
The EFFective Manager Tool

for Software Developers

Dolores Wallace
Mark Zimmerman

U.S. DEPARTMENT OF COMMERCE
Software Diagnostics and
Conformance Testing Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-0001

QC

100

. U56

NO. 61 37

1998

NIST

NISTIR 6137

The EFFective Manager Tool

for Software Developers

Dolores Wallace
Mark Zimmerman

U.S. DEPARTMENT OF COMMERCE
Software Diagnostics and
Conformance Testing Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-0001

April 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Abstract

The collection and analysis of software error, fault, and failure data from many high integrity

systems may yield reference data for matching development and assurance methods to

characteristics of a specific system. Profiles derived from the data may help researchers to

identify areas where new methods of error prevention and detection are most needed. The
National Institute of Standards and Technology has initiated a program on error, fault, and failure

data to address these topics. An initial data collection and analysis tool has been developed for

this project.

Keywords

Data; error; fault; failure; high integrity software; reference data; software quality; taxonomy;

world wide web (WWW).

DISCLAIMER: Certain trade names and company products are mentioned

in the text. In no case does such mention imply recommendation or

endorsement by the National Institute of Standards and Technology, nor does

it imply that the products are necessarily the best available for the purpose.

IV

TABLE OF CONTENTS

1. INTRODUCTION
1

2. THE EFF PROJECT 2

3. CONCEPTS OF EFF DATA COLLECTION AND ANALYSIS 5

4. FAULT and FAILURE DATA AS A PROJECT MANAGEMENT TOOL 7

5. THE EFF PROJECT TOOLSET 9

6. THEEFFTool 10

6.1 The EFFTool COLLECTION COMPONENT 10

6.2 THE EFFTool ANALYSIS COMPONENT 15

7. SUMMARY 16

8. ACKNOWLEDGMENT 16

9. REFERENCES 17

APPENDIX A. USING THE EFFTool 18

A. 1 Collection Component Menus 18

A.2 Analysis Component Menus and Displays 22

TABLES

Table 3.1 Questions for Software Error Analysis 5

Table 3.2 Process for Data Collection and Analysis 6

Table 3.3 Diversity Among Taxonomies 7

Table 6.1 The EFFTool Project Information 12

Table 6.2 The EFFTool Discovery Data 14

Table 6.3 The EFFTool Resolution Data 14

FIGURES

Figure A.l Project (entry) menu 18

Figure A.2 The display as indicated above 19

Figure A.3 Fault/ failure menu 20

Figure A.4 A one record display from the View f/f/data 21

v

Figure A.5 Part of Fault/Failure Form 22

Figure A.6 Analysis Menu 23

Figure A.7 Query results for Example 1 25

Figure A. 8 Query results for Example 2 26

Figure A.9 Query results for Example 3 27

Figure A. 10 Query results for Example 4 28

Figure A.l 1 Query results for Example 5 29

Figure A. 12 Query results for Example 6 30

vi

1 . INTRODUCTION

The development and assurance of software for high integrity systems requires methods to

prevent or detect software faults' during development and potential system faults and failures

before they result in operational failure. It is difficult to predict how well development and

assurance methods succeed in prevention and detection. Because introducing new technologies

is costly, companies are reluctant to change unless they have confidence that the new methods

will benefit them. Failures in high integrity systems are rare (and usually costly), and a single

system usually does not accumulate enough data to permit meaningful statistical evaluations.

Without sufficient data from many projects in various domains, researchers have difficulty

identifying the types of problems for which new methods are needed. The results of a Call for

White Papers issued by NIST revealed a strong need for an objective organization to address

these problems [NIST95].

The mission of the Information Technology Laboratory (ITL) at NIST is to stimulate U.S.

economic growth and industrial competitiveness through technical leadership and collaborative

research in critical infrastructure technology (e.g., tests and test methods) to promote better

development and use of information technology. ITL will provide tests and test methods to

facilitate a usable, scalable, interoperable, and secure information technology infrastructure. One
of the primary goals of ITL is to assure that U.S. industry, academia, and government have

access to accurate and reliable test methods, data, and reference material.

Software researchers need project data on errors, faults and failures from many projects to

identify characteristics and to develop benchmarks and profiles
2
for selecting methods and

software tools. Providing such data is very closely related to ITL’s mission. Consequently, ITL

has initiated a project for error, fault, and failure data collection and analysis. While the project

name is Reference Data: Software Error, Fault ,
Failure Data Collection & Analysis Repository

Project, it is usually referred to as the EFF project. The EFF project recognizes the data needs

for the development of high integrity systems and supports the mission of ITL.

The EFF project is collecting and analyzing data from the development and maintenance of

software products or during the operation of a delivered computer system. The information

technology industry may use the resulting reference data to develop software methods and tools

and to build better end-user products. NIST encourages companies to consider the benefits of a

public data base. NIST will accept new or existing data to augment the repository. All identifying

'in this paper, “error” is the human action that produces the incorrect result; fault is the manifestation of

an error in an artifact; and failure is the result of a fault that has been activated during operation of a system.

2A profile provides a generalized characterization while a benchmark is a measurement; both may be used

as reference values. An example profile may be “class of faults generally found for this set of defined

characteristics in a specific application class”; an example benchmark may be “n faults for a program of this size,

this language, this application domain.”

1

information on data accepted by NIST will be removed before being included in the repository.

Several World Wide Web (WWW) tools are being developed by NIST to assist anyone

collecting data for their internal analysis and to provide public access to data. The first tool

developed for the EFF project is the EFFective Manager Tool (EFFTool), aWWW software tool

for fault and failure data discovered during the development or maintenance of software. The

EFFTool is a public domain tool that contains a fault management component to provide a

benefit to any company who uses this tool. The tool enables a company to track the status of

faults and failures and includes a simple analysis tool for tabulating the status of several fault and

failure attributes.

Other tools are in the design stages. One is a data collection tool similar to the EFFTool but with

data fields consistent with its purpose: collection of failure data from systems in operation. Both

data collection tools will be used by industry on servers at their sites and the data may be

provided to NIST whenever the contributor chooses. A WWW accessible data base system will

provide access to sanitized data, other repositories and public domain analytic tools. Data for

public access will have company identifiers removed. Existing statistical and graphical tools are

being explored for their feasibility for analyzing and displaying data.

While the primary purpose of this report is to describe the EFFTool, it provides a complete

project description (Section 2) and a discussion of research on error, fault, and failure data

collection and analysis (Section 3). Section 4 provides an overview of using fault and failure

data as a project management tool. Section 5 contains a description of the EFF project toolset,

with Section 6 providing general description of the public domain EFFTool. APPENDIX A
provides operational details for the data component of the EFFTool and APPENDIX B contains

operational details of the analysis component and examples of displaying EFFTool data

graphically.

2. THE EFF PROJECT

Successful prediction, risk assessment, and planning are crucial elements for saving millions of

dollars per year in the software industry. But, project managers do not always collect the data

on errors, faults, and failures that will help them to perform these tasks. On a larger scale,

there is a fundamental lack of actual project data on errors, faults, and failures in a public

repository. Without such data, industry and government agencies lack benchmark information

against which to measure software program quality and to determine the software methods

most appropriate for their software development environment.

The purpose of the EFF project is to provide reference data from software development and

maintenance projects; fault and failure profiles and benchmarks derived from that data; analytic

methods and tools; and metrics for measuring effectiveness of software development methods.

2

The EFF project will help industry and researchers^ assess software system quality by collecting,

analyzing, and providing error, fault, and failure data and by providing data collection and

statistical methods and tools for the analysis of software systems.

Project data are needed to determine trends on broader concepts such as:

• Software error profiles: prevalent types (e.g., unachievable path, initial value,

control-flow)

• Root technical causes of the errors and the development and assurance methods likely to

prevent or detect those errors

• Types of problems requiring fault tolerance provisions in the software, and

• Error, fault, and failure problems not solvable or measurable by current methods or tools.

Data from many individual projects are needed to develop these and other benchmarks and to

provide researchers with sufficient samples to develop new analytic methods and to identify

where new methods are needed. Projects and their sponsoring companies need similar data to

understand where specific error types are likely to occur and the frequency with which they

occur. From various analysis methods, developers may locate troublesome parts of their

programs and may adjust their development methods, adapt their testing processes, and maintain

records for controlling their product quality.

Possible benefits to individual companies include:

• A public domain tool for collecting fault and failure data,

• Analysis tools to tabulate attributes of that data, and

• Methods to understand and compare projects within the company and against similar

projects of other companies.

Possible benefits to industry from the EFF project include:

• Reference data for evaluating and selecting methods and software tools

• Taxonomy4 and frequency profiles of errors, faults, and failures

• Reference methods for analyzing software data, and

• Data collection and preliminary analysis tools, using WWW technology.

By making data from various domains available to researchers, benefits to research may include:

• Software error, fault, and failure data available for analysis

• Qualitative and statistical methods for data analysis and measurement

3The term “industry" includes anyone developing software, including government, and the term

“researchers” includes both academia and researchers within industry and government.
4A taxonomy is an organized classification scheme, in this instance, to identify types of faults and failures.

3

• Statistical basis to help with understanding error, fault, and failure data.

The EFF project involves the following tasks:

• Generate a standard data collection structure derived from IEEE and industry

nomenclature and formats. Provide for anonymity of data and removal of any proprietary

information.

• Seek industry, government, academic collaborators/contributors to populate the data

repository.

• Provide a WWW-based data collection and analysis tool for individual

contributors for use at their site.

• Accept and adapt data collected by other mechanisms.

• Address privacy issues. Perform initial summary and analysis. Index data and

summarize by common descriptive analysis.

• Make sanitized data publicly available through WWW-based facilities at NIST. Validate

and sanitize data from contributors. Identify and procure commercial database

management system. Refine the data collection and classification methodology as

needed.

• Develop methods and tools for qualitative and statistical analysis. Identify or develop

methods or tools for viewing data, for analyzing data, for measuring impact of methods

on software quality, and for assessing relationships of project factors to software quality.

• Conduct analyses of collected data. Develop frequency profiles. Conduct analyses to

provide understanding of impact of various development and diagnostics methods on

failures. Report results/findings.

The plan for the EFF project is aggressive; a primary risk is that the group of willing data

contributors will be very small. The fact that NIST’s traditional role in defining standards and

measures for industry includes objectivity and the ability to protect any proprietary information

may help to overcome industry reluctance to provide data. The data collection tools with

tracking and management capabilities may be an incentive for contributors. From the research

perspective, another risk lies in normalizing data from diverse environments; this is part of the

research problem of this project.

Several EFF tasks are progressing simultaneously. NIST has formed a collaborative relationship

with SoHaR, Inc. under a Cooperative Research and Development Agreement (CRADA) for

which SoHaR, Inc. will be an active participant in the project. Another collaborative activity

included a meeting in September, 1 996, of researchers and industry representatives to discuss

problems likely to be encountered and the results ofNIST research in identifying a draft data

4

structure, or model. Indeed, the management component of the EFFTool was a consequence of
this meeting. These industry representatives and researchers will continue to provide guidance.

As of the date of this report, another CRADA is under development, and several companies are

negotiating the mechanics of providing data. The EFF project is continuously seeking

contributors of data.

3. CONCEPTS OF EFF DATA COLLECTION AND ANALYSIS

Research on software faults, and hence on data collection and analysis, is almost as old as

software itself. One early paper asks several questions for which the EFFTool is seeking data

[ENDR]. These questions, pertinent today, are shown in Table 3. 1 and indicate that considerable

information about an error is needed to learn from it. Such information includes data about

discovery of the problem (e.g., version, date, name of discoverer), description of the problem,

resolution (date, name of resolver, version where change made), area or artifact of actual error

cause, and the description of change.

Relevant Questions

Where was the error made?

When was the error made?

Who (generic) made the error?

What was done wrong?

Why was the particular error made?

What could have been done to prevent this error?

If an error could not be prevented, what detection

method could detect it?

Table 3.1 Questions for Software Error Analysis

Basili [BASI] proposed a highly organized approach for data collection and analysis, shown in

Table 3.2. With respect to the EFF project, steps 1 and 2 are relatively easy. For step 3, some

data categories have been easy to establish, but classifying the symptoms that revealed errors and

ultimately the cause of each error is difficult and terms may be changed in the second version of

the taxonomy. While a small group has reviewed the data concepts for the EFF project (Step 4),

broader usage may require changes to it. Validation of the data (Step 5) will be extremely

difficult because accurate (translate to possibly time-consuming) reporting of data is needed, the

contributor must understand the data fields of the NIST tool, and NIST must carefully adapt the

contributor’s data fields to the NIST nomenclature. Implementation of Step 6 relies on

contributed data and availability of the data to researchers.

5

Several potential contributors plan to provide data from existing collections. Such data will vary

in content and must be translated into the data categories evolving in this project. Special care

will be exercised when analyzing data collected by a mechanism different from the NIST tool. In

some cases, a link may be provided to an existing data base.

BASIL!’S GUIDELINES

1 . Establish the goals of the data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test the data types

5. Collect and validate data

6. Analyze data

Table 3.2 Process for Data Collection and Analysis

At the September 1 996 meeting, attendees discussed taxonomies for faults and failures and some

models for descriptive data about a project and its errors, faults, and failures (Table 3.3). The

diversity among the taxonomies is great. The research occurred in different domains, problem

sizes, languages, and other variables. For example Endres’ interest was in an operating system

while Beizer collected data from many projects of varying types and languages. And, worse,

much of the data that lead to these specific taxonomies was collected before the existence of

some languages (e.g., Ada, C++, JAVA) and the use of software tools aiding development.

Do classifications apply to all languages equally? To all types of software? Has the advent of

design tools, analysis tools, and other parameters changed the nature of errors and hence the

faults manifested in the artifacts? And, has the entry of more complex systems added failures

that couldn’t have been dreamed of before networks? These issues need to be addressed when
developing new taxonomies. Unfortunately, data are needed to develop the taxonomies, and

collecting the data with a predefined taxonomy imposes a problem.

Key lessons learned from other researchers who have influenced the EFF project include the

following:

• Attributes from large projects and small projects differ and will yield different fault

frequencies.

• Normalization across projects needs to account for variability in project environments.

• Existing taxonomies have varying levels of details that make synchronization difficult.

• Fairly complex projects are needed for meaningful data.

• Data requests must be kept simple.

6

Taxonomies and Data models

Simple, few elements Rubey late 1970’s

Glass 1981

Weiss/Basili 1985

Grady 1992

Chillarege 1993

Fenton/Pfleeger 1996

Several groups, details Endres 1975

Knuth 1989

Security-oriented Landwehr 1995

Aslam 1995

CMU experiment: need data from Greenberg/Siewiorek 1996

complex projects

Maintenance Stark 1997

Detailed, life cycle oriented IEEE Standard 1044 1993

Beizer 1990

Hecht/Wallace 1996

Table 3.3 Diversity Among Taxonomies

4. FAULT and FAILURE DATA AS A PROJECT MANAGEMENT TOOL

To be competitive, companies need to get their products out the door. To remain competitive,

they need to learn from the current project and apply those lessons if possible during the current

project and certainly to the next one. Collecting and analyzing data on faults and failures

provides support to these objectives. While other issues must be addressed for overall process

improvement, the EFF project is concerned only with the collection and analysis of fault data.

The assignment to get the product out should translate to getting a quality product built and

delivered within budget, on time. Because the term quality may have varying definitions, the

assumption is that the project manager knows the organizations’s definition and has guidelines

for the judging acceptability of the product5
. Regardless of the definition of quality, the project

manager needs to know the status of the faults and failures and resolve them.

The fault or failure may have a priority for resolution and a person assigned to its resolution. The

5
Standard profiles of faults and failures for specific application domains would assist in defining

acceptability, and in bettering the "standard" to beat competition.

7

ft“es.
be 6ither °Pen °r reSOlVed Where reSOlution * fault or failure may result in any of

• corrected,

• deferraI °f correction until another version of the program

• 2 7 faulting from a correction to another probL
’

smissal, that is, upon examination, no correction needed.

Tj pical questions that the project manager may ask-How many faults vvi* highest priority are open?
a is the average number of days to resolve a fault?

How many faute/ MrnesZe resXT’
“ * ^ (e*’ MaX 1W) ?

SsSStSSrr1"*” -•»»
basic: the date each fault s found fte Ze of 1^1

“
*!
Beded ,0“ «“» are

symptom. The answers assistp4*mtagemem L ^ for resolu‘io"> »d *
simple count of faults yet to be resolved, along with their priori^

®^ *hat Pr°VideS 3

melStdetf
” - ** was

faults. Large numbers of faults relative to project size vdwTch 'f/f
S0ftW3re 3,1(1 dlsc°™ring

and rework, and many faults not revealing thJmselves’ mt» the h
C ‘° many fauIts

are among the many types of signals suggesting that
•

h 7 become faiIures in system test

manager may not even know these circumstances eidsuS Td Z* COITeCtion - The
reviewed. The manager needs more infn +• i

ba<^ no* ^een collected and then
reviewed, any n«nlb <^^1^^J ,

^.,i,e feul,S 30(1 fail— Once data me
include: reconsidering why inspections were

^ SPeCif,C data - Examples
why a lower priority was assigned to some open fafaTt

^^ .

3rt,faCts with *e faults, or

rt,s”.rzs
u

X“ss ““7

s™st:sssssr »«* -<«% •

feulu. In another, not having sufficient UaTeSwdauleadsto toTre

' aPPI'“,i0n domain ma >’ lea<J to timing

8

understand what is occurring on the project. With this understanding, managers can assess the

types of changes and perhaps more effectively manage progress.

When the company collects and keeps the data from a project, that company will have valuable

information for the next version of the product. The data provide lessons learned about methods
for developing the software and for finding faults. Profiles can be generted to indicate frequency

of faults found during specific activities, or the frequency of types of faults being found and

when they are usually found. By examining profiles of the previous version or a similar product,

project managers may be able to avoid some problems via better staff training, improved

checklists that address the most frequent faults (and guidance on how to use the checklists), and

more accurate test scheduling.

5. THE EFF PROJECT TOOLSET

The EFF project plan calls for several tools for the collection and analysis of fault and failure

data:

• a public data base facility at NIST - the EFFPublicData Tool

• a data collection and (simple) analysis tool for fault and failure data during development

and maintenance - the EFFective Manager Tool (EFFTool)

• a data collection and (simple) analysis tool for failures of systems in operation - the

EFFSystem Tool, and

• access to public domain methods and tools providing more complex statistical and

graphical capabilities, which may be developed by NIST or other researchers.

The high integrity software system assurance (HISSA) page at http://hissa.nist.gov/ links to the

taxonomy-based Reference Information for Software Quality (RISQ) [NIST97]. RISQ provides

direct access to artifacts for software quality. Among the artifacts (e.g., documents, tools, code)

is one called data. The EFF data will be a data artifact accessible through RISQ. The data will

reside in a database system residing on the HISSA server. Any contributed data will have been

sanitized on a non-publicly-accessible system first, and then will be entered into the data base.

Statistical functions, fault and failure tracking capabilities, and interfaces to publicly-available

tools for examining the data will be available on the public system. Users of the data will also be

able to download and analyze the data with their own tools.

Important criteria imposed for data collection tools for the EFF project discussed at the

September, 1996, meeting included the need to keep data as simple as possible and to avoid the

use of ambiguous terms. Contributors must understand the meaning of each type of data. A
condition on the EFF tools that evolved at the meeting is that any data collection and analysis

tool should provide a service to the contributors that will make collecting the data worthwhile to

them during and following the collection process. The two collection tools provide searching

and computational capabilities to enable managers to track their projects. The EFFTool could be

used personally by individuals for tracking and improving their own processes.

9

The two data collection tools are to be WWW tools that a contributor could easily install on an

organization’s server. Almost everyone has access to the WWW and can download Perl. While

the first version of the EFFTool was built for a unix server, the tool will be adapted for

installation for other operating systems. The amount of data requested has been kept minimal,

and data is generally entered via a click of the mouse. Definitions of terms are provided via Help

buttons to prevent ambiguous responses. Other assumptions are that for every project, there will

be one set of descriptive data about the project environment while there may be many unique

faults and failures. The fault and failure data may be entered by one or more people for one

project, an advantage of using aWWW tool. The data, as collected by the organization on its

server, are available only to that organization. Only when installed at NIST will the data become

publicly available.

The data collection tools, the EFFTool for data during development and maintenance activities

and the EFFSystem Tool for failure data collected during operation of a software product, each

consist of a project or system environment file, a file for each fault or failure, and finally a

capability to search and analyze the fault and failure data according to their characteristics. It is

this analysis component that provides the contributors with a value-added benefit for using the

tools.

NIST receives data when a contributing organization is ready to release the data. NIST will

examine and validate the data, remove any public identification of the contributing organization,

and install the data on the public EFF data base. If requested, the organization’s contact will be

notified of the identity of its data within the EFF data base.

6. THE EFFTool

The EFFTool data consists of some general project information and specific information related

to the discovery and resolution of faults and failures occurring during the development or

maintenance processes. One purpose is to provide a facility that over many projects will contain

enough information to further understanding ofhow faults and failures occurred, how they could

have been prevented, and how they could have been detected earlier. From the current project

manager’s perspective, an important purpose is to contribute to individual project managers’

capability to manage the project by examining the collected fault and failure data. Complete

project management data, such as schedules, milestones, personnel skills and experience, are not

requested because many methods and tools exist to understand process itself, and companies may
consider supplying such data to be redundant. Such data for the EFF project goals may not be

needed. The EFF project seeks data at a lower level and focuses on product in order to

understand methods to be used in the development and maintenance processes.

The EFFTool is an interactive WWW tool which receives data by text entry, radio buttons, pull-

down menus, and check boxes. While APPENDIX A contains operational information with

details on the user interfaces and elements of the data categories, this section describes, in

general, the data requirements and some research issues concerning them.

10

6.1 The EFFTool COLLECTION COMPONENT

The EFFTool collection component receives data about the project and about each fault or

failure. The data fields were selected by trying to foresee questions that researchers and

organizations might ask. Obviously, foreseeing every question is impossible, but the requested

data allow for a multitude of questions; this topic is expanded in Section 6.2.

Within an organization, environment features for projects may be the same and may be known to

all who work on the project. These features include elements such as development processes, the

standards which govern the project, the programming language, and quality practices. For a

single project, drawing conclusions about whether a specific method worked well may be

relatively easy, provided other experimentation practices are followed [ZELK]. When data are

collected across many projects and different organizations, these environment and organization

elements are likely to differ. Researchers may combine data from like elements but they must be

aware of differences and establish how they will treat the differences in their analyses.

To aid with the problem of normalizing data from many environments, the EFFTool requires a

fairly extensive project description. Some questions address the company, such as how many

years the company has developed software in the application domain. Others, such as primary

software language, are critical to understanding certain project information. Program size for

source lines of code (SLOC) may be computed differently for different languages. Size, the types

of standards or quality practices applied to the project, and language are only a few

characteristics for which profiles may change across projects. When drawing conclusions about

the efficacy of methods, researchers need to take project differences into account. The general

data categories for project information are shown in Table 6.1; most categories expand via a pull-

down menu into set of choices, with “Other” provided to accommodate omissions from the set.

While project data are entered only once, they may be edited. But the persons entering fault and

failure data need not be concerned with the project data after the first entry.

11

TYPE OF PROJECT DATA REQUESTED

Project name CMM level

Company name & contact Primary software language

Brief project description Size of new & reused code

Date project began % of COTS code

Development or maintenance Requirements, design methods, automation

Perceived type of consequence of

failure of the completed system

Performer ofQA / VV

Perceived criticality of failure Company experience: in domain

Relation to hardware Company experience: w/ software in domain

Generic domain Company experience: w/ software in general

Specific application Company quality practices

Contractual requirements ISO 9000

Table 6.1 The EFFTool Project Information

The form for fault and failure data will be used for every fault or failure. Details are separated

into 3 groups: administrative, discovery and resolution, with most categories expanding via pull-

down menus into a set of choices. Some of the requested details are intended to enable project

managers to analyze the progress of their project and to make adjustments. Most of the

information will be useful in the analysis of faults and failures over several projects. The

requested data will be very important in enabling researchers to develop profiles, benchmarks,

and quality measures from the public data base.

The administrative data types are simple. A number is assigned to each fault or failure. A short

text description is requested (e.g., incorrect parameter passed to invoice sum program). A field

for the actual name of a person exists; this is for company purposes so that other members of the

organization may ask questions about the fault or failure either during the project or, later, for

lessons learned or other company purposes. The name could be the project manager, the test

manager, the discoverer, resolver, or anyone familiar with that aspect of the project. The name

will not be used in the NIST data base. Finally, the administrative section contains the status

field: open, open-assigned, resolved-corrected, resolved-deferred, resolved- no correction

needed, resolved - corrected by another resolution.

Conflicting goals for the EFFTool arise when collection and use of fault and failure data are

taken into account. The programmer, typically under pressure to finish, may be willing to

provide a little information while investing as little time as possible into the fault documentation

process. On the other hand, the user of this information wants a significant amount of

characteristics for project planning and for further process changes. Asking for too much
information from the fault or failure discoverer could result in no information being provided

12

(i.e., why bother- 1 don’t have that kind of information at hand anyhow). Because of this

problem, only fault/failure data related directly to the fault or failure are included. Information

such as module complexity, module size and other attributes is sacrificed in the desire to obtain

as accurate and complete fault data as possible.

For purposes of simplicity, any usage of the term “fault” in the remainder of this report includes

both fault and failure. A summary of the data categories for discovery is shown in Table 6.2.

Basic questions like “when found, where found, who found” are asked, and generic attributes are

provided from which to select. The user has the option to specify more details on where a fault

was discovered. For example, if the fault was discovered in the design, then the user may also

enter an identifier in a text field for the generic artifact type, like for design, SUM_MONEY.
The user supplies input on the possible consequence of this fault being allowed to remain in the

system, and on the impact on the development schedule. The user assigns a priority to resolution

of this fault. Assigning the priority may be a part of resolution in some organizations, or may be

changed during resolution.

The data types for fault discovery allow for a description of the discovery method, (e.g.,

inspections focused on initialization). This category may iterate into looking more like

Chillarege’s triggers [CHIL], Chillarege considers a trigger to be an activation process that

activates a software failure from a fault. This is not quite the same as a method for discovering a

fault, but seems closely aligned. Chillarege has identified triggers for inspection, function test,

and system test. It may be that both categories will be useful for fault and failure analysis, or that,

if enough data from enough projects are collected, perhaps a set of principal triggers satisfying

both meanings can be identified.

Another data type presenting difficulty is the symptom of a problem. The symptom is the visible

indication to the discoverer that something is wrong. Examples of symptoms include

“ambiguity” and “execution stopped.” When data are submitted to NIST, the “Other” field for the

symptom category may indicate that the current list of symptoms needs to change. A similar

problem occurs with fault classification in the resolution data, where the fault classification is the

name of the actual cause. An example of the difference may be that an incorrect parameter is the

visible symptom but the cause may have been a typing error or an incorrect specification. (And,

the analyst needs to discover what caused the incorrect specification!) These two fields, like the

trigger, are expected to iterate over time as more data arrive, especially from project using

modem technology.

13

FAULT (and FAILUR1E) DISCOVERY

Date of fault discovery Potential severity if not fixed

Type of person who found fault Impact on schedule

Specific location where fault discovered Priority for resolution
7

Generic artifact where fault discovered Discovery method

Activity during which fault discovered Discovery method effort

Symptom Degree method automated

Table 6.2 The EFFTool Discovery Data

The resolution data types (Table 6.3) are similar to the discovery data in most data fields but

there are differences. In resolution, the artifacts requested are those where the changes were

made, which may lead to the actual source of the fault. For example, if the fault is found in the

code, resolution may find that the source is in the design, and changes were made in both

artifacts. The project manager will likely want to ensure that the error has been corrected, and

that any other faults on other locations have been corrected. Researchers using the data to

understand effectiveness of methods would in this case look for more errors in using the design

method of this project and other projects using the same design method.

FAULT (and FAILURE) RESOLUTION

Date resolution completed

Resolver (generic)

Classification

Generic artifacts fixed - also text fields for specific ids

Was this caused by a previous fix?

Project activity during which resolution is made

Resolution method

Degree method is automated

Resolution method effort

Table 6.3 The EFFTool Resolution Data

To reiterate, one major challenge is the classification of faults and symptoms. The classifications

must be easily understood and mutually exclusive. They need to apply to, or at least be

understood with, all modem technologies. Also, a long selection list may tax the patience of

contributors. The problem is to synthesize terms from the many existing taxonomies. If usage of

this tool indicates that contributors are willing to scroll through multi-level lists, then it may be

7
Priority may not always be assigned immediately upon discovery - may be part of resolution process.

14

feasible to go to more fine-grained fault classifications similar to Beizer’s taxonomy [BEIZ].

Another question asks if the fault occurred because of resolving some other problem. Tracking

the answers to this question may lead to better understanding of the maintenance process while

helping to identify fault classifications . The expectation is that data and comments from users of

this first version of the EFFTool will be useful in defining a better taxonomy for the second

version.

6.2 THE EFFTool ANALYSIS COMPONENT

The purpose of the analysis component of the EFFTool is to give the company using the tool

added value to make it worthwhile to collect data in the first place. The analysis component

provides capability to sort and count faults having certain characteristics selected from the data

elements and to perform various calculations and comparisons on those faults. The types of

questions asked in Table 3.1, and many other queries, can be answered by using the features of

the analysis component. The project (or test or quality assurance) manager should be able to use

the analysis capability to monitor the project and to identify where to make changes related to

methods, schedules, staff and other project concerns.

The analysis component enables a search to identify only those faults or failures with a certain

set of characteristics, or attributes. The analyst composes a query to narrow the set of attributes

of interest. The tool provides capability to sort and count information about the faults and

failures according to selection criteria and enables some computations on numbers of faults and

time. It enables monitoring the status of open and resolved faults. The profiles derived from the

analysis capability enable visibility to project managers and staff to establish priorities for

resolving faults / failures, status of project as a whole, effectiveness of development or testing

methods, training needs, technology needs, and other issues serving to improve current and

future projects.

The user can locate information on a specific collection of faults and failures by successively

narrowing the attributes that identify a fault. The queries are basically in two parts, first, selecting

fault/ failures by record number groups or by time periods, and second, selecting specific features

of a fault/ failure. Then, the record numbers and status are displayed for that group of records.

Additional category information may be displayed as selected.

A typical query might include identifying the most urgent faults found during inspection after

December 1, 1997 and before January 10, 1998 that are still open. Or, the analyst may have

wanted to know instead which of those have been resolved and the classification of each. Or, the

analyst may have wanted to know the average number of days the faults in that group were open.

These are the types of queries for which profiles will be generated from the public data base,

which will also allow queries on project characteristics. The queries may be saved and edited

when invoked again. Specific details on building queries and examples of EFFTool output are

provided in APPENDIX A.

15

The EFFTool is intended to be used by companies at their sites. Because commercial tools exist

to perform many statistical analyses and related graphics, the tool does not provide those

capabilities but does provide simple filtering and counting capabilities. The output of the

EFFTool is an ASCII file, for which we provide a script to translate the data to be acceptable to

most spreadsheets, which usually have some graphics capability for the most common statistical

measures.

7. SUMMARY

The development and assurance of software for high integrity systems requires methods to

prevent or detect software faults during development and potential system faults and failures

before they result in operational failure. NIST initiated a program for fault and failure data to

enable researchers and practitioners to evaluate how well methods support prevention and

detection of faults and failures. The data will also enable development of benchmarks and

profiles that indicate to companies how well they are developing and maintaining software

systems relative to other similar systems.

NIST will accept new or existing private data to augment the repository. Such data may be from

either the software development or maintenance process, or may consist of failure data derived

from systems already in service. All identifying information on data accepted by NIST will be

removed any before being included in the repository.

As a further service, NIST is making tools available via the Web site for use by anyone that may

want to collect data for their own internal analysis. The EFFTool provides for relatively easy

data entry and in addition has the capability to extract information derived from specific

characteristics of the entered data. Use of the derived information can be used by project, test, or

quality assurance managers to monitor their projects and to make adjustments in their processes

(e.g., methods, schedules, other resources) as needed.

The EFFTool is a public domain tool which may be downloaded from NIST at

http : / /hissa . nist
.
gov/toolkit/ef f . html, or one may request to

dwallace@nist
.
gov that the tool be sent on a diskette.

8. ACKNOWLEDGMENT

We are grateful to the participants in the September 1996 meeting at NIST: Dr. V. Basili,

University of Maryland; Dr. S. L. Pfleeger, Howard University; Dr. P. Keiller, Howard

University; T. Rhodes, NIST; Dr. M. Zelkowitz, University of Maryland & NIST; Dr. C.

Michael, RST Corporation; J. Calvert, Nuclear Regulatory Commission; J. Gaffney, Lockheed-

Martin; Dr. N.F.Zhang, NIST; S. Hissam, CARDS. Affiliations were applicable at time of

meeting.

16

9. REFERENCES

[BASI]

[BEIZ]

[CHIL]

[ENDR]

[HECHT]

[NIST95]

[NIST97]

[ZELK]

V. R. Basili and D. M. Weiss, “A methodology for collecting valid software

engineering data,” TSE 10
,
Number 6, November, 1984, 728-738.

Boris Beizer, Software Testing Techniques, International Thomson Computer

Press, 1990.

Ram Chillarege and Karen A. Bassin, “Software Triggers as a function of time -

ODC on field faults,” Fifth IFIP Conference on Dependable Computing for

Critical Applications, IEEE Computer Society, 1995.

Albert Endres, “An Analysis of Errors and Their Causes in System Programs,”

IEEE Transactions on Software Engineering, Vol.SE-1, No.2 June 1975, pp.140-

149.

Herbert Hecht, Dolores Wallace, “Project Data to Support High Integrity

Methods, ” Nuclear Plant Instrumentation, Control and Human Interface

Technologies Conference May 6-9, 1996, Pennsylvania State University, State

College, PA.

Dolores Wallace and Marvin Zelkowitz, NISTIR 5677, "Center for High

Integrity Software System Assurance-Initial Goals and Activities," U.S.

Department of Commerce, Technology Administration, National Institute of

Standards and Technology, June 1995.

Charles B. Weinstock and Dolores R. Wallace, NISTIR 5954, “RISQ: A WWW-
Based Tool for Referencing Information on Software Quality,” U.S. Department

of Commerce, Technology Administration, National Institute of Standards and

Technology, January 1997.

Zelkowitz, Marvin V., and Dolores R. Wallace, “Experimental Models for

Software Diagnosis,” NIST IR 5889, September, 1996

17

APPENDIX A. USING THE EFFTool

The EFFective Manager Tool (EFFTool) is a World Wide Web (WWW) tool designed to collect

and analyze data on faults and failures. This tool has 2 components associated with it: the data

collection component and the data analysis component. Both components may be accessed

through the entry menu. This APPENDIX provides guidance for using the tool.

A.l Collection Component Menus

The data collection component consists of the entry menu containing the project data collection

functions, access to the fault/failure collection functions, and the analysis component (Figure

A. 1). The data collection functions are similar for both project and fault/ failure data; the user

may enter a record of data, edit it, view it, and delete it. While probably only one user will be

responsible for entering the project data, those users entering fault/ failure data may occasionally

want to verify that the project information is correct. Otherwise these users will go immediately

to the Fault/Failure menu. Throughout this component and the analysis component, buttons

marked HELP or H display online help files designed to assist and guide the user through various

aspects of the tool.

(. NeLycvipc: EfFocLivc Mcmogor Tool (Pk.ii.it Menu) i!)—mm m m mm

Figure A.l Project (entry) menu

18

The entry, or project, menu provides services for the user to:

1 . Create a project record and enter project data

2. Edit project data

3 . View a list of project names

4. Delete a project

5. Go to the Fault/Failure (level) menu

6. Go to the analysis component of the tool.

The user may choose not to provide most of the project data but both the project name and a

password must be supplied to gain entry to the fault/ failure data. And, of course, if a company is

using this tool for more than one project, the password will prevent persons on one project from

examining data from another project. Project name and password are required to review the

project information. For companies planning to provide data to NIST, the project information

will be essential in developing profiles over many projects. Only one project record has been

entered into a demonstration data base and the execution of “View a list of project names” yields

the output shown in Figure A.2.

19

The fault/failure menu (Figure A.3) provides functions for fault/ failure records similar to those

for the project record. The complete fault / failure menu allows the user to:

1 . Enter fault/failure data

2. Edit fault/failure data

3. View a list of Fault numbers and Generic Description

4. View fault /failure data (and select a record to edit from this function)

5. Delete a fault/failure record

6. Go to analysis component

7. Return to main menu.

A user may enter a new record or may view or edit a record. Similar to the requirement to

provide a project name to gain entry to the project data, the user must provide a record number to

edit a record. When the user does not know exactly which record to review, he can use the

capability to display and scroll through all the fault /failure records in a condensed format rather

than in the data entry format. Then the user can click on the record number to go immediately to

20

edit mode (Figure A.4).

Select Peak Number to work wnh

~
I

w Resolved -Corrected No section for Arcoonts PcyebU Monthly Report

11 Ru otv*d- Corrected Accounts Psyabl* report is incorrect

Iff
Resolved -Corrected Totsls on Monthly Stock Report ere Incorrect

i

I Resohred- Corrected
System shat down when celcnletmg Averaje stocks held

per person

Iff
Resolved-Corrected Deed code detected

w Res ohred-No Correction Needed System pots number* m vtoti j piece

E Resolved-Deferred Output should «Hh*ve white beckgrouadj (Reg 123)

Figure A.4 A one record display from the View

f/f/data

Data are generally entered using pull-down menus, radio button selection, or in a few cases, text

entry. An example of a pull-down menu and a radio button selection is shown in Figure A.5 .

Typically, these lists also provide a choice “Other” with a related text field in case the provided

options do not apply. The radio buttons are used when more than one selection may be

appropriate.

21

A.2 Analysis Component Menus and Displays

The Analysis Component of the EFFTool provides a query process to sort, count, and display

fault and failure records according to attributes selected by the user. The Analyze Data Menu
(Figure A. 6) is the first screen of the Analysis Component. This component allows the user to

save, edit, and execute queries. Managers (e.g., project, test, quality assurance) may use the

analysis capability to monitor the project and to identify where to make changes related to

methods, schedules, staff and other project concerns.

While the EFFTool allows a user to see all the fault and failure records as an option on the

fault/failure menu, this list may not be very useful for a large number of records . Instead, the

user may prefer to view only a selection of records, related to individual attributes. The analysis

component allows the user to construct a query consisting of two parts: computations and

attributes. Attributes are the characterizing elements selected from categories on the fault and

failure data form. Computations are selection criteria based on Fault Numbers, Discovery Dates,

Date Resolved, and Number of days in open status.

22

Figure A.6 Analysis Menu

When the user presses the Attributes button, a menu somewhat similar to the collection form

appears on the screen. The difference is that the user has a choice of selecting any number of

items from a category (left of the category) and selecting which categories will be displayed in

the final output (right). The only faults or failures that will be displayed in the final output are

those that match the selection criteria defined by the query.

Clicking on the box to the left of a category will display a list of characterizing items for that

category. A fault or failure may have only one item per category associated with it. All items

checked from this list will be added to the selection criteria, so that any records with those

choices will be selected for display. Of course, when a selection from a category includes more

than one item (e.g., 3 items), the displayed information will not identify which of those three

items belongs to a specific record. Checking the box to the right of the category will add this

category to the display option of the query and all selected records will be presented with the

specific item from that category.

A query may be saved by clicking the save button at the bottom of the analysis component's

main screen. The saved query can be retrieved automatically by clicking the Invoke/ edit a

“Saved” Query button. The Clear Query button will remove the query definitions.

23

Examples ofanalysis

The user can locate information on a specific collection of faults and failures by successively

narrowing characteristics about the collection. The queries are basically in two parts:

1) select fault/ failures by record number groups or by time periods, and 2) select specific

features of a fault/ failure. Then, the record numbers and status are displayed for that group of

records. Additional category information may be displayed as selected. Section 4 of this report

provided a list of typical questions a project manager might ask. The following examples show

how the EFFTool analysis component provides the answers. In the examples, the instruction

set for each question is provided, with interactive “buttons” for the tool represented by text in the

different font enclosed by brackets, e.g., [name] .

24

Example 1: How many faults with the most urgent priority are open?

[Attributes] on Analyze Data Menu

[*] Status

Mark Open.
[Return to Attribute Menu]

[*] Priority

Mark 1 -urgent

[Return to Attribute Menu]
[Return to Analyze Data Menu]
[Execute Query]

In this example, the last line of the Display (Figure A. 7) tells how many faults/failures are still

open with the most urgent priority.

0 Netscape: Effective Manager Tool (Query Results)
: E

Query Results ~^/
<"***•* C E M 0 VI

Query using:

Query Name: EXAMPLE 1

Project Name: SAMPLE
j

Status

:

Open
Priority

1-urgent

|
Diaplay:

Number
Status

|8 jOpea
j

Total number of Faults 14

Total nuaber of Faults in this Query. 1

|Help vith Printing!

|Rotum to Analyze Data Menuj

||Retum to Fault Menu]

Figure A.7 Query results for Example 1

25

Example 2: What is the average number of days to resolve a fault ?

[Computations] on Analyze Data Menu
Mark box at bottom next to Show the

average days open for each status

[Return to Analyze Data Menu]

[Attributes]

[*] status

Mark the 4 resolved statuses

[Return to Attribute Menu]

[Return to Analyze Data Menu]

[Execute Query]

The lower table in Figure A. 8 indicates the Average Number of days.

® Netscape: EFFective Manager Tool (Query Results}

Figure A.8 Query results for Example 2

26

Example 3: How many faults/failures were discovered in May 1997?

[Computations] on Analyze Data Menu
Set Discovery Date After to 04/31/1997

Set Discovery Date Before to 06/1/1997

[Return to Analyze Data Menu]

[Execute Query]

The last line of the display in Figure A.9 indicates how many faults/failures were discovered

between those dates.

3 Netscape: tthective Manager loot (.Query Kesulls)

Figure A.9 Query results for Example 3

27

Example 4: How many faults/failure were Resolved in May 1997?

[Computations] on Analyze Data Menu
Set Date Resolved After to 04/31/1997

Set Date Resolved Before to 06/1/1997

[Return to Analyze Data Menu]

[Execute Query]

The last line of the display in Figure A. 10 indicates how many faults/failures were discovered

between those dates.

28

Example 5: How many faults/failures were discovered in May 1997 and Resolved in May
1997?

[Computations] on Analyze Data Menu
Set Discovery Date After to 04/31/1997

Set Discovery Date Before to 06/1/1997

Set Date Resolved After to 04/31/1997

Set Date Resolved Before to 06/1/1997

[Return to Analyze Data Menu]

[Execute Query]

The last line of the display in Figure A. 11 indicates how many faults/failures were discovered

between those dates.

Query Results

, *r-4- 4*4 4
£TZ Zoal
E E M 0 VI

Query using:

Query Name: EXAMPLE 5

Project Name: SAMPLE
Discovered

Before 06-01-1997
After 04-31-1997

Reoolved:
After 04-31-1997
Before 06-01-1997

Display:
Number
Statue

[Number jSte

tRerolved-Corrtcted

(Res olved-No Correction Needed

|Rm olved - another Rea otaaon

[10 [Res olved-Corrtaed

(Ti (Ret olved-Corrected

this Query 5

i jHelp vith Printing!

Figure A.ll Query results for Example 5

29

Example 6: Find all Faults discovered during requirements definition or design and

resolved during any other activity. For these faults display fault number, detector, status,

resolver, and the average days in open status?

[Attributes] on Analyze Data Menu

[*] beside Activity when Discovered

check requirements definition

check design

[Return to Attribute Menu]

[*] beside Activity When Resolved

check everything except requirements definition and design

[Return to Attribute Menu]

check detector and resolver (Note: Status is a default)

[Return to Analyze Data Menu]

[Computations]

check average days open for each status

[Return to Analyze Data Menu]

[Execute Query]

In this example, (igure A. 12) the first table displays the one fault that fits the selection criteria

and the second table displays the average days in open status.

Figure A.12 Query results for Example 6

30

