by the boolean difference of the specification

with respect to the particular fault. Where 5* defines the faulty substitution

of an expression e for term x
,
the difference dS* = S © S* defines the condi-

tions under which the fault will cause a failure. Weyuker et al.’s meaningful

impact testing draws tests from the conditions defined by dS* As shown in

Section 3, dSyRF => dSvNF => dSsNF- That is, conditions for dSvRF (the

conditions under which a VRF will cause a failure) are the conjunction of

dSvNF and additional conditions. So every condition that tests for a VRF
also tests for a VNF. Likewise, every test for a VNF is also a test for an

ENF. In terms of test conditions, the relationship between the fault classes

is: dSyRF Q dSvNF Q dSsNF

,

as shown in Figure 1.

Consider Example 1 from the previous section. Detection conditions

for variable reference faults and for variable negation faults are shown below.

Variable reference fault detection conditions for p :

dSq = p A q A f

dSf = p A q Af

Variable reference fault detection conditions for q :

dS% = p A q Af
dS? = p A q Af

Variable reference fault detection conditions for r:

10

dSp = rAp\/pAqAr
dSr

q
= qAr\fpAqAr\/qApAf\/rApAq

Variable negation fault detection conditions for p:

dSp = q A f

Variable negation fault detection conditions for q:

dS\ = p A f

Variable negation fault detection conditions for r:

dSf = pV q

For example, the conditions to detect the variable reference faults

where q is substituted for p in specification S are dS% = p A q A f . A variable

negation fault for the variable p is detected by dSp = q A f. Clearly, dS% =>

dSp. So any test set that detects variable reference faults for p will also

detect variable negation faults for p. Because dVRF => dVNF dENF
,

the VRF fault class can be considered “stronger” than the VNF fault class,

which is in turn stronger than the ENF fault class.

Recall that empirical results showed that variable reference faults were

detected less successfully than variable negation faults, which in turn were

detected less successfully than expression negation faults. A VNF for p can

be detected by either pAqAfovbypAqAf. Depending on which is chosen,

the test vector may or may not also detect a VRF for p. On the other hand,

the VNF test set for p will always detect an ENF for an expression containing

p. The empirical results are thus consistent with the hierarchy developed in

Section 3.

The results described in this paper suggest that fault-based testing

can be made more efficient by designing test generation algorithms to target

the strongest fault class. The relationship between the VRF, VNF, and

ENF fault classes implies immediately that not more than n{n — 1) tests are

required to detect all faults in any of these classes, for an expression with

n variables. This is because each variable can be replaced by any of the

other variables in a variable reference fault. In practice the number of tests

needed is much less, because of overlap between detection conditions. As the

next section shows, however, tests computed for another fault model, missing

condition faults, can detect faults in the other classes at a cost that is linear

in the number of conditions.

11

5 Missing Condition Faults

While the results presented in previous sections are interesting from a the-

oretical standpoint, a natural question to ask is whether the various fault

types described in Section 1 are realistic models of faults that occur in soft-

ware. In this section we consider a type of fault that does occur in software,

and its relationship to other fault types.

One of the most common implementation errors is the failure to val-

idate input data, or check preconditions. We will refer to this type of fault

as a missing condition fault. Missing condition faults can be regarded as a

special case of variable reference fault. For example, consider the predecate

P = AaBaCwDaEA>FW

A missing condition fault in which A is not implemented is equivalent

to the variable reference fault in which A is replaced by (for example) B, i.e.,

P[A :=B} = BACWDAEAFW

With a singular condition, e.g. A in

P = AW D AE AFW,

the missing condition fault is equivalent to A being replaced by one of the

conjunct expressions in the DNF formula, e.g.

P[A :=DAEAF] = DAEAFW

12

Variable reference faults can now be divided into those in which the

variable substitution results in a missing condition fault and others in which

one condition is replaced by another, e.g., where A is replaced by E in P =
AABACVDAEAFV The second type of fault could be described as an

incorrect condition fault
,
since the boolean variables typically represent some

relation or condition in a specification. The hierarchy can thus be extended

as shown in Figure 2. Of the two types of variable reference faults, incorrect

condition faults seem to be unlikely in practice.

There is some evidence from empirical investigations of software faults

that missing condition faults are extremely common. Marick [20], in an inves-

tigation of the competent programmer hypothesis, shows that approximately

half of the faults posted on Usenet bug reports are faults of ommission, what

we have referred to as missing condition faults, while only 23% were simple

faults. In circuit testing, the single-stuck-fault is often referred to as the

standard fault model, because it is one of the most common fault types, and

because tests for single stuck faults can detect a number of other fault types.

The missing condition fault may serve the same purpose for specification

based software testing.

6 MCDC Coverage Via Boolean Differences

Chilenski and Miller [21] analyze Modified Conditions/Decision Coverage

(MCDC), which DO-178B [22] defines as follows:

Every point of entry and exit in the program has been invoked

at least once, every condition in a decision in the program has

taken on all possible outcomes at least once, and each condition

has been shown to independently affect the decision’s outcome by

varying just that condition while holding fixed all other possible

conditions.

Chilenski and Miller present a ‘Pairs Table’ approach to identifying

MCDC adequate test sets. In the Pairs Table approach, a truth table is

defined for the boolean decision of interest. Rows in the truth table are

numbered. An additional column is added for each condition. The entry in

this column for a particular row is the row or rows for which i) the condition

of interest is the only variable that changes, and ii) the boolean decision

13

changes truth value as well. Often, many of the entries in a Pairs Table are

blank. The possibility of multiple entries arises when short-circuit operations

are considered.

MCDC coverage is obtained by selecting enough rows in the truth

table such that each condition column has a ‘Pair’ selected. That is, for each

column, the chosen rows must include a pair of rows such that when the

relevant condition changes, the value of the boolean decision changes as well.

An example is given in the next section. Chilenski and Miller state that for a

boolean expression with n conditions, a minimum of tl + 1 tests ‘can usually

be achieved’.

Explicitly constructing truth tables has significant drawbacks. This

section presents an alternative approach that uses boolean differences to de-

velop a specification for the circumstances under which MCDC is achieved.

Consider a particular condition x in some boolean decision P. Then

the boolean difference of P with respect to x,

dPJdx = P®P|

gives the conditions under which P depends on the value of x. Thus by

choosing an assignment of truth values such that dP/dx is satisfied, and

then choosing x to be true and then false, two tests are generated that satisfy

MCDC with respect to x. Repeating the procedure for each condition yields

a total of 2n tests. Careful selection of these tests may reduce the total

number of tests to n + 1.

It is worth noting that the boolean difference approach can also be

used to specify the conditions under which a test set derived by any means

satisfies MCDC. Consider a candidate test set T. For each condition as, there

must be at least one pair of test cases in T that differ only in the truth value

of as, or else MCDC cannot be satisfied. If at least one such pair, with x

excluded, satisfies dP/dx for each variable x, then, and only then, MCDC is

achieved.

6.1 Example

This subsection develops an example, iA(5vC), with both the Pairs Table

approach and via boolean difference.

The Pairs Table approach in [21] begins with constructing a truth

table for A A (B V C), for all possible values of the variables A, B
,
and C .

14

The columns labeled A, B
,
and C show which test cases (first column

)
can

be used to show the independence of the condition (second column). For

example, the independence of A can be shown by pairing test case 1 with

test case 5.

Case ABC Result A B C
1 111 1 5

2 110 1 6 4

3 101 1 7

4 100 0 2 3

5 Oil 0 1

6 010 0 2

7 001 0 3

8 000 0

Table 2. Pairs Table for A A (B V C)

The boolean difference approach is as follows. First, the boolean

differences with respect to A, B
,
and C are calculated:

1. dP/cLA = AA(BmC)@Aa{BMC) = BMC

2. dP/dB = AA{BM C)@Aa{BMC) = AaC

3. dP/dC = Aa{BmC)®Aa(BMC) = AaB

Test sets are generated as follows:

1. From dP/dA
,
select B\/C true (three possibilities) and A both true

and false, yielding three choices for tests (the notation indicates the

assignments of truth values to A, B
,
and (7, respectively):

(a) {111,011}

(b) {110,010}

(c) {101,001}

2. From dP/dB
,
select A A C true and B both true and false, yielding

{ 110 ,
100 }.

15

3. From dP/dC
,
select A A B true and C both true and false, yielding

{ 101 ,
100 }.

Next, combine the test sets generated above. There are three possible

test cases:

1 . { 111 ,
110

,
101

,
100

,
011 }

2 . { 110 ,
101

,
100

,
010 }

3. {110,101,100,001}

The second and third possibilities are more desirable since they use

the minimum number (n + 1) of tests.

6.2 Coupled Conditions

Sometimes, conditions cannot be varied independently. Two conditions are

strongly coupled if varying one always varies the other. Two conditions are

weakly coupled if varying one sometimes, but not always, varies the other.

Weak MCDC treats strongly coupled conditions as one condition. Clearly,

the boolean difference approach can satisfy weak MCDC coverage by simply

replacing strongly coupled conditions with a single condition.

Strong MCDC requires that each condition to be treated as if it

were independent. In particular, repeated instances of a single condition

are treated separately. Again, the boolean difference approach applies by

simply considering each condition to be a separately named variable.

6.3 Comparing Test Methods

The results can be used to compare the theoretical effectiveness of published

test methods. One published test generation method, Offutt and Liu’s [7],

uses the following procedure, where predicates are assumed to be in disjunc-

tive normal form:

• At the disjunctive level, where predicates are of the form A V B V(7 V ...,

generate test values by holding all disjuncts but one false, then vary

each one to be true in turn.

16

• At the conjunctive level, where predicates are of the form A A B A C A
first find values that cause each clause to be true, then generate

additional tests by holding all conjuncts but one true and vary each

one to be false in turn.

As it turns out, this procedure is equivalent to generating missing

condition faults for each of the variables in the predicates being tested. That

is, for each variable x±, the condition to detect a missing condition fault for

Xi are given by:

f {,X 1, ...£j, ...Xn) © f{x\ 1
...Xj_i, ...Xn).

This results in an expression of the form

x t A Xj A x fc ... A ATm).,

where Xj,Xk are other variables in the conjunct containing x t .

For example, suppose the predicate is aAbAcMdAeAf. Computing

the detection conditions for missing condition faults for each variable gives

the following set of expressions:

a A b A c A ->(d A e A /)

6 A a A c A -i(d A e A /)

c A a A b A ->(d A e A /)

d A e A / A -i(a A 6 A c)

e A d A / A ~>(a A 6 A c)

/ A d A e A -i(a A b A c)

Computing such an expression for each variable is thus equivalent

to using the test generation method of [7]. By comparison, the methods

described by Foster and by Weyuker et al. use algorithms that are equivalent

to computing boolean differences for variable negation faults. Since missing

condition faults are dominated by variable negation faults, Offutt and Liu’s

method should be more efficient than these.

7 Conclusions

This paper has developed a hierarchy of fault models used in specification

based software testing. Tests that detect missing condition faults will detect

variable negation faults, and tests that detect variable negation faults will

detect expression negation faults. These results suggest that test generation

17

methods that focus on detecting missing condition faults will also detect a

variety of other fault types.

Experimental results presented by various authors can be explained

by the hierarchy. Experiments show that expression negation faults are de-

tected more readily than variable negation faults, which in turn are detected

more readily than variable reference faults, a superclass of missing condition

faults. This is to be expected because a test for a variable negation fault

will also detect the other fault types, while the converse is not necessarily

true. Experimental results are thus in alignment with results presented in

the paper, and suggest that specification based testing should give priority

to the detection of missing condition faults.

8 Acknowledgements

I am grateful to Paul Ammann for many suggestions and for contributing

work on MCDC testing. Paul Black did a careful analysis of the results.

Marv Zelkowitz provided helpful comments on demonstrating the practical

benefits of the results.

References

[1] K.A. Foster. Sensitive test data for logical expressions. ACM SIGSOFT
software engineering notes

, 9(2), 1984.

[2] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test

data from a boolean specification. IEEE Transactions on Software En-

gineering, 20(5), 1994.

[3] A.M. Paradkar and K.C. Tai. Test generation for boolean expressions. In

Proc. IEEE International symposium on software reliability engineering,

1995.

[4] A.M. Paradkar and K.C. Tai. Automatic test generation for predicates.

In Proc. IEEE International symposium on software reliability engineer-

ing, 1996.

18

[5] A.M. Paradkar, K.C. Tai, and M.A. Vouk. Automatic test generation

for predicates. IEEE Transactions on Reliability
, 45(4), 1996.

[6] P. Stocks and D. Carrington. A framework for specification based test-

ing. IEEE Transactions on Software Engineering
, 9(22), 1996.

[7] A. J. Offutt and S. Liu. Generating test data from SOFL specifications.

Technical report, George Mason University, 1997.

[8] M.A. Vouk, A.M. Paradkar, and K.C. Tai. Empirical studies of

predicate-based software testing. In Proc. IEEE International sympo-

sium on software reliability engineering, pages 55-65, Nov. 1994.

[9] L.J. Morrell. Theoretical insights into fault-based testing. In Proceed-

ings of the Second Workshop oin Software Testing, Verification, and

Analysis. ACM/SIGSOFT, 1988.

[10] D. J. Richardson and M.C. Thompson. The relay model of error detection

and its application. In Proceedings of the Second Workshop oin Software

Testing, Verification, and Analysis. ACM/SIGSOFT, 1988.

[11] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Test-

ing and Testable Design. IEEE Press, 1990.

[12] D.J. Richardson and M.C. Thompson. An analysis of test data selection

criteria using the relay model of fault detection. IEEE Transactions on

Software Engineering, 19(5), 1993.

[13] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data se-

lection: help for the practicing programmer. IEEE Computer

,

11(4),

1978.

[14] A.J. Offutt. Investigations of the software testing coupling effect. ACM
Transactions on software engineering methodology, 1(1), 1992.

[15] I.S. Reed. A class of multiple-error correcting codes and the decoding

scheme. Transactions of the Institute of Radio Engineers, IT-4, 1954.

[16] S.B. Akers. On a theory of boolean functions. SIAM Journal, 7(4),

1959.

19

[17] F.M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

[18] D.A. Huffman. Solvability criterion for simultaneous logical equations.

Technical Report AD 156-161, Massachusetts Institute of Technology,

Jan. 1958.

[19] D.R. Kuhn. A technique for analyzing the effects of changes in formal

specifications. BCS Computer Journal
, 35(6), 1992.

[20] B. Marick. Two experiments in software testing. Technical Re-

port UIUCDCS-R-90-1644, University of Illinois at Urbana-Champaign,

1990.

[21] J.J. Chilenski and S.P. Miller. Applicability of modified condi-

tion/decision coverage to software testing. Software Engineering Jour-

nal
,, 9(5), 1994.

[22] RTCA. Software considerations in airborne systems and equipment.

Technical Report DO-178B, RTCA Inc., December 16 1992.

Appendix

Boolean Difference

The boolean difference [15], [16], can be used to calculate the dependency of

a boolean function on a literal Xi of that function. The boolean difference of

F with respect to Xi ,
dF/dxi

,
gives the conditions under which the value of

F will change if the value of Xi changes.

For a function F = f(xi, ..., Xi, ..., xn), the boolean difference of F
with respect to X{ is

dFjdX{ — f[x i, ..., ..., 2n) ® f(^1 ,
•••, 3-n, 2Jn)*

This is equivalent to dF/dxi = f(xi, ..., 0, ..., xn) ® f(x 1 , ..., 1, ..., xn),

which follows from the fact that Xi must be either 0 or 1. The differ-

ence dFjdxi is an expression that does not contain x,.

20

A useful property of the boolean difference is that

r

dF/dxi = <

1

0

F'

if F is unconditionally dependent on x*

if F is unconditionally independent on Xi

an expression not containing x±, otherwise

The boolean difference of a function F = f(F1 ,...,Fn), with respect

to one of its component functions Ft is dF/dFt = f(F\, ..., Fi , ..., Fn) 0

The partial boolean difference gives the effect on the truth value of a

boolean formula of a component of the formula, through a particular term.

For a formula F = f(Fi,...,Fn), the partial boolean difference of F with

respect to Fi with respect to a variable Xj of Fi, is dF/d{x
3
\Fx)

— dF/dFi A

dFi /dxj

Predicate Difference

The predicate difference [19] for a predicate P with respect to variable sub-

stitution x := e, denoted dPf, is P 0 P*.

The properties of the predicate difference are similar to those of the

boolean difference. However, the boolean difference with respect to a term

gives the conditions under which a change in the value of the term will change

the value of the boolean function. A boolean term can change only from x

to —103. The change to a predicate depends on the expression substituted for

x. Thus a predicate difference is with respect to a particular change x := e

(the substitution of expression e for free variable x), rather than simply with

respect to x. Note also that the predicate difference with respect to a change

x := e may still contain x:

dP* = <

1

0

F'

if P is unconditionally dependent on x,

if P is unconditionally independent on X{

an expression, possibly containing x, otherwise

21

If dP* is not 0 and not 1, then the resulting formula can be solved

for 1 to determine the conditions under which P
e
x

will be dependent on x.

Note that if x is a boolean term and e = x in a propositional formula, the

predicate difference is equivalent to the boolean difference.

Partial Predicate Difference

The predicate difference of a predicate formula F = /(Pi, ..., Fn), consisting

of component formulas connected by A
,
V,or => with respect to one of its

component formulas F{ is

dF/dFl = /(Pi, Pi, ..., Fn) © /(Pi, ..., -Pi, ..., Fn).

The partial predicate difference gives the effect on a formula of a

component of the formula, through a change in a particular term. For a

formula F = /(Pi, ..., Pn), the partial predicate difference of P with respect

to Fi with respect to a change in a variable Xj := e of P;
,
is

dF/d{Fi)
x

e
j = A dFg

The Relationship Between Predicate Differences and
Boolean Differences

The boolean difference can be viewed as an “upper bound” on the result

of changes to an individual variable in a component formula. The change

from a variable in a component formula is never larger than the change that

results from negating the entire component formula.

The predicate difference of a predicate formula P = /(Pi, ..., Pn),

consisting of component formulas connected by A,V,or =>• with respect to

one of its component formulas Fi is

dPfjr. = /(Pi, ..., Pi, ..., Pn) 0 /(Pi, -Pi, Pn)

which is equivalent to the boolean difference of P with respect to F{. The

following theorem [19] shows the relationship between this boolean difference

with respect to a component formula and the partial predicate difference with

respect to a variable of the component formula.

22

Theorem 8.1 A substitution x := e in a component formula Ft (where x

is some variable in Fi) of a formula F will change the value of F only if a

change in the value of Fx will change the value of F

:

dF/d(F,)* => dFX

Applying modus tollens gives the following corollary:

Theorem 8.2 If the boolean difference is 0, then the predicate difference is

0 as well: (dF^l

Fi)
= 0 =$ dF/d(Fi)t3 = 0.

Anti-difference

We define the anti-difference of a predicate P to be the set of predicates St

for which dS{ = P. The anti-difference will be taken with respect to some

substitution x := e,

cPl = {5,}

where dSi/d(x := e) = P

For fault-based testing the anti-difference is significant because it de-

fines the class of predicates for which a test condition will detect an error.

For example, the test condition P = x t\z will detect variable negation errors

in predicates Si where dSi/d(y/y) = P

23

