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Abstract

Discretizing the first-kind integral equations which model many physi-
cal measurement processes yields an ill-conditioned linear regression model
b = Ax* 4+ n, where x* is a vector representation of the function being mea-
sured, A is an instrument response matrix, b is a vector of measurements, and
n is a vector of unknown, random measuring errors. Least squares estimation
usually gives a sum of squared residuals much smaller than the expected value
and a wildly oscillating, physically implausible estimate of x*. These symp-
toms suggest that the least squares estimate captures part of the variance that
properly belongs in the residuals. One strategy for shifting some of this vari-
ance to the residuals and simultaneously stabilizing the estimate is to truncate
the singular value decomposition A = UXV? where U and V are orthogonal
matrices and X is a diagonal matrix of singular values. All of the singular val-
ues below some threshold value are reset to zero to give a new matrix 3., and
the estimated solution is calculated from the generalized inverse of the matrix
UX, VT. The most delicate part of this procedure is the determination of the
truncation threshold. Conventionally this has been regarded as a problem of
determining the “numerical rank” of A, but in most cases A is clearly not
rank-deficient. This paper suggests an alternate strategy which uses the vari-
ances of the measuring errors to specify a truncation for the elements of the
rotated measurement vector UTb. The idea is to zero all of the components
that are dominated by the measurement errors and compute the estimate using
the full rank matrix. The problem of setting the truncation threshold becomes
one of deciding whether or not a measured value is significantly different from
zero, a procedure familiar to most experimentalists. The paper also develops
some new diagnostics for the residuals which are useful not only for choosing
the truncation level for the (UTb);, but also for assessing the quality of an
estimate obtained by any procedure.



1  First Kind Integral Equations with Uncer-
tainties

First kind integral equations,

o) = [ K( () de (1)

where K (t,&) and y(t) are known functions, are routinely used to model in-
strument distortions in measuring an unknown function z(£). In that context,
they are usually written as a system of equations

b
w= [ KOO dE e, i=12m. (12

where the K;(&) are known (previously measured or calculated) response func-
tions of the instrument, the y; = y(¢;) are measured values, corresponding to
a discrete mesh tq, s, ..., t,, and the ¢; are random, zero-mean measuring er-
rors. In order to estimate x () it is necessary to further discretize the system,
in the process replacing it with a linear regression model

y = Kx" + €, (1.3)

where y is the m-vector of measurements, K is a known m x n matrix, with
m > n, and x* is an unknown n-vector whose components are either discrete
point estimates of (&) on some mesh &, &, ..., &,, or are the unknown coeffi-
cients in a truncated expansion of z(£) in terms of some set of basis functions
spanning the space of possible solutions. The vector € is an m-vector of random
measuring errors satisfying

Ee)=0, £(e€)=8, (1.4)

where £ is the expectation operator, 0 is the m-dimensional zero vector and
S? is the positive definite variance-covariance matrix for €. In most problems
the measurement errors are statistically independent so

S* = diag(s], 55, ..., 5) , (1.5)

where si,s9,...,5, are the standard deviations of the errors. If S? is not
diagonal, the model can be transformed into one with a diagonal variance
matrix by premultiplying (1.3) by the inverse of the lower triangular Cholesky
factor of S2.



There seems to be a general misapprehension in the numerical analysis
community that estimates of the s; are seldom available, but in fact good
experimenters routinely provide them. Estimates of the measurement errors
are not considered to be something extra, but rather are an integral part of
the measurements, and published graphs of measured data will usually report
them as +1o0 error bars on the plotted points. An analyst who fails to use
this information implicitly assumes that S? = s°I,, where I,, is the m-th order
identity matrix and s is an unknown scalar that can be, but usually is not, es-
timated from the sum of squared residuals for the least squares solution. Such
an assumption may be tenable if all the g; have roughly the same magnitude,
but in most cases, they span a range of values, and the magnitudes of the s;
vary (usually nonlinearly) with the magnitudes of the ;.

In the following it will be assumed that S is a known diagonal matrix. It
will also be assumed, as is often the case, that the errors are samples from
a multivariate normal distribution, i.e., that € ~ N( 0, S? ). In §2, these
assumptions will be used to rescale the problem to have errors with a stan-
dard normal distribution and to derive a statistical diagnostic for the sum of
squared residuals for any estimate of the solution vector. In §3 a variant of the
well known Phillips problem [16] is subjected to this scaling and the ordinary
least squares estimate is calculated and found to be unsatisfactory. In §4 the
residuals for that estimate are subjected to diagnostic tests based on the ex-
pected value of their sum of squares and on their distribution when considered
as a time-series. The diagnostics that are developed there are useful for testing
any estimate, no matter how it may be obtained, and will be used throughout
the remainder of the paper.

The singular value decomposition is introduced in §5 and the conventional
method for stabilizing solution estimates by truncating the distribution of sin-
gular values is described in §6. This method is based on an assumption that
the matrix is rank deficient and depends critically on the proper determina-
tion of its “numerical rank.” But for most ill-posed problems, the matrix is
demonstrably not rank deficient so there is no good reason for setting any of
the singular values to zero. An alternate approach to truncating the decom-
position is given in §7. Rather than zeroing some of the singular values, one
instead zeroes small elements of the rotated right hand side vector formed by
premultiplying the vector of measurements by the transpose of the matrix of
left singular vectors, i.e., the leftmost factor in the singular value decomposi-
tion. The errors in this rotated measurement vector have a standard normal
distribution, so it is possible to establish a statistical criterion for determin-
ing whether or not a given element is significantly different from zero. The
new method is applied to the modified Phillips problem to obtain satisfactory



estimates for 3 different truncation levels and the optimum level is taken to
be the one which best satisfies the diagnostic tests described in §4. In §8 the
method is successfully applied to real-world measurements of the energy spec-
trum of neutrons produced by a certain nuclear reaction. Finally, §9 gives a
brief discussion of algorithmic considerations and of how the method can be
extended when the knowledge of the measurement errors is not as complete as
might be desired.

2  Scaling the Problem

The linear regression model in the preceding section can be written
y=Kx*+e, e~N(0,S%), (2.1)
but it is advantageous to scale it with the matrix S™'. Let
b=S'y, A=S'K, np=Se, (2.2)

and note that by a standard theorem of multivariate statistics [2, Thm. 2.4.4],
€ ~ N(0,S?) implies that n ~ N( S7'0 , S7'S?[S™']" ), so the scaled
model can be written

b=Ax"+n, n~N(0,I,), (2.3)

or
b~N(Ax'.L,). (2.4)

To see the advantage of this scaling, let x be an estimate of x* and
r=b— Ax, (2.5)

be the corresponding residual vector. Since the regression model can also be

written
n=>b—-Ax", (2.6)

it is clear that an estimate X is acceptable only if v is a plausible sample from
the m-distribution.

Since b — Ax* ~ N( 0,1, ), it follows from another standard statistical
theorem [14, page 140] that

b — Ax*[]? = (b — Ax*)T(b — Ax*) ~ x*(m) , (2.7)



where x?(m) denotes the Chi-squared distribution with m degrees of freedom,
and hence that

E{lb - Ax*|]?} =m, Var{||b— Ax*||?} =2m. (2.8)

These two quantities provide rough bounds for the sum of squared residuals
that might be expected from a reasonable estimate of x*. An estimate that
gives

m —2m < |[b— AX|)? < m +V2m (2.9)
would be quite reasonable, but any X whose sum of squared residuals falls
outside the interval [m - 2\/%, m + 2\/%] would be suspect. These rough

indicators can be sharpened considerably by using the cumulative distribution
function for x?(m). More details on this point are given in Appendix A.

3 Standard Linear Regression

The standard approach for the linear regression problem defined by [2.3] is to
assume that rank(A) = n and seek the minimum variance, unbiased estimator
for x* by solving the least squares minimization problem

2 _ T
T —)EIEI}%I}L{(b Ax)" (b Ax)} . (3.1)
The solution,
—1
x=(ATA) A"b, (3.2)

is called the best linear unbiased estimate of x*, but it is well known [18,
Chapt. 1], [19, Chapt. 6], [21, Chapt. 2| that for regression models obtained
by discretizing first kind integral equations, the elements of x are patholog-
ically sensitive to small variations in the elements of b, so the presence of
the measuring errors leads to estimates that are totally unphysical, typically
oscillating wildly between extreme positive and negative values.

A useful test problem, with known solution, which shares many of the char-
acteristics of real instrument correction problems can be obtained by discretiz-
ing a variant of the well known Phillips equation [16] and adding some random
errors to the discrete y;. The problem and a discretization with m = 300 and
n = 241 are described in detail in Appendices B and C. The functions y(¢)
and x(&) are plotted on the right in Figure 1, and on the left are plotted the
functions K (t,&;) for the discrete values {; = —3.0, —1.5, 0, 1.5, 3.0. All of
the 241 K (¢, &) have the same shape and subtend unit area. The 300 standard
deviations s; range in value from 3.49 x 10! to 7.78 x 1075 so the errors in
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Figure 1: A variant of the Phillips problem

the y; are much smaller than the thickness of the curve in the plot of y(t).
But these small errors produce large oscillations in the least squares estimate
of the solution vector. This is shown in the plot in the upper left corner of
Figure 2 where the barely discernable dashed curve is the true solution x*, and
the solid curve oscillating wildly about it is the least squares estimate x. The
magnitudes of these oscillation are roughly 107 times greater than the largest
random errors in the y;. Such a large amplification of the measuring errors is
the rule rather than the exception for ill posed problems.

4 Estimate Diagnostics

The most commonly used estimate diagnostic for linear regression problems
is the sum of squared residuals. For the problem in the preceding section the
least squares estimate gives

r2. = min Ib — Ax||2 =|b - A)Ac||2 = 43.01

min XER™

(4.1)

which is much smaller than the value expected for the true solution which, by
Eq. (2.8), is

£{lb— Ax*|]*} = 300. (4.2)



Least Squares Solution > (
40— 1.4
307 "O,
20t T o0 sl
~ 10 il I H & [
= ‘M H i | ) | ,‘\‘\ \\ W\ ‘\‘l M < 0.2
“ 10 ‘ [“} “ !
_ogl 4 0.6
30t ] —1.0}
—4 1.4 .
-3.0 -1.5 0.0 1.5 3.0 0 60 120 180 240 300
£ i
Resid. Periodogram Cum. Periodogram
————— 1.0 ————
1.0t .
c
[ o 0.8
0.8 =
- &) 06
2 0.6 °
(o] L
o5z 0.4 7 P
L l E r e
0.2t ] S o.2r -F
0.0 i W /\/\MA/V\/\AJ\/V\« 0.0 el
0.00 0.25 0.50 0.00 0.25 0.50
Frequency Frequency

Figure 2: Least squares estimate and diagnostics for the modified Phillips
problem

From Eq. (2.8) it also follows that the standard deviation for this expected
value is v/600 = 24.49, so the least squares r2. is more than 10 standard
deviations smaller than the expected value. Thus, without even inspecting the
estimate itself, one could argue that x is unlikely to be a good approximation
to x*.

Another good diagnostic for judging the acceptability of an estimate can be
gotten by considering the elements of the vectors i and r as time series, with
the element number taken as the time variable. Since the 7; are statistically
independent and identically normally distributed, they form a normally dis-
tributed white noise series, so the residuals for an acceptable estimate should
constitute a realization of such a series. The residuals for the least squares
estimate are plotted against element number at the upper right of Figure 2. It
is clear by inspection that they are not even approximately white noise, and
this is not surprising since it can be shown [10, Section 6.9.1] that

f~N<o, L.~ A(ATA) A7

) (4.3)



with the variance matrix becoming approximately diagonal only when m is
much larger than n.

A rigorous test for white noise is based on the periodogram [6, Chapt. 7]
which is an estimate of the power spectrum on the frequency interval 0 <
f< %, where T is the sample spacing for the time variable. Here, the time
variable is the element number 7, so 7" = 1. The graph at the lower left of
Figure 2 is a plot of a periodogram estimate at 4097 equally spaced frequency
points on the interval [0,0.5]. The details on how it was computed are given
in Appendix D. For a white noise series, the variance would be distributed
uniformly over the frequency range, so the fact that there is much more power
on the interval [0,0.25] than on [0.25,0.5] suggests that the residuals should
not be regarded as white noise. A formal test of this hypothesis uses the
cumulative periodogram [6, Chapt. 7] (also described in Appendix D) which
is plotted as a solid curve at the lower right of the figure. The legend box
gives the length of this curve which can be compared with the value 1.11803
expected for a pure white noise spectrum. The two dashed lines enclose a 95%
confidence band for white noise. The cumulative periodogram ordinates for
such a series should lie outside this band for at most 5% of the frequencies.
Since 2803 of the 4096 calculated ordinates lie outside the band, it is safe to
conclude that the least squares residuals are not white noise.

5 The Singular Value Decomposition

Insight into the failure of the least squares method to give a reasonable estimate
of x* can be gotten by substituting the singular value decompostion of A into
the model (2.3). Let

b))

A_U<O

)VT, Y = diag(oy,09,...,04) , (5.1)

where 01 > 09 > --- > 0, and
Uv'u=1,=00", V'V=1,=VV", (5.2)

Substituting (5.1) into (2.3) and premultiplying by U7 gives

UTlo:<2

O)VTX*—FUT’O, U'n~N(0,1,), (5.3)

with the distribution of the U7 n vectors unchanged because premultiplication
by an orthogonal matrix simply rotates all the vectors in the distribution



through the same angle. Also, premultiplying a vector by an orthogonal matrix
leaves its length unchanged so Eq. (2.7) can be replaced by

2

b — Ax*|? = HUTb - ( > ) Vx|~ 2(m) | (5.4)

@)

with the x?(m) distribution following from the fact that the (U"n); ~ n(0,1),
idependently. Partitioning the m x m matrix U,

U= (U, Uy), (5.5)

with Uy an m x n and Uy an m x (m — n) submatrix allows the least squares

problem to be written
[O5) b T
(0} )o-(5)v

from which it is quite evident that the least squares solution must satisfy

: , (5.6)

min ||b — Ax||2 = min
xERM xERM

Vix=x"'"U"p, (5.7)
and that the minimum sum of squared residuals is

Tmin = |Ib — AX||* = U b]* . (5.8)

min

These last two equations can also be written

(U™).
(Vch).ziz, i=1,2,--,n, (5.9)
i o;
and
U 2
2a=lb-AxP= 3 (UTh)’ (5.10)
i=n+1 !
and it is easy to see that Eq. (4.3) can be written
f~N(0, 1, -UUY) . (5.11)

For the modified Phillips problem the value of r2; was too small by 10 stan-

dard deviations which suggests that some of the (U”b); values in the sequence
(5.9) more properly belong in the sum in (5.10). This reasoning leads to the
idea of truncating the singular value decomposition.



6 Truncating the Singular Value Distribution

Historically, the idea of truncating the SVD has been treated as a problem
of determining the “numerical rank” of the matrix A. All of the computed
singular values smaller than some threshold value are treated as zeroes which
were corrupted by rounding errors into small non-zero quantities. Thus if o,
is the smallest singular value greater than the truncation threshold, then one
replaces the matrix 3 by a truncated matrix

3, = diag(oy,...,0,,0,...,0) (6.1)

whose generalized inverse is given by

1 1
2;:diag(—,...,—,O,...,O) . (6.2)

01 Op

The value p is said to be the “numerical rank” of A. If x is the estimate of
the solution to the truncated problem, then it is required to satisfy

Vix =%l U (6.3)

rather than Eq. (5.7), which means that Eqgs. (5.9) and (5.10) are replaced by

o),
(vis) - | T 9
| 0 . i=p41l,---.n,
and .
[b—Ax[?= Y (U"D) (6.5)
i=p+1
and Eq. (5.11) is replaced by
i~ N|[(I, - U,U}) Ax", L, - U,UY] . (6.6)

where U, is the submatrix formed by the first p columns of U. Since p < n,
it is clear that the variance matrix for r is more nearly diagonal than that
for r, and that if p < m, then the r; will be approximately independently
distributed.

The truncated singular value approach was first suggested by Golub and
Kahan [8] who noted its similarity to the theoretical treatment given by
Smithies [17, Chapt. 8] for the singular functions and singular values of first

9



kind integral equations. One of the first to use the method was Richard Han-
son [13] who suggested that the truncation threshold should be chosen to be
the smallest integer p such that

m

> (U™ <m. (6.7)

i=p+1

In view of Egs. (2.7) and (2.8), this seems a very sensible choice, but his sug-
gestion was apparently ignored by most other workers in the field who were
preoccupied with the problem of rigorously defining the notion of the “nu-
merical rank” of the matrix. An especially influential paper in this line of
research was a technical report [9] by Golub, Klema and Stewart who used
techniques from perturbation analysis to define a very complicated criterion
for rank determination which was norm-dependent and involved a triplet of
numbers (4, ¢, p) with ¢ and e being numbers satisfying o, > 0 > € > 0,41.
The idea was to find a clear gap in the distribution of singular values and zero
all those on the low side of the gap. The trouble with this approach is that
matrices arising from discretizing first kind integral equations almost never
display such a gap. This fact was clearly enunciated by P.C. Hansen [11] who
proposed “... a natural division of ill-conditioned matrices into two classes:
those with well-determined numerical rank and those with ill-determined nu-
merical rank.” By the latter he meant matrices whose singular values decayed
smoothly from oy to o, with no obvious gap between the larger and smaller
ones. More recently, in his new book [12, Chapt. 4], he has written “The main
feature of these problems is that all the singular values of the coefficient ma-
trix decay gradually to zero, with no gap anywhere in the spectrum. ... and
therefore the concept of ‘numerical rank’ is not useful for these problems.”
Nevertheless he devoted large segments of the book to problems of rank de-
termination and rank revealing decompositions, and gave a good review of the
very sizable literature on these subjects.

The singular values for the modified Phillips problem are plotted as dis-
crete squares in Figure 3 which also shows the elements of the rotated right
hand side vector U”b plotted as circles connected by straight line segments.
The decomposition was computed by subroutine SGESVD from the LAPACK
collection [1], using double precision arithmetic on a Sparc-20 workstation.
The largest and smallest singular values are

o1(A) =2.882x 10°, 0941 (A) =2.622 x 1072, (6.8)

which gives cond(A) = 1.099 x 107. The relative acccracy of the arithmetic

was €ach = 2.22 X 107 '%, so the smallest singular value is many orders of

10



Singular Values and Vector |U'b]|

10%¢

10° ¢

Z—e—e Tﬂj(r@)‘ ]

& |UTbl;
2 2

UJ<A>

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Figure 3: Singular values (squares) and first n elements of |U”b| (circles) for
the modified Phillips problem

magnitudes larger than the effective zero level. Thus there is no reason to
assume that rank(A) < n. Yet the problem obviously needs some sort of trun-
cation to prevent the estimated solution from capturing variance that properly
belongs in the residuals. Fortunately, the desired result can be obtained by
leaving the singular values unchanged and truncating the rotated right hand
side vector U'b.

7 Truncating the Vector U'b

Even a cursory inspection of the |[UTb|; plotted in Figure 3 reveals a sharp
dichotomy in the distribution at ¢ = 55. Before the break, the upper envelope
of the distribution is decreasing at a faster rate than that of the singular values.
After the break, the distribution is quite flat with 64 of the 186 values above
the horizontal line [U”b| = 1 and 122 values below. That line is, by Equations
(5.3), just the one standard deviation level for the random errors (U”'n);. If the
final 186 elements of U”b were chosen randomly from an n(0,1) distribution,

11



Singular Values and Vector |U'b]
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Figure 4: Singular values (squares) and first n elements of |U”b| (circles) for
the modified Phillips problem with no random errors

then one would expect roughly 62 of them to satisfy |[U”b|; > 1 and the other
124 to satisfy |U”b|; < 1. Since that is almost exactly what is observed, it is
quite reasonable to conclude that the flat part of the distribution represents
elements of U”b that are dominated by the measuring errors. This conclusion
is reinforced by Figure 4 which gives plots of the o;(A) and |U?b|; for the
same problem with no random errors in the b vector. The singular values are
identical to the ones in Figure 3, but the distribution of the |U”b|; satisfies the
discrete Picard condition over the whole range, and Eq. (5.9) yields estimates
of the elements of x* that are correct to 8 significant digits.

The foregoing observations suggest a more logical way to truncate the
singular value decomposition. Rather than zeroing some of the singular values
one should instead zero those elements of |UTb| that are judged to be mostly
random error. The idea is to pick a truncation level 7 and require the estimated

12



solution x to satisfy

T
7(U b>7’ if | UTb|; >
(VIx), = 0 ’ ' T i=1,2,....n. (7.1)

0 , otherwise ,

The sum of squared residuals is then given by

= b A = Y (UTD). (7:2)

1€T
where the indexing set for the sum is
T=1{i ‘|UTb‘i§7', i=12...n}J{n+Ln+2 ... ,m}. (73)

If u; is the ith column of U, then Eq. (7.1) can be written

N if [u/'b| >
(VI%), = o o Hlwbl>r (7.4)
0 , otherwise ,
and if an m x n matrix U; is defined by
- o ~ B uw; , if jul/b|>r7,
U, = (o, 0y, --,1,) , where 1u;= . (7.5)
0 , otherwise,

then the estimated solution and residual vectors can be written
x=VS'U/b, and #=(I,-U,U7)b. (7.6)

It follows from a fundamental theorem in multivariate analysis [2, Thm. 2.4.5]
that o o
i~N|[(I,-U,0)Ax", 1,-0,U]|. (7.7)

It is clear that as 7 increases, the number of non-zero columns in U decreases,
so the variance matrix for r more nearly approximates a diagonal matrix.
The success of the proposed method depends crucially on the choice of the
truncation level 7. A safe and effective approach is to try several values of 7
and use the diagnostics described in Section 4 and Appendix D to make the
final choice. The results of this strategy for the modified Phillips problem are
summarized in Table 1. The labels for the first, second and final columns are

13



Table 1: Estimate diagnostics for the modified Phillips Problem

r  Y(b—Ax)? %(Cp € Bys) Length{C} |Az|.,s Figure
0.0 43.0 31.6 1.238 14.937 2
3.0 235.6 79.5 1.211 5.6865 5
4.0 267.7 100.0 1.205 0.0106 6
4.7 289.2 100.0 1.209 0.0122

5.0 311.4 100.0 1.207 0.0132

9.0 380.7 100.0 1.206 0.0148

self explanatory. The third column contains the percentage of the 4096 cumu-
lative periodogram ordinates that lie inside the 95% confidence band for white
noise. The fourth column contains the length of the cumulative periodogram
plot which can be compared with the length 1.11803 for a pure white noise
series. The fifth column gives the root mean square average magnitude of the
errors in the elements of the estimated solution vector, i.e.,

n

1 ~ *
|Ax|rms = \l; Z |xj - xj|2 : (78)

b =1

It can be included only because the true solution is known. The first row in
the table gives the results for the least squares estimate shown in Figure 2.

A guideline for choosing a lower bound for the value of 7 is the fact that
most experimentalists would be reluctant to claim that a measured value is
significantly different from zero if its magnitude does not exceed 3 standard
deviations for the error in the measurement. Since each [U”b|; is scaled in
units of one standard deviation of its own random error, it suffices to choose
7 = 3.0. The results obtained for this choice are given in Figure 5 and row 2
of the table. The sum of squared residuals, 235.6, is less than the 1 percentile
value for the x?(300) distribution (see column 6 of Table 3, in Appendix A),
ie.,

Pr{b— Ax"|> <2356} < Pr{|b— Ax*|> <2453} = 0.01.  (7.9)

Furthermore, only 79.5% of the cumulative periodogram ordinates lie inside
the 95% band for white noise. The plot of the estimate reveals the persistence
of strong high frequency oscillations which, by inspection of Figure 3, can be
attributed to the component [U”b|y; = 3.547. Repeatedly measuring a stan-
dard normally distributed quantity will give a measurement with magnitude

14



Trunc. SVD, [U'b|;>3.0 Y(b-Ax);? = 2.356E+02
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Figure 5: Truncated solution and diagnostic plots for the modified Phillips
problem with 7 =3

greater than 3 roughly once in every 385 measurements so the occurrence of
one such value in the final 186 |U”b|; is not an unlikely event. Its effect can
be transferred from the estimated solution to the residuals by increasing the
truncation threshold to 7 = 4. The results for that value are given in Figure 6
and row 3 of the table. The sum of squared residuals, 267.7, differs from the
expected value by about 1.3 standard deviations. While this is not a small
difference, it is clear from column 6 of Table 3 that

0.05 = Pr{|b— Ax"|* <2606} < Pr{|b— Ax"||> <267.7} , (7.10)

so 267.7 must be regarded as an acceptable value. This conclusion is reinforced
by the fact that none of the cumulative periodogram ordinates lie outside the
95% band. The plot of the estimated solution, at the upper left of Fig. 6, is
so close to that of the true solution that the two are almost indistinguishable.

Since there are only 241 discrete [U”b|;, there are only 241 possible trun-
cated estimates x. Only 55 of them correspond to truncation levels greater
than 7 = 4. The smallest four of those are

'U"b|ss = 4.63, |U’'b|s; = 4.71, |U'b|sy =8.33, |[U'bls =9.49. (7.11)
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Figure 6: Truncated solution and diagnostic plots for the modified Phillips
problem with 7 =4

These values define 3 ranges for 7, in each of which the estimates are all
identical. For the lowest 2 ranges, the results for 7 = 4.7 and 7 = 5.0 are given
in the fourth and fifth rows of Table 1. In both cases, the estimated sum of
squared residuals lie within one standard deviation of the expected value, and
all of the cumulative periodogram ordinates lie in the white noise band. The
highest range is represented by 7 = 9 with the results summarized in the row
6 of the table. Although all of the periodogram ordinates lie within the 95%
confidence band for white noise, the sum of squared residuals, 380.7, is much
too large to be acceptable since, from column 6 of Table 3,

Pr{||b — Ax*[|? > 380} < Pr{||b— Ax*||* > 359.1}
= 1 — Pr{|b—- Ax*||* < 359.1} (7.12)
= 0.01.

Thus, the only estimates to give acceptable values for the sum of squared
residuals are the ones corresponding to truncation levels 7 = 4.0, 4.7, and 5.0.
Since the one for 7 = 4.0 gave the smallest Length{C}, it was chosen as the
most acceptable, and this choice is validated by the fact that it also gave the

16



smallest |Ax|,.,s. But the other two estimates are quite good also, and are
graphically almost indistinguishable from the 7 = 4.0 estimate.

8 A Real-World Example

The measurement of nuclear radiation spectra is one important source of first
kind integral equations with uncertainties. Consider the energy spectrum of
the neutrons produced by the nuclear reaction

T (d,n) *He, (8.1)

i.e. tritium nuclei bombarded with deuterons to produce helium nuclei and
the neutrons being measured. If the bombarding particles are monoenergetic
then so are the neutrons produced, with energy in the range 12 - 22 MeV
(million electron volts), depending on that of the bombarding particles. Al-
though the neutrons are monoenergetic, the measuring instrument both smears
and distorts the expected spectrum. The instrument in question, an NE-213
spectrometer, has been described by Verbinski, et. al. [20] and Burrus and
Verbinski [5]. Its response functions are plotted in Figure 7, where incident
energy corresponds to the variable £ and pulse height to the variable ¢ in Eqs.
(1.1). The incident neutrons are absorbed by a plastic scintillator which emits
a light pulse whose size is proportional to the incident energy. The light pulse
is in turn detected and amplified by a photomultiplier tube which transmits
a corresponding electrical pulse to an electronic circuit which then increments
a counter in one of m = 133 pulse-height bins designed to cover and subdi-
vide the energy range of all possible incident neutrons. The integral equations
modelling the process are

Eup
. :/ K,(E)N(E)dE + e, i=1,2,...,113, (8.2)
0

where ¢; is the number of pulses counted in the ith bin, N(E) is the unknown
number of neutrons at energy E, and the K;(FE) are the instrument response
functions for the whole detector system. For a given value of E, the quantity
K;(E)dE is the probability that a neutron with energy in the range F + 1dFE
would produce a light pulse that would increment the count in the ith pulse-
height bin. Hopefully, the bin number in which a neutron is counted would
increase as the energy increases, but an inspection of Figure 7 shows that this
does not always happen. Ideally the K;(F) should be a series of narrow peaks
distributed along a diagonal line running from the upper left to the lower right
of the energy, pulse-height domain. The figure does exhibit a ridge along that
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Figure 7: Instrument response functions for the Burrus neutron spectrum
problem. The quantity log,,[1 + K;(F)] is plotted in order to more clearly
show the structure for higher energies.

direction, but it attenuates to a barely discernible ripple for higher energies.
Even worse, the long energy tails for the lower pulse-height bins make it more
likely that a higher energy neutron will produce an increment in a lower rather
than a higher bin.

Figure 8 shows a measured spectrum obtained for the neutrons from the
reaction (8.1). Note that count rate rather than counts are plotted against
pulse-height. The experimental procedure is to accumulate counts for a time
sufficient to allow good estimates to be made for the uncertainties in the count
totals and then to divide by the elapsed time to get rates. In Eq. (8.2) this
division replaces the ¢; with count rates y; and the number N(FE) of neutron
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Figure 8: Measured pulse-height spectrum for the Burrus problem. The two

piecewise linear curves are the + one standard deviation bounds for the mea-
sured values

with a neutron flux z(F). The result is
Eup
" :/ Ki(B)a(BE)E + ¢, i=1,2... 113, (8.3)
0

where the ¢; are noise rates obtained from the ¢;. Estimates for the standard
deviations of the latter quantities were obtained from the usual assumption
about counting errors which is that the standard deviation for any bin is
approximately equal to the square root of the number of counts in that bin.
Although this procedure assumes a Poisson distribution for the error in any
bin, the number of counts accumulated was sufficient to permit the use of the
normal approximation. Assuming that the measuring errors in any two bins
are statistically independent and dividing the estimated standard deviations
by the time of accumulation gives a diagonal variance matrix S? for the errors.

When the energy F is equated to the variable &, the equations (8.3) become
identical to those in (1.2). They were discretized using simple rectangular
quadrature with an n = 77 point energy mesh, 0.2 MeV = F| < Ey < --- <
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Singular Values and Vector |U'b|
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Figure 9: Singular values (squares) and first n elements of [UTb| (circles)
for the Burrus neutron spectrum problem. The horizontal line represents the
truncation level 7 = 3.5.

E.;; = 1891 MeV, to give the linear regression model (1.3). Multiplying
through by S™! gave the normalized model (2.3). Although the two curves
plotted in Figure 8 indicate good statistics for the measurements, there is no
sign of the dominant peak expected for monoenergetic neutrons. The sharp
rise in the lower pulse-height bins contains most of the counts that should have
gone into that missing peak. The least squares estimate, which is overwhelmed
by the amplified noise, gives

ria = |b — Ax|* = 38.05 (8.4)
which is almost 5 standard deviations smaller than the expected value 113.
The singular values and first n elements of |[U”b| are shown in Figure 9.
The condition number of the matrix is 2.3503 x 10° so it is clearly not rank-
deficient. The distribution of the |[U”'b|; exhibits a dichotomy at i = 47 where
it first drops below the one sigma level for the error. Table 2 gives estimate
diagnostics for several values of 7. The quantities tabulated are the same as
those in the first 4 columns of Table 1 All of the non-zero 7 give estimates

20



Amp I itude

Figure 10: Truncated solution and diagnostic plots for the Burrus neutron

Table 2: Estimate diagnostics for the Burrus neutron spectrum problem
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with a strong peak at approximately 14 MeV, but only 7 = 3.0, 3.5, and 4.0
give residuals consistent with white noise. The sum of squared residuals for
7 = 3.5 is closest to the expected value, so it was chosen as optimal even though
the length of the cumulative periodogram was slightly larger than those for
7 = 3.0 and 4.0. The estimate and diagnostic plots for 7 = 3.5 are given in
Figure 10. The estimate is dominated by a single peak centered at 14 MeV
which is just what was expected for monoenergetic neutrons.

9 Discussion and Conclusions

The primary message of this paper is that for ill-posed problems in which the
dominant errors are the measurement uncertainties for the right hand side
vector, the instability in estimating the solution is attributable to components
of the measurements which are overwhelmed by the random error. In general,
these components will not correspond exactly to specific elements of the right
hand side vector. Scaling the problem by S~ reduces it to one in which the
errors all have unit variance, and premultiplying the scaled measurement vec-
tor by U7 rotates it into a basis in which the noise dominated components
can be isolated by well understood statistical criteria. Zeroing the noise dom-
inated components stabilizes the solution estimate without altering the kernel
matrix which is assumed to be known more accurately than the right hand
side vector. Of course this procedure does not guarantee that the estimated
solution will be close to the true solution since the noise may be large enough
to overwhelm important components of the signal. The only way to retrieve
such components would be to repeat the measurments with more accuracy.
The traditional method of truncating the singular value decomposition by
zeroing some of the singular values amounts to altering a well known quantity,
A, in order to compensate for uncertainties in an unknown quantity b* = Ax*.
In the process it reassigns the rank of the matrix, and since the truncation
level depends crucially on the size of the errors in the right hand side vector,
it follows that the altered rank depends on the size of those errors. As an
example, consider Figure 11 which is a plot of the o; and [U”b|; for a problem
obtained from the one illustrated in Figure 3 by increasing all the errors by
a factor of 10. Both figures display the flat segment of the |U”b| curve,
which corresponds to error saturation, but for the problem with the larger
errors, this flat segment intersects the singular value distribution at a point
higher and to the left of that for the problem with the smaller errors. Thus, if
the truncation required to stabilize the estimate were accomplished by zeroing
singular values, the problem with larger errors would assign a smaller numerical
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Figure 11: Singular values (squares) and first n elements of [U”b| (circles)
obtained by increasing the errors in the modified Phillips problem by a factor
of 10

rank to the matrix than the one with smaller errors. Although it seems absurd
to have the rank of a matrix depend on the right hand side vector, precisely
this suggestion was made quite recently by P.C. Hansen [12, Chapt. 7] who
defined an “effective numerical rank” which is not even an integer. A better
approach might be to simply abandon the notion of “numerical rank”, but the
huge vested interest in rank determination and rank revealing decompositions
will probably preclude such a course of action.

The truncation procedure described in this paper depends critically on
the availability of good estimates for the uncertainties in the elements of the
measured vector. A good experimenter will usually provide such estimates,
but it is not uncommon for them to be systematically too small or, more
rarely, too large. Often the form of the functional dependence of the errors
on the magnitudes of the measurements is correct but the estimated standard
deviations are all too small, or too large, by a constant factor. In such cases,
the diagnostics introduced in Section 4 can be used to pinpoint the discrepancy
and rectify it. The usual symptom is that the threshold 7 at which the estimate
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begins to be stabilized is quite different from 3 or 4 and also different from the
value which gives residuals closest to white noise, as measured by the length of
the cumulative periodogram. In such cases it is a straightforward though often
tedious matter to adjust the scale of the estimated errors by a constant factor
which brings the two values of 7 into agreement somewhere in the interval
3< 7 <5,

The situation is more difficult when no estimates are given for the mea-
surement errors. The usual approach is to implicitly assume that S? = s%I,,
where s is an unknown constant which can be estimated from the least squares
sum of squared residuals. Of course the latter quantity is usually much smaller
than the expected value m, but the size of s can then be adjusted upward to a
value such that some truncation level in the range 3.0 < 7 < 5.0 gives residuals
close to white noise and a sum of squared residuals close to the expected value.
This usually iterative technique works well if the standard deviations of the
measured errors are truly constant. If not, it may still be possible to assume a
functional form for the uncertainties which will determine the matrix S? up to
an unknown scaling constant which can then be adjusted for consistency in the
7 values. The disadvantage in this approach is the amount of work involved
in validating a functional form and adjusting the scaling, but sometimes the
results obtained justify the effort.

A number of people have suggested that the truncation procedure advo-
cated in this paper is incomplete because it has not been accompanied by an
algorithm for automatically determining the optimum 7, using some criterion
like those used in choosing the smoothing parameter for regularization meth-
ods, e.g., generalized cross-validation, or the L-curve method. In practice, for
any given problem, only a few discrete truncations give estimates with resid-
uals that have both a reasonable sum of squares and an acceptable spectral
distribution, and it is often the case that the two criteria are optimized by
different truncation levels. Thus some judgement is required to choose which
truncation level to use. Also there is little to be gained computationally by
confining the calculations to a single 7. The amount of work required is dom-
inated by the computation of the singular value decomposition, but once that
is accomplished it is relatively easy to isolate the few possibly acceptable trun-
cation levels and, using a fast Fourier transform algorithm, to calculate all of
the diagnostics. Since the total effort involved is small in comparison to that
required to make the measurements, most users with real world problems will
not be unduly troubled by having to make the final choice of the optimum
value. Of course the procedure can be automated by calculating the solutions
and diagnostics on a suitably chosen mesh for 7. If the mesh spacing is fine
enough to find all of the possibly acceptable solutions, it will produce many
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duplicate solutions, but these will not seriously complicate the final choice of
the parameter value. Users of regularization methods might also be well ad-
vised to consider the same two residual diagnostics in evaluating their favorite
criteria for choosing the regularization parameter.
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Appendices

A Percentiles for the y*(m) Distribution

The cumulative distribution funtion for x?(m) is defined by

X 1 2 z
F(x*) = / ————2 2 exp <——> dz , (A1)
0 227 (%) 2

and for any probability «, the a-point of the distribution can be found by
solving F'(x?) = a. If the solution is x2, then

Pr{|b-Ax|* <2} =a, (A.2)
and
Pr{b- Ax"|*>x2} =1 a. (A.3)

Standard tables (e.g., [3]) of the x?-distribution list x? for various values of
a and m, up to about m = 30. For m > 30, the quantity (\/QXQ —V2m — 1)

is distributed approximately like the standard normal distribution, so x? is
well approximated by

i:%[f@(,ﬁ—\ﬂm—lr : (A.4)

where kK, is the a-point of the standard normal distribution, i.e.,

[ e )ima -
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Table 3: Selected percentiles for the standard normal and x? distributions

o Ka Xo

m=100 m =150 m =200 m = 300
0.01 | -2.326 69.4 112.0 155.7 245.3
0.05 | -1.645 7.7 122.4 168.0 260.6
0.33 | -0.440 93.4 142.0 190.8 288.8
0.50 0.0 99.5 149.5 199.5 299.5
0.67 | 0.440 105.8 157.2 208.4 310.4
0.95 | 1.645 124.1 179.3 9233.7 341.1
0.99 | 2.326 135.0 192.4 248.7 359.1

Table 3 gives, for various values of «, the corresponding values of k, and, for
some representative values of m, the estimates of x2 calculated by Eq. (A.4).
Good public domain software for computing x2 can be found in the GAMS
collection [7, Class Lbalc].

B A Variant of the Phillips Problem

A useful test problem which shares many of the characteristics of real in-
strument correction problems is obtained by discretizing a variant of the well
known [16] Phillips equation. This modified Phillips problem can be written

W0 = [ K@oale)d, 616, (B.1)

with the kernel given by

K(t’f)_{ Witeos[ze—0]} . 1€—1/<3, |t/ <6, o)
0 , otherwise ,
and the exact solution by
3
2(€) = ) + D () , (B.3)
k=1
where
Ag |T+cos(58)] . [§1<3,
ﬁ(f)z{ | (5¢)] (B.4)
O ? ‘5‘ > 3 )
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and

A {l+cos2m (€ — )]}, [€—wl <L,
o (€) = ' (B.5)
0 , otherwise ,
with amplitude constants A, and centering constants 1, chosen to be
Ay=01, A =05, A, =05, A3=10, (B.6)

Yy =—15, =05, 13=15.

The kernel differs from the Phillips original only in the inclusion of the nor-
malizing factor % which was added to assure that for any &,
3+€
K(t,&)dt = 1. (B.7)
J34¢
For a measuring instrument this condition assures that conservation laws are
not violated. Plots of K (t,&) for 5 representative values of £ are given on the
left in Figure 1.

The exact solution to the original Phillips problem appears in a scaled down
form as the 3(£) term in the solution to the new problem. The scaling constant
Ag was chosen to reduce the original solution to the role of a background
function on which to superimpose the three discrete peaks represented by the
ck(€) terms. The three points & = v are the centers of these peaks and
the constants 2A; are their heights above the background. The new solution
function is plotted as a dashed line on the right in Figure 1.

These changes in the Phillips problem were designed to make it more chal-
lenging and more reminiscent of real-world instrument correction problems.
Unfortunately they also make the representation of the function y(#) more
complicated. Substituting (B.3) into (B.1) gives

y(t) = /ZK(t,g)ﬁ(g)du zij /ZK(t,f)ck(f)df, 6<t<6, (BS)

but care must be exercised in evaluating these integrals because K(t¢,&) = 0
on half of the rectangular domain { (1,§) | -6 <t <6, -3 < ¢ <3} and
each of the ¢, (&) is zero everywhere except on the interval ¢ — % <E< Y+ %
The last equation can also be written

y(t) = B(t) + 23: Ci(1) , (B.9)

where

K(L6)5(e)de (B.10)



and

Cu(t) = /Wl% K(t,€)cn(E)de, k=1,2, 3. (B.11)

Ye—35
Evaluating the integral for B(t) gives

1 T 9 ™
14+ —cos (=t  gin [ =t 6<1t<6
4'2“’q<3>}+2n“n(3|>}’ ==

B() = Ao {6 1)

(B.12)
and the integrals for Ck(t) can be written
Cult) = éAkLk(t) k=123, (B.13)
where
(0, —6 <t < -5,
t+5—i——sm[7r(2t+9)]+—s1n{ (t+2)}
+o2 {sin[r(2t + 8)] — sin [2(t — 1)}
+:2 {sin[r(2t +10)] +sin [Z(t+5)]}, -5 <t <4,
1+ 2 {—sin [2(1+8)] +sin [22+1)]}
Li(t) =4+ {sin[Z(4+1)] +sin [2(1 - 1)]} (B.14)
+2 {sin [22—1)| +sin [ZG+1)]},  —4<t<1
2 t+ gsinfr(3 - 2t)] — Lsin [Z(t+1)]
+28 {qm [%(f + 4)] + sin [7(2 — 275)]}
+i {sin [22—1)] +sin[r(4—20)]}, 1<t<2,
( 0, 2 <t <6,
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(0, —6 <t < -3,

t+ 3+ o sin [w(2t + 5)] + 2 sin |5¢]
2 {sin [7(2t +4)] — sin [%(t — 3)]}

+o {sin[r(2t +6)] +sin [2(t+3)]},  -3<t< -2
143 {qin [g(1 - t)] + sin [gt]}
Lty ={ 4+ {sin [§(2 + t)] + sin [§(3 - t)]}
+-4 {sin [§(4 _ t)] 4 sin [g(3+t)]}, 2 <t <3,

+2 {sin [2(t +2)] — sin [ (2t — 6)]}
+2 {sin [2(4—1)] —sin[n(2t - 8)]}, 3<t<4,
L 0 4<t<6
and
- 6<t< 2
t+2+ 2sin[r(2t +3)] + Zsin [2(t 1)
+1o {sin [7(2t + 2)] — sin [%(7‘ - 4)]}
+- {sin[ﬂ(2t+4)]+sin [%(t—l—?)]}, —2<t< -1
1+ 2 {sin [2(2—1)] —sin [2(1 - 1)]}
Ly(t) = i {sin [5(1+0)] -~ sin [5¢ - 9]}
+o3 {sin [2(5 —1)] +sin [2(2+1)] }. —1<t<4,

(B.15)

(B.16)

The function y(t) is plotted as the solid curve on the right in Figure 1. All of
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the details of the 3 peaks are so smeared together by the convolution with the
kernel function that that there is no hint of any structure in the underlying

2(©).

C Discretizing the Modified Phillips Problem

The modified Phillips problem described in Appendix B was discretized by
choosing m = 300 equally spaced mesh points on the interval —5.9625 < ¢ <
5.9625 to give

y(t) = /ZK(t,;,f)x(f) de. i=1.2.....300, (C.1)

and by replacing each of the integrals by an n = 241 point trapezoidal quadra-
ture sum, i.e.,

241

3
/3K(ti,§)m(§)d§ ~ S WK (4 6)a(E), i=1,...,300,  (C.2)
- =1

where

0.025
)= 5 x(1,2,2,...,2, 1)F. (C3)

(wn Wy, Wy, ..., W, Wa

Defining the n-vector x* and the m-vector y* by

x;:x(fj) L j=1,2, ..., 241,
ye=ylt) L i=1,2, ..., 300, (C.4)
and the m x n matrix K by
Kij=wiK(t;,§) , i=1,2,...,300,
Ci=1.2, ..., 241, (C.5)
gives
y'=Kx"+94, (C.6)

where § is an m-vector of quadrature errors. A crucial assumption in replacing
the intregrals with quadrature sums is that the value of n is chosen large enough
so that the ¢§; are small relative to the random measuring errors ¢;. To assure
that this assumption was satisfied for the test problem, the elements of the
vector y* were computed from the matrix-vector product

y* = Kx* (C.7)
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rather than from Egs. (B.9) - (B.16). More precisely, the matrix elements
K; j were computed from Eqgs. (B.2), (C.3), (C.5), the vector elements x7 were
computed from Eqs. (B.3) - (B.6), and the vector y* was then computed from
Eq. (C.7). The “measured” vector y was then obtained by adding random
perturbations to the elements of this y*. Each perturbation was chosen inde-
pendently from a normal distribution with mean zero and standard deviation
s; = (107%)\/yF, so the variance matrix was

S* = diag(s}, 3, .., sh) . s = (107 )/ (C:8)

D The Cumulative Periodogram

For a given time series, a periodogram is an estimate of the power spectrum of
the series, i.e., an estimate of how the total variance in the series is distributed
in frequency. Such an estimate can be obtained at any desired number of fre-
quencies fr, k=1,2,---, N, in the interval 0 < f < %, where 7' is the sample
spacing for the time variable, and /N is chosen to be greater than or equal to
the number of sample points in the time series. If the time series is taken to
be the residuals r; for an estimated solution to an ill-posed problem, with the
element number 7 as the time variable, then 7" = 1, and the periodogram is
estimated on an N-point equally spaced mesh on the interval 0 < f < 0.5. It
is obtained by zero-padding the r; series to have N > m terms and computing
the discrete Fourier transform

N kj N
Rk—Terexp<i27r—]>, k=012, .. —~. (D.1)
j=1 N 2
where i = v/—1 and
_ b77(A§()7 ) j:1,2,--.,m,
TJ_{O L j=m+1,m+2,...,N. (D-2)

The zero-padding increases the density of the frequency mesh, but does not
change the value of the transform at any given frequency. Each R; is associ-
tated with the corresponding Fourier frequency f, = % The periodogram is
computed from the transform by

1 N
,Pk:P(fk):ﬁUzk‘Qﬂ k:071127a5 (D3)

Peaks in the plot of P, versus fj indicate the presence of sinusoidal cycles in
the parent time series, and the height of each such peak gives an estimate of
the power of that cycle.
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The cumulative peridogram is defined by

1 & N
j=1
where
N/2
S=> P (D.5)
j=1

Clearly C(f) is a monotonic nondecreasing function of frequency ranging be-
tween the values C(0) = 0 and C(1/2T) = 1. The relationship between the
periodogram and the cumulative periodogram is illustrated in Figures 12 and
13.  In the first case the time series is comprised of m = 128 independent
random samples z; from a standard normal distribution (mean = 0, variance
= 1), and in the second case the series is given by

-
mi—sin<lloz>+ni, i=1,2,...,128 (D.6)

where the n; are independent samples from a zero-mean normal distribution
with variance = (.1. Thus the first series is a realization of a pure white noise
signal and the second is a single sinusoid, with unit amplitude and period
10, corrupted by zero-mean white noise with standard deviation 0.316. In
both cases the time series was first detrended by subtracting out the mean
value which was approximately, but not exactly, zero. The periodogram for
the white noise case has the power distributed more or less uniformly on the
interval [0, 0.5], so the cumulative periodgram does not depart too much from
a diagonal line that would connect the points (0,0) and (0.5, 1), i.e., the line

C(f)=2Tf, (D.7)

which is the theoretical distribution for pure white noise. One way to quantize
departures from white noise is to compare the length of that line,

V/(0.5)2 + (1.0)2 = 1.11803 ,

with that of the computed estimate,

=

/2
Length(C) = [\/(Ck — qu)Q + (fr — fkfl)Q ; (D.8)

1

=~
Il

which is given in the legend box on the plot of the cumulative periodogram.
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The periodogram for the sinusoid plus noise time series is dominated by
a single peak at frequency 0.1 (period = 10) which produces a wide devia-
tion from the white noise diagonal at the same frequency in the cumulative
periodogram. One way to test whether of not such a deviation represents
a statistically significant departure from white noise is to construct the two
parallel off-diagonal lines defined by

C(f) =+ +2TF (D.9)

where § is the 5% point of the Kolmogorov-Smirnov statistic for a sample of
size m /2. These two lines, which are plotted in both Figures 12 and 13, enclose
a 95% confidence band which can be used to test the hypothesis that the time
series is a realization of white noise. The cumulative periodogram ordinates
for such a series should lie outside this band for at most 5% of the frequencies.
None of the ordinates lie outside the band for the white noise case, but more
than 50% of them do for the sinusoid plus noise case.
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