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TRUNCATING THE SINGULAR VALUE DECOMPOSITIONFOR ILL-POSED PROBLEMSBert W. RustMathematical and Computational Sciences DivisionBuilding 820, Room 365National Institute of Standards and TechnologyGaithersburg, MD 20899AbstractDiscretizing the �rst-kind integral equations which model many physi-cal measurement processes yields an ill-conditioned linear regression modelb = Ax� + �, where x� is a vector representation of the function being mea-sured, A is an instrument response matrix, b is a vector of measurements, and� is a vector of unknown, random measuring errors. Least squares estimationusually gives a sum of squared residuals much smaller than the expected valueand a wildly oscillating, physically implausible estimate of x�. These symp-toms suggest that the least squares estimate captures part of the variance thatproperly belongs in the residuals. One strategy for shifting some of this vari-ance to the residuals and simultaneously stabilizing the estimate is to truncatethe singular value decomposition A = U�VT where U and V are orthogonalmatrices and � is a diagonal matrix of singular values. All of the singular val-ues below some threshold value are reset to zero to give a new matrix �tr, andthe estimated solution is calculated from the generalized inverse of the matrixU�trVT . The most delicate part of this procedure is the determination of thetruncation threshold. Conventionally this has been regarded as a problem ofdetermining the \numerical rank" of A, but in most cases A is clearly notrank-de�cient. This paper suggests an alternate strategy which uses the vari-ances of the measuring errors to specify a truncation for the elements of therotated measurement vector UTb. The idea is to zero all of the componentsthat are dominated by the measurement errors and compute the estimate usingthe full rank matrix. The problem of setting the truncation threshold becomesone of deciding whether or not a measured value is signi�cantly di�erent fromzero, a procedure familiar to most experimentalists. The paper also developssome new diagnostics for the residuals which are useful not only for choosingthe truncation level for the (UTb)i, but also for assessing the quality of anestimate obtained by any procedure.



1 First Kind Integral Equations with Uncer-taintiesFirst kind integral equations,y(t) = Z ba K(t; �)x(�) d� ; (1.1)where K(t; �) and y(t) are known functions, are routinely used to model in-strument distortions in measuring an unknown function x(�). In that context,they are usually written as a system of equationsyi = Z ba Ki(�)x(�) d� + �i ; i = 1; 2; : : : ; m ; (1.2)where the Ki(�) are known (previously measured or calculated) response func-tions of the instrument, the yi �= y(ti) are measured values, corresponding toa discrete mesh t1; t2; : : : ; tm, and the �i are random, zero-mean measuring er-rors. In order to estimate x(�) it is necessary to further discretize the system,in the process replacing it with a linear regression modely = Kx� + � ; (1.3)where y is the m-vector of measurements, K is a known m � n matrix, withm � n, and x� is an unknown n-vector whose components are either discretepoint estimates of x(�) on some mesh �1; �2; : : : ; �n, or are the unknown coe�-cients in a truncated expansion of x(�) in terms of some set of basis functionsspanning the space of possible solutions. The vector � is anm-vector of randommeasuring errors satisfyingE(�) = 0 ; E �� �T� = S2 ; (1.4)where E is the expectation operator, 0 is the m-dimensional zero vector andS2 is the positive de�nite variance-covariance matrix for �. In most problemsthe measurement errors are statistically independent soS2 = diag(s21; s22; : : : ; s2m) ; (1.5)where s1; s2; : : : ; sm are the standard deviations of the errors. If S2 is notdiagonal, the model can be transformed into one with a diagonal variancematrix by premultiplying (1.3) by the inverse of the lower triangular Choleskyfactor of S2. 1



There seems to be a general misapprehension in the numerical analysiscommunity that estimates of the si are seldom available, but in fact goodexperimenters routinely provide them. Estimates of the measurement errorsare not considered to be something extra, but rather are an integral part ofthe measurements, and published graphs of measured data will usually reportthem as �1� error bars on the plotted points. An analyst who fails to usethis information implicitly assumes that S2 = s2Im where Im is the m-th orderidentity matrix and s is an unknown scalar that can be, but usually is not, es-timated from the sum of squared residuals for the least squares solution. Suchan assumption may be tenable if all the yi have roughly the same magnitude,but in most cases, they span a range of values, and the magnitudes of the sivary (usually nonlinearly) with the magnitudes of the yi.In the following it will be assumed that S is a known diagonal matrix. Itwill also be assumed, as is often the case, that the errors are samples froma multivariate normal distribution, i.e., that � � N( 0 ; S2 ). In x2, theseassumptions will be used to rescale the problem to have errors with a stan-dard normal distribution and to derive a statistical diagnostic for the sum ofsquared residuals for any estimate of the solution vector. In x3 a variant of thewell known Phillips problem [16] is subjected to this scaling and the ordinaryleast squares estimate is calculated and found to be unsatisfactory. In x4 theresiduals for that estimate are subjected to diagnostic tests based on the ex-pected value of their sum of squares and on their distribution when consideredas a time-series. The diagnostics that are developed there are useful for testingany estimate, no matter how it may be obtained, and will be used throughoutthe remainder of the paper.The singular value decomposition is introduced in x5 and the conventionalmethod for stabilizing solution estimates by truncating the distribution of sin-gular values is described in x6. This method is based on an assumption thatthe matrix is rank de�cient and depends critically on the proper determina-tion of its \numerical rank." But for most ill-posed problems, the matrix isdemonstrably not rank de�cient so there is no good reason for setting any ofthe singular values to zero. An alternate approach to truncating the decom-position is given in x7. Rather than zeroing some of the singular values, oneinstead zeroes small elements of the rotated right hand side vector formed bypremultiplying the vector of measurements by the transpose of the matrix ofleft singular vectors, i.e., the leftmost factor in the singular value decomposi-tion. The errors in this rotated measurement vector have a standard normaldistribution, so it is possible to establish a statistical criterion for determin-ing whether or not a given element is signi�cantly di�erent from zero. Thenew method is applied to the modi�ed Phillips problem to obtain satisfactory2



estimates for 3 di�erent truncation levels and the optimum level is taken tobe the one which best satis�es the diagnostic tests described in x4. In x8 themethod is successfully applied to real-world measurements of the energy spec-trum of neutrons produced by a certain nuclear reaction. Finally, x9 gives abrief discussion of algorithmic considerations and of how the method can beextended when the knowledge of the measurement errors is not as complete asmight be desired.2 Scaling the ProblemThe linear regression model in the preceding section can be writteny = Kx� + � ; � � N( 0 ; S2 ) ; (2.1)but it is advantageous to scale it with the matrix S�1. Letb � S�1y ; A � S�1K ; � � S�1� ; (2.2)and note that by a standard theorem of multivariate statistics [2, Thm. 2.4.4],� � N( 0 ; S2 ) implies that � � N( S�10 ; S�1S2[S�1]T ), so the scaledmodel can be writtenb = Ax� + � ; � � N( 0 ; Im ) ; (2.3)or b � N( Ax� ; Im ) : (2.4)To see the advantage of this scaling, let x̂ be an estimate of x� andr̂ = b�Ax̂ ; (2.5)be the corresponding residual vector. Since the regression model can also bewritten � = b�Ax� ; (2.6)it is clear that an estimate x̂ is acceptable only if r̂ is a plausible sample fromthe �-distribution.Since b �Ax� � N( 0 ; Im ), it follows from another standard statisticaltheorem [14, page 140] thatkb�Ax�k2 � (b�Ax�)T (b�Ax�) � �2(m) ; (2.7)3



where �2(m) denotes the Chi-squared distribution with m degrees of freedom,and hence thatE fkb�Ax�k2g = m ; Var fkb�Ax�k2g = 2m : (2.8)These two quantities provide rough bounds for the sum of squared residualsthat might be expected from a reasonable estimate of x�. An estimate thatgives m�p2m � kb�Ax̂k2 � m+p2m (2.9)would be quite reasonable, but any x̂ whose sum of squared residuals fallsoutside the interval hm� 2p2m;m+ 2p2mi would be suspect. These roughindicators can be sharpened considerably by using the cumulative distributionfunction for �2(m). More details on this point are given in Appendix A.3 Standard Linear RegressionThe standard approach for the linear regression problem de�ned by [2.3] is toassume that rank(A) = n and seek the minimum variance, unbiased estimatorfor x� by solving the least squares minimization problemr2min = minx2Rn n(b�Ax)T (b�Ax)o : (3.1)The solution, x̂ = �ATA��1ATb ; (3.2)is called the best linear unbiased estimate of x�, but it is well known [18,Chapt. 1], [19, Chapt. 6], [21, Chapt. 2] that for regression models obtainedby discretizing �rst kind integral equations, the elements of x̂ are patholog-ically sensitive to small variations in the elements of b, so the presence ofthe measuring errors leads to estimates that are totally unphysical, typicallyoscillating wildly between extreme positive and negative values.A useful test problem, with known solution, which shares many of the char-acteristics of real instrument correction problems can be obtained by discretiz-ing a variant of the well known Phillips equation [16] and adding some randomerrors to the discrete yi. The problem and a discretization with m = 300 andn = 241 are described in detail in Appendices B and C. The functions y(t)and x(�) are plotted on the right in Figure 1, and on the left are plotted thefunctions K(t; �j) for the discrete values �j = �3:0 ; �1:5 ; 0 ; 1:5 ; 3:0 . All ofthe 241K(t; �k) have the same shape and subtend unit area. The 300 standarddeviations si range in value from 3:49� 10�11 to 7:78� 10�6 so the errors in4



Figure 1: A variant of the Phillips problemthe yi are much smaller than the thickness of the curve in the plot of y(t).But these small errors produce large oscillations in the least squares estimateof the solution vector. This is shown in the plot in the upper left corner ofFigure 2 where the barely discernable dashed curve is the true solution x�, andthe solid curve oscillating wildly about it is the least squares estimate x̂. Themagnitudes of these oscillation are roughly 107 times greater than the largestrandom errors in the yi. Such a large ampli�cation of the measuring errors isthe rule rather than the exception for ill posed problems.4 Estimate DiagnosticsThe most commonly used estimate diagnostic for linear regression problemsis the sum of squared residuals. For the problem in the preceding section theleast squares estimate givesr2min = minx2Rn kb�Axk2 = kb�Ax̂k2 = 43:01 (4.1)which is much smaller than the value expected for the true solution which, byEq. (2.8), is E nkb�Ax�k2o = 300 : (4.2)5



Figure 2: Least squares estimate and diagnostics for the modi�ed PhillipsproblemFrom Eq. (2.8) it also follows that the standard deviation for this expectedvalue is p600 = 24:49, so the least squares r2min is more than 10 standarddeviations smaller than the expected value. Thus, without even inspecting theestimate itself, one could argue that x̂ is unlikely to be a good approximationto x�.Another good diagnostic for judging the acceptability of an estimate can begotten by considering the elements of the vectors � and r̂ as time series, withthe element number taken as the time variable. Since the �i are statisticallyindependent and identically normally distributed, they form a normally dis-tributed white noise series, so the residuals for an acceptable estimate shouldconstitute a realization of such a series. The residuals for the least squaresestimate are plotted against element number at the upper right of Figure 2. Itis clear by inspection that they are not even approximately white noise, andthis is not surprising since it can be shown [10, Section 6.9.1] thatr̂ � N �0 ; �Im �A �ATA��1AT �� (4.3)6



with the variance matrix becoming approximately diagonal only when m ismuch larger than n.A rigorous test for white noise is based on the periodogram [6, Chapt. 7]which is an estimate of the power spectrum on the frequency interval 0 �f � 12T , where T is the sample spacing for the time variable. Here, the timevariable is the element number i, so T = 1. The graph at the lower left ofFigure 2 is a plot of a periodogram estimate at 4097 equally spaced frequencypoints on the interval [0; 0:5]. The details on how it was computed are givenin Appendix D. For a white noise series, the variance would be distributeduniformly over the frequency range, so the fact that there is much more poweron the interval [0; 0:25] than on [0:25; 0:5] suggests that the residuals shouldnot be regarded as white noise. A formal test of this hypothesis uses thecumulative periodogram [6, Chapt. 7] (also described in Appendix D) whichis plotted as a solid curve at the lower right of the �gure. The legend boxgives the length of this curve which can be compared with the value 1:11803expected for a pure white noise spectrum. The two dashed lines enclose a 95%con�dence band for white noise. The cumulative periodogram ordinates forsuch a series should lie outside this band for at most 5% of the frequencies.Since 2803 of the 4096 calculated ordinates lie outside the band, it is safe toconclude that the least squares residuals are not white noise.5 The Singular Value DecompositionInsight into the failure of the least squares method to give a reasonable estimateof x� can be gotten by substituting the singular value decompostion of A intothe model (2.3). LetA = U �O !VT ; � = diag(�1; �2; : : : ; �n) ; (5.1)where �1 � �2 � � � � � �n, andUTU = Im = UUT ; VTV = In = VVT : (5.2)Substituting (5.1) into (2.3) and premultiplying by UT givesUTb =  �O !VTx� +UT� ; UT� � N( 0 ; Im ) ; (5.3)with the distribution of the UT� vectors unchanged because premultiplicationby an orthogonal matrix simply rotates all the vectors in the distribution7



through the same angle. Also, premultiplying a vector by an orthogonal matrixleaves its length unchanged so Eq. (2.7) can be replaced bykb�Ax�k2 = UTb�  �O !VTx�2 � �2(m) ; (5.4)with the �2(m) distribution following from the fact that the (UT�)i � n(0; 1),idependently. Partitioning the m�m matrix U,U = (U1;U2) ; (5.5)with U1 an m� n and U2 an m� (m� n) submatrix allows the least squaresproblem to be writtenminx2Rn kb�Axk2 = minx2Rn  UT1UT2 !b�  �O !VTx2 ; (5.6)from which it is quite evident that the least squares solution must satisfyVT x̂ = ��1UT1 b ; (5.7)and that the minimum sum of squared residuals isr2min = kb�Ax̂k2 = kUT2 bk2 : (5.8)These last two equations can also be written�VT x̂�i = �UTb�i�i ; i = 1; 2; � � � ; n ; (5.9)and r2min = kb�Ax̂k2 = mXi=n+1 �UTb�2i ; (5.10)and it is easy to see that Eq. (4.3) can be writtenr̂ � N �0 ; Im �U1UT1 � : (5.11)For the modi�ed Phillips problem the value of r2min was too small by 10 stan-dard deviations which suggests that some of the (UTb)i values in the sequence(5.9) more properly belong in the sum in (5.10). This reasoning leads to theidea of truncating the singular value decomposition.8



6 Truncating the Singular Value DistributionHistorically, the idea of truncating the SVD has been treated as a problemof determining the \numerical rank" of the matrix A. All of the computedsingular values smaller than some threshold value are treated as zeroes whichwere corrupted by rounding errors into small non-zero quantities. Thus if �pis the smallest singular value greater than the truncation threshold, then onereplaces the matrix � by a truncated matrix�tr = diag(�1; : : : ; �p; 0; : : : ; 0) (6.1)whose generalized inverse is given by�ytr = diag 1�1 ; : : : ; 1�p ; 0; : : : ; 0! : (6.2)The value p is said to be the \numerical rank" of A. If ~x is the estimate ofthe solution to the truncated problem, then it is required to satisfyVT ~x = �ytrUT1 b (6.3)rather than Eq. (5.7), which means that Eqs. (5.9) and (5.10) are replaced by�VT ~x�i = 8>>><>>>: �UTb�i�i ; i = 1; 2; � � � ; p ;0 ; i = p+ 1; � � � ; n ; (6.4)and kb�A~xk2 = mXi=p+1 �UTb�2i ; (6.5)and Eq. (5.11) is replaced by~r � N h�Im �UpUTp �Ax� ; Im �UpUTp i ; (6.6)where Up is the submatrix formed by the �rst p columns of U. Since p < n,it is clear that the variance matrix for ~r is more nearly diagonal than thatfor r̂, and that if p � m, then the ~ri will be approximately independentlydistributed.The truncated singular value approach was �rst suggested by Golub andKahan [8] who noted its similarity to the theoretical treatment given bySmithies [17, Chapt. 8] for the singular functions and singular values of �rst9



kind integral equations. One of the �rst to use the method was Richard Han-son [13] who suggested that the truncation threshold should be chosen to bethe smallest integer p such thatmXi=p+1 �UTb�2i < m : (6.7)In view of Eqs. (2.7) and (2.8), this seems a very sensible choice, but his sug-gestion was apparently ignored by most other workers in the �eld who werepreoccupied with the problem of rigorously de�ning the notion of the \nu-merical rank" of the matrix. An especially inuential paper in this line ofresearch was a technical report [9] by Golub, Klema and Stewart who usedtechniques from perturbation analysis to de�ne a very complicated criterionfor rank determination which was norm-dependent and involved a triplet ofnumbers (�; �; p) with � and � being numbers satisfying �p � � > � � �p+1.The idea was to �nd a clear gap in the distribution of singular values and zeroall those on the low side of the gap. The trouble with this approach is thatmatrices arising from discretizing �rst kind integral equations almost neverdisplay such a gap. This fact was clearly enunciated by P.C. Hansen [11] whoproposed \... a natural division of ill-conditioned matrices into two classes:those with well-determined numerical rank and those with ill-determined nu-merical rank." By the latter he meant matrices whose singular values decayedsmoothly from �1 to �n with no obvious gap between the larger and smallerones. More recently, in his new book [12, Chapt. 4], he has written \The mainfeature of these problems is that all the singular values of the coe�cient ma-trix decay gradually to zero, with no gap anywhere in the spectrum. ... andtherefore the concept of `numerical rank' is not useful for these problems."Nevertheless he devoted large segments of the book to problems of rank de-termination and rank revealing decompositions, and gave a good review of thevery sizable literature on these subjects.The singular values for the modi�ed Phillips problem are plotted as dis-crete squares in Figure 3 which also shows the elements of the rotated righthand side vector UTb plotted as circles connected by straight line segments.The decomposition was computed by subroutine SGESVD from the LAPACKcollection [1], using double precision arithmetic on a Sparc-20 workstation.The largest and smallest singular values are�1(A) = 2:882� 105 ; �241(A) = 2:622� 10�2 ; (6.8)which gives cond(A) = 1:099 � 107. The relative acccracy of the arithmeticwas �mach = 2:22 � 10�16, so the smallest singular value is many orders of10



Figure 3: Singular values (squares) and �rst n elements of jUTbj (circles) forthe modi�ed Phillips problemmagnitudes larger than the e�ective zero level. Thus there is no reason toassume that rank(A) < n. Yet the problem obviously needs some sort of trun-cation to prevent the estimated solution from capturing variance that properlybelongs in the residuals. Fortunately, the desired result can be obtained byleaving the singular values unchanged and truncating the rotated right handside vector UTb.7 Truncating the Vector UTbEven a cursory inspection of the jUTbji plotted in Figure 3 reveals a sharpdichotomy in the distribution at i = 55. Before the break, the upper envelopeof the distribution is decreasing at a faster rate than that of the singular values.After the break, the distribution is quite at with 64 of the 186 values abovethe horizontal line jUTbj = 1 and 122 values below. That line is, by Equations(5.3), just the one standard deviation level for the random errors (UT�)i. If the�nal 186 elements of UTb were chosen randomly from an n(0; 1) distribution,11



Figure 4: Singular values (squares) and �rst n elements of jUTbj (circles) forthe modi�ed Phillips problem with no random errorsthen one would expect roughly 62 of them to satisfy jUTbji > 1 and the other124 to satisfy jUTbji � 1. Since that is almost exactly what is observed, it isquite reasonable to conclude that the at part of the distribution representselements of UTb that are dominated by the measuring errors. This conclusionis reinforced by Figure 4 which gives plots of the �i(A) and jUTbji for thesame problem with no random errors in the b vector. The singular values areidentical to the ones in Figure 3, but the distribution of the jUTbji satis�es thediscrete Picard condition over the whole range, and Eq. (5.9) yields estimatesof the elements of x� that are correct to 8 signi�cant digits.The foregoing observations suggest a more logical way to truncate thesingular value decomposition. Rather than zeroing some of the singular valuesone should instead zero those elements of jUTbj that are judged to be mostlyrandom error. The idea is to pick a truncation level � and require the estimated
12



solution ~x to satisfy(VT ~x)i = 8>>><>>>: �UTb�i�i ; if jUTbji > � ;0 ; otherwise ; i = 1; 2; : : : ; n : (7.1)The sum of squared residuals is then given byr2 = kb�A~xk2 = Xi2I �UTb�2i ; (7.2)where the indexing set for the sum isI = n i ��� jUTbji � � ; i = 1; 2; : : : ; n o [ f n + 1; n+ 2; : : : ; m g : (7.3)If ui is the ith column of U, then Eq. (7.1) can be written(VT ~x)i = 8>><>>: �uTi b��i ; if juTi bj > � ;0 ; otherwise ; i = 1; 2; : : : ; n ; (7.4)and if an m� n matrix ~U1 is de�ned by~U1 = (~u1; ~u2; � � � ; ~un) ; where ~ui = ( ui ; if juTi bj > � ;0 ; otherwise ; (7.5)then the estimated solution and residual vectors can be written~x = V��1 ~UT1 b ; and ~r = �Im � ~U1 ~UT1 �b : (7.6)It follows from a fundamental theorem in multivariate analysis [2, Thm. 2.4.5]that ~r � N h�Im � ~U1 ~UT1 �Ax� ; Im � ~U1 ~UT1 i : (7.7)It is clear that as � increases, the number of non-zero columns in ~U decreases,so the variance matrix for ~r more nearly approximates a diagonal matrix.The success of the proposed method depends crucially on the choice of thetruncation level � . A safe and e�ective approach is to try several values of �and use the diagnostics described in Section 4 and Appendix D to make the�nal choice. The results of this strategy for the modi�ed Phillips problem aresummarized in Table 1. The labels for the �rst, second and �nal columns are13



Table 1: Estimate diagnostics for the modi�ed Phillips Problem� P(b�A~x)2i %(Ck 2 B95) LengthfCg j�xjrms Figure0.0 43.0 31.6 1.238 14.937 23.0 235.6 79.5 1.211 5.6865 54.0 267.7 100.0 1.205 0.0106 64.7 289.2 100.0 1.209 0.01225.0 311.4 100.0 1.207 0.01329.0 380.7 100.0 1.206 0.0148self explanatory. The third column contains the percentage of the 4096 cumu-lative periodogram ordinates that lie inside the 95% con�dence band for whitenoise. The fourth column contains the length of the cumulative periodogramplot which can be compared with the length 1.11803 for a pure white noiseseries. The �fth column gives the root mean square average magnitude of theerrors in the elements of the estimated solution vector, i.e.,j�xjrms = vuut 1n nXj=1 j~xj � x�j j2 : (7.8)It can be included only because the true solution is known. The �rst row inthe table gives the results for the least squares estimate shown in Figure 2.A guideline for choosing a lower bound for the value of � is the fact thatmost experimentalists would be reluctant to claim that a measured value issigni�cantly di�erent from zero if its magnitude does not exceed 3 standarddeviations for the error in the measurement. Since each jUTbji is scaled inunits of one standard deviation of its own random error, it su�ces to choose� = 3:0. The results obtained for this choice are given in Figure 5 and row 2of the table. The sum of squared residuals, 235.6, is less than the 1 percentilevalue for the �2(300) distribution (see column 6 of Table 3, in Appendix A),i.e., Pr nkb�Ax�k2 � 235:6o < Prnkb�Ax�k2 � 245:3o = 0:01 : (7.9)Furthermore, only 79:5% of the cumulative periodogram ordinates lie insidethe 95% band for white noise. The plot of the estimate reveals the persistenceof strong high frequency oscillations which, by inspection of Figure 3, can beattributed to the component jUTbj205 = 3:547. Repeatedly measuring a stan-dard normally distributed quantity will give a measurement with magnitude14



Figure 5: Truncated solution and diagnostic plots for the modi�ed Phillipsproblem with � = 3greater than 3 roughly once in every 385 measurements so the occurrence ofone such value in the �nal 186 jUTbji is not an unlikely event. Its e�ect canbe transferred from the estimated solution to the residuals by increasing thetruncation threshold to � = 4. The results for that value are given in Figure 6and row 3 of the table. The sum of squared residuals, 267.7, di�ers from theexpected value by about 1.3 standard deviations. While this is not a smalldi�erence, it is clear from column 6 of Table 3 that0:05 = Pr nkb�Ax�k2 � 260:6o < Prnkb�Ax�k2 � 267:7o ; (7.10)so 267.7 must be regarded as an acceptable value. This conclusion is reinforcedby the fact that none of the cumulative periodogram ordinates lie outside the95% band. The plot of the estimated solution, at the upper left of Fig. 6, isso close to that of the true solution that the two are almost indistinguishable.Since there are only 241 discrete jUTbji, there are only 241 possible trun-cated estimates ~x. Only 55 of them correspond to truncation levels greaterthan � = 4. The smallest four of those arejUTbj56 = 4:63; jUTbj51 = 4:71; jUTbj54 = 8:33; jUTbj52 = 9:49: (7.11)15



Figure 6: Truncated solution and diagnostic plots for the modi�ed Phillipsproblem with � = 4These values de�ne 3 ranges for � , in each of which the estimates are allidentical. For the lowest 2 ranges, the results for � = 4:7 and � = 5:0 are givenin the fourth and �fth rows of Table 1. In both cases, the estimated sum ofsquared residuals lie within one standard deviation of the expected value, andall of the cumulative periodogram ordinates lie in the white noise band. Thehighest range is represented by � = 9 with the results summarized in the row6 of the table. Although all of the periodogram ordinates lie within the 95%con�dence band for white noise, the sum of squared residuals, 380.7, is muchtoo large to be acceptable since, from column 6 of Table 3,Pr fkb�Ax�k2 > 380g < Pr fkb�Ax�k2 > 359:1g= 1 � Pr fkb�Ax�k2 � 359:1g= 0:01 : (7.12)Thus, the only estimates to give acceptable values for the sum of squaredresiduals are the ones corresponding to truncation levels � = 4:0; 4:7; and 5:0.Since the one for � = 4:0 gave the smallest LengthfCg, it was chosen as themost acceptable, and this choice is validated by the fact that it also gave the16



smallest j�xjrms. But the other two estimates are quite good also, and areqraphically almost indistinguishable from the � = 4:0 estimate.8 A Real-World ExampleThe measurement of nuclear radiation spectra is one important source of �rstkind integral equations with uncertainties. Consider the energy spectrum ofthe neutrons produced by the nuclear reactionT ( d ; n ) 4He ; (8.1)i.e. tritium nuclei bombarded with deuterons to produce helium nuclei andthe neutrons being measured. If the bombarding particles are monoenergeticthen so are the neutrons produced, with energy in the range 12 - 22 MeV(million electron volts), depending on that of the bombarding particles. Al-though the neutrons are monoenergetic, the measuring instrument both smearsand distorts the expected spectrum. The instrument in question, an NE-213spectrometer, has been described by Verbinski, et. al. [20] and Burrus andVerbinski [5]. Its response functions are plotted in Figure 7, where incidentenergy corresponds to the variable � and pulse height to the variable t in Eqs.(1.1). The incident neutrons are absorbed by a plastic scintillator which emitsa light pulse whose size is proportional to the incident energy. The light pulseis in turn detected and ampli�ed by a photomultiplier tube which transmitsa corresponding electrical pulse to an electronic circuit which then incrementsa counter in one of m = 133 pulse-height bins designed to cover and subdi-vide the energy range of all possible incident neutrons. The integral equationsmodelling the process areci = Z Eup0 Ki(E)N(E)dE + "i ; i = 1; 2; : : : ; 113 ; (8.2)where ci is the number of pulses counted in the ith bin, N(E) is the unknownnumber of neutrons at energy E, and the Ki(E) are the instrument responsefunctions for the whole detector system. For a given value of E, the quantityKi(E)dE is the probability that a neutron with energy in the range E � 12dEwould produce a light pulse that would increment the count in the ith pulse-height bin. Hopefully, the bin number in which a neutron is counted wouldincrease as the energy increases, but an inspection of Figure 7 shows that thisdoes not always happen. Ideally the Ki(E) should be a series of narrow peaksdistributed along a diagonal line running from the upper left to the lower rightof the energy, pulse-height domain. The �gure does exhibit a ridge along that17



Figure 7: Instrument response functions for the Burrus neutron spectrumproblem. The quantity log10[1 + Ki(E)] is plotted in order to more clearlyshow the structure for higher energies.direction, but it attenuates to a barely discernible ripple for higher energies.Even worse, the long energy tails for the lower pulse-height bins make it morelikely that a higher energy neutron will produce an increment in a lower ratherthan a higher bin.Figure 8 shows a measured spectrum obtained for the neutrons from thereaction (8.1). Note that count rate rather than counts are plotted againstpulse-height. The experimental procedure is to accumulate counts for a timesu�cient to allow good estimates to be made for the uncertainties in the counttotals and then to divide by the elapsed time to get rates. In Eq. (8.2) thisdivision replaces the ci with count rates yi and the number N(E) of neutron
18



Figure 8: Measured pulse-height spectrum for the Burrus problem. The twopiecewise linear curves are the � one standard deviation bounds for the mea-sured valueswith a neutron ux x(E). The result isyi = Z Eup0 Ki(E)x(E)dE + �i ; i = 1; 2; : : : ; 113 ; (8.3)where the �i are noise rates obtained from the "i. Estimates for the standarddeviations of the latter quantities were obtained from the usual assumptionabout counting errors which is that the standard deviation for any bin isapproximately equal to the square root of the number of counts in that bin.Although this procedure assumes a Poisson distribution for the error in anybin, the number of counts accumulated was su�cient to permit the use of thenormal approximation. Assuming that the measuring errors in any two binsare statistically independent and dividing the estimated standard deviationsby the time of accumulation gives a diagonal variance matrix S2 for the errors.When the energy E is equated to the variable �, the equations (8.3) becomeidentical to those in (1.2). They were discretized using simple rectangularquadrature with an n = 77 point energy mesh, 0:2 MeV = E1 < E2 < � � � <19



Figure 9: Singular values (squares) and �rst n elements of jUTbj (circles)for the Burrus neutron spectrum problem. The horizontal line represents thetruncation level � = 3:5.E77 = 18:91 MeV , to give the linear regression model (1.3). Multiplyingthrough by S�1 gave the normalized model (2.3). Although the two curvesplotted in Figure 8 indicate good statistics for the measurements, there is nosign of the dominant peak expected for monoenergetic neutrons. The sharprise in the lower pulse-height bins contains most of the counts that should havegone into that missing peak. The least squares estimate, which is overwhelmedby the ampli�ed noise, givesr2min = kb�Ax̂k2 = 38:05 (8.4)which is almost 5 standard deviations smaller than the expected value 113.The singular values and �rst n elements of jUTbj are shown in Figure 9.The condition number of the matrix is 2:3503� 105 so it is clearly not rank-de�cient. The distribution of the jUTbji exhibits a dichotomy at i = 47 whereit �rst drops below the one sigma level for the error. Table 2 gives estimatediagnostics for several values of � . The quantities tabulated are the same asthose in the �rst 4 columns of Table 1 All of the non-zero � give estimates20



Table 2: Estimate diagnostics for the Burrus neutron spectrum problem� P(b�Ax)2i %(Ck 2 B95) LengthfC(f)g0.0 38.0 37.4 1.2553.0 93.8 100.0 1.2113.5 125.7 100.0 1.2124.0 150.7 100.0 1.2115.0 213.9 63.6 1.216

Figure 10: Truncated solution and diagnostic plots for the Burrus neutronspectrum problem with � = 3:5
21



with a strong peak at approximately 14 MeV, but only � = 3:0; 3:5; and 4:0give residuals consistent with white noise. The sum of squared residuals for� = 3:5 is closest to the expected value, so it was chosen as optimal even thoughthe length of the cumulative periodogram was slightly larger than those for� = 3:0 and 4:0. The estimate and diagnostic plots for � = 3:5 are given inFigure 10. The estimate is dominated by a single peak centered at 14 MeVwhich is just what was expected for monoenergetic neutrons.9 Discussion and ConclusionsThe primary message of this paper is that for ill-posed problems in which thedominant errors are the measurement uncertainties for the right hand sidevector, the instability in estimating the solution is attributable to componentsof the measurements which are overwhelmed by the random error. In general,these components will not correspond exactly to speci�c elements of the righthand side vector. Scaling the problem by S�1 reduces it to one in which theerrors all have unit variance, and premultiplying the scaled measurement vec-tor by UT rotates it into a basis in which the noise dominated componentscan be isolated by well understood statistical criteria. Zeroing the noise dom-inated components stabilizes the solution estimate without altering the kernelmatrix which is assumed to be known more accurately than the right handside vector. Of course this procedure does not guarantee that the estimatedsolution will be close to the true solution since the noise may be large enoughto overwhelm important components of the signal. The only way to retrievesuch components would be to repeat the measurments with more accuracy.The traditional method of truncating the singular value decomposition byzeroing some of the singular values amounts to altering a well known quantity,A, in order to compensate for uncertainties in an unknown quantity b� = Ax�.In the process it reassigns the rank of the matrix, and since the truncationlevel depends crucially on the size of the errors in the right hand side vector,it follows that the altered rank depends on the size of those errors. As anexample, consider Figure 11 which is a plot of the �i and jUTbji for a problemobtained from the one illustrated in Figure 3 by increasing all the errors bya factor of 10. Both �gures display the at segment of the jUTbj curve,which corresponds to error saturation, but for the problem with the largererrors, this at segment intersects the singular value distribution at a pointhigher and to the left of that for the problem with the smaller errors. Thus, ifthe truncation required to stabilize the estimate were accomplished by zeroingsingular values, the problem with larger errors would assign a smaller numerical22



Figure 11: Singular values (squares) and �rst n elements of jUTbj (circles)obtained by increasing the errors in the modi�ed Phillips problem by a factorof 10rank to the matrix than the one with smaller errors. Although it seems absurdto have the rank of a matrix depend on the right hand side vector, preciselythis suggestion was made quite recently by P.C. Hansen [12, Chapt. 7] whode�ned an \e�ective numerical rank" which is not even an integer. A betterapproach might be to simply abandon the notion of \numerical rank", but thehuge vested interest in rank determination and rank revealing decompositionswill probably preclude such a course of action.The truncation procedure described in this paper depends critically onthe availability of good estimates for the uncertainties in the elements of themeasured vector. A good experimenter will usually provide such estimates,but it is not uncommon for them to be systematically too small or, morerarely, too large. Often the form of the functional dependence of the errorson the magnitudes of the measurements is correct but the estimated standarddeviations are all too small, or too large, by a constant factor. In such cases,the diagnostics introduced in Section 4 can be used to pinpoint the discrepancyand rectify it. The usual symptom is that the threshold � at which the estimate23



begins to be stabilized is quite di�erent from 3 or 4 and also di�erent from thevalue which gives residuals closest to white noise, as measured by the length ofthe cumulative periodogram. In such cases it is a straightforward though oftentedious matter to adjust the scale of the estimated errors by a constant factorwhich brings the two values of � into agreement somewhere in the interval3 � � � 5.The situation is more di�cult when no estimates are given for the mea-surement errors. The usual approach is to implicitly assume that S2 = s2Imwhere s is an unknown constant which can be estimated from the least squaressum of squared residuals. Of course the latter quantity is usually much smallerthan the expected value m, but the size of s can then be adjusted upward to avalue such that some truncation level in the range 3:0 � � � 5:0 gives residualsclose to white noise and a sum of squared residuals close to the expected value.This usually iterative technique works well if the standard deviations of themeasured errors are truly constant. If not, it may still be possible to assume afunctional form for the uncertainties which will determine the matrix S2 up toan unknown scaling constant which can then be adjusted for consistency in the� values. The disadvantage in this approach is the amount of work involvedin validating a functional form and adjusting the scaling, but sometimes theresults obtained justify the e�ort.A number of people have suggested that the truncation procedure advo-cated in this paper is incomplete because it has not been accompanied by analgorithm for automatically determining the optimum � , using some criterionlike those used in choosing the smoothing parameter for regularization meth-ods, e.g., generalized cross-validation, or the L-curve method. In practice, forany given problem, only a few discrete truncations give estimates with resid-uals that have both a reasonable sum of squares and an acceptable spectraldistribution, and it is often the case that the two criteria are optimized bydi�erent truncation levels. Thus some judgement is required to choose whichtruncation level to use. Also there is little to be gained computationally bycon�ning the calculations to a single � . The amount of work required is dom-inated by the computation of the singular value decomposition, but once thatis accomplished it is relatively easy to isolate the few possibly acceptable trun-cation levels and, using a fast Fourier transform algorithm, to calculate all ofthe diagnostics. Since the total e�ort involved is small in comparison to thatrequired to make the measurements, most users with real world problems willnot be unduly troubled by having to make the �nal choice of the optimumvalue. Of course the procedure can be automated by calculating the solutionsand diagnostics on a suitably chosen mesh for � . If the mesh spacing is �neenough to �nd all of the possibly acceptable solutions, it will produce many24



duplicate solutions, but these will not seriously complicate the �nal choice ofthe parameter value. Users of regularization methods might also be well ad-vised to consider the same two residual diagnostics in evaluating their favoritecriteria for choosing the regularization parameter.AcknowledgementsI would like to thank Drs. W.R. Burrus and R.E. Funderlic for teaching me thepitfalls of truncating the singular value distribution, Drs. D.P. O'Leary andK.A. Remington for their reviews and suggestions for improving the numericalanalysis, and Dr. M.G. Vangel for many useful suggestions for improving thestatistical aspects of this manuscript.AppendicesA Percentiles for the �2(m) DistributionThe cumulative distribution funtion for �2(m) is de�ned byF (�2) = Z �20 12m2 � �m2 �zm�22 exp��z2� dz ; (A.1)and for any probability �, the �-point of the distribution can be found bysolving F (�2) = �. If the solution is �2�, thenPr nkb�Ax�k2 � �2�o = � ; (A.2)and Pr nkb�Ax�k2 > �2�o = 1� � : (A.3)Standard tables (e.g., [3]) of the �2-distribution list �2� for various values of� and m, up to about m = 30. For m > 30, the quantity �p2�2 �p2m� 1�is distributed approximately like the standard normal distribution, so �2� iswell approximated by �2� = 12 h�� +p2m� 1i2 ; (A.4)where �� is the �-point of the standard normal distribution, i.e.,Z ���1 1p2� exp �z22 ! dz = � : (A.5)25



Table 3: Selected percentiles for the standard normal and �2 distributions� �� �2�m = 100 m = 150 m = 200 m = 3000.01 -2.326 69.4 112.0 155.7 245.30.05 -1.645 77.7 122.4 168.0 260.60.33 -0.440 93.4 142.0 190.8 288.80.50 0.0 99.5 149.5 199.5 299.50.67 0.440 105.8 157.2 208.4 310.40.95 1.645 124.1 179.3 233.7 341.10.99 2.326 135.0 192.4 248.7 359.1Table 3 gives, for various values of �, the corresponding values of �� and, forsome representative values of m, the estimates of �2� calculated by Eq. (A.4).Good public domain software for computing �2� can be found in the GAMScollection [7, Class L5a1c].B A Variant of the Phillips ProblemA useful test problem which shares many of the characteristics of real in-strument correction problems is obtained by discretizing a variant of the wellknown [16] Phillips equation. This modi�ed Phillips problem can be writteny(t) = Z 3�3K(t; �)x(�) d� ; �6 � t � 6 ; (B.1)with the kernel given byK(t; �) = 8<: 16 n1 + cos h�3 (� � t)io ; j� � tj � 3 ; jtj � 6 ;0 ; otherwise ; (B.2)and the exact solution by x(�) = �(�) + 3Xk=1 ck(�) ; (B.3)where �(�) = 8<: A0 h1 + cos ��3 ��i ; j�j � 3 ;0 ; j�j > 3 ; (B.4)26



and ck(�) = 8<: Ak f1 + cos [2� (� �  k)]g ; j� �  kj � 12 ;0 ; otherwise ; (B.5)with amplitude constants Ak and centering constants  k chosen to beA0 = 0:1 ; A1 = 0:5 ; A2 = 0:5 ; A3 = 1:0 ; 1 = �1:5 ;  2 = 0:5 ;  3 = 1:5 : (B.6)The kernel di�ers from the Phillips original only in the inclusion of the nor-malizing factor 16 which was added to assure that for any �,Z 3+��3+�K(t; �) dt = 1 : (B.7)For a measuring instrument this condition assures that conservation laws arenot violated. Plots of K(t; �) for 5 representative values of � are given on theleft in Figure 1.The exact solution to the original Phillips problem appears in a scaled downform as the �(�) term in the solution to the new problem. The scaling constantA0 was chosen to reduce the original solution to the role of a backgroundfunction on which to superimpose the three discrete peaks represented by theck(�) terms. The three points � =  k are the centers of these peaks andthe constants 2Ak are their heights above the background. The new solutionfunction is plotted as a dashed line on the right in Figure 1.These changes in the Phillips problem were designed to make it more chal-lenging and more reminiscent of real-world instrument correction problems.Unfortunately they also make the representation of the function y(t) morecomplicated. Substituting (B.3) into (B.1) givesy(t) = Z 3�3K(t; �)�(�)d� + 3Xk=1 Z 3�3K(t; �)ck(�)d� ; �6 � t � 6 ; (B.8)but care must be exercised in evaluating these integrals because K(t; �) = 0on half of the rectangular domain f (t; �) j � 6 � t � 6 ; �3 � � � 3 g andeach of the ck(�) is zero everywhere except on the interval  k� 12 � � �  k+ 12 .The last equation can also be writteny(t) = B(t) + 3Xk=1Ck(t) ; (B.9)where B(t) � Z 3�3K(t; �)�(�)d� ; (B.10)27



and Ck(t) � Z  k+ 12 k� 12 K(t; �)ck(�)d� ; k = 1; 2; 3 : (B.11)Evaluating the integral for B(t) givesB(t) = 16A0 �(6� jtj) �1 + 12 cos��3 t��+ 92� sin��3 jtj�� ; �6 � t � 6 ;(B.12)and the integrals for Ck(t) can be writtenCk(t) = 16AkLk(t) ; k = 1; 2; 3 ; (B.13)where
L1(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 ; �6 � t � �5;t + 5 + 12� sin [�(2t+ 9)] + 3� sin h�3 (t+ 2)i+ 310� nsin [�(2t+ 8)]� sin h�3 (t� 1)io+ 314� nsin [�(2t+ 10)] + sin h�3 (t+ 5)io ; �5 � t � �4;1 + 3� n� sin h�3 (1 + t)i + sin h�3 (2 + t)io+ 310� nsin h�3 (4 + t)i+ sin h�3 (1� t)io+ 314� nsin h�3 (2� t)i + sin h�3 (5 + t)io ; �4 � t � 1;2� t+ 12� sin [�(3� 2t)]� 3� sin h�3 (t+ 1)i+ 310� nsin h�3 (t+ 4)i+ sin [�(2� 2t)]o+ 314� nsin h�3 (2� t)i + sin [�(4� 2t)]o ; 1 � t � 2;0 ; 2 � t � 6;
(B.14)
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L2(t) =
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 ; �6 � t � �3;t + 3 + 12� sin [�(2t+ 5)] + 3� sin h�3 ti+ 310� nsin [�(2t+ 4)]� sin h�3 (t� 3)io+ 314� nsin [�(2t+ 6)] + sin h�3 (t+ 3)io ; �3 � t � �2;1 + 3� nsin h�3 (1� t)i+ sin h�3 tio+ 310� nsin h�3 (2 + t)i+ sin h�3 (3� t)io+ 314� nsin h�3 (4� t)i + sin h�3 (3 + t)io ; �2 � t � 3;4� t+ 12� sin [�(7� 2t)] + 3� sin h�3 (1� t)i+ 310� nsin h�3 (t+ 2)i� sin [�(2t� 6)]o+ 314� nsin h�3 (4� t)i� sin [�(2t� 8)]o ; 3 � t � 4;0 ; 4 � t � 6;
(B.15)

and
L3(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 ; �6 � t � �2;t + 2 + 12� sin [�(2t+ 3)] + 3� sin h�3 (t� 1)i+ 310� nsin [�(2t+ 2)]� sin h�3 (t� 4)io+ 314� nsin [�(2t+ 4)] + sin h�3 (t+ 2)io ; �2 � t � �1;1 + 3� nsin h�3 (2� t)i� sin h�3 (1� t)io+ 310� nsin h�3 (1 + t)i� sin h�3 (t� 4)io+ 314� nsin h�3 (5� t)i + sin h�3 (2 + t)io ; �1 � t � 4;5� t� 12� sin [�(2t� 9)] + 3� sin h�3 (2� t)i+ 310� nsin h�3 (t+ 1)i� sin [�(2t� 8)]o+ 314� n� sin h�3 (t� 5)i� sin [�(2t� 10)]o ; 4 � t � 5;0 ; 5 � t � 6;
(B.16)

The function y(t) is plotted as the solid curve on the right in Figure 1. All of29



the details of the 3 peaks are so smeared together by the convolution with thekernel function that that there is no hint of any structure in the underlyingx(�).C Discretizing the Modi�ed Phillips ProblemThe modi�ed Phillips problem described in Appendix B was discretized bychoosing m = 300 equally spaced mesh points on the interval �5:9625 � t �5:9625 to give y(ti) = Z 3�3K(ti; �)x(�) d� ; i = 1; 2; : : : ; 300 ; (C.1)and by replacing each of the integrals by an n = 241 point trapezoidal quadra-ture sum, i.e.,Z 3�3K(ti; �)x(�)d� � 241Xj=1!jK(ti; �j)x(�j); i = 1; : : : ; 300 ; (C.2)where(!1 ; !2 ; !3 ; : : : ; !240 ; !241 )T = 0:0252 � ( 1 ; 2 ; 2 ; : : : ; 2 ; 1 )T : (C.3)De�ning the n-vector x� and the m-vector y� byx�j = x(�j) ; j = 1 ; 2 ; : : : ; 241 ;y�i = y(ti) ; i = 1 ; 2 ; : : : ; 300 ; (C.4)and the m� n matrix K byKi;j = !jK(ti; �j) ; i = 1 ; 2 ; : : : ; 300 ;; j = 1 ; 2 ; : : : ; 241 ; (C.5)gives y� = Kx� + � ; (C.6)where � is an m-vector of quadrature errors. A crucial assumption in replacingthe intregrals with quadrature sums is that the value of n is chosen large enoughso that the �i are small relative to the random measuring errors �i. To assurethat this assumption was satis�ed for the test problem, the elements of thevector y� were computed from the matrix-vector producty� = Kx� (C.7)30



rather than from Eqs. (B.9) - (B.16). More precisely, the matrix elementsKi;j were computed from Eqs. (B.2), (C.3), (C.5), the vector elements x�j werecomputed from Eqs. (B.3) - (B.6), and the vector y� was then computed fromEq. (C.7). The \measured" vector y was then obtained by adding randomperturbations to the elements of this y�. Each perturbation was chosen inde-pendently from a normal distribution with mean zero and standard deviationsi = (10�5)py�i , so the variance matrix wasS2 = diag(s21; s22; : : : ; s2300) ; si = (10�5)qy�i : (C.8)D The Cumulative PeriodogramFor a given time series, a periodogram is an estimate of the power spectrum ofthe series, i.e., an estimate of how the total variance in the series is distributedin frequency. Such an estimate can be obtained at any desired number of fre-quencies fk; k = 1; 2; � � � ; N , in the interval 0 � f � 12T , where T is the samplespacing for the time variable, and N is chosen to be greater than or equal tothe number of sample points in the time series. If the time series is taken tobe the residuals ri for an estimated solution to an ill-posed problem, with theelement number i as the time variable, then T = 1, and the periodogram isestimated on an N -point equally spaced mesh on the interval 0 � f � 0:5. Itis obtained by zero-padding the ri series to have N � m terms and computingthe discrete Fourier transformRk = T NXj=1 rj exp � i 2�kjN ! ; k = 0; 1; 2; : : : ; N2 ; (D.1)where i = p�1 andrj = ( bj � (Ax̂)j ; j = 1; 2; : : : ; m ;0 ; j = m + 1; m+ 2; : : : ; N : (D.2)The zero-padding increases the density of the frequency mesh, but does notchange the value of the transform at any given frequency. Each Rk is associ-tated with the corresponding Fourier frequency fk = kNT . The periodogram iscomputed from the transform byPk = P(fk) = 1NT jRkj2 ; k = 0; 1; 2; : : : ; N2 : (D.3)Peaks in the plot of Pk versus fk indicate the presence of sinusoidal cycles inthe parent time series, and the height of each such peak gives an estimate ofthe power of that cycle. 31



The cumulative peridogram is de�ned byC0 = C(0) = 0 ; Ck = C(fk) = 1S kXj=1Pj ; k = 1; 2; : : : ; N2 ; (D.4)where S = N=2Xj=1Pj : (D.5)Clearly C(f) is a monotonic nondecreasing function of frequency ranging be-tween the values C(0) = 0 and C(1=2T ) = 1. The relationship between theperiodogram and the cumulative periodogram is illustrated in Figures 12 and13. In the �rst case the time series is comprised of m = 128 independentrandom samples xi from a standard normal distribution (mean = 0, variance= 1), and in the second case the series is given byxi = sin�2�i10 �+ ni ; i = 1; 2; : : : ; 128 ; (D.6)where the ni are independent samples from a zero-mean normal distributionwith variance = 0.1. Thus the �rst series is a realization of a pure white noisesignal and the second is a single sinusoid, with unit amplitude and period10, corrupted by zero-mean white noise with standard deviation 0.316. Inboth cases the time series was �rst detrended by subtracting out the meanvalue which was approximately, but not exactly, zero. The periodogram forthe white noise case has the power distributed more or less uniformly on theinterval [0; 0:5], so the cumulative periodgram does not depart too much froma diagonal line that would connect the points (0; 0) and (0:5; 1), i.e., the lineC(f) = 2Tf ; (D.7)which is the theoretical distribution for pure white noise. One way to quantizedepartures from white noise is to compare the length of that line,q(0:5)2 + (1:0)2 = 1:11803 ;with that of the computed estimate,Length(C) = N=2Xk=1 �q(Ck � Ck�1)2 + (fk � fk�1)2 � ; (D.8)which is given in the legend box on the plot of the cumulative periodogram.32



Figure 12: Periodogram and cumulative periodogram for a white noise timeseries

Figure 13: Periodogram and cumulative periodogram for a single sinusoid pluswhite noise time series 33



The periodogram for the sinusoid plus noise time series is dominated bya single peak at frequency 0.1 (period = 10) which produces a wide devia-tion from the white noise diagonal at the same frequency in the cumulativeperiodogram. One way to test whether of not such a deviation representsa statistically signi�cant departure from white noise is to construct the twoparallel o�-diagonal lines de�ned byC(f) = �� + 2Tf ; (D.9)where � is the 5% point of the Kolmogorov-Smirnov statistic for a sample ofsizem=2. These two lines, which are plotted in both Figures 12 and 13, enclosea 95% con�dence band which can be used to test the hypothesis that the timeseries is a realization of white noise. The cumulative periodogram ordinatesfor such a series should lie outside this band for at most 5% of the frequencies.None of the ordinates lie outside the band for the white noise case, but morethan 50% of them do for the sinusoid plus noise case.References[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz,J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. andSorensen, D. (1992), LAPACK Users' Guide, SIAM, Philadelphia.[2] Anderson, T.W. (1958), An Introduction to Multivariate Statistical Anal-ysis, John Wiley & Sons, New York, Chapt. 2.[3] Beyer, W.H. (1968), Handbook of Tables for Probability and Statistics,CRC Press, Boca Raton, pp. 293-294.[4] Boisvert, R.F., Howe, S.E. and Kahaner, D.K. (1984), The guide to avail-able mathematical software (GAMS), PB 84-171305, National TechnicalInformation Service, Spring�eld, VA.[5] Burrus, W. and Verbinski, V. (1969), Fast neutron spectroscopy with thickorganic scintillators, Nuclear Instruments and Methods, 67, pp.181-196.[6] Fuller, W.A. (1976), Introduction to Statistical Time Series, John Wiley& Sons, New York, Chapt. 7.[7] GAMS (1998), Guide to Available Mathematical Software,http://gams.nist.gov/. 34
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