
NGIS SIM Specification

William G. Rippey
John L. Michaloski

Martin Herman
Sandor Szabo
Intelligent Systems Division

William DeWys
Hughes Aircraft

Nathaniel Frampton
Real Time Development Corporation

Herbert Lau
Eun Soo Lee
Applied Precision Incorporated

John Rose
ExtrudeHone

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology
Bldg. 220 Rm. B124
Gaithersburg, MD 20899-0001

January 1998

QC

100

. U56

NIST
NO. 6116

1998

NGIS SIM Specification

William G. Rippey
John L. Michaloski

Martin Herman
Sandor Szabo
Intelligent Systems Division

William DeWys
Hughes Aircraft

Nathaniel Frampton
Real Time Development Corporation

Herbert Lau
Eun Soo Lee
Applied Precision Incorporated

John Rose
ExtrudeHone

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899-0001

January 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

NGIS SIM Specification

Draft - January 1998

Next Generation Inspection System Project

Sponsored by National Center for Manufacturing Sciences

Table of Contents

Table of Contents i

Foreword m
I. Introduction 1

1. Purpose of This Document J

2. The Next Generation Inspection System Project I

3. Document Overview 2

II. SIM Requirements Specification 3

1. Introduction 3

1 . 1 Purpose 3

1.2 Scope 3

1.3 Definitions, Acronyms, Abbreviations 5

1.4 References 6

1.5 Document Overview 7

2. General Description ofthe SIM 7

2. 1 SIM Perspective 7

2.1.1 Industrial Application 7

2.1.2 Machine Controller - block diagram 8

2.2 SIM Functions 10

2.2.1 General 10

2.2.2 Part inspection 1

1

2.3 User Characteristics 12

2.4 General Constraints 12

2.5 Assumptions and Dependencies 12

3. Specific Requirementsfor SIMs 12

3.1 Functional Requirements 12

3.1.1 Internal SIM Data and Functions 13

3.1.2 External SIM Interactions 14

3.2 External Interface Requirements 15

3.2.1 Hardware Interfaces 15

3.2.2 Software Interfaces 15

3.3 Performance Requirements 15

3.4 Design Constraints 16

3.5 Attributes 16

3.6 Other Requirements 16

3.7 Scenario of SIM Use 17

3.7.1 Machine Control System and SIM Setup 17

3.7.2 Single-point Measurements 17

3.7.3 Scanning Inspection 18

SIM Setup 18

Controller Operation for Inspection 1

8

3.7.4 Error Detection 18

III. NGIS SIM Object Model 19

1. Overview 19

2. SIM Manager Model 20

2.1 Setup Methods 20

2.1.1 SIM Identification Methods 20

2.1.2 Strapping Method 21

2.1.3 SIM Manager Startup Methods 21

2.2 SIM Configuration Methods 22

2.3 SIM Manager Task Control 22

2.4 SIM Manager Level 2 :
23

2.5 SIM Manager C++ Class Definition 23

3. SIM Task Model 24

3.1 The Data FIFO 25

1

3.2 Data Setup Methods 25

3.3 Defining Triggers 28

3.4 SIM Task Output Methods 30

3.5 SIM Task Execution 31

3.6 SIM Task Monitor Methods 31

3.6 SIM Data Retrieval 32

3.7 SIM Task C++ Class Definition 33

4.

SIM Functional Scenario 35

4.1 Program Overview 35

4.2 SIM Declarations 36

4.3 SIM Manager Bootstrap 37

4.4 SIM Task Creation and Programming 38

4.5 SIM Task Execution and Data Access 39

IV. NGIS Sensor Specification Sheet 41

1. Scope 41

2. Schematic Model 41

3. Specification Sheet 41

Appendix A. Specification for NGIS SIM Conformance Testing 43

1. Purpose of This Document. 43

2. Scope 43

3. Measurement Tasks 43

3.1 Point measurements 43

3.1.1 Point measurement using switching probes 44

3. 1 .2 Point measurement using proportional probes 44

3.2 Scanning measurements 45

3.2.1 Data synchronization issue 45

3.2.2 Scanning with no machine servoing 46

3.2.3 Scanning with machine servoing 46

3.2.4 Free running rate 47

4. Conformance Tests 47

4.1 Standalone testing using a test configuration 47

4.1.1 SIM installation 48

4.1.2 Standalone testing of a SIM 49

A. BASIC SETUP AND CONFIGURATION OF SIM (mandatory) 49

B. SOFTWARE TRIGGERING OF DATA CAPTURE BY SIM 50

Optional performance Test B 1 5

1

C. SYNC BUS TRIGGERING OF DATA CAPTURE BY SIM 5

1

D. SIM SYNC BUS OUTPUT - SWITCHING PROBE TRIGGERING 52

E. SIM SYNC BUS OUTPUT - Proportional probe as switching probe 52

Z. ERROR MESSAGES 53

4.2 Operational Testing using a machine controller 53

5. SIM and Probe Performance Requirements 54

6. Testing Glossary 54

Appendix B. Discussion of SIM Communications Technologies 56

1. Equipment Requirements 56

2. Candidate Software Technologies 56

2.1 Dynamic Data Exchange (DDE) 56

2.2 Dynamic Link Libraries (DLL) 56

2.3 Object Linking and Embedding (OLE) and Active X 57

3. Scenario ofSIM use 57

Appendix C. SIM API DLL Specification (sim.h) 60

Appendix D. SIM State Diagram 69

ii

Foreword

Note on this document version - This NIST document is a draft version of the Sensor Interface

Module Specification. As of December 1997 the specification has had about one year of

development and testing. The Working Group is continuing to revise the document based on

comments from NGIS members who are implementing software that conforms to the draft

specification. The Working Group decided to publish this draft version as a NIST document

to help distribution for wider review. The final version of the specification may differ from

this document.

This document contains changes made as a result of the 18-Jan-98 Working Group meeting.

I. Introduction

I. Introduction

1 . Purpose of This Document

This document is an interface specification that addresses the integration of commercial probe

hardware and software with commercial controllers. The application is control of coordinate

measurement machines (CMMs) and numerically controlled (NC) machine tools to perform

part inspection.

The document defines a standard hardware component, the Sensor Interface Module (SIM),

and an application programming interface (API) to the SIM. The focus of this specification is

on touch-trigger probes and scanning probes, but does not preclude applicability to other

types. The people who are working on this specification form the SIM API Working Group.

NIST staff serve on the Working Group and have acted as editors of the specification

document.

Our premise is that the SIM will allow part inspection probes to be easily integrated into

control systems for CMMs and for NC machine tools. This specification will be used by

probe and controller suppliers. This specification provides for the capability to integrate a new

probe at controller run time, without the need to recompile or reconfigure the controller

software. Our goal is to provide sufficient guidance on technical properties of the SEM such

that independently developed probe and controller products will be compatible right out of

their "shrink-wrapped" packages. This document is the first product of the Working Group;

enhancements will be considered in subsequent revisions.

An on-line version of the specification will be available through the Wide World Web,

through the web site for the Intelligent Systems Division of NIST,

http://isd.cme.nist.gov/info/ngisAPI .

2. The Next Generation Inspection System Project

This document is being developed as part of the Next Generation Inspection System - Phase II

Project (NGIS II). NGIS II is sponsored by the National Center for Manufacturing Sciences

(NCMS) and by its members. Members of the project are Advanced Technology and

Research Corp., Applied Precision Inc (API), ExtudeHone, Ford Motor Company, General

Motors, Hughes, ICAMP, NIST, Pratt and Whitney, and Sensor Adaptive Machines Inc

(SAMI). The purpose of the project is to perform cooperative research and development to

improve current industrial inspection techniques. Some members receive NCMS funds to

supplement their efforts.

The original NGIS project was begun in November 1992 under NCMS management.

Activities were aimed at defining inspection needs, and developing sensors for faster

inspection methods. The next phase of the original effort was called NGIS II and was begun

in 1997, assisted by new funding from NCMS.

1

I. Introduction

The specification is being written by a Working Group consisting of staff from several NGIS
II member companies. NIST staff are serving on the Working Group and are the editors of

this document.

Members of the SIM Specification Working Group are: Bill DeWys (Hughes), Nat Frampton

(Real Time Development Corp.), Marty Herman (NIST). Herbert Lau (API). Eun Soo Lee

(API), John Michaloski (NIST). Bill Rippev (NIST). John Rose (ExtrudeHone), Sandor Szabo

(NIST).

3. Document Overview

This specification contains the following parts:

• I. Introduction

• II. SIM Requirements Specification

• III. SIM Object Model

• IV. SIM Specification Sheet

• Appendix A. SIM Conformance Testing Specification

• Appendix B. Discussion of SIM Communications Technologies

• Appendix C. SIM Dynamic Linked Library (DLL) API Specification (sim.h)

• Appendix D. SIM State Diagram. This was added as a result of a working group

meeting on 18-Jan-98. It has not been reviewed in detail by the group but is included

for discussion.

2

II. SIM Requirements Specification

II. SIM Requirements Specification

1. Introduction

1.1 Purpose

The purpose of defining a Sensor Interface Module is to standardize the characteristics and

interfaces of certain hardware and software probe subsystems so that those subsystems can

be developed as commercial products. These products will be interchangeable among the

controllers of different vendors.

The audience consists of controller developers, probe developers, and control system

integrators who take components from different suppliers and build complete control systems.

The control systems are used for NC machine tools and CMMs for inspection of manufactured

parts.

1.2 Scope

This document describes two components defined within NGIS II:

1. Sensor Interface Module (SIM) - a hardware card that plugs into the Industry

Standard Architecture (ISA) computer bus and supplies an interface between a

sensor and a machine control system.

2. SIM Application Programming Interface (API) - a software specification for a

function-call interface between a machine controller executive and a SIM.

Figure II- 1 shows a simplified view of a controller for a CMM or NC machine tool. A
controller comprises its executive, a Motion Interface Module (MIM) and one or more

SIMs. Statements in an inspection plan direct machine actions to inspect parts. The

executive reads the plan and issues commands to the MIM and SIMs, and accesses data

from them. The MIM accepts motion commands and generates commands to individual

machine actuators. It also reads machine axis sensors and makes the data available to the

executive. SIMs accept commands to configure themselves and to read data from

inspection probes.

3

II. SIM Requirements Specification

Figure II- 1. NGIS Machine Controller Application Context

This document covers probes that produce proximity data (distance from a sensor to a

point on an object) and conditioned measure of surface finish. The probes can be used for

single-point measurements as well as scanning measurements. Specific probes in NGIS II

are Accuprobe, SmartProx, CapScan, and Midas*. More complex probes such as vision

systems may be addressed in a later specification. Machine control applications not

addressed directly in this version are the servoing of machine axes using probe data, use of

video probes, reverse engineering, fusion of probe data, and use of diagnostics.

This specification does not cover interfaces between sensors and signal conditioning

hardware. These interfaces can be manufacturer-specific.

This specification is intended to be used by probe and controller suppliers. It provides for

the capability to integrate a new probe while a controller is running, without the need to

recompile or reconfigure the controller software. Our goal is to provide sufficient guidance

on technical properties of probe components such that independently developed probe and

controller products will be compatible right out of their "shrink-wrapped" packages.

If this specification is accepted by controller vendors, potential benefits include:

• little engineering effort will be needed to interface probes to existing controllers.

• controller vendors will be able to offer customers a wider range of integrated probes

NOTE: Any trade names used in this report are given solely to provide complete identification of the

equipment used. Such identification of products neither constitutes nor implies endorsement of the products or

their manufacturers by NIST.

4

II. SIM Requirements Specification

• probe vendors can develop new technology knowing their products will be

compatible with compliant controllers. This may encourage entrepreneurial

development of more probe technology, thereby increasing competition.

• CMM and NC users will be able to take advantage of a wider range of probes,

without relying on controller vendors to integrate probes on a case-by-case basis, or

without having to buy new controllers.

• users will have access to better measurement systems, at lower cost.

1.3 Definitions, Acronyms, Abbreviations

• API - "application programming interface", the protocol used to interact with a

software module (e.g. math library, DLL, or OLE server).

• CMM - "coordinate measuring machine".

• CNC - “computer numerical control”.

• COM - “Component object model”. “Microsoft’s OLE object-oriented programming
model that defines how objects interact within a single process or between

processes”. [6]

• conversion time - the total time elapsed for a SIM to sample, digitize, optionally

convert a sensor signal to engineering units, and store the data in its output queue.

• DMIS - “Dimensional Measuring Interface Standard”, ANSI/CAM-I 101-1995.

• displacement-measuring probe - "a probe that gives a signal proportional to a

displacement of the probe from its free position". [3]

• DLL - “dynamic-link library”, also written ‘dll’. Microsoft technology, “...a file that

contains functions compiled, linked and stored separately from the processes that use

them”. [6]

• FIFO - "first in first out", a queue of elements where all insertions are made at one

end and all removals and accesses at the other.

• host - a computer providing primary services to other computers or devices

(peripherals, slave card, etc.).

• MIM - "motion interface module". See section 2.1.2.

• NC - "numerically controlled".

• NGIS, NGIS II - "Next Generation Inspection System" is a cooperative research

project funded by its members and by the National Center for Manufacturing Sciences

(NCMS).

• OLE - “object linking and embedding”. “Microsoft’s object-based technology for

sharing information and services across process and machine boundaries”. [6]

• overrun - the failure of the SIM to execute operations as fast as they are commanded.

The typical operation commanded is to sample, convert, and store data. Overrun can

5

II. SIM Requirements Specification

occur when the SIM’s conversion time for all programmed channels exceeds the time

between successive commands.

• probe - "a device that establishes location of the movable components of a

coordinate measuring machine relative to a measurement point." [3] Types of probes

that are in the scope of this NGIS specification are: displacement-measuring probe,

proportional probe, proximity probe, and switching probe.

• probe approach distance - "the distance of approach to the part at which the machine

traverse speed is reduced to the probe approach rate for measurement". [31

• probe approach rate - "the nominal speed of approach of the probe toward the part

during the acquisition of data (used primarily for switching probes)". [3)

• proportional probe - "a probe that gives a signal proportional to a distance between a

reference point on the machine ram and the workpiece. Such probes may be

displacement-measuring probes, [or] proximity probes..." [3]

• proximity probe - "a probe that gives a signal proportional to a distance from the

probe tip to the workpiece". [3]

• ram - "the moving component of a CMM that carries the probe" [3]

• sample - during analog-to-digital conversion, the input of a signal to conversion

circuitry.

• sensor - a device that responds to a physical stimulus and transmits a resulting

signal. [4]

• SIM - "sensor interface module", a hardware card that plugs into the ISA computer

bus and supplies an interface between a sensor and a machine control system.

• SIM configuration file - a file describing operating parameters of a SIM for a

particular measurement task; called also ".ini file". It is typically generated by an

operator using a software utility. Currently .ini files may be in any vendor specified

format.

• SIM Specification Sheet - a file describing the capabilities of a SIM as supported by

the NGIS SIM API, including hardware configuration, performance characteristics, and

event programmability.

• switching probe - "a probe that gives a binary signal as a result of making contact

with, or being in proximity to, a workpiece". [3]

• touch-trigger probe - a probe that produces an electrical pulse when it physically

touches a part.

1 .4 References

[1] IEEE 1451.2 Standardfor a Smart Transducer Interfacefor Sensors and Actuators -

Transducer to Microprocessor Communication Protocols and Transducer Electronic Data

Sheet (TEDS) Formats, 1997. This effort addresses some of the same interface issues as

6

II. SIM Requirements Specification

this document. A web site is located at URL
http://129.6.36.21 l/Home/P1451/IeeeSite/P1451.htm .

[2] IEEE Guide to Software Requirements Specifications , ANSI/IEEE Std 830-1984.

[3] Methodsfor Performance Evaluation of Coordinate Measuring Machines, ASME
B89.4. 1-1997. Note: these definitions are quoted exactly from the standard. Some probes

produce signals that are not mathematically proportional to the distance to the workpiece -

they may yield nonlinear signals that must be calibrated to give distance.

[4] IEEE Std- 100- 1992, New IEEE Standard Dictionary of Electrical and Electronic

Terms.

[5] NCMS web site, http://www.ncms.org . A site for the NGIS project is under the listing

“Collaborative Project Portfolio”.

[6] Microsoft Visual C++ V5.0 online help. Glossary.

1.5 Document Overview

This document contains six parts: I. SIM Requirements Specification, II. SIM Object

Model, III. SIM Specification Sheet, Appendix A. SIM Conformance Testing Specification,

Appendix B. SIM Communications Technologies, and Appendix C. SIM DLL API

Specification. The Requirements Specification is a description of the NGIS II concept of a

SIM and of its interactions with a control system. The Object Model is a logical description

of a SIM: its objects, their attributes, and methods used to access the objects. These first

two parts are intended to be independent of the actual communications techniques or

platform configuration used (e.g. operating system, programming language). The NGIS
SIM Specification Sheet allows SIM vendors to specify the hardware configuration,

performance characteristics, and event programmability of a commercial product. The

Conformance Testing Specification is a suite of SIM methods to be used to test compliance

of any commercial product to the NGIS II SIM Specification. Appendix B is a discussion

of potential communications technologies that may be suitable for implementing the SIM
API. Appendix C describes the DLL implementation of the API.

2. General Description of the SIM

This section describes an overview of NGIS probes and NGIS controller models. Detailed

description is in section II. 3 and in III. NGIS SIM Object Model.

2 . 1 SIM Perspective

This section describes the SIM and its relationship to other components in a machine

controller.

2.1.1 Industrial Application

This specification applies to commercial technology for inspection of manufactured parts.

An example of its use involves the coordinate measuring machines in an automotive

manufacturing facility. Parts inspected include engine and transmission components. Large

manufacturers own several CMMs that may be purchased from different vendors. The

7

II. SIM Requirements Specification

probes included in NGIS II have all been developed in the past few years, to improve upon

the functionality of touch-trigger probes. Manufacturers would like to use NGIS II probes

and future technology on their CMMs without having to change controllers or to incur

costly integration projects by each controller supplier. The ideal scenario that this

specification may make possible is this: when a new probe is developed for CMM
controllers that is NGIS II compliant, the manufacturer will buy one and integrate it with

the CMM controller hardware and software on the shop floor, and begin productive

operation immediately.

Some NC machine tools are capable of manipulating probes to do part inspection. The

above scenario will apply to the addition of probes to NC controllers.

The concept of a SIM was developed to modularize control system functionality as a target

for standardization. The goals of SIM standardization are:

• allow newly developed probes to be easily integrated into existing systems,

• complement machining with on-machine inspection for machine tool applications,

• support reduction of part variation by detection and correction of errors,

• have no negative effect on process throughput or system performance

• support inspection capability where part volumes are low,

• support data requirement of data analysis modules, e.g., recording a cloud of

measured surface points,

• support requirements of computer aided design (CAD) modeling processes.

2.1.2 Machine Controller - block diagram

Figure II-2 NGIS Machine Controller Model, is a high level view of a CMM or NC
machine tool control application.

8

II. SIM Requirements Specification

Figure II-2. NGIS Machine Controller Model

Controller Executive (CE)

• initializes the MIM and SIM for inspection tasks.

• coordinates the MIM and SIM using commands to each to accomplish inspection

tasks.

• handles two-way file accesses, including reading inspection programs and

outputting inspection data.

• processes input commands either from an automated supervisory process or from an

inspection program (e.g. RS-274 or DMIS) and directs system actions.

Motion Interface Module (MIM)

• takes motion commands as input and generates velocity commands to machine

actuators. The MIM performs real-time calculations using machine geometry to cause

9

II. SIM Requirements Specification

motions such as straight line motion and circular arcs. During inspection, the MIM
uses axis position data to calculate the probe tip location.

• reads machine axis position sensors and makes the data available to other parts of the

controller.

• can generate a sync pulse output to signal other components of the controller to

capture data.

• can interpret a sync bus event as a signal to perform an action.

Sensor Interface Module (SIM)

• responds to external commands for sensor sampling or run-time .

• samples and digitizes sensor signals and makes the data available to the controller .

• calculates engineering units (EU).

• can generate a hardware signal output (sync bus) on certain conditions of the sensor

signal.

• reports its status.

• can interpret a sync bus event as a signal to perform an action.

Sync Bus

The sync bus is a two-way hardware bus that conveys voltage levels and transitions to

signal components to perform actions or to signal that a particular condition has been

reached. It is used primarily for very fast communications to synchronize actions of

different components. Sync bus use includes causing simultaneous sampling of machine

axis data and probe data, and signaling of probe thresholds reached (e.g., for touch trigger

emulation and signaling a probe crash condition).

Geometry and Features Analysis

• uses arrays of data about the probe tip location or probe tip contact point during

inspection to calculate fits of geometric features.

• determines differences between the calculated fits and desired part geometry to

yield part error. The part error is compared to the allowable part tolerances.

2.2 SIM Functions

2.2.1 General

SIMs sample electrical signals from sensors and provide digitized analog and binary data to

motion controllers in real time. SIMs also can receive information from the controller about

SIM configuration to accommodate different operating modes.

10

II. SIM Requirements Specification

Probes targeted by this document include proximity, one-dimensional feature measurement,

and surface finish. SIM-based probes measure and report analog quantities. They also have

dedicated processors that can support signal filtering and conditioning, conversion to

engineering units, touch-trigger emulation, and crash detection.

2.2.2 Part inspection

SIMs can support two types of probing: single-point measurement and scanning. In single-

point probing the SIM produces a simulated "touch" signal when an analog probe signal

threshold is reached during slow-speed probe motion toward the part. Scanning inspection

involves recording analog probe values while the probe is moved along or near the surface

of a part.

At any time, there may be several SIMs plugged into the machine control computer

backplane. Statements in the CMM inspection program select the SIM and probe for a task.

Before probe motion begins, the controller establishes communications with the specific

SIM and configures it for the inspection task.

2.2.2. 1 Single Point Measurements

Since current NGIS probes are analog, the SIM must be configured for touch-trigger

emulation by the CE. The SIM action is a sync pulse or level output to the MIM when a

probe signal threshold is detected. The MIM stops motion and records the value of the

machine axis positions.

2 .2.22 Scanning Inspection

Scanning involves moving a probe across the surface of a part so that the surface is always

within the probe’s sensing range. Measurements of probe tip position are made by recording

simultaneous readings of the arm position and probe data during real-time control cycles of

the machine controller. Measurements may be recorded according to time frequency (Hz)

or according to distance traveled by the probe tip (e.g., a measurement is made every .1

mm). A CMM may have several different probes available.

The machine controller begins a part scan by moving the probe so that the part is in the

probe’s sensing range, with a touch-trigger operation. The machine controller reads the

probe data in real-time, and stops machine motion when the data reaches a programmed

threshold. Some SIMs can be programmed to recognize the threshold and then to issue a

sync pulse to signal machine motion to be stopped. Other SIMs report continuous

proximity data and the machine controller must poll for the threshold.

Scanning is begun, directed by motion statements in the CMM program. For a servoed

scan, the controller must read probe data and change the motion of the machine to keep the

probe from getting too close (crash) or too far away from the part. Probe tip locations are

calculated by recording simultaneous values of machine axes positions and probe readings.

For polled and scanning measurements, the SIM must produce readings at rates between

100 and 1000 Hz.

11

II. SIM Requirements Specification

2.3 User Characteristics

SIM users are control system suppliers and manufacturers who own CMMs and NC
maching tools. Probes with their SIMs will be purchased as off-the-shelf products. The

SIM hardware and software cannot be changed by users to make it compatible with a

controller. Thus this specification must provide for vendor-independent compatibility of

SIMs and the controller platforms in which they are installed.

2.4 General Constraints

Measurement capabilities of probes must be matched to controllers to ensure the usefulness

of probe data and to ensure the safe operation of the CMM or machine tool. Controllers

must "understand" the data supplied by the SIM.

2.5 Assumptions and Dependencies

SIM functionality currently covers inspection tasks with proximity probes only (e.g.,

excluding camera vision).

Computer platform requirements, including ISA bus, NT operating system, and DLL
communications technology, were chosen to limit the complexity of the spec and to

encourage product development using commercial off-the-shelf technology that is currently

in extensive, relatively low-cost use.

3. Specific Requirements for SIMs

3.1 Functional Requirements

Figure II-3. NGIS SIM Functional Description shows a model of internal functionality of

the SIM and the external data flow requirements for a SIM. Not all SIMs will implement all

the internal functions shown or handle all the external data described. Vendor specification

sheets will describe supported functions. For automated configuration of an executive’s

interactions with the SIMs, "SIM Specification" files will be needed to describe each SIM’s

capabilities. This document does not address the content or format of such files. Further,

API calls that are not supported will return error status.

12

II. SIM Requirements Specification

I

Commands
- set run-time configuration
- perform run-time functions

Hardware
sync

SIM Status
- config status
- sample status
- SIM performance

SENSOR
INTERFACE
MODULE

FIFO Sl/English units Process
interactions

digitized transducer signal/s SSN$^S
'

1

Sensors

NGIS SIM Functional Description

Figure II-3. NGIS SIM Functional Description.

3.1.1 Internal SEM Data and Functions

The internal functions and data shown in Figure II-3 are described below in bottom-up

fashion. This is a generalized model and may not apply exactly to any specific commercial

SIM. Not all SIMs will implement all items shown.

Sensors are electrically connected to the SIM using various technologies, which are not in

the scope of this document.

The latch may have multiple channels for connections to several sensors. It has circuitry to

sample electrical signals and present them to the analog-to-digital (a/d) converter. The latch

has interfaces to it that tell it which amplifier gains to use, which channel(s) to sample, or a

command to ‘take a sample now’.

The analog-to-digital converter (A/D) changes the sensor signal to digital data. The A/D
conversion time is typically a significant part of a SIM's latency time. Digitized sensor

signals may be "visible” outside the SEM, or they may be hidden.

13

II. SIM Requirements Specification

The filtering and conversion to engineering units process applies calibration curves or

equations to the digitized data and outputs engineering units in either English or metric

units. The filtering may use several past samples plus the current one to generate an output.

This function has inputs that tell it what kind of engineering units to calculate, what

calibration parameters to use, what filtering algorithm to use, etc.

Modeling uses engineering units or digitized sensor signals to recognize conditions that

will be useful to other controller components. Typical conditions are object in/out of probe

range, probe "crashed” into the object, an engineering unit or probe signal threshold has

been reached. Modeling has inputs that tell it whether a threshold should be checked, what

threshold value to use, etc.

Not all SIMs will implement modeling. The task of recognizing the conditions described

above may have to be performed by the controller executive based on EU data exported by

the SIM.

Communications handles data input to the SIM and gathers data produced by SIM
functions and conveys it to other controller components. Media used by NGIS SIMs
includes: the ISA bus, including dual-port-ram and port-based input/output(i/o), RS-232,

Sync Bus. SIM input data are commands and their parameters. SIM output data can

include: probe data, probe data conditions, and SIM status, including status of commands.

The sync bus can convey commands to the SIM as well as probe data conditions from the

SIM.

Configuration and run-time execution is the overall manager of SIM operation. It

conveys data to internal functions before inspection has begun to configure the SIM. It

controls execution of the functions during inspection. For SIMs that have changeable

configuration parameters (inputs to the functions), the parameters can be placed in a

vendor-specific initialization file called an ".ini file". The format of this file is not included

in the scope of this document. Some SIMs will be configured by an operator building an

“.ini” file of parameters, and the controller executive issuing a "configure-using-file"

command to the SIM. Other SIMs are configured by external commands.

3.1.2 External SIM Interactions

SIM interactions with the rest of the controller occur through commands to the SIM and

reporting of probe data and SIM status by the SIM.

3. 1.2.1 SIM Commands

SIM Commands cause real-time behavior or configure modal characteristics of the internal

functions.

Run-time commands include:

• Sample probe signal on channel x, and save the analog data.

• Sample probe signal on channel x, convert it to EU and save the data.

• Sample and save on channel x at a rate of y Hz..

• Present the last sample value taken.

14

II. SIM Requirements Specification

• Present the entire current FIFO of sample values.

• Clear the FIFO of values.

Configuration commands are:

• Reset the SIM.

• Configure SIM using parameters in named file (".ini file") .

• Perform a sample and save on sync bus event e.

• Generate a sync bus event e when probe data threshold is reached (touch-trigger

emulation).

• Set probe data threshold value to x.

• Generate a sync bus event e when probe crashes.

3.

1.2.2

External SIM Data

Probe data can include:

• probe deflection or distance from probe to object as raw sensor data or engineering

units.

• object is in/out of range of probe.

• probe is in contact with object

.

SIM Status can include:

• status of last sample.

• status of last configure command.

3.2

External Interface Requirements

3.2.1 Hardware Interfaces

Hardware interfaces to the SIM are limited to one or a combination of the choices below:

• ISA bus.

• dual port ram.

• port I/O.

• RS-232.

• Sync bus.

3.2.2 Software Interfaces

All software interfaces to a SIM must be through drivers that comply with the NGIS SIM

API.

3.3 Performance Requirements

Real-time motion control requires high-speed probe data conversion and communications

with the MEM. Requirements for probe data can range from 50 hz to 2000 hz. Maximum

15

II. SIM Requirements Specification

SIM data rates are affected by the combination of times to perform analog-to-digital

conversion, filtering, conversion to engineering units, and communication of data to the

MIM or CE.3.4

Design Constraints

This section addresses need to comply with any standards, and hardware constraints for

SIMs. It will be expanded by the SIM Working Group.

3.5

Attributes

This specification describes an element of open architecture controller structure. That is, the

interfaces to a SIM are specified and agreed to so that multiple-vendor products will be

interoperable. However, the vendor’s implementation of sensor and SIM hardware, and API
software driver may remain proprietary.

3.6

Other Requirements

SIM Specification Sheet

This document does not deal with the issue of describing the capabilities of a SIM for

automatic configuration by the controller executive. The working group has discussed the

use of a SIM specification sheet but has not specified file content or syntax.

Not all SIM characteristics can be identified through the API. For example, differences

between SIMs can include number of sensor channels, choice of channel to use for a

particular sensor, ability to change latch amplifier gains, output of the sensor signal versus

engineering units, ability to output a sync pulse, memory or port i/o location for

communications.

Here is an example SIM specification file.

; SIM specification file
; semi colon is start of comment
[GENERAL_SPECS]
PRODUCT = ACME_CONTACT_PROBE
VERSION =1.2

[A/D_SPECS

]

NUMBER_OF_A/D_CHANNELS =

MAX_SAMPLE_RATE
MAX_FILTER_CUTOFF
MAX_GAIN

3

1000 ; Hz
1000 ; Hz
100

[PARALLEL_I/0_SPECS]
NUMBER_OF_IN_CHANNELS = 8

NUMBER_OF_OUT_CHANNELS = 8

; Probe spec info may contain the following data:
[GENERAL]
PRODUCT = ACME_3D_LVDT_PROBE
VERSION = 1.2
PROBE_TYPE = LVDT ; LVDT

|

CAP
|

?

16

II. SIM Requirements Specification

[LVDT]
MAX_MM = 10 ; MM
MIN_MM = .1 ; MM
DEGREE_OF_FITTING_POLYMOMIAL = 1 ; 1 = ax + b

; end of SIM specification file

3.7 Scenario of SIM Use

The following scenario describes a session to add a SIM to a machine control system,

configure the SIM behavior to support 1) single-point measurements and 2) scanning

inspection, and then operate the SIM as a component of the machine control system to

perform inspection. Some SIM configuration actions are common to both inspection modes

and will be described first. These scenarios are simplified and do not use all defined SIM
functions. There is a more detailed scenario in section III. NGIS II Object Model , and

Appendix A. Specification for SIM Conformance Testing.

SIMs can be configured by the controller executive using SIM commands or by issuing the

"Configure using file" command. The format of the file is beyond the scope of this

document and may be vendor specific.

3.7.1 Machine Control System and SIM Setup

1. Add vendor supplied SIM driver software to machine controller configuration. More

details of this action are described in Appendix A.

2. Controller executive reads SIM Specification file.

3. Controller executive establishes communications with SIM.

3.7.2 Single-point Measurements

Configure SIM

Commands to SIM:

1 . Set probe threshold value to x

2. Generate sync bus event e on probe threshold.

3. Generate sync bus event/when probe crashes.

Controller Operationfor Inspection

The controller executive interprets statements in the inspection program and sends motion

commands to MIM to move in paths perpendicular to surfaces to be probed. When the SIM
senses proximity of a part and the configured threshold is reached it issues a sync pulse or

transition. The MIM has been configured to stop machine motion and read machine

position when it "sees" a sync bus event.

After motion has stopped, the next motion statement is interpreted, and the probe is moved

away from the part.

17

II. SIM Requirements Specification

3.7.3 Scanning Inspection

The application is to scan a part surface and measure points (e.g. every .1 mm along the

motion probe tip path).

SIM Setup

Commands to SIM

1. Configure the SIM to set channel y amplifier gain to x.

2. Perform a sample and save to FIFO on sync bus input level change.

3. Generate a sync bus event when probe crashes.

Controller Operation for Inspection

1. Controller executive issues SIM command: Clear the FIFO.

2. MIM moves machine to position probe close to the part.

3. MIM monitors machine position and issues a sync event every .1mm. It also records

machine position in a local FIFO.

4. SIM responds to each sync by sampling and storing probe data in its FIFO.

5. At the end of the scan the controller executive gathers the arrays of data from the

MIM and SIM. The data is exported to the Geometry/Analysis process.

3.7.4 Error Detection

An error can occur during scanning measurements if the FIFOs of the SIM and MIM are

not the same length at the end of the scan. This skewing of data may occur if an erroneous

sync bus event was generated or if the SEM or MIM cannot sample the data fast enough to

keep pace with sync bus commands. The error detection strategy is for the CE to compare

the length of the two FIFOs and report an error if they are not equal.

18

III. NGIS SIM Object Model

III. NGIS SIM Object Model

1. Overview

The SIM Object model describes the internal data, internal functions, and external interactions

introduced in section 1.2. The SIM Object Model is intended to be independent of the choice

of operating system, communications technology, and programming language used to

implement the SIM or controller executive. This section describes the SIM object model using

the computer language C++. Sections of C++ code are placed between horizontal lines as

shown below.

C++ code goes here.

To accommodate a range of potential SIM capabilities, levels of SIM functionality will be

defined. Level 1 defines capabilities that must be supported by all SIMs. Advanced SIM
technology that may be used in the future will be defined in Level 2, Level 3, . . ., but vendor

support is optional. This document addresses Level 1 only.

There are two main classes in the model: SIM Manager and SIM Task. See Figure III- 1 . SIM
Manager comprises methods used by the controller executive that perform SETUP,
CONFIGURATION, and TASK CONTROL. SIM Task methods are grouped into categories

to perform DATA SETUP, OUTPUT, DATA RETRIEVAL, EVENT HANDLING,
EXECUTION and MONITORING. These methods cause very specific actions to be

performed by the SIM for probe data acquisition, conversion, and conveyance of control and

status data to other controller components.

SIM
Manager

Setup Data Setup Event

Configure Output Execution

TaskControl DataRetrieve Monitoring

Figure III- 1 . The SIM Object Model

19

III. NGIS SIM Object Model

2. SIM Manager Model

This section describes the methods of the SIM Manager (SIMMgr) class. SIM management

assumes that only one task exists at a time. No "blending" of SIM tasks can occur. It is further

assumed that configuration and calibration are one-time activities that are done before a SIM
task is "run." The SIM manager performs the following operations:

SETUP - establish communications with a SIM, load a SIM manager executable from a file,

get status, get SIM-specific identification strings, restart the SIM manager, and query SIM
error messages.

CONFIGURATION - establish modal attributes of the SIM that will affect probe signal

reading, and data modeling and conversion functions.

TASK CONTROL - for the SIM Task object, perform creation, start, stop, restart, and

deletion.

Each of the functional areas are for single communication between the SEM and the controller

executive. The SIM manager does not run as a separate thread of execution typical of an

executing agent. An example is a SIM with a dual port ram interface. On the ISA BUS, there

is no way for a "slave" card to change memory or call routines on the main processor. In the

current DLL-based communications, there is only a "pull model" from the main processor’s

perspective. The idea of the SIM manager executing in the DLL may be restated in our context

as, the SIM manager routines are contained in the DLL.

2. 1 Setup Methods

2.1.1 SIM Identification Methods

The Identification methods provide SEM-specific information to the application such as

vendor, model, and version.

char * SMgetManufacturersld ()

;

Returns pointer to a string, e.g., "Extrude Hone", "API", "SAMI".
char * SMgetModelNumber ()

;

e.g., "AccuProbe 123"

double SMgetRevisionCode ()

;

e.g., “VI.
1”

char * SMgetSerialNumber ()

;

e.g. "NIST 552885"
char * SMgetDateCoda ()

;

Returns release date - "mm/dd/yy-hr:min"
char * SMgetProductDescription ()

;

Returns brief blurb to describe SIM connection.

char * SMgetLicenseOwner ()

;

e.g. to whom product is licensed.

20

III. NGIS SIM Object Model

2. 1 .2 Strapping Method

The strapping method defines the communications medium and parameters so that API
software can communicate with the SIM. Types of SIM strappings include:

• Dual port ram

• I/O bus

• Serial port

• Parallel port

enum STRAP_TYPE { DUAL_PORT_RAM

,

IO_BUS

,

SERIAL_PORT,
PARALLEL_PORT }

;

class Strap {

public

:

// Unclear if any base class
// long type; } ;

class dualPortRam: Strap { public

:

long type; /* = 1 */

ulong physaddr ; } ;

class IOBus : Strap { public

:

long type; /* = 2 */

ulong physaddr ; } ;

class SerialPort : Strap { public

:

long type; /* = 3*/

long port; } ;

class ParallelPort : Strap { public

:

long type ;
/ * = 4 *

/

long port ; }

;

SIMerror SMstrap(STRAP_TYPE strap, long address)

;

Establish communications with the SIM using one of four media.

required for this.

2.1.3 SIM Manager Startup Methods

SEM Manager startup methods cause transitions between the DOWN, RESET and READY
states. The SIM Manager methods are implemented in software that implements the API and

possibly coupled with software physically running on the SIM. Software that runs on the SIM
is the "SIM Executive". The executive may be resident as firmware, or may need to be

downloaded into SIM program memory. Not all SIM implementations will have a SIM
executive, but all SIMs have the concept of a SIM Manager.

enum RESTART_TYPE { COLD, HOT } ;

SimError SMRestart (RESTART_TYPE start) ;

Restarts the state of the SIM Manager. There are two restart types: COLD and HOT. This

method clears any SIM state information established by the Configuration methods.

ulong SMAlive () ;

Used to query the SIM Manager to see if it is running. The number returned is a

"heartbeat" count. There are no constraints on the frequency of the heartbeat, however it

21

III. NGIS SIM Object Model

should be fast enough to be useful to the Controller Executive in assessing SIM Manager

status in real-time. If there is a SIM executive, this method should reflect its running

status.

SimError SMLoad(char * fullpathname) ;

Load and run the SIM Manager executable code (not a job) in the named file. Depending

on the implementation, the load could be of code linked to the API, or it could result in a

download to program memory on the SIM.
char * SMName () ;

Queries the name of the SIM manager. Probe model name is typically used here.

char * SMErrorMsg (SimError errnum) ;

Used to query for the ASCII text of a specified error number. The integer errnum is used

for error identification. Two ermums, 0 and 1 are standard, others may be assigned by the

SIM vendor. There are no standard error message strings.

2.2 SIM Configuration Methods

Configuration is the setting of parameters for a/d conversion, signal filtering, conversion to

engineering units, and modeling processes, as shown in Figure II-3. Examples of parameters

are operational amplifier gains, parameters of filtering algorithms, and coefficients of

calibration equations that convert analog sensor signals to engineering units.

The use of an “.ini” file to set configuration parameters is optional, but the SMConfig method

is currently the only standard way to convey parameters to the SIM. “.ini” file content and

format is not addressed by this specification.

SimError SMgetChannellnf

o

(CHANNELS &raw,
CHANNELS ^processed,
BINARY_CHANNELS &mft) ;

This method returns bitmasks of the channel capabilities of the SIM.

SimError SMconfig (char * inputFileName) ;

This method tells the SIM to configure itself using information in a vendor-supplied file.

2.3 SIM Manager Task Control

The SIM Manager creates and controls the SIM Task. Only one SIM Task can be run at a

time. Once a Task is started its primary function is to continuously monitor triggers and

capture sensor data. Methods include the following:

typedef long simld ; //A handle for a SIM Task,

simld SMCreateSimTask (void) ;

Creates the SIM Task. Simld is a unique identifier, or handle. Return of zero indicates

failure.

SIMerror SMStartSimTask (simld id)

;

The SIM Task must be started for it to monitor triggers, and capture and process sensor

22

III. NGIS SIM Object Model

data. The FIFO is empty on start.

SIMerror SMStopSimTask (simld id)

;

Stops the cyclic processing of the SEM Task. The FIFO is preserved.

SIMerror SMRestartSimTask (simld id)

;

Resumes the cyclic processing of the SIM Task, using previous programming and FIFO.
SIMerror SMDeleteSimTask (simld id)

;

Deletes the instance of the SIM Task: the handle will not exist.

2.4 SIM Manager Level 2

The Working Group has begun discussions on Level 2. The Level 2 SIM Manager Class will

inherit all the functionality of Level 1 but provides the additional capability:

• Job Control - single stepping, pausing, resuming, etc.

• Multiple Jobs - perform SIM Task list management so that several jobs can be run

consecutively without interruption.

2.5 SIM Manager C++ Class Definition

This section defines the Sim Manager class using the C++ language.

class SIMMgrLevell
{

public

:

// Constructor for binding to software driver module.
SIMMgrLevell (char * driverFileName) ; // e.g. a DLL

// IDENTIFICATION
char * SMgetManufacturersld () ;

char * SMgetModelNumber ()

;

double SMgetRevisionCode ()

;

char * SMgetSerialNumber ()

;

char * SMgetDateCode ()

;

char * SMgetProductDescription ()

;

char * SMgetLicenseOwner ()

;

// STRAPPING
enum STRAP_TYPE { DUAL_PORT_RAM , IO_BUS, SERIAL_PPORT ,

PARALLEL_PORT } ;

class Strap { public:
// Unclear if a base class is required for this.

// long type;

} ;

class DualPortRam: Strap { public:
long type; /*= 1 */

ulong physaddr; };

class IOBus : Strap { public:
long type; /* = 2 */

ulong physaddr ; }

;

23

III. NGIS SIM Object Model

class SerialPort : Strap { public:
long type; /* = 3*/

long port; };

class ParallelPort : Strap { public:
long type; /* = 4 */

long port ; }

;

SIMError SMstrap (STRAP_TYPE strap, long address) ;

// RESTART
enum RESTART_TYPE { COLD, HOT } ;

SimError
ulong
SimError
char *

SimError

SMRestart (RESTART_TYPE start) ;

SMAlive () ;

SMLoad(char * fullPathFileName)
SMName () ;

SMErrorMsg (SimErrror errNum) ;

// CONFIGURATION
SimError SMConf ig (char * conf igFileName) ;

SimError SMgetChannellnfo (CHANNELS &raw,
CHANNELS ^processed,
BINARY_CHANNELS &mft) ;

// TASK CONTROL
typedef long simld ;

simld SMCreateSimTask
SIMerror SMStartSimTask
SIMerror SMStopSimTask
SIMerror SMRestartSimTask
SIMerror SMDeleteSimTask
}

(void)

;

(simld id)

;

(simld id)

;

(simld id)

;

(simld id)

;

3. SIM Task Model

The SIM task has seven categories of methods. A prefix is associated with each category.

SimTask Method Categories Prefix

Configuration CFG

DataSetup DC

Event EV

Execution EX

Output OUT

Monitor MON

Data Retrieval DR

24

III. NGIS SIM Object Model

There are no SIM Task Configuration methods. The Data Setup methods specify channels to

sample and process. The Event methods define standard triggers for data capture. The
Execution methods assign a number of SIM Task executions to the trigger. The Output

methods communicate with SIM I/O hardware. The Monitor methods query the status of an

executing SIM Task. The Data Retrieval methods retrieve stored data records and give

information about the FIFO.

3.1 The Data FIFO

The FIFO is a shared buffer used to convey data from the SIM Task to the user. The SIM
Task stores "raw" values as signed 32-bit integers: they represent the output of a/d conversion

of a channel signal. "Processed" values are stored as IEEE 32-bit signed floating point

numbers and represent engineering units. "Manufacturer’s" values are stored as a 32-bit word

of binary encoded data. The order of the data in the FIFO record is all raw data in channel

order, lowest channel first, all processed data in channel order, then manufacturer’s data.

A FIFO record is all of the data produced by the SIM Task when it responds to one trigger.

For example, if three channels were programmed, each FIFO entry will contain three 32-bit

words of information. If the maximum memory allocated for the FIFO is used, new data

values are lost. Existing FIFO entries will not be overwritten.

3.2 Data Setup Methods

Data setup methods define which input channels will be read and what processing will be done

on the signals to produce FIFO records. The SIM Task responds to a trigger by capturing data

from all designated channels, performing processing, and writing a FIFO record. All three

types of data can be mixed in a FIFO record. Some SIMs may support raw or processed data

but not both.

A SIM can have up to 32 channels of analog input, and 32 binary inputs. A channel is a single

signal input to the SIM that can convey either an analog or a binary signals. Individual

channels and associated processing are selected by setting bits in three 32-bit masks, the raw

mask, the processed mask, and the manufacturer’s data mask.

The following mask is defined to select analog input channels:

typedef struct CHANNELS
{

unsigned Channel

0

1;

unsigned Channel

1

1;

unsigned Channel2 1;

unsigned Channel3 1;

unsigned Channel

4

1;

unsigned Channel

5

1;

unsigned Channel6 1;

unsigned Channel

7

1;

// This is bit field definition. Set a

// bit to 1 to select the channel.

//

25

m. NGIS SIM Object Model

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Channel 8 :1;

Channel 9 :1;

Channel 10 :1;

Channel 11 :1;

Channel 12 :1;

Channel 13 :1;

Channel 14 :1;

Channel 15 :1;

Channel 16 : 1;

Channel 17 :1;

Channel 18 :1;

Channel 19 :1;

Channel 20 : 1;

Channel 21 :1;

Channel 2 2 :1;

Channel 2 3 :1;

Channel 2 4 :1;

Channel 2 5 :1;

Channel 2 6 :1;

Channel 2 7 :1;

Channel 2 8 :1;

Channel29 :1;

Channel 30 :1;

Channel 31 :1; // most significant bit (MSB)

} CHANNELS

;

// 32 Bits

This mask is used to select binary channels:

typedef struct BINARY_CHANNELS

unsigned SyncF
unsigned SyncO
unsigned Syncl
unsigned Sync2
unsigned Sync 3

unsigned Sync 4

unsigned Sync 5

unsigned Sync 6

unsigned ManBitO
unsigned ManBitl
unsigned ManBit2
unsigned ManBit3
unsigned ManBit4
unsigned ManBit5
unsigned ManBit6
unsigned ManBit7
unsigned ManBit8
unsigned ManBit9
unsigned ManBitlO
unsigned ManBitll
unsigned ManBitl2
unsigned ManBitl3
unsigned ManBitl4
unsigned ManBitl5

// This is bit field definition
// Set a bit to 1 to select the

1; // channel.
1;

1;

1;

1 ;

1;

1;

1 ;

1 ;

1 ;

1 ;

1 ;

1 ;

1;

1;

1;

1;

1;

1 ;

1;

1 ;

1 ;

1;

1 ;

26

III. NGIS SIM Object Model

unsigned ManBitl6 1;

unsigned ManBitl7 1;

unsigned ManBitl8 1;

unsigned ManBitl9 1;

unsigned ManBit20 1;

unsigned ManBit21 1;

unsigned ManBit22 1;

unsigned ManBit23 1;

} BINARY_CHANNELS; // 32 Bits

Correspondence of channel numbers to sensor axes is defined by the manufacturer in the SIM
specification sheet.

SIMerror DCsetup (CHANNELS raw,

CHANNELS processed,
BINARY_CHANNELS manufacturer_data
) ;

This method tells the SIM Task which channels to read and the type of processing to

perform. All three arguments are 32-bit bit-masks, "raw" channel processing will be basic

a/d conversion, "processed" channel signals will be converted to engineering units.

"manufacturer_data" designates binary channels whose data will be stored as bits.

manufacturer_data channels include six sync bus channels. The implementation of this

method should report an error if the commanded type of processing is not supported or if

the selected channel does not exist.

Example: Program the capture of x and z axis raw, y axis processed, and the syncF channel.

The sensor’s x-axis is the least significant channel, channelO.

SIMerror errType ;

//axis zx y s-syncF

errType = DCsetup(0x0005, 0x0002, 0x0001);

The FIFO after one trigger is 16 bytes long and looks like:

xraw
|

zraw
|

yproc
|

manu
|

Byte 0 4 8 12 16

int DCqueryFIFORecordLength () ;

This method returns the number of bytes in one FIFO record. It is used after a DCsetup

27

HI. NGIS SIM Object Model

method to verify configuration.

SIMerror DCallocateFifoSize

(

int num_bytes) ;

Command the SIM Task to allocate a total FIFO memory of "num_bytes" 32-bit words.

int DCgetMaxFifoSize

(

void) ;

Query the maximum amount of memory allocated to the FIFO. Units are bytes.

3.3 Defining Triggers

These methods use a standard set of events to define SIM triggers. A SIM responds to triggers

by capturing sensor data to its FIFO. An output method can command the SIM to also

generate an output signal such as a sync bus event. Types of triggers are: sync bus events,

elapsed time, signal thresholds reached, and software commanded trigger. Once a trigger has

been defined the SIM Task monitors for the event condition continuously.

There can be only one sync bus or elapsed time trigger defined at any time. However, separate

signal threshold event triggers can be defined for each individual analog input channel. When
any of the threshold triggers occurs, all programmed data channels will be read and processed.

Programmed triggers are cancelled only by deleting the SIM Task (SMDeleteSimTask) and

starting a new SIM Task (SMStartSimTask).

// Sync bus events - level transitions
typedef enum

{

TRANS..0 = 1, // level is 0

TRANS..1 = 2, // level is 1

TRANS..RISE = 3, // level changes from 0 to 1

TRANS..FALL = 4, // level changes from 1 to 0

NO_EVENT = 5 // Cancel any previous trigger

} TRANS_TYPE;

// Events for sensor data channels.

typedef enum
{

GREATER_THAN
LESS_THAN II

II

to

GREATER_EQUAL = 3, // ie greater than or equal
LESS_EQUAL
EQUAL ii

n

U1

if* // ie less than or equal

} COMPARE_TYPE;

SIMError EVsetTriggerStore (BINARY_CHANNELS SyncChannels

,

TRANS_TYPE transition)

;

Define a sync bus event as a trigger. The sync bus event is an input to the SIM. Only one

sync bus event may be programmed as a trigger. To cancel a sync bus trigger, stop the

SIM Task, and then start it (SMStopSimTask, then SMStartSimTask).

28

III. NGIS SIM Object Model

Example: Define a trigger - the transition of the Syncl channel from 0 to 1.

static BINARY_CHANNELS sync_channels ; // Init to clear
SIMerror errType ;

sync_channels . Syncl = 1;

errType = EVsetTriggerStore (sync_channels , TRANS_RJSE);

SIMError EVsetCounterStore (ulong timer_num,
ulong count_down_ms) ;

Define a periodic elapsed time event as a trigger. Units are milliseconds. The counter

begins when the SIM Task enters the RUNNING state.

Example: Define a trigger - when timer 2 counts down from 100 ms.

SIMError errType;

errType = EVsetCounterStore (2, 100);

SIMError EVsetThresholdStoreRaw
(CHANNELS channel, // channel mask
COMPARE_TYPE comparison,
ulong value,
ulong reset)

;

Define a trigger as a raw sensor channel value crossing the "value" threshold. The trigger

is reinitialized when the channel value crosses the "reset" level.

Example: Define a trigger - when channel 1 raw value goes above 500, and reset when it gets

below 400.

static CHANNELS channel; // Init all bits to clear (0)

SIMError errType;

channel . Channell = 1;

errType = EVsetTriggerStore

(

channel

,

GREATER_THAN,
500,

400) ;

SIMError EVsetThresholdstoreProcessed
(CHANNELS channel,

29

III. NGIS SIM Object Model

COMPARE_TYPE comparison,
float value,
float reset) ;

Define a trigger as a processed sensor signal channel value crossing a threshold. The

trigger is reinitialized when the channel value crosses the "reset" level.

Example: Define a trigger when channel 1 processed value goes below 23.1, and reset when it

gets above 25.4

static CHANNELS channel; // Init all bits to clear (0)

SIMError errType;
channel . Channel 1 = 1;

errType = EVsetThresholdStoreProcessed (channel

,

LESS_THAN,
23.1,
25.4)

;

SIMError EVcommandedStore (void) ;

This method is a command that generates a SIM trigger immediately.

Example: the controller executive gathers a new reading of the sensor data.

SIMError errType;

errType = EVcommandedStore () ;

3.4 SIM Task Output Methods

These methods define SIM actions to manipulate binary output channels. Actions can be to

zero, set, or toggle an output level. Typically, outputs are used to notify a motion board or

other slaved piece of hardware that a SIM trigger has occurred.

SIMError OUTsetOutput (BINARY_CHANNELS zero_channels

,

BINARY_CHANNELS one_channels

,

BINARY_CHANNELS toggle_channels) ;

Write to selected binary output channels when a trigger occurs. If the trigger was defined

with a "reset" value, when the reset condition occurs all channels changed by the trigger

will be inverted, (e.g. a zero_channel set low on a trigger, will be set high on the reset

condition).

30

III. NGIS SIM Object Model

Example: configure the SIM to respond to a trigger by generating a rising transition on sync

channel 2, and toggling the Man 16 channel when a trigger occurs.

BINARY_CHANNELS zero_ch
BINARY_CHANNELS one_ch
BINARY_CHANNELS toggle_ch
SIMError errType;

0 ;

0 ;

0;

zero_chan . Sync2 = ENABLE;
toggle_ch . ManBitl6 = ENABLE;

errType = OUTsetOutput (zero_ch, one_ch, toggle_ch)

;

3.5 SIM Task Execution

These methods specify data capture behavior while the SIM Task is running.

SIMError EXsetNumberExec (int count)

;

This method specifies the maximum number of data captures to perform while the SIM
Task is running. The SIM will not respond to triggers after “count” triggers have

occurred, until the SIM Task has been stopped and started again.

Example: Configure the SIM to respond to a maximum of 100 triggers.

SIMError errType;

errType = EXsetNumberExec (100);

SIMError EXContinuous (void)

;

Once the SIM Task is running, respond to triggers until the FIFO is full. Note: there is no

explicit status of a full or overrun FIFO.

3.6 SIM Task Monitor Methods

These methods query the SIM task concerning its data and status.

// Status values of the SIM

typedef enum
{ DONE = 1 , //

EXEC = 2, //

FAIL = 3, //

Task.

Finished in an orderly fashion.
Executing without error.
Failed, must be restarted.

31

III. NGIS SIM Object Model

PAUSE
ABORT
IDLE
} STATUS

;

4, // Active but paused.
5, // Aborted. Must be recreated.
6 //

STATUS MONgetStatus (void) ;

This method returns status of the SIM Task.

SIMError MONgetData (CHANNELS raw_channels

,

CHANNELS processed_channels

,

BINARY_CHANNELS manufacturers_channels

,

void * loc,

int record_size_match_check) ;

This method commands the SIM Task to capture and process channel data and write one

record to the user’s address "loc". MONgetData does not cause a FIFO entry or change any

entries in the FIFO. "record_size_match_check" is the assumed size of the record in 32-bit

words. If the assumed size is not correct, this method will return a non-zero (not

SUCCESS) SIMError.
typedef enum

{ NO_ERROR = 0,

ESTOP = 1 ,

ABORTED = 2,

NONSUPPORTED = 3

} ERROR_TYPE

;

ERROR_TYPE MONgetError (void) ;

Returns a error value if the Task has aborted.

3.6 SIM Data Retrieval

These methods retrieve data records from the FIFO. Retrieval is of complete fixed-size

records.

SIMerror DRretrieveRecords

(

int num, // number of records,
void *loc, // pointer into user space,
int record_size_match_check) ; // bytes.

Removes "num" records from the FIFO and moves them to user space at "loc". Records

are removed from the "bottom" of the FIFO: the most recent entries are on the "top". The

number of stored records in the FIFO is updated to reflect this retrieval,

int DRgetNuxnRecords (void) ;

Returns the number of records currently in the FIFO.

32

III. NGIS SIM Object Model

3.7 SIM Task C++ Class Definition

typedef
{

enum

TRANS_0 = 1,

TRANS_1 = 2,

TRANS_RISE = 3,

TRANS_FALL = 4,

NO_EVENT = 5

} TRANS._TYPE ;

typedef
{

enum

GREATER_THAN = 1

LESS_THAN = 2

GREATER_EQUAL = 3

LESS_EQUAL = 4

EQUAL = 5

} COMPARE_TYPE

;

typedef enum
{ NO_ERROR = 0,

ESTOP = 1,

ABORTED = 2,

NONSUPPORTED = 3

} ERROR_TYPE

;

typedef enum
{ DONE = 1, // Finished in an orderly fashion
EXEC = 2, // Executing without error.
FAIL = 3, // Failed, must be restarted.
PAUSE = 4, // Active but paused.
ABORT = 5, // Aborted. Must be recreated.
IDLE = 6 //

} STATUS

;

class SIMTask
{

// SimTask Method Prefixes:
// Config : CFG
// DataSetup : DC
// Event : EV
// Exec : EX
// Output : OUT
// Monitor : MON
// Data Retrieval : DR

public

:

// Miscellaneous functionality
#def ine MAX_ERROR_MESSAGE_SIZE 256

33

in. NGIS SIM Object Model

// DATA SETUP

// Define channels to capture.
SIMError DCsetup (CHANNELS

CHANNELS
BINARY_CHANNELS
) ;

// Query FIFO record length - returns length of FIFO in bytes.
int DCqueryFIFORecordLength ()

;

// Query FIFO buffer space allocated - returns size in bytes.
int DCgetMaxFifoSize (void)

;

// Reserve buffer space for the FIFO.
SIMError DCallocateFIFORecordLength (int num_bytes) ;

raw,

processed,
manufacturer_data

// EVENT TRIGGER PROGRAMMING
// Define binary triggers.
SIMError EVsetTriggerStore (BINARY_CHANNELS SyncChannels

,

TRANS_TYPE type)

;

// Define an elapsed time trigger - units are milliseconds
SIMError EVsetCounterStore (ulong timer_num,

ulong count_down_ms)

;

// Define raw threshold triggers.
SIMError EVsetThresholdStoreRaw (CHANNELS

COMPARE_TYPE
ulong
ulong

channel

,

comparison,
value,
reset)

;

// Define processed threshold triggers.
SIMError EVsetThresholdStoreProcessed (CHANNELS channel,

COMPARE_TYPE comparison,
float value,
float reset)

;

// Command an immediate software trigger.
SIMError EVcommandedStore (void) ;

// Define output signals to produce on a trigger.
SIMError OUTsetOutput (BINARY_CHANNELS zero_channels

,

BINARY_CHANNELS one_channels

,

BINARY_CHANNELS toggle_channels)

;

// Set maximum number of trigger responses to execute.
SIMError EXsetNumberExec (int count);
// Respond to triggers until the FIFO is full.
SIMError EXContinuous (void)

;

// MONITOR
// Command a data capture and conveyance of resulting sensor data.
SIMError MONgetData (CHANNELS raw_channels

,

CHANNELS processed_channels

,

BINARY_CHANNELS manufacturers_channels

,

void * loc,

int record_sizes_match_check)

;

34

III. NGIS SIM Object Model

// Query status of SIM Task
STATUS MONgetStatus (void)

;

// Query specific SIM Task error type.
ERROR_TYPE MONgetError (void)

;

// Get ascii string corresponding to error type.
SIMerror MONgetErrorText (char * str, int error_num)

;

// Query if SIM Task has stopped.
BOOL MONisDone ()

;

// Query if SIM Task is executing
BOOL MONisExecuting (

)

;

// Query if SIM Task has stopped with error.
BOOL MONisFailed ()

;

// Query if SIM Task can be started.
BOOL MONisReady ()

;

// DATA RETRIEVAL
// Transfer records from the FIFO - size match units are words.
SIMerror DRretrieveRecords (int num,

void * loc,

int record_size_match_check)

;

// Query the size of the FIFO
int DRgetNumRecords (void)

;

} ;

4. SIM Functional Scenario

This section contains a short program in C++ to illustrate using SIM object model definitions,

configure a SIM, start a SIM Task, and program it to read and process sensor data.

4.1 Program Overview

The main steps are:

• Declare objects, and create a SIM Manager bound to a driver module.

• "Restart" the SIM Manager.

• Establish communications with the SIM hardware.

• Load the SIM executive if necessary, start it running.

• Configure the SEM for specific sensors, including calibration.

• Create a SIM Task.

• Define the input channels to be read and processed.

• Confirm properties of the FIFO.

• Define a trigger .

• Program outputs if needed (e.g. sync bus evnets.

• Check SIM Manager status.

35

III. NGIS SIM Object Model

• Start a SIM Task.

• Check SIM Task status.

• SIM captures and stores data into its FIFO.

• Verify FIFO length and retrieve FIFO records.

4.2 SIM Declarations

Object declarations include:

* • SIM Manager. One SIM Manager must be declared for each SIM in a system.

• Strap reference.

• SIM Task.

• Channel variables for data capture programming.

#include "ngisSIM.hh" // Class defs for SIM Task & Manager

// Declare SIM Mgrs, bind to API driver modules, e.g. a dll.

SIMMgrLevell * SIM1 = new SIMMgrLevel 1
(

" VEND0R1 . DLL ")

;

SIMMgrLevell * SIM2 = new SIMMgrLevell ("VEND0R2 . DLL")

;

SerialPort * mystrap = new SerialPort ()

;

// Declare pointer to SIM executive executable

char *loadFilename = "C:\SIMWENDORl\sim.exe";

// Declare pointer to name of the .ini file

char *conf igFilename = "C:\SIM\VENDORl\sim.ini";

SIMerror errType ;

char errorMessageBuf fer [256] ;

int alive, countdown, err, num_records;

// Declare SIM task reference

simld * Taskl; // level 1 declaration,

SIMtask * Task2 ; // level 2 object oriented declaration

// DECLARE local FIFO data type and local storage pointer

struct FIFO {

long chl_raw;

long ch2_raw;

long ch3_processes

;

}

;

36

III. NGIS SIM Object Model

void * localBuffer; // Pointer to user data buffer.

// Declare channel structures

CHANNELS ch;

CHANNELS raw;

CHANNELS processed;

BINARY_CHANNELS sync_channels

;

B INARY_CHANNEL S zero_channels

;

BINARY_CHANNELS one_channels

;

BINARY_CHANNELS toggle_channels

;

4.3 SIM Manager Bootstrap

Startup steps include restarting the SIM Manager, establishing communications with the SIM
hardware, loading the SIM executive if necessary, and configuring the SIM for specific

sensors to be used.

// RESTART: Do a "cold" restart of SIM Manager

if(errType = SIMl->SMrestart (SIMMgrLevell : : COLD)

)

{

fprintf (stderr , "SIM %s not responding\n" , SIMl->name ())

;

MONgetErrorText (&errorMessageBuf fer , errType);

fprintf (stderr , "Error message: %s", &errorMessageBuffer)

;

exit (-1)

;

} ;

// STRAP physical information, return 0 = worked, -1 err
mystrap->type = SERIAL_PORT;
mystrap->port = 0x01;

if (errType = Sl->SMstrap (mystrap)

)

{

fprintf (stderr , "SIM %s could not strap hardware\n", Sl->name());

MONgetErrorText (&errorMessageBuf fer , errType);

fprintf (stderr , "Error message: %s", &errorMessageBuf fer)

;

exit (-1)

;

} ;

37

III. NGIS SIM Object Model

After the strap, the SIM executive is loaded and run. Some executives are resident on ROM
and do not need to be loaded.

// Load the executive on the SIM from a file

if(errType = SIMl->SMload (loadFilename)

)

{

fprint f (stderr , "Load of SIM %s executive file %s failed\n",
SIMl->name() , loadFilename)

;

MONgetErrorText (ScerrorMessageBuf fer , errType);

fprintf (stderr , "Error message: %s", ScerrorMessageBuf fer)

;

exit (-1) ;

}

The next step is to configure the SIM executive. Configuration can include specifying

calibration parameters for specific sensors. All external configuration data comes from an .ini

file.

if (errType = SIMl->SMconf ig (configFilename))

)

{

fprint f (stderr , "Config of SIM %s executive file %s
failed\n", SIMl->name () , configFilename);

MONgetErrorText (SerrorMessageBuf fer , errType);

fprintf (stderr , "Error message: %s", ScerrorMessageBuf fer

)

;

exit (-1) ;

}

4.4 SIM Task Creation and Programming

The next step is to create the SIM Task. Tasks are referenced by an integer handle. If a 0 is

returned the function failed.

Taskl = SIMl->SMcreateSimTask ()

;

For level 2, a reference to an object will be returned.

Task2 = SIMl->SMcreateSimTask ("Name")

;

Now program data capture and check the size of the FIFO for correctness.

errType = SIMl->DCsetup (Ox003UL, // capture raw data,ch 1,2

0x004UL, // capture processed, ch 3

OL) ; //no manufacturers data

// FIFO record size should be:

38

III. NGIS SIM Object Model

// 3 channels * 4 bytes/word = 12 bytes

if (SIMl->DCqueryFIFORecordLength () != 12)

{

fprintf (stderr, "Warning: SIM %s FIFO record size does not match
SETUPXn"

,

Sl->name ())

;

}

Next, a trigger is programmed. The example is a threshold store when channel 1 ’s processed

value goes below 23.1 and reset when it gets above 25.4.

ch.Channell = ENABLE;

errType = SIMl->EvsetThresholdStoreProcessed

(ch, // channel 1

LESS_THAN, // transition type

23.1, // threshold value

25.4); // reset value

Triggers signal the SIM to capture data and perform outputs if programmed. This example’s

output is to set sync bus 2 to zero and toggle manufacturing channel bit 16.

zero_channel . Sync2 = ENABLE;

toggle_channel . ManBitl6 = ENABLE;

if (errType = SIMl->OUTsetOutput (zero_channel , one_channel, toggle_channel)

)

{

fprintf (stderr , "Error: SIM %s unable to register output\n"

,

Sl->name ())

;

exit (-1)

;

}

4.5 SIM Task Execution and Data Access

Once a SIM Task has been programmed, it can be run. The first check is of the SIM Manager’s

status.

errType = SIMl->MONisReady () ;

if (errType)

{

fprintf (stderr , "Error: SIM Manager not ready. \n“);

exit (-1)

;

}

Then start the task.

39

III. NGIS SIM Object Model

if(errType = SIMl->SMstartSimTask (Taskl)

)

{

fprintf (stderr , "Error: SIM Manager %s could not start \

task\n" , Sl->name ())

;

}

SIM Task status can be checked with the following methods.

errType = SIMl->alive () ;

if(errType = MONisFailed {)

)

{

fprintf (stderr, "Error: SIM Task Failed\n") ;

exit (-1)

;

}

if (errType = MONisDone())

{

fprintf (stderr , "SIM Task has completedXn") ;

exit (-1)

;

}

if (errType = MONisExecuting (

)

{

fprintf (stderr , "SIM Task is not executing\n") ;

exit (-1)

;

}

If a measurement task is complete, the FIFO data can be accessed. The controller executive

can query the number of records and then retrieve them.

num_records = SIMl->DRgetNuiriRecords () ;

localBuffer = malloc (sizeof (FIFO) * num_records)

;

errType = SIMl->DRretrieveRecords (num_records , localBuffer,

num records * 12) ;

40

IV. NGIS Sensor Specification Sheet

IV. NGIS Sensor Specification Sheet

The purpose of the NGIS Sensor specification sheet is to allow SIM customers to specify the

hardware configuration, performance characteristics, and event programmability of the SEM
they wish to purchase.

1. Scope

The NGIS SIM specification sheet describes the hardware and software features available in a

compliant SIM. The NGIS SIM hardware specification defines the platform and

configuration information for the SIM hardware (at this time explicitly assuming a slave card).

It also describes some performance metrics and physical characteristics.

The SIM software specification sheet lists capabilities supported by the SIM. It is not

necessary for the SIM to support all NGIS API programming features. For this reason, the

specification sheet user can select individual SIM event programming features. It is expected

that the SIM will support all other SIM API functionality.

2. Schematic Model

Figure 1-3. NGIS SIM Functional Description, showed the inputs, outputs, and control data

flow requirements. Not all SIM modules must support every requirement. The specification

sheet enumerates the capabilities an individual SIM supports.

3. Specification Sheet

FEATURE SELECTION

Hardware Connection Slave Card

Network

Other

Slave Communication

Interface

Dual Port Memory

I/O Port

Serial Port

Parallel Port

Number of channels

Worst Case Update

Time

milliseconds

A/d resolution bits

Worst Case Channel

Sampling Frequency

hz

41

IV. NGIS Sensor Specification Sheet

Synchronization Clock

Support

SyncBus

None

Other

Max FIFO Size 32-bit words

Platform CPU Intel

Alpha

PowerPC

Other

CPU rate

Platform OS Windows 3.1

Windows 95

Windows/NT

Windows/CE

UNIX:

LINUX

Other

Platform OS Extension RT Windows NT

POSIX compatibility

Other

Event Programming Time

Position

Threshold

Other

Correction Utilities Scaling

Linearization

Other

42

Appendix A. Specification for NGIS SIM Conformance Testing

NGIS II SIM Specification

Appendix A. Specification for NGIS SIM Conformance Testing

1 . Purpose of This Document

Primary audience: probe developers, controller developers.

Secondary audience: anyone (end user or developer) who will integrate an NGIS compliant

SIM with an NGIS compliant controller.

This section describes procedures to test compliance of commercial products with this

specification. The procedures can be run by probe developers, controller developers, control

system integrators, or end users. A probe must support these procedures exactly, to be judged

compliant with the NGIS II SIM Specification.

2. Scope

This version covers Level 1 SIM capabilities. The function calls conform to the DLL
technology API specification defined in “sim.h”.

In these sections the term probe is used to represent a SIM plus the sensor attached to it. The

performance of a probe is a combination of the performance of the sensor and the computer

hardware and software on the SIM.

This section does not cover considerations of sensor geometry or accuracy needed for specific

inspection tasks or part geometry. It only addresses SIM hardware, and software interfaces to

the SIM.

3. Measurement Tasks

This section describes measurement tasks that could be performed using an NGIS compliant

probe. The task descriptions, plus specific values of parameters can be used in two ways: 1)

describe required probe performance for an application — this would be useful for a controller

developer or probe end-user; and 2) describe actual probe performance — used by probe

vendors.

These scenarios are functional descriptions of what happens when a machine inspects a part

using a probe. The technical scenarios, how the functions are accomplished using SIM APIs,

are described in section 4, Conformance Tests. These descriptions reference Figure 1-2 NGIS
Machine Controller Model. The abbreviation "CE" will be used for "controller executive".

3.1 Point measurements.

Single points on a part are measured by moving a probe near the interesting area, then moving

it to an approach point that is on a line normal to the surface of the part. The distance

between the approach point and the part surface is the probe approach distance. The probe is

then moved toward the part at the probe approach rate until the probe signals the motion

43

Appendix A. Specification for NGIS SIM Conformance Testing

system that it has sensed the part. The controller executive must capture machine axis and

probe data, and halt probe motion before it collides destructively with the part.

3.1.1 Point measurement using switching probes

Switching probe behavior can be implemented in at least two ways:

• by a true touch-trigger probe with electrical contacts that open or close when the probe

is deflected, or

• by a proportional probe that has been programmed to issue a binary signal when the

part has been detected at some distance from the probe.

To completely specify performance of a switching probe for point measurements, the

following parameters must be described:

Test parameters

• probe approach distance mm .

• probe approach rate mm/sec.

Probe characteristics

• probe "compliance", mm (distance the probe tip can be moved toward the part,

after the probe has issued its binary signal, without destructive collision with the part).

• time response of the probe, micro-seconds (time to detect the part and the SIM
to issue the binary signal).

• repeatability of probe triggering micro-meters.

3.1.2 Point measurement using proportional probes

During the probe approach to the nominal point, the probe must generate new distance data

and the controller executive must poll the data at a rate sufficient for probe motion to be

stopped before destructive collision with the part. In robotics this is called a guarded move.

Scenario:

• CMM guides the probe toward the nominal point. Concurrently,

• Controller executive is accessing distance data from the SIM at a rate suited to probe

approach rate and machine control dynamics.

• The part comes within the range of the probe. Then, the probe’s distance value falls

below a set threshold. Then the controller executive begins to halt motion.

• The controller executive accesses data from the SIM and the machine axis positions.

At least two ways to capture probe and machine axis data can be used:

the motion controller adjusts the probe-to-workpiece distance to take advantage of

highest probe accuracy. When probe motion has stopped, the CE accesses new
probe distance data and captures machine axis position data, or

44

Appendix A. Specification for NGIS SIM Conformance Testing

the controller executive signals the SIM to capture its data before motion has

stopped using a sync bus signal. The CE must simultaneously capture machine

axis position data.

To completely specify performance of a proportional probe for point measurement, the

following parameters must be described:

Test parameters

• probe approach distance mm

• probe approach rate mm/sec

Probe characteristics

• probe range mm (distance that probe tip can be moved toward the part, after the

probe produces its first useful distance data, without destructive collision with the part).

• time response of the probe, between a command to the SIM to generate new distance

data, and availability of new data to the controller executive,

micro-seconds

• accuracy of probe micro-meters

3.2 Scanning measurements

Scanning measurements of part features are made by gathering arrays of simultaneously

generated data from a proportional probe and from the machine axis sensors. The machine

controller must be able to discern from SIM data, if the probe is close enough to the part to

produce useful distance data. For displacement-measuring probes, "close enough" means that

the probe is touching the part. For proximity probes "close enough" means that the part lies

within the sensing range of the probe and that the probe yields a desired accuracy within that

range.

Note - The safe placement of a probe close enough to a part before the start of a scan can

require the functionality of guarded move described above in 3.1.2 Point Measurements Using

Proportional Probes.

3.2.1 Data synchronization issue

A machine controller that employs a SIM is a distributed system: i.e., parts of the controller

and probe system are implemented on separate processor cards in the PC backplane. High

speed communications of commands between the controller executive and the SIM is

mandatory for ensuring accurate scanning measurements. The sync bus supplies the only

means of simultaneously conveying commands from the control executive to distributed parts

of the machine controller. If lower accuracy part measurements can be tolerated, then a

scheme of commanding capture of new data using software interfaces controlled by a single

CPU running the controller executive may be adequate. Here, the most important variables are

speed of the CPU issuing software calls, speed of the communications interfaces used to

convey the commands and data, and the physical probe speed in relation to the part.

45

Appendix A. Specification for NGIS SIM Conformance Testing

3.2.2 Scanning with no machine servoing

This can only be accomplished when the geometry of the part is known well enough that a

programmed probe path will not cause 1) the part going out of the probe’s range, and 2) the

probe to collide with the part.

Scenario:

• the probe is moved so that the part is in its measuring range.

• the controller executive begins sending simultaneous commands to the probe and

machine axis sensor components to capture new data and to store it into FIFOs. The

highest accuracy measurements will be produced by using the sync bus for issuing the

commands.

• the controller executive executes a programmed path program while issuing the

capture new data commands.

• at the end of the scan the controller executive stops issuing capture data commands,

gathers the two FIFOs of data and stores them or does calculations to produce a single

array of data points of probe center data or part surface data.

To completely specify performance of a proportional probe for scanning measurement, the

following parameters must be described:

Test parameters

• probe scan rate mm/sec.

Probe characteristics

• probe range mm (distance that probe tip can be moved toward the part, after the

probe produces its first useful distance data, without destructive collision with the part).

• time response of the probe, between a command to the SIM to generate new distance

data, and availability of new data to the controller executive. micro-seconds.

• maximum data capture frequency of the SIM and probe Hz.

3.2.3 Scanning with machine servoing

In this case the controller executive must gather current probe data fast enough to control

motion of the probe to keep the part within range. This could be needed when part geometry is

not known beforehand, if part geometry differs from the expected geometry, or if the expected

part location is not the same as the actual part location. During the scan two FIFOs of

simultaneously captured data must be built, but probe distance data must also be conveyed to

the controller executive in time for it to control probe motion.

To specify probe performance for this task the following parameters must be specified:

Test parameters

• probe scan rate mm/sec.

Probe characteristics

46

Appendix A. Specification for NGIS SIM Conformance Testing

• probe range mm (distance that probe tip can be moved toward the part, after the

probe produces its first useful distance data, without destructive collision with the

part).

• time response of the probe, between a command to the SIM to generate new distance

data, and availability of new data to the controller executive. micro-seconds.

• maximum data capture frequency of the SIM and probe Hz.

3.2.4 Free running rate

If the probe has an autonomous, free-running mode, where it generates capture-data

commands internally, the fastest running rate must be specified by the probe vendor. With the

SIM in this mode the controller executive 1) would not need to issue capture new data

commands, and 2) reads SIM data which it assumes to be current. The controller executive

must maintain the probe data FIFO. Note - this rate requires that the SIM do a new capture and

conversion of probe data each time.

• Maximum free running data rate Hz.

4. Conformance Tests

This section describes a technical scenario of SIM and probe testing, including initial

integration of SIM hardware and software with a controller. This technical scenario describes

how various measurement tasks are accomplished using API function calls. There are two

types of testing:

• stand alone testing using a test configuration.

• operational testing using a machine controller.

There are different tests. These test results, plus a SIM specification sheet should

completely specify a probe’s capabilities. Once a test is entered, each and every API call

specified in the test must be executed. Only NGIS compliant function calls may be used.

4. 1 Standalone testing using a test configuration

The configuration of a testbed for standalone SIM testing is shown in Figure A-l. The test

controller module simulates a machine controller’s Control Executive (CE). It also interacts

with the person conducting tests through an operator user interface (UI). If the test controller

is automated, it uses test scriptfiles that describe sequences of API function calls and

parameters. The test controller may record results of tests, including function return values

and data returned, in a test result log. The sync bus hardware driver plus sync bus API

functions interface the test controller to the sync bus.

47

Appendix A. Specification for NGIS SIM Conformance Testing

Sensors

Figure A-l. Standalone Conformance Testing Configuration

4.1.1 SIM installation

• Description of computer platform (e.g., NT, ISA backplane,)

• Vendor Supplied Materials:

SIM

install disk that contains:

48

Appendix A. Specification for NGIS SIM Conformance Testing

° NGIS compliant DLL, and .lib file (if appropriate)

° .ini file/s (optional)

° NT drivers (e.g. for dual port ram, serial port,)

° batch file for automatic installation

° SIM specification sheet (to specify bit masks for probe axes)

• Installation Procedure:

Hardware install

wiring to sync bus

software install

Linking of DLL

° static link (compile time link of .lib file)

° dynamic link (run time link of DLL)

4.1.2 Standalone testing of a SIM

Each test is a sequence of API function calls. The arguments used with the APIs and the return

values and data must be recorded during a test.

A. BASIC SETUP AND CONFIGURATION OF SIM (mandatory)

This is a mandatory test for establishing communications with the SIM and for configuring it

for operation. It must precede all other tests.

49

Appendix A. Specification for NGIS SIM Conformance Testing

String ret
»t »»

10 SMCreateSimTask

11 SMStartSimTask
-

12 SMErrorMsg 0

String ret
ft tt

13 SMErrorMsg 1

String ret
tt tt

14 DCSetup

15
DCQueryFIFORecordLen

gth

16 DCgetMaxFifoSize

17 DCallocateFifoSize

18 MONgetData

19 MONgetStatus

20 MONisExecuting

B. SOFTWARE TRIGGERING OF DATA CAPTURE BY SIM

This test exercises software triggering of data capture, SIM building of it’s FIFO, and

accessing of the FIFO by the controller executive.

50

Appendix A. Specification for NGIS SIM Conformance Testing

8 EVcommandedStore

9 EVcommandedS tore

10 DRgetNumRecord

11 DRretrieveRecords

Data

Optional performance Test B1

This is a test to see how fast the probe can capture new data when commanded by software

trigger. The controller executive calls EVcommandedStore as fast as possible. It waits for

successful completion of each call.

• number of calls

• elapsed time (measured by CE)

• data capture frequency of SIM (Hz)

C. SYNC BUS TRIGGERING OF DATA CAPTURE BY SIM

This test exercises SEM response to sync bus trigger events.

Return Status API Function argl arg2 arg3 arg4

1 EVsetTriggerStore

2 DRgetNumRecords

3

The test controller

causes a sync bus

source to issue one or

more sync pulses:

sync bus

freq (Hz)
manual

duration of

pulses

(sec)

number of

sync

51

Appendix A. Specification for NGIS SIM Conformance Testing

pulses

4 DRgetNumRecords

5 DRretrieveRecords

Data

D. SIM SYNC BUS OUTPUT - SWITCHING PROBE TRIGGERING

This test shows that the SIM can produce sync bus events when a switching probe detects the

part.

Return Status API Function argl arg2 arg3 arg4

1

Operator ensures that probe is

not in prox. to part

2 OUTsetOutput

_Working Group Note - more

needed here

E. SIM SYNC BUS OUTPUT - Proportional probe as switching probe.

This test shows that a SIM configured with a proportional probe can be programmed to

emulate a switching probe's behavior described in test D.

Return Status API Function argl arg2 arg3 arg4

1

Operator ensures

that probe is not in

prox to part

2
EVsetThresholdSt

oreProcessed

3 OUTsetOutput

4

Operator moves
probe so that the

probe senses prox

or contact

5 Test controller, by

software or

52

Appendix A. Specification for NGIS SIM Conformance Testing

oscilloscope, checks

for issuance of sync

trans.

Z. ERROR MESSAGES

The SIM specification sheet must describe all possible error codes returned by API function

calls and their meaning. It must also describe which error codes are supported by error

message strings.

Return Status API Function argl arg2 arg3 arg4

1 SMErrorMsg

String data

returned:

u i»

2 SMErrorMsg

String data

returned:

II !»

3 SMErrorMsg

String data

returned:

II II

4

4.2 Operational Testing using a machine controller

• Load DLL: run-time loading of dll (controller is in middle of an inspection task and a

new probe is called for)

• Load DLL: static loading of dll (perhaps all DLLs are loaded/linked before inspection

has begun).

• Non-operational tests (no machine motion, excite probe with artifacts or manually).

specify list of dll function calls and their order.

• Operational tests (doing inspection with motion control).

53

Appendix A. Specification for NGIS SIM Conformance Testing

touch-trigger probing

scanning inspection

sample part and operations.

5. SIM and Probe Performance Requirements

The data capture rate of individual SIM/Probes can be evaluated and specified using the

following tests. The metrics are used by probe buyers to decide if the probe meets their

measurement needs. Higher data rates do not necessarily indicate a higher quality probe -

some measurement tasks may not require the higher data rates.

• digital to analog conversion time

• response to Sync bus

The Working Group is deciding if performance tests are within the scope of this specification.

6. Testing Glossary

probe [2]

"a device that establishes location of the movable components of a CMM relative to a

measurement point.
"

displacement-measuring probe [2]

"a probe that gives a signal proportional to a displacement of the probe from its free

position."

proportional probe [2]

"a probe that gives a signal proportional to a distance between a reference point on the

machine ram and the workpiece. Such probes may be displacement-measuring probes,

proximity probes, or nulling probes"

proximity probe [2]

"a probe that gives a signal proportional to the distance from the probe tip to the

workpiece."

probe approach distance [2]

"the distance of approach to the part at which the machine traverse speed is reduced to the

probe approach rate for measurement"

probe approach rate [2]

"the nominal speed of approach of the probe toward the part during the acquisition of data

(used primarily for switching probes)"

ram [2]

"the moving component of a machine that carries the probe"

switching probe [2]

"a probe that gives a binary signal as a result of making contact with, or being in proximity

to, a workpiece. For this specification the only binary signal is transition of a sync bus

level.
"

validation [1]

"The process of evaluating a system or component during or at the end of the development

54

Appendix A. Specification for NGIS SIM Conformance Testing

process to determine whether it satisfies specified requirements.
"

verification [1]

"The process of evaluating a system or component to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase."

verification and validation (V&V) [1]

"The process of determining whether the requirements for a system or component are

complete and correct, the products of each development phase fulfill the requirements or

conditions imposed by the previous phase, and the final system or component complies

with specified requirements.
"

Glossary References

[1] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12-1990.

[2] Methods for Performance Evaluation of Coordinate Measuring Machines, ASME B89.4.1-

1997. Note - these definitions are quoted exactly from the standard. NGIS probes may not give

signals that are mathematically exactly proportional to the distance to the workpiece - they

may yield nonlinear signals that must be calibrated to give distance.

55

Appendix B. SIM Communications Technologies

NGIS II SIM Specification

Appendix B. Discussion of SIM Communications Technologies

1 . Equipment Requirements

The NGIS II SIM API is currently specified to operate on a PC computer, having an ISA bus,

running Windows NT 4.0™. Other platforms may be supported in the future.

2. Candidate Software Technologies

The SIM Object Model was defined using the concepts of interfaces, inheritance, and data

hiding. The first implementation of the API focuses on DLL technology, which does not have

all of the constructs of object oriented modeling. The DLL technology is one implementation

mechanism for realizing the functional interfaces defined by the Object Model. We anticipate

that the functional interfaces to SIMs will be transitioned into more advanced technologies

like OLE in the future.

Microsoft Communication Mechanisms

• DLL - dynamic link library

• DDE - dynamic data exchange

• OLE-Active X - Object linking and embedding

2.1 Dynamic Data Exchange (DDE)

DDE allows a set of predefined data to be available to other processes. The DDE architecture

is a client/server architecture. A particular set of tag points is identified by the developer of the

DDE Server. The DDE Client requests the token for particular names. The DDE Client then

requests, on demand, the data with that token and receives the current value from the server.

2.2 Dynamic Link Libraries (DLL)

DLL are a set of code modules where each module contains a set of functions and/or data.

DLLs contain a table of pointers to all functions and data contained in the DLL. Windows
provides an application API for:

• Loading the DLL
• Obtaining the address for any function

• Obtaining the address for any piece of data

• Calling any function in the DLL
• Accessing any piece of data in the DLL
• Unloading the DLL

An application that requires a DLL will ask for it to be loaded. When a particular function or

piece of data needs to be used, the application requests a function or data pointer for that item.

The application can then call the function pointer or directly access that piece of data. When
an application no longer needs a particular DLL, it can request that it be unloaded.

56

Appendix B. SIM Communications Technologies

2.3 Object Linking and Embedding (OLE) and Active X

OLE and Active X represent a group of technologies that enable and facilitate component

integration and component software. OLE offers extensible standards and mechanisms to

enable software developers to package their functionality and content into reusable

components. OLE is targeted at the integration of binary components independent of the

language used to create those components.

The core of OLE technology was designed to address the shortcoming of previous

technologies such as DLLs. This subset of the technology was originally called OLE
Components and is now Active X Components. The shortcomings of the DLL that Active X
addresses are as follows:

• No Enforced Type Checking

• Version Control is not supported

• Direct Access to Data is allowed

Once a DLL has been loaded, the programmer uses an assumed interface for the particular

routine call that is desired and calls it. There are no checks to see if the parameters were the

right size and type. With the OLE component technology, the parameters for every function

are checked at the time the procedure is called.

Version numbers of a software technology are an attempt to represent the differences between

functionality. OLE attempts to combine the features of a component interface into feature sets

which it defines as interfaces. These feature sets can then be requested by a user of the

component. New interfaces can be added without affecting the previous interfaces. A client

must understand an interface and ask for it specifically before it can use that interface. You

must request it to get it.

3. Scenario of SIM use.

A controller configured with three different SIMs and their DLL drivers is depicted in Figure

B-l.

57

Appendix B. SIM Communications Technologies

Figure B-l. Multiple DLLs in a controller

Figure B-2 shows the sequence of actions by the controller Host and Controller Executive to

add SIM DLLs to the controller and to configure the SIM for inspection operation.

58

Appendix B. SIM Communications Technologies

NGIS COMPLIANT

Figure B-2 . Actions by the controller Host and Controller Executive to add SEM DLLs to the

controller and to configure the SIM for inspection operation.

59

Appendix C. SIM API DLL Specification (sim.h)

NGIS 11 SIM Specification

Appendix C. SIM API DLL Specification (sim.h)

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

"sim.h"
Author

:

Date

:

Pro j ect

:

Notes

:

Rev Date:
Rev Date:

Rev Date:

Rev Date:

Rev Date:

NGIS Sensor API Working Group
January 18, 1998
NGIS II -SIM specification
The following file represents the DLL version of
the API

generated by the NGIS II SIM API Working Group.
The function calls are "flattened"-- they are not
obj ect -oriented.
The SIM DLL macros allow for both
the SIM developer and user to compile against the
same file.
The developer adds the SIM_DLL definition to
their code, e .g.

,

at the top of the APIDLL.C file.
Original by Nat Frampton, ATR Corp, 10/01/96.
11/6/96, comments by Eun Soo Lee of Automated

Precision, Inc.

5/30/97 ed. by Bill Rippey, result of working
group meeting of 5/28/97 at NIST.

21-Oct-97, cleanup with latest document edits,
Rippey.

18-Jan-98, ed. by Rippey, result of working group
meeting of 18-Jan-98 at Ford.

#ifndef SIM_H
#define SIM_H

// Standard DLL Macro Definitions for Borland and Microsoft
#ifndef BORLANDC // ie Microsoft Visual C++

#if [defined (SIM_DLL)

#define SIMAPI declspec (dllimport)
#else
#define SIMAPI declspec (dllexport)
#endif

#else // Borland C++ preprocessor definitions
#if [defined (SIM_DLL)

#def ine SIMAPI
#else
#define SIMAPI _export
#endif

#endi

f

// Includes
//

#include <stdio.h>
#include <stdlib.h>
#include <sys/types .h>

60

Appendix C. SIM API DLL Specification (sim.h)

// #Defines
//

#ifndef ENABLE
#define ENABLE 1

#def ine DISABLE 0

#endif
#define MAX_ERROR_MES SAGE_S I ZE 256

// Standard SIMerror values. The rest are vendor defined.
#define SIM_SUCCESS OL

// Communications codes, 100-199
// Errors for all communications media
#define SIM_COMM_ERROR 100L
#define SIM_COMM_ERROR_WRITE 101L
#define SIM_COMM_ERROR_READ 102L

// Errors for serial communications
#define SIM_COULD_NOT_INIT_COM_PORT 105L
#define SIM_RS232_FAULT 106L
#define SIM_COMM_ERROR_BAUD_RATE 107L

// Unspecified error.
// Known error on write.
// Known error on read.

//

// Generic error
// Incorrect baud rate

// Error for laser probes
#define SIM_LASER_OFF
// reason unknown.
#define SIM_LASER_KEY_OFF
// switched on.

// Errors of bject sensing
#define SIM_OBJECT_OUT_OF_RANGE

#define SIM_OBJECT_OUT_OF_RANGE_NEAR
// SIM estimates near.
#de fine SIM_OBJECT_OUT_OF_RANGE_FAR
// SIM estimates far.
#define SIM_OBJECT_TOO_NEAR
// measurement not valid.
#define SIM_OBJECT_TOO_FAR
// measurement not valid.

// Errors of function parameters
#def ine SIM_INVALID_FUNCTION_PARAMETER
// call was invalid.

3 00L // Laser was not on.

3 OIL // Manual enable was not

400L // obj ect out of sensing
// range

.

401L // cannot sense object.

402L // cannot sense object.

403L // can sense object near

404L // can sense object far.

500L // A param. of the func

// General errors
#define SIM_FUNCTION_NOT_IMPLEMENTED 900L

#ifndef ulong
#define ulong unsigned long
#endif

61

Appendix C. SIM API DLL Specification (sim.h)

typedef ulong SIMerror ;

// Enumerations
//

typedef enum
{

COLD = 1

,

HOT = 2

} RESTART_TYPE;

typedef enum
{

DUAL_PORT_RAM = 1

,

IO_BUS = 2

,

SERIAL_PORT = 3

,

PARALLEL_PORT = 4

} STRAP_TYPE

;

transition descriptions.

// i.e. the level is 0.

// i.e. the level changes from 0 to 1

.

typedef enum
{

GREATER_THAN
LESS_THAN
GREATER_EQUAL
LESS_EQUAL
EQUAL
} COMPARE_TYPE

;

typedef enum
{

DONE = 1

,

EXEC = 2

,

FAIL = 3

,

PAUSE = 4

,

ABORT = 5

,

IDLE = 6

} STATUS

;

// Sync bus level and
typedef enum

{

LEVEL_0 = 1

,

LEVEL_1 = 2

,

TRANS_RISE = 3,

TRANS_FALL = 4

} TRANS_TYPE

;

typede f enum
{

NO_ERROR = 0

,

ESTOP = 1,

ABORTED = 2

,

NONSUPPORTED = 3

} ERROR_TYPE

;

// Structures

62

Appendix C. SIM API DLL Specification (sim.h)

//

//

//

// SIM enumerated definitions for:

//

// - transition types,
// - compare operators,
// - channels,
// - manufacturer's channels (including sync bus).
//

//

// Structures
//

// Correspondence of channel numbers to sensor axes is defined
// by the manufacturer in the SIM data sheet.

typedef struct CHANNELS
{

unsigned Channel

0

1;

unsigned Channel

1

1;

unsigned Channel

2

1;

unsigned Channel

3

1;

unsigned Channel4 1;

unsigned Channel

5

1;

unsigned Channel

6

1;

unsigned Channel

7

1;

unsigned Channel

8

1;

unsigned Channel

9

1;

unsigned Channel 10 1;

unsigned Channel 11 1;

unsigned Channell2 1;

unsigned Channel 13 1;

unsigned Channel 14 1;

unsigned Channel 15 1;

unsigned Channel 16 1;

unsigned Channell7 1;

unsigned Channel 18 1;

unsigned Channel 19 1?

unsigned Channel 2 0 1;

unsigned Channel21 1;

unsigned Channel22 1;

unsigned Channel 2

3

1;

unsigned Channel24 1;

unsigned Channel25 1;

unsigned Channel 2

6

1;

unsigned Channel27 1;

unsigned Channel 2 8 1;

unsigned Channel29 1;

unsigned Channel30 1;

unsigned Channel31 1;

} CHANNELS

;

// This is bit field definition

// LSB

//

// 32 Bits

63

Appendix C. SIM API DLL Specification (sim.h)

typedef struct BINARY_CHANNELS // This is bit field definition
{

unsigned SyncF 1;

unsigned SyncO 1;

unsigned Syncl 1;

unsigned Sync 2 1;

unsigned Sync 3 1;

unsigned Sync 4 1;

unsigned Sync 5 1;

unsigned Sync 6 1;

unsigned ManBitO 1;

unsigned ManBitl 1;

unsigned ManBit2 1;

unsigned ManBit3 1;

unsigned ManBit4 1;

unsigned ManBit5 1;

unsigned ManBit6 1;

unsigned ManBit7 1;

unsigned ManBit8 1;

unsigned ManBit9 1;

unsigned ManBitlO 1;

unsigned ManBitll 1;

unsigned ManBitl2 1;

unsigned ManBitl3 1;

unsigned ManBitl4 1;

unsigned ManBitl5 1;

unsigned ManBitl6 1;

unsigned ManBitl7 1;

unsigned ManBitl8 1;

unsigned ManBitl9 1;

unsigned ManBit20 1;

unsigned ManBit21 1;

unsigned ManBit22 1;

unsigned ManBit23 1;

} BINARY_CHANNELS; // 32 Bits

// The NGIS dll sensor API uses the C naming convention.
#ifdef cplusplus
extern "C" {

#endif

// SIMManager -- SIMManager -- SIMManager -- SIMManager --

//

SIMAPI char * SMgetManufacturersId () ;

// String is the probe maker's name, e.g., "Extrude Hone", "API".

SIMAPI char * SMgetModelNumber () ;

// String is probe's model number, e.g., "SAMI-MIDAS 123"

SIMAPI double SMgetRevisionCode () ;

// Get a floating point number representing code version.
SIMAPI char * SMgetSerialNumber () ;

// String is the serial number of the probe, e.g. "EAS 552885"

SIMAPI char * SMgetDateCode ()

;

// Returns release date of dll code - "mm/dd/yy-hr :min"

64

Appendix C. SIM API DLL Specification (sim.h)

SIMAPI char * SMgetProductDescription ()

;

// Returns brief blurb to describe the probe.
SIMAPI char * SMgetLicenseOwner ()

;

// Returns name of liscense owner.

SIMAPI SIMerror SMStrap (STRAP_TYPE strap,
long address)

;

// Establish the physical communications interface to SIM.

SIMAPI SIMerror SMLoad (char * fullpathf ilename)

;

// Load & run the SIM executive.

SIMAPI SIMerror SMRestart (RESTART_TYPE reset)

;

// Restart SIM Manager -- return 0 for success.

SIMAPI ulong SMAlive (void)

;

// Query SIM Manager to see if it is running - returns
// heartbeat number.

SIMAPI SIMerror SMName (char * name) ;

// Queries name of SIM manager, typically returns probe model.

SIMAPI void SMErrorMsg (SIMerror errnum,
char* pErrorMsg)

;

// Writes ASCII text of error message to pErrorMsg. If no
// message, writes null string.

//

// CONFIGURATION

SIMAPI SIMerror SMConfig (char * inputFilename)

;

// Configure the SIM using parameters in named file.

//

// SIM TASK MANAGEMENT

typedef long simld ;

SIMAPI simld SMCreateSimTask
// Return 0 if could not create.

SIMAPI SIMerror SMStartSimTask
SIMAPI SIMerror SMStopSimTask
SIMAPI SIMerror SMRestartSimTask
SIMAPI SIMerror SMDeleteSimTask

(void)

;

(simld id)

;

(simld id)

;

(simld id)

;

(simld id)

;

// SIMTask -- SIMTask -- SIMTask -- SIMTask -- SIMTask
//

// SimTask Method Prefixes:
// Config : CFG. None in level 1, configuring done globally
II in manager
// DataSetup : DC
/ / Event : EV
// Exec : EX - single versus blocks of data storage

// Output (to hardware) : OUT
// Monitor : MON
// Data Retrieval : DR

65

Appendix C. SIM API DLL Specification (sim.h)

// DATA SETUP
//

SIMAPI SIMerror DCsetup (CHANNELS raw,

CHANNELS processed,
BINARY_CHANNELS manufacturer_data)

;

// Specify the data channels to convert.

SIMAPI int DCqueryFIFORecordLength (void);

// Returns number of bytes in one FIFO record (one entry)

.

// e.g. if 3 data channels are specified, the FIFO record
// length is 12 bytes.

SIMAPI SIMerror DCallocateFIFOSize (int num_bytes);

// Command the SIM manager to allocate "num_bytes" bytes
// for FIFO data storage.

SIMAPI int DCgetMaxFIFOSize (void);

// Query the max size allocated for the FIFO in bytes.

//

// EVENT TRIGGER PROGRAMMING

SIMAPI SIMerror EVsetTriggerStore

(

BINARY_CHANNELS SyncEvents,
TRANS_TYPE type) ;

// Define a sync bus event as a trigger.

SIMAPI SIMerror EVsetCounterStore

(

ulong timer_num,
ulong count_down_ms)

;

// Program a periodic elapsed time trigger -- units are
// milliseconds.

SIMAPI SIMerror EvsetThresholdStoreRaw

(

CHANNELS
COMPARE_TYPE
ulong
ulong

// Define a trigger: when a processed data channel
// threshold.

channel

,

comparison,
value

,

reset)

;

crosses a

SIMAPI SIMerror EVsetThresholdStoreProcessed

(

CHANNELS
COMPARE_TYPE
float
float

// Define a trigger: when a processed data channel
// threshold.

channel

,

comparison,
value

,

reset) ;

crosses a

SIMAPI SIMerror EVcommandedStore (void) ;

66

Appendix C. SIM API DLL Specification (sim.h)

// OUTPUT
//

SIMAPI SIMerror OUTsetOutput

(

BINARY_CHANNELS zero_channels

,

BINARY_CHANNELS one.channels,
BINARY_CHANNELS toggle_channels)

;

// Program outputs as responses to triggers.

// EXEC
//

SIMAPI SIMerror EXsetNumberExec (int count);
// Program SIM to respond to a maximum of count triggers.

SIMAPI SIMerror EXContinuous (void)

;

// Program SIM to respond to triggers until the FIFO is full.

// MONITOR

SIMAPI SIMerror MONgetData(
CHANNELS raw_channels

,

CHANNELS processed_channels

,

BINARY_CHANNELS manufacturers_channels

,

void * loc,

int record_size_match_check)

;

// Convert the specified data channels and write
// "record_size_match_check" bytes to

// the user's address "loc".

// NOTE -- MONgetData does not produce a FIFO entry or change
// any entries in the FIFO.

SIMAPI STATUS MONgetStatus (void) ;

// A general purpose return of status.

SIMAPI- ERROR_TYPE MONgetError (void);

// If SIM Task aborted, returns error number.

// DATA RETRIEVAL
//

SIMAPI int DRgetNumRecords (void) ;

// Returns the number of data entries in the FIFO.

SIMAPI SIMerror DRretrieveRecords

(

int num,

void * loc,

int record_size_match_check)

;

// Retrieves num entries from the FIFO into loc.

// Number of stored entries in FIFO is reduced to reflect this

// retrieval. e.g., if the number of FIFO records

// is 5, and 3 are retrieved, the number of records should now

67

Appendix C. SIM API DLL Specification (sim.h)

// equal 2.

// record_size_match_check is the size of one FIFO entry,
// bytes.

#ifdef cplusplus
}

#endif

#endif // SIM_H.

in

68

Appendix D. SIM State Diagram

NGIS II SIM Specification

Appendix D. SIM State Diagram

The concepts for this section were discussed at the 18-Jan-98 working group meeting. It has

not been reviewed in detail by the group, but is included here to reflect the working group’s

latest efforts.

This section describes the state transitions of an NGIS SIM. The transitions are caused by

external actions and internal events. External events are application program invocation of

API methods and sync bus events. Internal events are periodic SIM timers, input channel

thresholds, and internal SIM actions, e.g. resulting in state transition from EXECUTING to

DONE or from EXECUTING to ERROR.

Figure D-l illustrates the sequence of states and state transitions that a typical NGIS controller

would encounter. Upon startup the controller is in the POWERUP state. This state assumed

that the SIM hardware also has power.

The SMLoad method causes a state transition from the POWERUP state to the LOADED
state. The action associated with this state transition would is to load the SIM executive from

disk into the SIM RAM. This state transition may be optional if the SIM supports a ROM
kernel, however, all SIMs must support this state transition even if no kernel loading from disk

is necessary.

In the LOADED state the Controller Executive can invoke the SMStrap method to establish

hardware communications with the SIM. The method SMRestart causes the state transition

from the LOADED state to the READY state. The action associated with this state transition is

for the SIM Manager to reset all the internal variables and clear the SIM Task. The SIM
Manager can be commanded to import operating parameters from a disk file using the

SMConfig method.

SMCreateTask causes the state transition from the LOADED to the CONFIGURING state.

The action associated with this state transition is to create a new SIM Task that the controller

can then configure. Four classes of methods can configure the SIM Task.

The SMStartSimTask method causes the transition to the RUNNING state, in which the SIM is

actively monitoring to respond to external triggers, and to generate sync bus and output events.

Monitor methods can be invoked while the SIM is RUNNING. The FIFO is accessed first by

using SMStopSIMTask, and then DRRetrieveData. SMStartSimTask clears the FIFO and puts

the SIM back into RUNNING. SMRestart causes the same state transition but preserves the

FIFO.

All SIM parameters and configuring information persists until the SIM Task is deleted, using

SMDeleteTask.

69

Appendix D. SEM State Diagram

SMLoad

SMRestart/COLD

Figure D-l. SIM State Diagram

70

