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Abstract

This work establishes the high value of ear images for personal identi-

fication from mugshot data, using the NIST database of police mugshots.

It starts with a method for boundary analysis based on two innovations.

First, edge analysis is performed only along rays emanating from a point

near the center of the ear. This is much faster than applying a Canny edge

detector to the entire image. The second innovation is the use of “interpre-

tation breeding.” Two distinct methods are used to find the ear boundary,

and these interpretations are merged in order to find the best boundary.

This results in good segmentation for well over 70% of the images. The
segmented ears are cut out from the original profile, and standardized

in several ways to compensate for image variations. For identification, a

neural network is used to compute a composite distance criterion. Indi-

vidual distances include one based on components of an “eigenear” basis

similar to Pentland’s eigenfaces, and one based on comparison of the most

robust portion of the boundary curve. The best match to a random query

is found 58% of the time, and the correct match is among the top five

77% of the time. These results compare favorably with those for frontal

images from the NIST mugshot database.

1 Introduction

There has been a strong trend in recent years towards greater utilization of

image processing techniques by forensic workers. Fingerprint databases are

now managed by image processing. Major imaging systems for matching of

shell case and projectile evidence are currently undergoing rapid development.

There have been several conferences dedicated primarily to face recognition,

and a high percentage of the papers at CVPR96 in San Francisco were devoted

to face recognition. A comprehensive survey of face identification work is [3],
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but there has already been much work since that time. Some work has been

done with pose variation [6], but little attention has been directed towards

detailed analysis of ear images, even though there is a body of experience built

by forensic experts who specialize in identification by analysis of the shape of the

ear. This paper introduces two new techniques for boundary finding, and then

demonstrates that identification from the ear image is possible, with a level of

accuracy that compares favorably with one of the prominent face identification

methods, when applied to mugshot quality data.

The problem of face identification has attracted considerable attention over

the years because of its intrinsic human interest, as well as its practical potential.

In addition to the obvious law enforcement applications, there is considerable

interest in the use of face recognition for verification of identity, as evidenced by

several startup companies promoting this technology. Face identification work

generally falls into three categories, template-based methods, holistic statistical

methods, and methods based primarily on robust analysis of points of high

curvature.

Templates have been used to identify facial components. Because faces are

plastic, it is necessary for these techniques to be capable of handling defor-

mations, and this has been attempted with several different approaches. De-

formable templates [11] emphasize the mouth and eyes, because much of the

structure of these features is preserved during the course of deformations whose

structure is relatively well-defined, so that a parametric approach can be taken.

Another approach towards face recognition is exemplified by work that orig-

inated at USC, including [7] and [8]. Manjunath et al. [7] extract features at

points of maximum curvature, and use graph matching to compare images.

“Eigenfaces,” i.e. a representation based on principal components of the set

of faces, has been a popular method for handling face recognition problems.

Kirby and Sirovich [14] introduced the method, which has been refined, ex-

tended, and tested by Pentland [15], Moghaddam [13], [6], and others. In one

variation of this technique, components of the face, including the eyes, the nose,

and the mouth [6] have been analyzed separately. The present work utilizes this

technique as one of several distance measures, and is the first to analyze images

of the ear.

Relatively few studies have emphasized profile images, and these have gen-

erally been limited to silhouettes. Harmon and Hunt [4] explored methods for

recognizing profiles, but did not attempt to derive the profile automatically.

Instead, they used an artist’s sketch based on their sample of photographs. Wu
and Huang [10] used B-spline analysis to find fiducial points from the boundary

of the profile, but did not attempt to analyze interior features. In both of these

studies, the photographic conditions were standardized in such a way that the

scale was fixed. Profile studies have generally found that the shape of the nose

and chin were extremely useful for identification, but none of these studies has

utilized the image of the ear.
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1.1 Use of Ears for Personal Identification

Before the famous West case in 1903 led to the acceptance of fingerprints as

the identification standard, the Bertillon system of Personal Identification was

predominant. Ear characteristics played a significant role in this system [1].

People don’t generally attend to ears, and are unlikely to use ear characteristics

for identification, unless trained to do so [12]. For law enforcement, this means

that a witness will be unlikely to be able to recall ear appearance for a police

sketch. The human tendency to emphasize the appearance of the front of the

face probably explains why face identification work so far has not focused on

ears.

Iannarelli [5] has developed an imaging and classification system for ears. His

system uses precise scaling, aided by a frame that keeps the camera at a standard

distance from the ear. He suggests that ear analysis can be used for comparison

of police mug shots with more recent photographs or surveillance videos, as well

as for identification of individuals involved in organized crime, drug trafficking,

unlawful demonstrations, or subversive activities, and identification of missing

people and amnesiacs.

Several legal cases have used earprint evidence, including a recent case in

Vancouver [16]. At that case, Ianarelli was called as an expert witness, as was

Cor van der Lugt, a European specialist in ear evidence. The two experts have

examined hundreds of ear images, and believe that no two are alike.

Ear appearance evidence has also been used to identify missing persons. Two
famous cases ended in contrasting conclusions. In the 19th century, Arthur Or-

ton, actually a cockney, claimed to be the missing Roger Tichborne, and thus

the heir to a considerable fortune[17]. His claim was even supported by Roger’s

distraught mother. In a very expensive trial, his somewhat ludicrous claim was

disallowed, partly because photographs confirmed that his ears were very dif-

ferent from those of the real Roger Tichborne. The other famous case remained

a mystery until recently. This is the case of “Anna Anderson,” who claimed

to be Anastasia Romanov, heiress to the Romanov fortune. At a German trial

an expert testified that the claimant was the missing Anastasia, based on ex-

amination of the ear shape in an old photograph of Anastasia, but later, DNA
evidence proved that Anna Anderson was an impostor.

Use of ear characteristics as evidence has been established. Although cases

have been rare, partly because earprints are not often found, and partly because

people don’t generally look at ears carefully, uses have been limited so far. The

work reported here indicates that recognition methods using computer vision

can benefit from detailed analysis of the ear.

1.2 Mugshot Data

The data used in these studies is based on computer images of mugshots of

deceased individuals, as available in the NIST distribution [9]. This is based
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on a sample of police mugshots, imaged from FBI files under precise conditions

that assure that they accurately represent the quality of the originals. This data

set is thus a sample of the data that is relevant to some of the most important

applications for identification by images. The distribution of individuals by

age, race, and sex, as well as image quality pose many of the kinds of problems

that a practical system would need to be capable of solving. The placement

of the subjects within the frame, and the types of backgrounds encountered

in mugshots also provide a fuzzy standardization which can be used to increase

processing speed. Because the FERET database has been widely used in studies,

it is worth making a few general remarks of the differences between the two data

sets.

The two data sets differ with respect to demographic composition, poses,

and imaging conditions, as well as picture quality. Women, Asians, and younger

individuals were well represented in the FERET data set, but it does not include

a substantial proportions of black males or older subject. On the other hand, the

FERET subjects tend to adhere to a vertical head position, whereas a significant

number of subjects in the mugshot database have their heads tilted forwards or

twisted. Subjects in FERET profiles are also posed rather carefully compared

with those in the NIST mugshot database. In addition, image size varies by a

factor of 2.

The ear images used in this study were clipped from profile views, using xv.

In practice, this procedure would be done by a preliminary ear finder. For more

precise analysis, it is still necessary to find the ear in these quick clips, and to

delineate its boundary as precisely as possible.

2 Segmentation Method

In this system, segmentation is achieved in several phases, with some interac-

tions between successive phases of the process. In this respect, it differs from

segmentation methods based on matching, such as the generalized Hough trans-

form or template matching methods. This kind of flexibility is necessary for ears,

because ear boundaries vary considerably from one individual to another; more-

over, there is no obvious functional representation based on a small number of

parameters, which could characterize boundary shapes with sufficient precision

to make it possible to handle all the observed shape varieties. For example,

an ellipse describes one category of ears reasonably well, but there are many
exceptions.

All phases of this procedure are directed towards finding the ear boundary.

This means that the pattern characteristics are distributed across several phases.

Although there are successive modules, which can be modified for other similar

applications, this design has rather more vertical integration compared with a

generic edge finder followed by a model fitter. The effect of progressive focusing

on the target pattern has a certain naturality.
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The first innovation used for boundary finding is that much of the edge anal-

ysis is confined to rays emanating from a point near the center of the image.

On one hand, this saves processing time, and on the other hand, it imposes a

desirable constraint on the problem, since the boundary of the ear should in-

tersect each ray in exactly one point. During edge analysis, restricted to these

rays, candidate boundary points are identified. The general task of the bound-

ary finder is then to “thread” the boundary through the best set of candidate

points, in order to identify the true boundary. Note that this method contrasts

with the popular “snakes” [18] in that snakes are generated by continuous ap-

proximations, whereas this general strategy is discrete.

The strategy for finding the contour has some similarity to a genetic al-

gorithm, but might be characterized as “contour breeding,” since there is a

certain amount of “genetic engineering” done to assure that the child of a mat-

ing is superior to either of the parents. One of the principles of evolution is

that dissimilar individuals may offer greater variety to the gene pool, and thus

favor the production of superior offspring. This principle is exemplified by the

generation of contours by two distinct methods. An improved contour is gener-

ated by combining the best features of the two parent contours. This method

is theoretically faster than a dynamical programming method for finding the

optimum contour, because it does not require a combinatorial search.

2.1 Radial Edge Analysis

Ray-based edge analysis is well-suited for analysis of biological images. As with

many biological objects, including brain images, the boundary curve never in-

tersects itself, and can for the most part be arranged around a central point in

such a way that radii intersect the boundary in at most one point. For an ob-

ject with these characteristics, the reduction to rays concentrates the processing

resources on a highly informative subset of the data. It is not necessary to com-

pute gradients, e.g., for every pixel in the image. An outline of the segmentation

target can be obtained and refined later with great savings in computational re-

sources. Based on these savings, more image characteristics can be used to

assure continuity of the boundary. 1

A central point is chosen for ray construction, and edge candidates are chosen

along points of the ray. For each point of a ray, a gaussian convolution of

intensity is computed. Next, the first and second derivatives of the intensity

function are computed. Then a limited set of the most likely candidates is

kept, together with additional data that will be used to select the optimal set

corresponding to the true object boundary. Edge points in general correspond

to zero crossings of the second derivative, because this criterion for identifying

the edges was found to be the most powerful, and less likely to miss boundary

1 Minor and Sklansky [25] did a kind of ray-based analysis to find blobs in infrared images,

but did not do the kind of edge finding in the present paper.
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Upper Border of Helix

Figure 1: Anatomy of the Ear (Dept, of the Army)

points. 2

Each edge candidate is associated with a vector of information. The two

most useful supplementary items are a sample of intensity on the inner side

of the edge, PREVINT, and the gradient, GRAD. PREVINT should be rather

consistent along the helix boundary, and also relatively light. GRAD should not

change very much between successive points along the true boundary, whereas

a configuration of false boundary points, which happens to have an elliptical

shape, is less likely to have smoothly varying gradients, especially if it follows a

hairline.

Figure 1, copied from an Army source, is a reference for the anatomy of

the ear. The most important features are the inner and outer helix rims, the

concha, the tragus, and the point of attachment of the ear to the cheek.

For this application, a maximum of six candidates were kept for each ray.

After the selection of the central point, this is the first time when a pattern

characteristic is used, and this affects the prioritization. The dorsal boundary

of the ear is likely to be a strong edge, with intensity decreasing away from

the central point. In addition, it is usually preceded by the increasing edge

generated by the inner helix. Further, this edge pair is likely to lie near the

border of an image where the ear is approximately in the center. This limitation

of edge candidates at an early stage enhances the efficiency and accuracy of

2The procedure has additional features, and the derivative computations are based on

regressions, as described in Appendix I
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Figure 2: Edge Candidates Along Rays

the boundary finding procedure. Figure 2 illustrates some typical sets of edge

candidates produced by the edge analysis.

Although this procedure appears extremely specific to ears, the approach

can be generalized. It could be used for many boundary finding problems where

the boundary has a well-behaved representation in polar coordinates, together

with a useful characterization of the boundary’s intersections with the rays. In

particular, this includes many medical imaging applications.

2.2 Boundary Construction

The goal of the boundary finder is to “thread” its line through the ray based

candidate edges in such a way that the resulting boundary is most likely to be

the true one. This is a combinatorial problem, with an obvious combinatorial

solution — all possible boundaries could be tried, and the best one selected. In

some instances, it would be necessary to skip a few rays for which none of the

candidates were on the boundary, but this problem could be solved. Dynamic
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programming would be an obvious choice for this kind of optimization strategy.

The major objection to using dynamic programming is that it would require

excessive computation.

It would also be possible to define a model, such as a deformable template,

and to find the best fit for that model. This approach has been used for eyes

and mouths [11]. Large variations in lobe shape make it more difficult to con-

struct a good deformable template that would fit all ear shapes; nevertheless,

a large part of the upper portion of the dorsal helix boundary was found to be

approximately elliptical. An earlier version of this method began by finding that

elliptical section, and then following the edge to complete the outline. For the

portion of the radial sweep pointing towards the lower left hand corner of the

image, to the portion pointing straight up, the border shape is approximately

elliptical for the range of head tilt observed in the NIST mugshot database.3

This boundary growing method utilized PREVINT and GRAD directional con-

sistency to construct a boundary. The new method of “interpretation breeding,”

however, was found to be much more effective.

Interpretation breeding is partly inspired by genetic algorithms [2], but in-

corporates genetic principles not generally present in genetic algorithms. In

effect, it introduces “sexual” reproduction. In most genetic algorithm applica-

tions, reproduction is asexual and parents are not differentiated. In genetics,

the advantage of sexual reproduction is that greater variety is introduced into

the search process, and differentiation tends to widen the gene pool. The notion

of breeding — a more aggressive form of evolution— is also present in that both

parents can be selected for their ability to contribute towards the success of the

child.

From the candidate sets, two tentative boundary interpretations are con-

structed, each based on a distinct, simple principle. In the first interpretation,

the boundary is based on the highest priority candidates. Thus, it is based on

the most likely inner helix/outer helix edge pairs, as found at the ray level. The
second interpretation is based on an elliptical fit, a kind of grossly simplified

template. An elliptical prior, with center and proportions determined on the ba-

sis of a small sample, is based on the image proportions. The second interpreted

boundary interpretation picks those candidates closest to the elliptical prior. In

general, more boundaries could be constructed at this stage. Other applications

of interpretation breeding could introduce a large number of classes. The guid-

ing principle is differentiation — the classes should be sufficiently different that

their favorable characteristics can complement each other for breeding. These

two simple boundary construction methods, neither of which is fully successful

by itself, can be combined in a highly synergistic manner.

Gaps are the main flaws in either one of the tentative boundaries. Boundary

traces tend to be fragmented into clusters. One may follow a hair line, or

3 Note that the relative consistency of head tilt in the FERET database would make it

possible to utilize a wider angle for the elliptical fit.
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another may shift to the inner helix. These mistracking gaps, of course, need

to be distinguished from statistical variation, which may vary from one image

to another, especially since image sizes differ. Gaps are measured in two ways,

once by euclidean distance, and once by radial distance, i.e. the change in radial

distances to the ray center, as one moves from one ray to the next. Radial

distance is generally better than euclidean distance, because it more likely to

identify a departure from the curve of the ear boundary; further, radial distance

is more informative when it is necessary to skip over a ray that has no viable

candidates.

Gaps are classified by thresholds related to the statistical pattern of gaps

observed in the boundary trace. The threshold is intended distinguish gaps

due to normal fluctuation from those due to deviations from the true boundary.

Mistracking gaps tend to be relatively few; therefore, they may be regarded

as outliers of the gap distribution. The threshold finder is a simplistic form

of robust procedure. It starts with a “safe percentile” of the gap distribution,

within which gaps are very unlikely to be mistracking gaps. Starting from

this secure position, the threshold estimator crawls up the distribution, adding

points that are within C standard deviations of the mean of the gap distribution,

until it reaches a point that exceeds this value. This first point to fail the

extension test is considered to be an outlier, because its gap significantly exceeds

the typical range of statistical variation for gaps. Based on a small sample of

boundary traces, the C parameter is chosen so that the estimated gap threshold

will not misclassify obvious mistracking gaps, and will also not significantly

overcount gaps.

Both gap counts are used to evaluate the quality of the two parent boundary

traces, and the better trace is chosen as the backbone upon which the boundary

trace will be constructed. The choice principle is based on Pareto optimality,

i.e., the chosen boundary trace should be materially better for one of the gap

counts, and at least as good for the other one. Materiality was set at 18% —
the worse gap count should be 1.18 times the better one. If neither trace is

better by this criterion, the trace based on an elliptical prior is chosen as the

backbone. The alternative boundary trace will be referred to as the secondary

boundary trace.

Once the backbone trace is selected, the fixing process begins. First, isolated

outliers are replaced by better candidates from within the same ray, that are

closer to their ray neighbors. The mating process consists of using sections

of the secondary boundary trace to bridge gaps in the backbone trace. Gaps

are defined with the aid of the threshold described in the previous paragraph.

Gapless clusters are then computed, and the principal (longest) section of the

boundary trace is selected. It is then necessary to determine when the boundary

trace departs from the main one, which it will often tend to do in clusters,

but not always. There are “expansion gaps” and “contraction gaps.” For an

expansion gap, a cluster begins at a radius larger than that of its ray predecessor.

The next gap is in the opposite direction, from a larger to a smaller radius. A
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contraction gap is similar, but the cluster responsible for the gap lies inside the

boundary. Examples of these two kinds of gap can be seen in Figure 4. For case

56.4(a), for example, the “initial” boundary trace, based on best pair within

the ray, has an expansion gap cluster. For the same case, the boundary trace

based on elliptical fit has a contraction gap.

Closing cluster gaps is done in several stages. First, a list is made of the

best three clusters. Clusters, of course, have gaps at either end unless they are

at the beginning or end of the angular sweep of the rays. Each of these clusters

is extended in both directions, when this can be done by using portions of the

secondary boundary trace. However, a limit is imposed on these extensions in

order to minimize the possibility of following a long but incorrect trace.

Next, the contraction and expansion gaps are bridged, when this can be

done by using points on the candidate list. Both inner and outer candidates

may be used for this. This is because the edge direction for the boundary is

sometimes reversed. The inner candidates are used only at this stage because

edge reversal is relatively rare, and the restriction to outer candidates at the

earlier stage helps to focus the search. For this bridge, candidates are selected

based on how close they are to an interpolating line.
4

Another kind of mistracking gap may occur, e.g. when the helix trace begins

to follow a strong edge of the kind that may be made by a sideburn. This will

be an isolated gap, rather than a bridgeable gap, and correction will require

amputation of the portion of the boundary trace that follows the wrong edge.

Repairing this kind of gap involves a search in both directions to find a place

where the discontinuity can be smoothed. In the present version, a line is used

to make a rough patch, but this could obviously be improved upon.

More smoothing could be done at this point, but the quality of the boundary

traces that are achieved by this much processing is already good enough. So far,

however, only the dorsal boundary has been covered. The process continues by

using a specialized edge follower to extend the upper helix boundary forwards,

and another to extend the lobe boundary. A different procedure is then applied

to find a line corresponding to the ventral edge of the ear.

There are no visible boundaries that could be used to define the front (ven-

tral) edge of the ear; therefore, this edge is defined by the cavities in the ear.

The inner helix on the ventral side of a right side mugshot tends to form a

strong edge with a shadow on the left side of the edge. A similar edge appears

in the lower half of the ear. The procedure is relatively straightforward, with

only one or two subtleties needed to deal with false edges in front of the ear,

and a fine-tuning principle for the slope of the line.

Finding the ventral edge line begins with another radial edge collection.

First, a central point is selected based on the dorsal boundary that has already

4 In a later version, this will be replaced by an interpolation based on the elliptic-polar

coordinates that are used by the curve distance for comparing two images. Note further

that it is not necessary to compute the line. The selected candidate has the minimal sum of

distances from endpoints.
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been found. Edge analysis is then done as before, along these rays, but the edge

selection is different.

2.3 Extensions of the Boundary

A section of the dorsal boundary, from approximately seven o’clock to approxi-

mately twelve o’clock, was found to be the most consistent shape for locating the

ear. The rest of the ear structure varies sufficiently that more flexible means

must be used to find their boundaries. Completion of the upper and lower

boundaries is done by and extension procedure that is somewhat like tracking.

Two variations of this extension procedure are used to complete the construc-

tion of the dorsal boundary — one for the helix, and one for the lobe. The
parameters of the extenders were tuned on a subset of 31 images, and then

applied to the remaining images.

The helix is approximately circular. It generally tends to turn inwards to-

wards the ventral side. These characteristics are used for the helix extender.

The extension is done by fitting a circle to the previous fifteen points, with the

most recent one or two left out (to avoid gradual mistracking). The next point

in the path is selected as the candidate — either inner or outer — closest to the

fitted circle. The extension is continued as long as the next point is close enough

to the circle. The closeness criterion depends on the standard deviation, rsd, of

the radial gap, where the radial gap is defined as the change in radial distance

from the ray center as one moves from one ray to the next, td is the (signed)

radial gap from the previous boundary point to the candidate extension point.

The criterion is based on the shape of the helix. This is an example of a pattern

characteristic that is employed at a relatively low level of processing, but in a

way that is quite distinct from template matching. The closeness criterion is

given by

td < u> rsd L

td > 6 rsd, (1)

where a; is a tolerance factor for widening of the circle, and 6 is a tolerance

factor for tightening. The prior expectation that more tolerance can be given

to tightening than to widening is borne out. For this sample, u = 5.1 and

<5 = —10.0 worked well. Even though the front edge of the helix is in some

ways a loose end of the boundary, this stopping criterion was rather effective.

The main difficulty with finding the termination of the helix boundary is that

mistracking can frequently occur, with the boundary trace following a hairline

that might appear to be a plausible extension of the ear boundary. This is

resolved partly through the closeness criterion of equation 1, and partly by a

constraint from the ventral edge line described in the next section.

As stated in the introduction, lobe shapes vary a great deal. A common
ear shape is approximately elliptical, with the curve of the lobe resembling that
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of the helix, though often with a tightening of the radius of curvature. But

the boundary leading down to the lobe is often rather linear. Accordingly, an

edge follower that tracks the lobe cannot be assumed to be curved, as with the

circular extrapolator used for the helix; it must be more flexible. Thus, a linear

extrapolation is used, with a smaller set of points used to determine its direction,

and stopping criteria are based on both gap distance and estimated curvature.

The curvature is estimated simply as the angular change between two successive

boundary points, divided by the average lengths of the two vectors. Thus, let

P0 , Pi, and P2 be three successive points along the boundary. Then d6/ds is

given by the following procedure

0i = arctan (Pi — Po)

62 = arctan (P2 — Pi)

s = (|Pi-Po| + |P2 -Pi |)/2

d6/ds = (02 — 0 \ )/s.

The extension can continue as long as the following constraints are satisfied.

|P2 - Pi| < G
d0/ds > Km
d0/ds < Km,

where the maximum allowable gap, G is 5 standard deviations above the mean
gap of the basic boundary, and Km and Km are minimum and maximum limits

to local curvature. Km is a very gross constraint based on the scale of the image,

and Km is based on the standard deviation the tangential change, divided by

s.

2.4 Ventral Boundary

For the ventral boundary, the most robust features are the edges of the ear

cavities. The analysis is rather similar to that used to find the dorsal edge of

the ear, except that the edges are increasing away from the center, as one moves

away from the cavity, with high gradients and a minimal intensity within the

cavity. A search center is established near the middle of the dorsal edge, and

an initial sweep point is set up near the top of the helix trace. The point set is

generated, and then screened for outliers.

After the set of cavity edges has been computed and edited, a line is fit to

the ventral side of this point set. The goal is to draw a line tangent to the

cavities, and to use this line to define the front edge of the ear. A range of

slopes are tried, ranging from polar angles 7t/4 to 57t/8. For each slope, the

line is move left until it touches the set of ventral edge points. Then the sum of

squared distances from each point to the line is computed. The chosen boundary

line is that with minimum sum of squares. This line will be inside the outer

helix at the top, but will approximately follow the inner helix. As a final step,

12
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Good Minor Problems Missed

Number 66 10 15

Percentage 73% 11% 16%

Table 1: Test of Automatic Segmentation Procedure

the line is shifted forwards. This is because forensics experts consider the style

of attachment of the ear to the head to be useful for identification, and this

information could be lost if the border were cropped too close.

3 Results of Segmentation Step

The workings of the “interpretation breeding” technique are interesting to ob-

serve. Figures 3 through 5 illustrate the application of this method. In these

figures the first “initial” interpretation is based on selection of the best edge

pair for each ray. No attempt is made to impose continuity or other desirable

constraints on the boundary trace, so that the selection of candidate points is

made purely at the ray level. The second interpretation is based on a criterion

that is essentially global, i.e., best fit to a prior ellipse, and does encourage con-

tinuity at a wide resolution level, but selection is still at the ray level, without

considering what points are selected in other rays. The last image shows the

progeny of the breeding, after fixup operations.

A set of 112 precut ear images was taken for testing of the segmentation

procedure. Of these, 32 were used to tune the parameters of the segmentation

procedure. 21 were eliminated either because of excessive hair occlusion, or

because the image quality was so poor that nothing could be expected. The
remaining set of 91 images thus included those which could be easily segmented

by a human observer, and perhaps by computer methods. These images repre-

sent a wide range of quality, and include size variations by more than a factor

of two. The performance of the interpretation breeding method for the test set

is shown in Table 1.

Figure 6 shows examples of the segmentations produced by this system.

Note that the procedure has proved successful for quite a variety of shapes, and

variations in image quality. Both Cases 12 and 15 have unusual shapes, quite

distinct from ellipses, and Case 12 also has moderate hair occlusion at the helix.

Further variations in exposure are less noticeable in the examples because they

have been transformed to a standard histogram to make them viewable.
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(a) Initial Case 24_2 (b) Ellipse (c) Combination

(d) Initial Case 50_1 (e) Ellipse (f) Combination

Figure 3: Boundaries by Selection
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(d) Initial Case 39_2 (e) Ellipse

Figure 4: Complementary Boundary Parents

(f) Combination
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(d) Initial Case 50_3 (e) Ellipse

Figure 5: Complementary Boundary Parents

(f) Combination
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4 Standardization

Following the segmentation phase, a standardization phase is introduced in order

to improve the comparison between different images of the same individual. This

involves four main parts: rotation, scaling, cutout, and standardization of the

intensity distribution. Before this, some screening and tuning are also done

to assure that the standardized images are well standardized. For example,

the bottom of the lobe is not always determined with sufficient precision, so

a bottom line is enforced for these images. In some other cases, the slope

ventral edge line is not good enough, so this is also adjusted. While a fully

automatic system would not benefit from these tunings, it is not unreasonable

that a small proportion, say 10%, of a commercial system might require some

human correction. 5 In any case, an important objective of the present work

is to demonstrate the extent to which ear images can be used for personal

identification. The mugshot sample is too small to permit too many dropouts

on one hand. On the other hand, the segmentation and matching problems are

somewhat separate issues, which can be regarded as separate module of an ear

identification system.

Of the standardization procedures, the rotation and cutout procedures re-

quire little comment, but it is noted that rotation and scaling are done si-

multaneously so that a single positional interpolation will suffice. For scaling,

positional interpolation is achieved partly by applying a gaussian convolution,

but with the deviation parameters scaled to the proportions of the original im-

age, as the standard image is contracted (except in one or two cases) to size

32x64. For most images, this means that the aspect ratio is altered, and this

may have a beneficial effect, as noted in the next section.

Standardization of the intensity distribution is done after the cutout proce-

dure. For the cutout procedure, the background is set to white — greylevel 255.

Then a small sample of 40 ears was chosen for superior image quality. From this

sample, a standard greyscale distribution was computed. Each image was con-

volved with a gaussian filter, and the convolved image intensity distribution was

transformed to the standard intensity distribution. This helps to overcome dif-

ferences in lighting level, although it does not attempt to standardize a lighting

direction.6

Figures 8 and 10 illustrate some of the original ear images (altered for viewing

by standardization of the intensity distribution), followed by their standardized

versions.

5 For example, the DRUGFIRE system that analyzes bullets attempts to identify the lines

formed by rifle markings (lands and grooves), but it is necessary for the operator to check

that these marks are right, and to modify them when necessary.
6 Differences in lighting appeared to be responsible for some of the problematic cases where

the correct match was not among the ten best matches.
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5 Identification

Identification is in some respects a separate problem, but it is obvious that an

identification system benefits greatly from precise location and registration. If

an image of a person could be standardized so effectively that any image of

the same person would generate the same standard image, then identification

would involve little more than computing a euclidean distance. Unfortunately,

standardizations are usually imperfect. Whereas the ideal distance function

should be invariant to all transformation that might cause images of the same

individual to appear different, and sensitive to changes that make it possible to

distinguish one individual from another, it is necessary in practice to accommo-
date imperfections in both dimensions.

Pose invariance would ideally compensate for all possible three dimensional

rigid motions, with 6 degrees of freedom. In the present work only two dimen-

sional rigid motions are used in standardization, i.e. two translational and one

rotational parameter. Because mugshots are taken under somewhat controlled

conditions, this limited control for rigid motion meets with some success. There

are, however, several cases where unusual positions are found, especially those

that exceed the usual leeway for head twist.'

Lighting invariance would also be highly desirable. The image is affected

by both the direction and the intensity of the lighting, as well as by the num-

ber of light sources. As noted before, the standardization does not attempt

to compensate for differences in the direction of the light source, but it does

attempt to standardize the intensity distribution. Even here, problems may
remain, especially when the image is overexposed. Underexposure affects the

precision of each pixel’s intensity, but the effects of overexposure are far worse.

In this case, the upper end of the distribution is clipped, and important edge

information may be lost. Overexposure may have an effect on gross localization

of the boundaries of the subject. For example, there are images in the mugshot

database with extremely low contrast edges, for which the background intensity

is greylevel 255 and the intensity inside the skin area of the face is approximately

253.

Other variations in the appearance of the same individual may result from

the presence of absence of glasses, differences in hairstyles, or small deformations

of the face, including those associated with aging.

One of the advantages of ears is that they don’t deform like mouths or eyes

in the frontal image. They do grow, but not very much after adolescence. [5]

There is also, for the most part, less concern over hair, which can usually be

cut out of the image unless it covers too much of the ear. Nevertheless, they are

subject to some pose variations that are not fully accounted for by the standard-

ization procedure. The standardization of aspect ratio helps to compensate for

moderate twists of the neck. Precise compensation would require a projective

7There are also a few images that suggest that the subject was shoved into position —
actually, somewhat beyond the intended position.
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transformation, since the twist makes spatial relationships in the most distant

part of the object appear slightly smaller, but a twisted ear image also has a

smaller width, so that it will be scaled back up to untwisted dimensions. Fea-

tures in the standardized images of the twisted ear will be close to those in the

standardized image of the untwisted ear. If the two images were not standard-

ized, the discrepancies woulb be greater. For ears with a significant amount of

curvature, however, even a moderate twist could transform the image in a way
that would not be handled very well by the standardization procedure. Tilts

towards or away from the camera would be more difficult to deal with, but this

would be an unusual motion, especially for a mugshot.

Background variations could cause difficulties for some procedures, such as

the eigenpicture method, because these variations, often due to stray hairs, etc.

are given equal attention with all other variations in the image. The stan-

dardization procedure removes nearly all background variation, so that these

variations matter only to the extent that they interfere with the precision of the

boundary finding procedure.

In summary, many invariances can in theory be handled reasonably well by

the standardization procedure, with the exception of lighting changes, some po-

sitional variations, hair occlusion, and loss of information due to overexposure.

Some variations remain, with some of these arising from imperfect segmenta-

tion, and these are sufficiently troublesome to make the automatic identification

process challenging. Thus, the task of the distance function is to attempt to ei-

ther discover improved invariances in the segmented data, or to mask out those

variations that can be ascribed to factors which will cause the same person’s

image to appear different at different times, thereby leaving the most relevant

variations. In the present work, improvements are achieved partly by limiting

the number of principal components in the eigenbasis distance, and partly by

combining various distances optimally.

5.1 Modeling Approach

The method employed in this work is similar to the method that has been

employed for fingerprints [19]. First a neural network is trained to determine

whether or not two images represent the same person. This gives us a likelihood

function which is a kind of distance function. Ideally, this function would learn

to compensate for meaningful invariants not handled by standardization, and to

emphasize differences that help to distinguish one individual from another. Be-

fore this, an eigenbasis is constructed for the image space, following the method

employed by Pentland and others [15], [14]. The eigenbasis also helps to con-

trol for some insignificant variations, because only the principal components

are retained and used in the representation. In other work, this method was

primary, and achieved excellent results, e.g. on the FERET database. Because

of the greater difficulties posed by the images in the mugshot database, a more

complex approach is taken. This approach also attempts to utilize some of the
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ideas that have been used for years by forensics experts.

Two distinct but related goals are dealt with by a single model, but a finesse

will be required to assure that this model is better fitted to handle its goals. The
nominal goal of the model is : Given two images I\ and I2 ,

are they images of

the same person, or of different people. This would be the goal of a verification

system. For such a system, it is most important to avoid passing a false match.

The other kind of problem, which is emphasized in this model, and in the

principal FERET test, is to identify a new image from a database. Since fully

automatic analysis is not sufficiently accurate for mugshot quality images, any

such system would need to be a man-machine system. If the correct match to a

query image is generally in the top 5 matches returned by an automatic system,

then a human expert can perform the final identification, with considerable

reduction in effort.

These two goals would be almost perfectly compatible if the segmentation

and standardization processing were perfectly consistent; however, errors in

preliminary processing create a distinction between the two goals. For some
individuals, especially in a small sample, the shape or other characteristics of the

pattern will be less typical. In some ways, this ought to make these individuals

easier to recognize, but in the eigenbasis technique, exceptions are likely to be

farther away from feature space, or farther away from all of the other individuals

represented in the database. When this occurs, these unusual patterns would

never have a good matching score, even with the database representative of

the same individual — but the correct match might, nevertheless, be the best

match. Performance scoring of such models would show that the match model

failed to confirm a correct match, but that the identification model did find the

correct individual. This is an important distinction between the two goals, and

the discussion of the problem with the variance of the distance measurement

will be seen to lead to a technical finesse that improves the model.

In this work, the eigendistance is the most effective individual distance.

Because these techniques have been covered extensively elsewhere [15] the ba-

sic idea will be reviewed here with extreme brevity. Essentially, a principal

components basis is computed for the image data space, with some test cases

withheld. Some of the components are left out because they represent higher

order variations that have a weak signal to noise ratio for the distance problem.

In this work, 35 elements are used in the eigenbasis for standard ear images.

The space spanned by the basis is referred to as feature space, and the compo-

nents are referred to as eigencomponents. Thus, each ear has a representation

in 35-dimensional euclidean space, based on its eigencomponents, and the dis-

tance in this space is referred to as the eigendistance. Some images are less

well described by this representation because they are not sufficiently close to

feature space. The reconstruction error, or distance from feature space, DFFS
provides a measure for the deficiency of the feature space representation for a
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given image. This is given by

N
DFFS=E~Y

J
cl

1=1

where E is the energy of the original image, and Cj are its components in feature

space, up to N = 35.

Three principal kinds of errors may be thus be present in a distance mea-

surement based on the eigencomponent representation. These are (pure) recon-

struction error, and errors from registration and other standardization, includ-

ing lighting. While there is no way to form a very good preliminary estimate

of these errors, DFFS is a good proxy for these kinds of errors. When DFFS is

high, it is reasonable to anticipate that the eigendistance will be less accurate.

For a pair comparison, both contributors to the pair affect the precision of the

estimated distance. This observation will be utilized in the model to improve

performance.

Figures 11 and 12 show the mean standard ear and the first 11 eigenears.

5.2 Image Distances

The basic concept of eigencomponent distance was reviewed in the previous

section. In addition, several other methods are used to measure the distance

between two standard ear images.

• Eigen distance. The component distance, as discussed in the previous

section. This works rather well by itself, as will be shown in the next

section.

• Jiggle distance. This is a simple euclidean distance, except that one of the

images is allowed to shift up or down, or left or right by 1 pixel.
8 The

shortest distance in this neighborhood is defined as the Jiggle distance.

• Curve distance. This distance takes advantage of the rather precise bound-

ary that was found by the segmentation procedure. The boundary in each

standard ear image is transformed to a special coordinate system, which is

interpolated to provide a standard set of points to represent the boundary

of each image. The Curve distance is defined as the sum of the squared

distances between the corresponding points. Details of the transformation

and interpolation are described in Appendix II.

• Aspect distance. Because all of the standard ear images have the same

aspect ratio, it is worthwhile to utilize, as well, the aspect ratios of the

original images. It is also desirable that the distance measure should not

indicate that there is typically a large difference between two images of

8The maximum shift is a tuneable parameter of the distance.
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the same person with a large aspect ratio, and a small difference between

two images of the same person with a small aspect ratio. If this were to

occur, then it would be more difficult for a model to determine when a

difference is significant, regardless of the size of the aspect ratio. Thus, a

log transformation is applied. If Ri and R2 are the aspect ratios of the

two images being compared, then the Aspect distance
,
DLAR, is defined

as DLAR = (logRi — logi^) 2
- This definition clearly satisfies the usual

distance axioms.

• Shape distance. This distance is based on one described in [20]. Given two

images I\ and I2 ,
this is essentially the total area where the two images

do not overlap, divided by their total area.

In addition to the basic distances that cover the entire image, two subre-

gion distances are used. This idea is borrowed from some of the NIST work

on fingerprints, where it was found that subregion distances were more robust

to plastic deformations of the finger than distances based on an entire image.

Deformations are less likely to be a problem with ear images; nevertheless, there

are two portions of the image that contain valuable information, and are worth

the added focus. These are the concha and the point of attachment of the ear

(see Figure 1). It is observed that the vertical position of the concha varies

from ear to ear, and this is the reason for defining a separate concha region.9

The region near the point of attachment is introduced because this has been

mentioned as an identifying characteristic in the forensics literature, going back

to Bertillon.[l] For each of these subregions, an eigenbasis was computed, which

can be used to derive eigendistances. Fewer components are used compared

with the eigenbasis for the entire image. Only 25 components are used, com-

pared with 35 for the entire image. Another finesse was applied. DFFS was

minimized for subregions for each image, based on translating by up to 2 pixels

in either dimension. The eigendistance for the concha subregion is referred to

as the Concha distance and that for the lobe subregion as the Lobe distance.

All of these distances, plus an additional derived distance are used as inputs to

a neural network model that learns an improved distance function.

5.3 Variance Adjusted Distance

A neural network was used to synthesize an improved distance based on the

individual distances defined in the previous section. A finesse was employed in

order to improve the role played by the Eigen distance, and this is discussed

first.

Based on the earlier discussion of DFFS, it is hypothesized that the that

the precision of the pair distance is lower when DFFS is higher. In that case, a

9
It might be even better to make an independent measurement of the relative vertical

position of the concha, because this could be probably done with greater robustness.
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larger Eigen distance is less likely to mean that the pair represents two distinct

individuals. In simple statistical terms, it is reasonable to assume that the

Eigen distance, Dij ,
between images i and j is approximately normal, and that

Da has with mean 0 and variance of. Then

X = DU*}

is Chi-squared with 1 degree of freedom, with mean 1. The probability that this

statistic is greater than the critical value C is

Pc -f V2t
,

X / 2X 2

and for fixed Pc, i.e. a fixed probability distance, with awareness of measure-

ment uncertainty, the critical value ofX is C
,
so that X is monotonically related

to the probability Px In generic terms, X is large only when the distance is

large, with confidence 1 — Px-
In general, i j and Dij will not be known to have 0 mean. Further, cr;

is not known. The earlier discussion suggests, however, that of would tend to

vary directly with DFFS, so that it is reasonable to use DFFS as a proxy for

of. We may also suppose that both and crj contribute to the variance of Dij ,

so that a new distance, Xdistance, is defined by the expression

Xdistance = Dij /(DFF Si + DFFSj ).

This new distance has an advantage over Dij ,
which could be large only because

<Ti or <jj are large. Consequently, Xdistance is used as an additional input to

the neural network. Because Xdistance is based on a multiplicative relationship

between two variables, it would less easily discovered by a neural network.

The primary advantage of Xdistance is that Dij is de-emphasized when it

is less precise. In this way, other distance measures are emphasized when a2

is high. If the two images are from distinct individuals, the other distances

may be able to muster enough votes for rejection of the hypothesis that the two

members of the pair are images of the same individual. There are thus eight

inputs to the neural network, including the five basic distances for the entire

image, two subregion eigendistances, and Xdistance.

5.4 Neural Network Results

As mentioned before, the identification system has two goals. The first is simply

to determine whether two images are of the same individual (verification), and

the second is to find an individual in an image database (identification). The

identification goal is considered most important for this application, partly be-

cause precise verification of identity from mugshot quality data is not a realistic

goal at this time.
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Group Doubles Images Triples Images Total Cases Images

Training 19 38 8 24 27 62

Holdout 19 38 8 24 27 62

Both 38 76 16 48 54 124

Table 2: Sample Composition

All of the images used in this study had at least two profile views of the

subjects, taken at widely different times. The times may have been several

years apart, depending on when the subjects were arrested. Many subjects

aged considerably from the first to the last mugshot. For some individuals,

there were as many as five mugshots. For the most part, however, there were

either 1, 2, or 3 mugshots that were segmented sufficiently well to justify using

them in the next phase. Clearly the single shots could not be used. Because the

data set is already small, it was decided to keep both the doubles and the triples.

Thus, either one or two images of an individual may be present in the database

when it receives a query. This is representative of the situation for real police

applications, and the ratio of doubles to triples ought also to be reasonably

close to what would be seen in a real application. Later, the results are re-

computed using only doubles, in order to show how this redundancy affects the

performance statistics. The basic sample for the pair distance model takes equal

numbers of triples and doubles for a Training group and for a Holdout group.

Table 2 shows the composition of the samples.

Another division was made to derive the eigen bases. Images used to com-

pute the eigen bases include all those in the Training group, plus exactly one

image for each individual in the Holdout group, for a total of 89 images. This

assures that the small sample provides for a reasonable eigen basis, but also

leaves out enough images to make holdout tests somewhat tougher. For typical

real identification applications, the database would have at least one image of

the query, but the query would not be part of the sample used to construct the

eigenbasis.

The model consists of the eight input variables discussed earlier, the 7 dis-

tances plus Xdistance. 10 The neural network is a multi-layer perceptron (MLP),

of the kind that has been used in [22] and in [19] with training parameters for

weight regularization and for Boltzmann “Temperature.” The theory behind

this kind of training has been discussed in [21] and further in references cited

in that article.

The training of the MLP model has been discussed in the previous references,

but will be described briefly. The error term is not simply a sum of squared

errors, but is a regularized form of this criterion. Specifically, with used

to represent the weights for the transition from the input layer to the hidden

layer, and with Wij used to represent the weights for the transition from the

10 Technically, this variable might fail to satisfy all of the usual distance axioms.
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hidden layer to the output layer, and with Ykt used to represent the output

node activations, and Ckt used to denote the correct value of the output nodes

for the tth image, the error term is given by

E«< - c*<)
2 + R (E +EO. (2)

k, t i, j p, q

where R is the “regularization factor.” This means that for larger values of R
greater emphasis is placed on minimizing the magnitudes of the weights, while

for smaller values of R, the emphasis is on minimizing the L2 norm of the

difference between the correct and predicted outcome vectors. Another feature

of this method is the use of Boltzmann pruning. Intuitively, smaller weights have

less significance and might be eliminated with no loss of generality. But there

is a Boltzmann “temperature” that controls the likelihood of pruning. This

is analogous to the use of a temperature in simulated annealing. For hotter

temperatures, pruning is more likely for weights with the same magnitude. The
Boltzmann distribution is used to determine randomly whether or not a weight is

pruned, conditional on its magnitude. Thus, higher temperatures tend to break

up overtrained networks, but might also break up effectively trained networks.

By contrast, lower temperatures especially with low regularization factors, will

permit overtraining to occur. Temperature is selected during an early phase of

training, in order to assure a reasonable balance between training errors and

testing errors, with resulting improvement in generalization.

This network has relatively few input nodes, and the input data is heteroge-

neous. Both of these characteristics distinguish it from other applications of the

MLP model with Boltzmann pruning and regularization. The heterogeneous

inputs poses a problem, because large inputs are likely to receive small weights

which are more likely to be pruned than weights leading from small inputs. Be-

cause of this, it was necessary to rescale the data in order to assure that the

approximate magnitudes of the inputs do not differ greatly. Accordingly, the

input data were rescaled in such a way that the means of the rescaled data are

approximately equal. For this purpose, means were restricted to nonmatching

pairs. No attempt was made to optimize relative scaling; rather, the intention

is to bring the scaled data sufficiently close that the neural network will not be

confused by a scaling disparity. It is likely that there is a broad set of acceptable

scalings that make it possible for the MLP model to find nearly optimal weights.

It was observed that the MLP procedure could not find good weight values for

any regularization factor when the input scales differed greatly.

After some exploratory analysis, 20 hidden layers were chosen for the model.

Some variables that were not discussed earlier were also tested, but they did not

contribute to the model, and were omitted. The data were also weighted, with

matched pairs receiving 80 times the weight of nonmatches. This was necessary

in order that the model did not degenerate into one that predicted a nonmatch,

regardless of the input. This weighting gives the subgroup of matches approx-

imately twice the weight assigned to the subgroup of matches. During model
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Group Weighted Percentage Correct

Training 72.4%

Holdout 71.3%

Table 3: MLP for Pair Comparison - Weighted Errors

1 2 3 4 5 Top Five

36 5 4 2 1 48

Table 4: Ranks for Full Holdout Sample of Size 62

selection, some consideration was also given to to identification rates, i.e. be-

tween two models that had approximately the same weighted error percentages,

the model most likely to place correct matches high on the match list for the

corresponding queries was given preference. With a Boltzmann temperature of

1.0e-5, a regularization factor of .5 gave excellent results.
11 These are shown in

Table 3.

With the distance developed by the neural network, identification perfor-

mance becomes quite good. For the Test Sample, 58% of the best matches were

correct, and the best match was among the closest 5 matches (according to the

neural network’s likelihood ratio) 77% of the time. Table 4 shows the first five

ranks for queries taken from the entire holdout sample. This is based on taking

all cases of the holdout sample, and using each case in turn as a query over the

database consisting of all 62 cases. Inclusion of triples in this database does

not make it unrealistic, but makes this test different from those used in other

articles; therefore, two supplementary tests are provided in the next section.

5.5 Additional Tests

This presence of more than one instance in the database for some of the cases in

the Holdout sample naturally tends to improve the hit rate. In order to provide

an alternative view of the data two additional samples were used. For both

subsamples, the database instance is always the same instance that was used in

the computation of the eigenbasis. For cases that originally had three images,

two of these remain. A subsample query group is formed by selecting only one of

these, thus leaving 27 queries, one for each subject. The complementary sample

is also evaluated. For this second subsample the case that was excluded from

the first subsample is used. Rank tables are shown for each of these subsamples,

in order to provide an indication of the precision of the rankings.

The best match was found for 55.6% of the queries in the first subsample,

but only for 44.4% of the queries in the second subsample. The difference can

11 The temperature did not seem to affect these estimates greatly, when the optimal regu-

larization factor was used.
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1 2 3 4 5 Top Five

15 2 1 1 1 19

Table 5: First Subsample of 27 Queries

1 2 3 4 5 Top Five

12 4 1 0 0 17

Table 6: Second Subsample of 27 Queries

be explained by the small sample size, The best match percentage for the first

subsample is not much different from the percentage for the full Holdout sample.

The percentages in the top five are 70.4% for the first subsample and 63.0% for

the second, We may conclude that approximately 50% of the queries would find

the correct best match, and that approximately 67% would find the correct

match among the top five, when the database includes only one instance for

each individual. It should also be noted that the number of cases in the top two

are 17 and 16 respectively for the two subsamples, so that the results are not

very far apart. These figures are respectable when compared with the scores

reported in Figure 6 of the FERET report [23], but the level of difficulty for

these real mugshots is much greater.

As I am not aware of any other published work that used real mugshots, it

is difficult to find a context for evaluating how good these results are. Perhaps

the best point of reference is an unpublished report on work done at NIST

[24]. In this study, Candela and Watson analyzed frontal mugshots, using a

methodology somewhat similar to that presented here, except that only aspect

ratio and eigendistance were used together. The neural network model used

principal eigen components from both members of an image pair as inputs,

rather than the eigendistance as a single input, as in the present work. The
evaluation methods were not quite the same. In that study, the neural network

for pair comparison did not appear to provide a useful distance function, and

rank statistics were reported only for a weighted distance based on a combination

of euclidean distance and aspect ratio. The best match was correct for only 33%
of the query mugshots. This figure provides a better benchmark than those

reported in the FERET study, because the quality of the images is comparable

to those used in the present work. Since the method used by Candela and

Watson is rather similar to that used by Pentland, the 33% figure may be close

to what could be achieved by one of the best face recognition models, if it were

tested on real mugshot front view images. Considering that the present work

uses only a small part of the profile image, the improvement is dramatic. It also

tends to confirm the high value of the ear image for personal identification —
something that forensics experts have known for quite some time.
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6 Conclusions and Future Work

This system achieves a level of performance that is quite good, given the quality

of the data, and with excellent processing speed, due primarily to the use of the

ray threading technique. There are, nevertheless, several ways in which it could

be enhanced significantly. An obvious enhancement would be the addition of

a preliminary procedure that automatically finds the starting rectangles from

which this procedure begins. 12 The handling of lobes could be improved by

additional refinements, which would probably be necessary before this system

could be given serious consideration for use by the law enforcement community.
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7 Appendix I: Edge Analysis

Two aspects of the edge analysis are somewhat unusual. First, derivatives are

calculated by a fast 5 point regression. Second, the intensity profile of a ray is

first segmented into rising (UP) falling (DN), and level (LV) segments, and only

the best edge candidates are chosen from each segment.

7.1 Derivative Calculation

The intensity profile along a ray is approximately a sequence of approximate

parabolas that represent peaks and troughs of the profile, and it is in these

peaks and troughs that the most important edge information can be found.

Thus, the first stage of the analysis consists in computing the parameters of

these parabolas by least squares fit. Part of the appeal of this method is that it

can be done by a very fast algorithm that requires no multiplication — in fact,

the algorithm uses only integer addition.

The parabolas axe fitted to subsequences of 5 points, the derivative at a

given points are estimated by fitting a parabola to the central point, plus two

neighbors on each side. Since the X coordinates don’t matter, these can be

assumed to always equal -2, -1, 0, 1, and 2. We thus want to fit the regression

equation

y = c0 +cix + e2z
2

.

The independent variable matrix thus has the form

X 4 =
1 1 1 1 1 \

-2-1012
4 1 0 14/

The usual formula for regression coefficients, based on vector Y of observed

values, is

c={XtX)~ 1Xt
Y,

and the regression equation implies that at the central point, r/(0) = c\ and

y"{ 0) = 2

c

2 . Since X is constant, the multiplier for Y is constant, and both

j/ and y" can be computed by dot products. This is even simpler, because

the coefficients are approximate integral multiples, so that the following fast

procedure, using only addition, can be used to accumulate sums that are then

used to compute approximate derivatives.

for(i=2;i<N-2;i++)

{

yvalue = Y[i];

dy[i-l] += yvalue;

dy[i+l] yvalue;
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ddy[i+l] -= yvalue;

ddy [i-1] -= yvalue;

yvalue += yvalue;

dy[i+2] -= yvalue;

dy[i-2] += yvalue;

ddy [i] -= yvalue;

ddy[i+2] +— yvalue;

ddy [i-2] += yvalue;

}

where N is the length of the strip, dy is the accumulator for t/, and ddy is the

accumulator for y"

.

Formulas for endpoints are slightly different. After this has

been done, x/ = .0174 * dy and y" = .2 * ddy give the regression estimates.

7.2 Derivation of Edge Candidates

Edge candidates are essentially zero crossings, but with a few restrictions and

modifications. After computation of derivatives, as described in the previous

section, mixture analysis is performed on j/ in order to segment it into rising

(UP), falling (DN), and level (LV) segments. 13 Within each segment, the most

likely edge candidates are selected, with emphasis on the steepest points, al-

though in some cases these are locally steep. Candidates are selected only from

UP or DN segments. In fact, the target edge pair, formed by the inner and

outer helices, will be a DN, UP pair. The procedure is symmetrical for UP and

DN. First, a temporary edge candidate list, L is compiled, and then the best

(steepest) candidates are chosen from list L. The steps for a DN edge are :

• Find the point with maximum slope. Edge candidates or zero crossings

that are less steep than 40% of the maximum slope will be rejected.

• If the left endpoint has y" > 0 (and \yf\ < AM) place it on list L
,
or if y"

is approximately 0, take the midpoint of the (linear) segment where y" is

near 0, and place it on the edge list.

• For other points, starting from a point where y" < 0, search for the next

points with y" >= 0. If the search continues all the way to the end of the

segment, and the last point has |i/| < AM
,
place it on list L. Otherwise,

a zero crossing has been found, and this is placed on list L provided, as

usual, that |t/| < AM.

13 Technically, on arctan y', because equal angular increments provide for a more meaningful

segmentation, e.g. a segmentation based directly on y' would not be rotation invariant.
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• List L is sorted by slope, and only the 3 steepest candidates are kept,

and placed on the candidates list, sorted by the original order, so that the

outermost edge is first.

8 Appendix II: Curve Distance

The dorsal boundary is saved as a set of points which were found along rays of

the original images. The ray centers were different for each image; therefore,

there is no standard way to compare the raw boundary points. In order to make
a uniform comparison, the point set is first transformed to a new coordinate

system, and then interpolated to give a standard set of points in which each

point can be represented by a single parameter. Because the sequence of polar

angles is the same for each standard image, the second parameter of the new

“elliptic-polar'” coordinates fully specifies the curve.

The new coordinate system is similar to polar coordinates, but uses a family

of ellipses rather than circles. The ellipses are concentric, and all have the same

aspect ratio — the height is twice the width. Only one such ellipse will pass

through a given point, and the length of its major axis is one coordinate of the

point. The other coordinate is the polar angle. Because ear boundaries are

approximately elliptical, a linear interpolation in the polar-elliptical coordinate

system will tend to follow the boundary in the original image, with excellent

accuracy.

Let the set of boundary points, in standard image coordinates, be Pi, ... ,
Pm .

In the standard image, (18, 31) is defined as the center for the new coordinate

system. With respect to this center, the point set is assigned the usual polar

angles di , . .
.

,

6m . The other coordinate, pi, is computed by the formula

Pi = >/(*< - 18) 2 + ( yi - 31) 2 /4.

Note that this is equivalent to the distance for normal polar coordinates,

after a rescaling of the Y-coordinate. For standard comparison, it is preferred

to take 64 points at standard angular positions, starting with 37r/8 and ending

with 137r/8. This section of the boundary is likely to be precise enough for

comparison, and also reasonably informative. This is achieved by linear inter-

polation of the pi as a function of Qi. The standard representation of the section

of the boundary is by the sequence of interpolated p values at the standard set

of 64 angular positions. Two curves can thus be compared by taking the usual

euclidean distance between their 64 dimensional p vectors.
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(b) Case 15 (d) Case 67

Figure 6: Ear Segmentations
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(a) Case 14_2 (b) Case 24.2

Figure 7: Before Standardization

(c) Case 39-2

(a) Case 14_2 (b) Case 24_2 (c) Case 39_2

Figure 8: Standardized Images
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(a) Case 5G_1 (b) Case 50_3

Figure 9: Before Standardization

(c) Case 56_4

(a) Case 5G_1 (b) Case 50-3 (c) Case 56_4

Figure 10: Standardized Images
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(a) Mean Ear

(d) EigenEar 2 (e) EigenEar 3 (f) EigenEar 4

Figure 11: Eigen Ears

37





(a) EigenEar 5 (b) EigenEar 6 (c) EigenEar 7

(d) EigenEar 8 (e) EigenEar 9 (f) EigenEar 10

Figure 12: Eigen Ears 5 through 10
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