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Abstract

Parallel solution of 1-indexed recurrence relations has received much attention, but no effort

has been made to design parallel algorithms for multi-indexed recurrence relations, where the

recurrence is in more than one index. Multi-indexed relations arise in JPEG-standard DPCM
compression of images, which is an increasingly important area due to the explosion of imagery

applications such as multimedia and medical imaging. In this paper we design and analyze novel

parallel algorithms for solving multi-indexed recurrence relations of arbitrary order. To that

end, we develop three techniques: index sequencing
,
index decoupling

,
and dimension shifting.

Index sequencing leads to a parallel algorithm of 0(n log n) time on n processors, where the

input size is n2
. Index decoupling applies in limited situations, one of which is a commonly

used special case of DPCM, and leads to a parallel algorithm of O(logn) time for n x n images

on n x n processors. Dimension shifting is a universal technique for multi-indexed relations,

and involves reducing the number of indices to 1 while clustering the terms of the relation into

vectors. This is accomplished by means of special vector operators that we define and study.

Our parallel algorithm for doing the dimension shifting and for solving the resulting 1-indexed

recurrence relation takes 0(log
2 N

)
time on meshes of partitionable buses or hypercubes, where

N is the data input-output size.

Keywords: Compression, DPCM, Parallel Algorithms, Recurrence Relations, Dimension Shift-

ing, Convolution, Fourier Transform.

1 This research was performed in part at the National Institute of Standards and Technology.
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1 Introduction

The massive amounts of imagery data in many applications demand that images be compressed

to reduce their storage and transmission requirements. In certain applications, most notably

medical imaging, the compression has to be lossless. One of the well-known lossless image

compression techniques is differential pulse-code modulation (DPCM), which was adopted by

the Joint Photographic Expert Group (JPEG) as an international standard [12].

Whenever an image is retrieved, locally or remotely, it has to be decompressed online for

display. Therefore, decompression, also called decoding, must be as fast as possible. Compres-

sion, also called coding, is desired to be fast too, but its speed is not as critical as the decoding

speed because coding is typically performed just once, often offline, whereas decoding is done

many times, often online or in real time. Consequently, it is especially important to develop

fast decoding algorithms.

DPCM decoding is essentially the computation of a 2-indexed scalar recurrence relation

of low order; every term in the recurrence relation is indexed with two indices, the row and

column positions of pixels. Similarly, DPCM of 3D and 4D images, which is conceivable in

applications involving 3D visual modeling with or without motion, leads to 3-indexed and

4-indexed recurrence relations. Much work has been done on parallel algorithms for solving

1-

indexed recurrence relations of arbitrary order [2, 6, 7, 13], due to their applicability in

numerical computations [16, 17, 18]; the fastest parallel algorithms for solving those equations

take logarithmic time, and are based on parallel prefix computation [1, 4, 8, 9, 10, 11, 13, 15].

However, no work has been reported on multi-indexed recurrence relations. Considering the

importance of DPCM coding/decoding of imagery, and the need for fast decoding, parallel

algorithms for solving multi-indexed recurrence relations merit serious study.

In this paper we design and analyze parallel algorithms for solving multi-indexed recurrence

relations of arbitrary order, and identify the architectures best suited for the algorithms. For

clarification, the multi-indexed relations are addressed in increasing order of complexity. Two-

indexed recurrence relations of order 1 are addressed first, 2-indexed recurrence relations of

arbitrary order are addressed second, and multi-indexed relations of arbitrary order, where the

number of indices is greater than 2, are addressed last,

We develop three approaches for solving multi-indexed recurrence relations: index sequenc-

ing
,
index decoupling

,
and dimension shifting. The index sequencing approach for solving a

2-

indexed relation to compute n x n terms, as in DPCM decoding of an n x n image2
,
breaks

down the relation into a sequence of n 1-indexed scalar recurrence relations that must be solved

one after another. Each relation can be solved by a parallel O (log 72
)
time algorithm on an

n-processor hypercube or partitionable bus, and thus the n equations take 0(n\ogn) time on

n processors. This approach does not, however, exploit the full potential of parallelism.

Index decoupling, when applicable, breaks the 2-indexed relation into many independent

1-indexed recurrence relations, which can then be solved simultaneously, leading to an overall

logarithmic time parallel algorithm. We will apply this approach to one special but commonly

used DPCM. However, since index decoupling does not apply universally to arbitrary multi-

2 All the algorithms in the paper apply equally well on n x m rectangular images, but for ease of presentation

we will consider only n x n square images in the 2-indexed relations case.
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indexed recurrence relations, alternative approaches must be sought.

Dimension shifting is a universal approach. To understand it, one must note the three

dimensionalities in a multi-indexed recurrence relation: the term dimensionality
,
the equation

order
,
and the index dimensionality. The first refers to the dimension of every term in the

recurrence relation, and the second indicates the number of previous terms each term depends

on. The index dimensionality is the number of indices q per term. Dimension shifting involves

reducing the index dimension of ^-indexed relations down to 1 while increasing the term dimen-

sion by a certain factor, then reducing the order dimension down to 1 while increasing the term

dimension by another appropriate factor. This yields a 1-indexed vector recurrence relation of

order one, where the vectors are (q — l)-dimensional arrays. The operations involved in the

resulting recurrence relation are multidimensional-vector convolution and addition. Since mul-

tidimensional convolution can be done in parallel in logarithmic time using multidimensional

FFT [3, 5, 20], and since standard parallel algorithms for 1-indexed recurrence relations of order

1 take a logarithmic number of operations [2, 6, 7, 13], the total time of the algorithm is square-

logarithmic, using N processors configured as a ^-dimensional mesh of partitionable buses or

hypercubes, where N is the output size. Note that converting a ^-indexed recurrence relation

to a 1-indexed relation involves solving, recursively, a (q — l)-indexed recurrence relation.

Two points are noteworthy. First, dimension shifting has been applied to 1-indexed multi-

order recurrence relations to reduce the order down to 1 and increase the term dimension [7];

however, dimension shifting of the index dimension to term dimension is novel, and involves

some intricate operators and operator manipulation. Second, dimension shifting could be done

more easily by shifting the index dimension to the order dimension first. For example, the

2-indexed terms of an n x n image can be re-indexed with one index by ordering the pixels in

some manner such as row-wise or column-wise. This re-indexing turns the recurrence relation

into a 1-indexed relation without changing the dimension of the terms (e.g., pixels), but it

increases the order of the relation dramatically. Reducing the order afterwords requires an

n-fold increase in the term dimension, and the corresponding parallel algorithm to solve the

resulting equation takes 0(n log n) time on an n x n processor system, which is considerably

longer than the square-logarithmic time mentioned above. Therefore, our dimension shifting

approach outlined in the previous paragraph is superior.

The paper is organized as follows. The next section overviews DPCM and formulates the

DPCM decoding problem as a multi-indexed scalar recurrence relation. Sections 3 and 4 de-

velop the index-sequencing and index-decoupling approaches, respectively. Section 5 presents

a vector-operator based formulation of 2-indexed recurrence relations of order 1, defining the

operators and proving some of their relevant properties. In section 6, parallel algorithms for

setting up and solving the resulting 1-indexed vector recurrence relations are developed and

analyzed. Section 7 addresses arbitrary-order 2-indexed recurrence relations, and develops a

parallel algorithm for them. Section 8 will address the most general case, namely, multi-indexed

recurrence relations of arbitrary order, where the number of indices is greater than 2. Finally,

section 9 closes the paper with conclusions and future directions.
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2 DPCM and Multi-indexed Recurrence Relations

The most widely used form of DPCM is overviewed first, and formulated into a 2-indexed re-

currence relation of order 1. Afterwards, higher order and higher dimension DPCM is presented

and formulated into a multi-indexed recurrence relation of the same order.

DPCM assumes that the interpixel redundancies and correlations can be modeled as a 2D
Markov model of some order [5]. For order 1, the model involves three parameter, a, b and c,

as described next. Let X(0 : n — 1, 0 : n — 1) be a matrix of pixels, representing an image. The
model assumes that every pixel X(i, j) can be largely “predicted” from its three neighbors in

the north, west, and north-west as follows:

X(iJ) = aX{iJ - l) + bX(i - 1, j) + cX(i - 1J -
1) + E{iJ) (

1
)

where E{i,j
)

is the 'prediction error
,
or residual. Note that when i and j are outside their

appropriate range, the corresponding value for X(i,j) is assumed to be zero. Some of the

commonly used values for (a, d, c) are (1,1,-1), (1/2, 1/2,0), and (3/4,3/4,-1/2). The (1,1,-1)

is often used, partly because of its arithmetic simplicity (no division or multiplication). This

special case will be treated separately using the index decoupling approach.

DPCM coding involves first computing the residuals E{i,j) using the following equation

derived from the model of equation (1):

E{i,j) = X(i,j) - (aX(iJ - l)+bX(z - 1 ,j) + cX(i - 1 ,j
-

1)) (
2

)

and then encode the residuals into a bit stream, using an entropy coder such as Huffman coding,

run-length encoding, or arithmetic coding, which are lossless [14]. The residuals tend to be of

small values and of high frequencies of occurrence, enabling the entropy coder to reduce the

data size, typically by a factor of 2, 3 or 4.

The computation of E is easily parallelizable on an n x n mesh, assuming the whole matrix

X is available in the processors
(
X(i,j

)
in processor P(i, j)). Each P(i,j) sends its data X{i, j)

to its three neighbors to the south, east, and south-east. Afterwards, each processor (i, j) has

all the data it needs to compute E(i,j
)
according to equation (2). The communication and the

parallel computation take constant time. Of course the entropy coding of E will have to be

parallelized, but this is left out of our scope because it calls for different approaches.

DPCM decoding decodes the bit stream back to the residuals E(i,j), and then computes

the pixel values X(i,j
)
according to equation (1). Clearly, equation (1) is a 2-indexed scalar

recurrence relation of order one, which will be solved in parallel in Sections 3 and 4.

The generalization of equation (1) comes from higher order DPCM and from multidimen-

sional imagery. A DPCM of order (k, t
)
and parameter array a(0 : k,0 : t) assumes a 2D

Markov model of images where every pixel can be largely predicted from its north-west rectan-

gular neighborhood that extends k steps to the north and t steps to the west. The governing

DPCM equation, which is a generalization of equation 1 is the following 2-indexed recurrence

relation of order (k,t ):

k t

X(i,j) = ’EH “(i. s)X(i -U -s) + E(i,j) (
3)

1=0 s=0
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where a(0,0) is equal to 0 so that X(i,j) does not depend on itself; the term a(0,0) is kept to

simplify the expression of the double summation in equation (3). Here again, when the indices

step out of their appropriate bounds, the corresponding terms are assumed to be zero.

Finally, DPCM of order (ti,t2 ,... ,tq )
and parameter array a(0 : *i,0 : t2 ,...,0 : t

q ), for q-

dimensional imagery data, involves a ^-indexed recurrence relation of order .... t
q )

in the

form:

t\ <2 *9

X(ii,i2 ,.:,iq )
= zL - 51 a

{
T\i r2i-i rq)X(ii-r l ,i2 -r2,...,i

q
-T

q)+E(i l ,i2,....iq ), (4)

ri=0r2=0 rq=

0

where a(0,0, ...,0) is equal to 0 so that X(ii, z2 , ..., i
q )

does not depend on itself. As before,

any term is assumed to be zero if its indices are out of their defined bounds. Note that when

t l =t2 = ... = t
q = t, the recurrence relation is said to be of order t.

In this paper we will develop parallel algorithms for solving equations (1), (3) and (4), in

that order of increasing difficulty. We will start with the index sequencing and index decoupling

techniques first, due to their simplicity, and then move on to the general dimension shifting

technique.

3 Index sequencing

Index sequencing applies to equation (1) to compute X from E as follows. For each fixed row z,

in the sequential order i = 0, 1, ..., n — 1, equation (1) is a 1-indexed recurrence relation of order

1, where the index is j, and the last three terms, i.e., X(i — 1, j), (X(z — 1 ,j — 1) and E(i,j ),

are known and available. Here is the algorithm, assuming an n-processor system configured

as a hypercube or a partitionable bus. Processor j hosts column j of E, and is responsible

for computing column j of X. Also, a, b and c are assumed to be stored in all the processors.

Algorithm Index-sequencing(input: X, a, b, c; output: X)
begin

1. for i = 0 to n — 1 do

2. Each processor j
— 1 sends its X(i — 1, j — 1) to processor j;

3. Each processors j computes dj = bX(i — 1 ,j) + cX(i — 1, j
-

1) + E(i, j);

4. All the processors solve in parallel the 1-indexed recurrence relation of order 1

X(iJ) = aX (z, j
-

1) +dj,

where the recurrence index is j ,
thus computing row z of X;

endfor

end

Analysis

Step 2 takes 0(1) time on a partitionable bus, or O(logrz) time on a hypercube, because

the step is a translation (i.e., shift) communication step. Step 3 takes 0(1) time. Finally,

step 4 takes O(logn) time using any standard parallel algorithm for solving scalar 1-indexed
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recurrence relations on n processors [2, 6, 7, 13]. Consequently, step 1, and hence the whole

algorithm, takes O(nlogn) time. The corresponding speedup is 0( n ĝn )
= and the

efficiency is 0(1/ log n).

Clearly, the above algorithm has the advantages of good speedup, good efficiency, and rela-

tively small number of processors. However, it does not exploit the full potential for parallelism,

and thus other techniques are called for.

4 Index Decoupling: A Special Case of DPCM
As mentioned earlier, among the most common values for the parameter triplet (a, 6, c) is

(1, 1,
— 1). In this section we will treat this special case due to its popularity. Index decoupling

will apply to any situation where a = 1 and c — —b.

Under the assumption that a = 1 and c — —6, equation I becomes:

x(i, j) = X(Lj - 1 ) + b(X(i - 1
, j) -X(i-l,j- 1 )) +

which is equivalent to

X(i,j) - X(i,j - 1) = b(X(i - 1,j) - X(i - 1, j - 1)) + E(i,j). (5)

By defining

Y(i,j) = X(i,j)-X(i,j- 1),

equation (5) becomes:

Y{iJ) =bY(i- 1 ,j) + E{i,j).

(
6

)

(
7

)

Observe that equation (7) consists of n independent equations, one per column j ,
where each

equation is a scalar 1-indexed recurrence relation of order 1, and the recurrence index is i. The
initial value — 0 for all j. Due to independence, those n recurrence relations can

be solved simultaneously, where each equation can be solved by a parallel recurrence relation

algorithm on a separate subsystem.

Once Y is computed, X can be computed using a simple relation derived from equation (6):

X(i,j) = X(i,j-l) + Y(i,j). (8)

Here again, equation (8) consists of n independent equations, one per row i
,
where each equa-

tions is a scalar 1-indexed recurrence relation of order 1, and the recurrence index is j. The
initial value X(i

, —1) = 0 for all i. Also, due to independence, those n recurrence relations can

be solved simultaneously, where each equation can be solved by a parallel prefix algorithm on

a separate subsystem. Thus, equations (7) and (8) form the essence of the index decoupling

approach, since they decouple equation (1) into two separate sets of 1-indexed relations. The

algorithm for solving equations (7) and (8) is given next, assuming an architecture of 2D mesh

where every row and every column is a hypercube or a partitionable bus, because a hypercube

or a partitionable bus is an ideal architecture for solving 1-indexed recurrence relations [19, 20].
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Algorithm Index-decoupling(input: E; output: A')

begin

1. for j=0 to n — 1 pardo

2. solve the relation Y (i,j) = bY{i —
1, j) + E(i

: j) on a separate mesh column
;

endfor

3. for 2—0 to n — 1 pardo

4. call parallel prefix on X(i,j) = X{i,j —
1) -f Y{i, j) to run on a separate mesh row;

endfor

end

Analysis

First assume an n x n mesh of hypercubes or partitionable buses. For each j ,
step 2 runs

on column j of the mesh, and takes O(logn) time because it is a 1-indexed scalar recurrence

relation or order 1. Therefore, the whole for-loop in step 1 takes O(logn). Similarly, for each

2
,
step 4 runs on row i of the mesh and takes O(logn) time for the same reason. Accordingly,

the whole for-loop in step 3 takes O(logn) time. Therefore, the whole algorithm takes O(logn)

time, which is faster than the previous algorithm by a logarithmic factor. The speedup over

the sequential algorithm is clearly O(j^), and the efficiency is

If the system is a pxp mesh of hypercubes or partitionable buses, where p < n, then divide

each of the matrices A, Y, and E into pxp square blocks of size
|
x

^
each, and let the

(
2

, j)

block reside in processor (i,j). Since each 1-indexed recurrence relation takes 0(n/p + log p)

time on p processors, and since each row or column of processors has to solve n/p recurrence

relations, it follows that each for-loop, and thus the whole algorithm, takes 0((n/p + log p)n/p)

time. If plogp < n, then the algorithm takes 0{n2
/p

2
)
time, resulting in 0(p

2
)
speedup and

0(1) efficiency, which are optimal up to a constant factor.

Clearly, index dimension yields a time-optimal logarithmic parallel algorithm for the popular

special case of DPCM where (a, 6, c) = (1, —1, 1). However, it does not apply to the general

case of arbitrary values of (a, 6, c) or to multi-indexed relations of arbitrary order.

The remainder of the paper will develop the universal dimension-shifting approach to derive

square-logarithmic-time parallel algorithms for arbitrary multi-indexed recurrence relations of

arbitrary order, starting with 2-indexed relations of order 1, and then generalizing to 2-indexed

relations of arbitrary order and finally to multi-indexed relations.
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5 Dimension Shifting: Conversion to 1-indexed Vector

Recurrence Relations

One fundamental idea in dimension shifting is the use of the shift operator S on column vectors.

If V(0 : n — 1) is a column vector, then SV is another vector W(0 : n — 1) derived from V by

shifting it down one position: for all i > 0, W(i) = V(i — 1), and 1T(0) = 0. The operator

S can be applied repeatedly (say, r times) on a vector. This is equivalent to composition of

operators. Denote by ST the resulting operator. Clearly, <S
r
I/ is a vector derived from V by

shifting the latter down r times, that is, for all i = 0, 1, ..., n — 1, (<S
r
U)(z) = V(i — r), where

a term is 0 when its index is out of bounds. Two special cases of r are worth noting: r = 0

and r = n. S° is by convention the identity operator X, that is, XV = V for any vector V.

For convenience, we will sometimes use 1 instead X. When r = n, observe that SnV = 0, the

zero vector of length n. Accordingly, we simply denote the operator Sn by 0. Note that for all

r > n, ST = 0. Polynomial operators in <S, that is, any linear combination of the powers of <S,

can be easily defined as follows.

Definition 1 Given a real sequence a0 ,
a 1? ..., an_i, a polynomial operator T = YaTo

1 ai$
l

zs

defined to be such that for any vector V, TV = YaTq ai(S'V). The vector T{0 : n — 1), where

T(i) = a* for all i, is called the characteristic vector of operator T.

Throughout the paper, the following notational convention will be followed. For any matrix

M(0 : n — 1,0 : n — 1), denote by Mj the j-column of M, so that Mj(i) = M(i,j). Now we are

in a position to cast equation 1 (and equation 3 later on) of DPCM into a new form.

Recall that equation 1 is

X(i,j) = aX (i, j - 1 ) + bX(i- 1 ,j) + cX(i - l,j - 1 ) + E(i,j),

which, when using Mj(i) for M(i,j ), becomes

Xj{i) = aXj-i{i) + bXj{i — 1) 4- cXj~i(i — 1) + Ej(i).

Using the definition of <S, we have Xj(i — 1) — («SXj)(i) and Xj-i(i — 1) = (<SX,_i)(z). Conse-

quently, the above equation becomes

Xj(i) = aXj_i(i) + b{SXj)(i) + c(<SXj_i)(i) + Ej(i), for all i.

Noting that the last equation involves only the i-th components of the various column vectors,

the index i can be dropped, and the equation becomes a condensed vector equation:

Xj — aXj—i + bSXj + cSXj—i + Ej.

By moving bSXj to the left, and “factoring out” Xj on the left and Xj-

1

on the right, we

obtain

(1 - bS)Xj = (al + cS)Xj-i + Ej. (9)

The question now is how to get rid of the “coefficient” operator of Xj on the left hand side.

Essentially, the question is whether there is an inverse operator (1 — 6<S)
_1

;
if such an inverse
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exists, we can multiply both sides of the equation by that inverse to get rid of the coefficient

operator of Xj. Fortunately, we know how to compute the infinite series expansion of for

real values x: y~ = 1 + 2 + a:
2 + :r

3 + .... This expansion and the fact that <S
r = 0 for r > n

suggest the following theorem for inverting (1 — bS).

Theorem 1 (1 - bS)~ l = 1 + bS + b
2S2 + ... + 6

ra_1
<S
n-1

.

Proof, (1 - bS
) E'To

1 VS* = Er=o b
rSr - E?To &

r+1<^+1 = 1 - b
nSn = 1, because <S" = 0.

Multiplying equation (9) by (1 — bS
)

_1
on both sides, and using Theorem 1, we have

X] = (E b
rSr

)(aI + cS)Xj + (E b
rST

)E,. (10)
r=0 t—

0

Denote by A the operator that is the coefficient of Xj-

1

in the last equation. Since operator

polynomials multiply in the same manner as the more familiar real polynomials, it can be easily

seen that

A =(£ b
rSr

)(aL + cS)=a+ J2(ab
r + cb

r~ l)Sr
. (11)

r=0 r—

1

Denote by B the coefficient of Ej in equation (10), and let Fj = BE3
,that is,

71— 1

8=52 VS*, and F
j
= FEj.

(
12

)

r=0

Now equation (10) can be written as a 1-indexed vector recurrence relation of order 1:

A
j
— AXj—\ + Fj (13)

where the X,-’s are the unknowns (to be computed), A is a known operator with known param-

eters (which depend on the given values a, b and c, as shown in equation (11), and the F/s are

known vectors because they are computable using equation (12).

Although equation (13) has the simple form of a linear recurrence relation of order 1, the

“multiplication” of a vector by an operator is not usually encountered in the literature on parallel

algorithms for recurrence relations. Neither is it clear how to parallelize that multiplication

operation. However, the next theorem below will show that multiplying a vector by a polynomial

operator is nothing but a convolution, a partial convolution to be precise.

Recall that the convolution of two vectors JJ {0 : n —
1) and 1/(0 : n — 1) is a vector

W(0 : 2n — 1) where W(i) = Er=o U(r)V(i — r ), using again the convention that when indices

are out of their bounds, the corresponding terms are zeros. Only the first n components of

W will be of use to us. Therefore, we will denote by <g> the partial convolution operation that

returns the first n components of the answer of a full convolution. For ease of reference, we will

define partial convolution formally.

Definition 2 Let £7(0 : n — 1) and V(0 : n — 1) be two vectors. The partial convolution of

U and V, denoted U®V
,

is a vector W(0 : n — 1) of the same length as U and V such that

W(i) = EEo U(r)V(i - r), for i = 0, 1, ...,n - 1.

9





Since full convolution is an associative operation, it can be easily shown that partial convo-

lution 0 is associative too.

Theorem 2 Let T = X)r=o arS
r

be a polynomial operator of characteristic vector T
,
where

T(i )
= Gj, and let V (0 : n — 1) be a vector. Then TV = T0V.

Proof: Let W = TV = 52r=o QrdTV, and recall that (<S
rV)(z) = V(i — r). Therefore, W(i) =

I3r=o ar(<5
r V)(z) = Sr=o arV (* — r

) = ^r=o T(r)V(i — r), for all i = 0, 1, ..., n — 1. It follows

that W = T0V, and thus TV = T0V.

Denote by A and B the characteristic vectors of operators A and B defined in equations (11)

and (12), respectively. Then, by the previous theorem, equation (13) and the accompanying
definitions can now be put in a condensed form:

Xj = A<g>X,_! + Fj: j = 0, 1, ..., n - 1 (14. a)

Fj = B®Ej (14. b)

A(0) = a, A(r) = abT + cb
T~ l

for r = 1,2, ..., n — 1 (14.c)

B(r) = b
T
for r = 0, 1, ..., n — 1. (14. d)

Note that the initial value of equation (14.a) is X_i being the zero column vector.

In the next section a parallel algorithm for computing first the parameters A and F/s, and

then the vectors Xj :

s, using equations 14, will be presented and analyzed.

6 Parallel Algorithm for 2-Indexed Relations of Order 1

To arrive at a suitable architecture for solving equations (14), two observations must be noted.

First, first-order 1-indexed scalar recurrence relations are best solved on a hypercube or a

fully partitionable bus [19, 20]. Second, since each term in equation 14.a is a vector, and the

operations involved are vector operations, namely, 0 and vector addition, every processor in

the scalar case is best replaced by a column of processors, preferably connected as a hypercube

or a fully partitionable bus, to run 0 fast. Therefore, a good topology for the overall system is

an n x n mesh where every row and every column is either a hypercube or a fully partitionable

bus. (Note that an n2
-node hypercube can be configured as an n x n mesh of subcubes.) Each

processor (i,j) hosts Xj(i) = X(i,j)
:
E(i,j), Fj(i), A(j) and B[j). The algorithm will first

compute vectors A and B in the leftmost column of the mesh, and then broadcast them row-

wise to the remaining mesh columns; afterwards, each mesh column j computes Fj = B<g>Ej]

finally, equation 14.a is solved in parallel by all the n columns of the mesh, where every column

is treated as a subsystem in which 0 and vector addition are computed in parallel.

Note that the system may be a p x p mesh of the same topology as before, for p < n. In that

case, each of the matrices X
,
E and F is divided into p x p square blocks of size

^
x

|
each,

such that blocks (z, j) reside in processor (z, j). Also, A and B are divided into p subcolumns

of size n/p each; they are computed in the leftmost column of the mesh, and then the z-th

subcolumn of A and of B are broadcast row-wise to all the processors in row z of the mesh, for

all z. The computations are parallel across blocks, but sequential within the blocks, because

each block is allocated to a single processor.
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The algorithm is given next.

Algorithm Index-2-order-l (input: E, a, 6, c; output: A)
begin

/* Setting up of equation 14. a: computing B
,
A and the F/s */

1. The 1st column of the mesh performs parallel prefix to compute B(0 : n — 1) where

B{r) = b
T

\

2. The 1st column of the mesh first computes vector D = SB by shifting down vector B one

step, and then computes vector A in parallel asA = a*B + c*D]
3. The 1st column of the mesh broadcasts vectors A and B row-wise, that is, for each row z,

the 1st processor hosting A(i) and B{i) broadcasts them to all the processors in its row;

4. for j=0 to n — 1 pardo

5. Compute Fj = B®Ej by a parallel convolution algorithm on a separate column;

endfor

/* Solving recurrence relation (14. a) */

6. Solve the 1-indexed vector recurrence relation X
3 — A0A?

_ 1 + Fj]

Note that since each term in the recurrence relation is a column vector, each vector

is handled by a separate mesh column, and each vector operation involved (0 and +)
is performed in parallel within the host column of the mesh architecture.

end

Analysis

First assume an n x n mesh of hypercubes or partitionable buses. Step 1 takes O(logn)

time. Step 2 takes 0(1) time if using partitionable buses; however, if the leftmost column is a

hypercube, the shifting down of B by one step is a mapping i —> i + 1, which requires O(logn)

time to execute, and the rest of the computation of A takes 0(1) time. Step 3 takes 0(1) time

if the rows are buses, and O(logn) if the rows are hypercubes. Step 5 (and thus Step 4) takes

O(logn) times on either topology using FFT [19, 20]. Finally, step 6 takes 0((logn)(T® + T+)),

where T® is the time to execute one 0 operation on one mesh column, and T+ is the time

to add two vectors in one mesh column. Clearly, T® = O(logn) as indicated earlier, and

T+ = 0(1). Therefore, step 6 takes a dominant 0(log2 n) time, leading to an overall algorithm

time complexity of 0(log2 n). The corresponding speedup is 0(^p-^), and the efficiency of the

algorithm is O(^).

If the mesh is p x p where p < n, the same analysis applies with a few adjustments.

Essentially, one convolution operation 0 takes 0(n/p + logp) on p processors. Therefore,

step 1 takes 0(n/p + logp) time. One can bypass step 3 by broadcasting (a, 6, c) to all the

processors, and letting each column perform steps 1 and 2 redundantly and independently in

0(n/p + logp) time. Steps 4 and 5 involve n/p convolutions per column of processors, thus

taking 0{{n/p)(n/p + logp)) time. Finally, step 6 takes 0((n/p + logp)(T® -f T+ )), where

now T® = 0(n/p + logp) and T+ = 0(n/p) because of using only p processors per each

operation. Therefore, step 6, and consequently the whole algorithm take 0({n/p + logp) 2
)

11





time, If plogp < n, then logp < n/p and the whole algorithm takes 0{{n/p) 2
)
time, resulting

in speedup of 0(n2/(n/p
)

2
)
= 0(p

2
)
and efficiency 0(1).

7 Generalization to 2-Indexed Relations of Arbitrary Or-

der

as mentioned earlier, predicting values in DPCM can involve more than one previous term in

each matrix dimension. That leads to higher order DPCM, or specifically DPCM of order (k, t),

for which the DPCM decoding relation is equation (3) which we re-state here as equation (15):

X{i,j) =J2J2 a
(
l

i
s)
X

(
i ~ ~ s)+E(i,j ), (15)

1=0 s=0

where a(0, 0) is equal to 0 so that X(i,j) does not depend on itself. The array a(0 : k, 0 : t) of

DPCM parameters is given, and k and t are typically small positive integers.

Equation (15) will be converted to a 1-indexed f-th order vector recurrence relation, using

the same shift operator S. Using the notation Afj(i
)
for M(z, j), equation (15) becomes

X}(i) = EE a(l, s)Xj-s (i -l) + Ej(i)

1=0 s=

0

Since Xj- S (i
— l) = (SlXj_s )(i), the above equation transforms to

XA0 = 't't(a(l,s)S‘X3-,)(i)+Ej (i), for all i.

1=0 s=0

Because the last equation involves the i-th components of the various column vectors, the index

i can be dropped, and the equation becomes a condensed vector equation:

s=0 1=0

where the order of the double summation is reversed. By splitting the summation over s into

two parts, one for s = 0 and the other for s ^ 0, and by recalling that a(0, 0) = 0, we obtain

X, = (E a(l, 0)S‘Xj) + EE a(l, s)S‘Xj.t + Er
1=1 s= 1 i=0

Next, move the first sum on the right hand side to the left, and factor Xj out, resulting in

(l-Za(l,0)#)XJ = 't{ta(l,s)Sf)XJ-. + Ej
. (16)

1=1 s=l 1=0
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To simplify the notation, let

75 = 1 -£«(«, OJS
1

, Ts = 'ta(l,s)S
l

1=1 1=

0

so that equation (16) becomes ToXj = Es=i TsXj- s + Ej, leading to

Xj = + T0~'Ej. (17)
S=1

As we did with equation (5) in Section 4, we have to invert the polynomial operator %.
The inversion here is, however, more complex than it was in the case of equation (5). As the

next theorem will show, T0
~ l

does exist, and it is a polynomial operator whose coefficients will

be the solution of a scalar recurrence relation of order k.

Theorem 3 1) 7q
_1 = YlTXo C(l)Sl

,
where the C(l)’s satisfy the following 1-indexed scalar

recurrence relation of order k:

k

C(0) = 1, C(r) = '^2 a(l,0)C(r — l), for 1 < r < n — 1. (18)

z=i

2) For every s = 1, 2, . .
.

,

t, %~ lTs = Ef=o Bs (l)S
l

,
where

Bs = C®a(0 : n —
1, s ). (19)

Note that for m > k, a(m, s
)
= 0.

Proof: 1) The C(l)'s satisfy (1 — T,’i=ia{l,0)S
l

)(Yfi'TQ C(l)Sl

)
= 1. In that identity relation,

the coefficient of <S° is C(0) on the left side and 1 on the right side, leading to C(0) = 1. For

r = 1
, 2, ...n — 1

,
the coefficient of S7-

is C(r) — a(^0)C(r — l
)
on the left hand side,

and 0 on the right hand side. Thus, C(r) = a(Z, 0)C(r — /). By taking C(m) = 0 for

m < 0, the value of C(r) simplifies to C(r) = J2i=i a{U 0)C(r — l).

2) Thr proof of this part follows immediately from observing that operator polynomials multiply

in the same way as real polynomials, that polynomial multiplication is equivalent to convolution

of the coefficients, and that Sr — 0 for all r > n.

Using Theorem 3, and recalling from Theorem 2 that applying a polynomial operator to a

vector is a convolution ®, equation 17 becomes

Xj = EUi Bs®Xj-s -f Fj (20.a)

Fj = C®Ej. (20.b)

Clearly, equation 20. a is a 1-indexed vector recurrence relation of order t. This completes

the dimension shifting from index dimension to term dimension. It remains to shift the order

dimension to term dimension.

The standard method for solving 1-indexed recurrence relations of order t > 1 is to convert

the equation into a vector equation of order 1 such that every vector has t terms, where each

13





term has the same dimensionality as the terms of the original recurrence relation. Specifically,

equation 20.a will be converted to the following form

X
j = AQX + F

j

(21)

where Xj is a column vector of t vectors

Xj = [Xtj~ i Xtj_2 Xtj_2 Xtj-t]
T

, j = 1,2, ...,n/t,

and A
,
F

j

and operation © are to be defined. Note that in the definition of Xj
,
the exponent

T stands for matrix transpose. Note also that Xq is the zero vector of length t x n.

The conversion from order t to order 1 is usually straightforward, but because each term

in equation 20.a is a long vector and the operations involved, especially ©, are fairly costly,

the conversion becomes a considerable and time-consuming task, and thus warrants special

attention to parallelize it. The conversion entails computing the matrix A and the vectors F/s,

and defining the operation ©.

The values of A and the Fj'
s are derived by repeated application of equation (20. a) so that

each Xtj-r ,
for r = 0, 1, ...,t — 1, is expressed in terms of Xt(j~ i)_ l3 X£(j_i)_2 ,...,.Xf(j_i)_t and

Ftj-r, Ftj-r-i,...,Ftj- t . We summarize next the outcome of that derivation/conversion process,

leaving out the derivation details for the sake of brevity.

• The matrix A in equation (21) is a t x t matrix where each term is a vector of length

n, for 2 = 1
,
...,i and s = 1,2, ...,t. Specifically, A^s satisfies the following equation

At,s — Fs ,
— Bs^Ai^i T A^s .j_i ,

i t 1, 2, s — 1, 2, ..., t
(
22

)

where Bs was defined in equation (19) within Theorem 3.

• For every column vector Y = [Ti Y2 ... Yt]

T where each Yi is a vector of length n,

t

AQY = Z
,
where Z(i) = ^2 AiiS<g>Ys . (23)

S=1

Note that A(-)Y is similar to a matrix-vector product except that the scalar multiplication

operation is replaced by the vector convolution operation <g>. Note also that if © is

performed on a system consisting of t subsystems, where subsystem i computes Z(i),

then the time TQ = txT® + (t - 1) x T+ . In particular, if each subsystem has n

processors, then T® = O(logn) time by performing parallel convolution through FFT,

and T+ = 0(1) because it is a parallel vector addition. Hence, T© = O(tT0 )
= O(tlogn).

• Each column vectors Fj in equation 21 is of the form

F, = [FW Fj3 . .

.

Fj,t]
r

, (24)

where the terms FjjT are themselves vectors of length n, satisfying the following equation

Fjj — Ftj— t ,
and

t

for r = 1,2, ..., t - 1, Fj?r = Ftj-r + J] A£+r+i_ S)i©F£j_ s , j = 1, 2, ..., n/t. (25)

s=r+l

Note that the F
tJ _r ’s are defined according to equation 20. b.
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The general DPCM decoding algorithm must solve equation (21). For that purpose, it must

first compute equations (18), (19), (20.b), (22) and (25). To understand the algorithm, it helps

to view the n x n mesh architecture in two ways, one way as a sequence of n columns labeled

globally 0,1 ,...,

n

— 1, and another way as partitioned into n/t contiguous subsystems of t

contiguous columns each (n/t is assumed to be an integer for simplicity). The subsystems are

labeled 1, ...,n/£, and the columns within each subsystem are labeled locally 1,2, ...,£.

Data Assignment
Assume that each subsystem has the array a such that each coi imn s of array a is stored in

the s-th column of each subsystem, one term per processor. Recall again that for m > k,

a(m, s) = 0. In addition to column a(., 1), column 0 of the mesh has a(.,0). The columns Ej

and Fj are stored in column j of the mesh, that is, E(i,j
)
and F(i,j

)
are in processor (i, j).

Each local column s of each subsystem j hosts vectors Bs ,
A^s for alH = 1, 2, ..., £, and Fj

iS
.

Algorithm Index-2-order-k-t (input: E,a (0 : /c, 0 : £); output: A(0 : n — 1, 0 : n — 1))

begin

1. Column 0 of the mesh computes C(0 : n — 1) by solving the 1-indexed scalar recur-

rence relation (18) of order k, using any standard parallel recurrence relation solver.

Afterwards, C is broadcast row-wise to all the columns in the mesh.

2. for j—0 to n — 1 pardo

3. Grid-column j does: Fj = C®Ej by a parallel convolution algorithm;

endfor

4. for s = 1 to t pardo

5. Local column s of each subsystem does: Bs — C<S>a (0 : n — 1, s); AtiS = Bs \

endfor

6. for i = t down to 2 do
7. Local column 1 of each subsystem broadcasts Aij rowwise to the columns of its

subsystem;

8. Each column s = 2,3 ,...,£ in each subsystem sends rowwise the column vector

Ai,s to the previous mesh column;

/* Steps 7 and 8 deliver data to processors to compute equation (22) next. */

9. for s = 1 to t pardo

10. Local column s of each subsystem does: i,s = Bs<g>A^i + Ai)S+i;

endfor

endfor

11. for j= 1 to n/t pardo

12. for r= 1 to t pardo

13. Local column r of subsystem j does:

it gets Ftj- S from local column s of subsystem j, for s = r,r + 1, ...,£;

it then computes Fj>r = Ftj_T +^=r+1 At+r+1_ Sti®Ftj- s ;

endfor

endfor

14. All the subsystems of the mesh work together to solve the 1-indexed recurrence relation

Xj = AQXj-i + Fj in parallel, where Xj resides in subsystem j;

end
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Analysis

Step 1, being a 1-index scalar recurrence relation of order k
,
takes 0{k log|) time. The

broadcast of C afterwards takes 0(1) time on partitionable buses, or O(logn) on a mesh of

hypercubes. Step 3 (and thus step 2) takes O(logn) time, being a convolution. Similarly, steps

4 and 5 take O(logn) time for the same reason. The communication steps 7 and 8 take 0(1)
time on a mesh of partitionable buses, or O(logn) on a mesh of hypercubes. Steps 9 and 10 take

O(logn) time, since they involve a convolution and a vector addition. Step 13 requires each local

column s in each subsystem j to bicadcast its vector Ftj_s to several columns r = 1, 2, ..., s — 1

within the same subsystem. Each such broadcast takes 0(1) time on partitionable buses, or

O(logn) time on a mesh of hvpercubes. Since step 13 requires £ such broadcasts, which have

to be performed one after another, the communication time of step 13 is 0[t) on partitionable

buses, or O(tlogn) on a mesh of hypercubes. After the broadcasts, the computation of Fj>r

in step 13 takes O(tlogn). Step 14, being a 1-indexed recurrence relation of order 1, takes

0((T© -f T+ )
log j). The time T© = 0(£T©) = 0(£logn) as was explained right after equation

(23). Therefore, the total time complexity of the algorithm is 0(k log | + £lognlogy), which

is dominated by 0(t log
2
n) for small values of £ and k. Since the sequential time of computing

the original recurrence relation (15) is 0(ktn2
), it follows that the speedup is 0{kn2

/ log
2
n)

and the efficiency is 0(k/ log
2
n).

8 Generalization to Multi-indexed Relations

In this section we treat the most general case, namely, g-indexed relations of arbitrary order,

where q > 2. The treatment will require a generalization of: (1) the ID shift operator to

(

q

— l)-dimensional shift operators, (2) the subsequent generalization of the “single-variable”

polynomial operator to something that resembles a multivariable polynomial operator, and (3)

finally the use of
(

q

— l)-dimensional convolution rather than ID convolution. The conversion

process from k-indexed arbitrary-order relations to 1-indexed relations of order 1 is otherwise

the same as in the previous sections.

Recall from equation (4) that a g-indexed recurrence relation of order (£i,£2 ,
-~,£g )

has the

following form:

t\ t-2 tq

- Y. a(F,r2 ,...,rq)X{i 1 -r1 ,i2 -r2 ,...,iq
-r

q ) + E(i l ,i2 ,...
:
i
q ) (26)

n=0r2=0 r<j=0

where = 0,1,..., Ni — 1 for l = 1,2, ..., g, the array E{0 : N\ — 1,0 : N2 — 1, ..., 0 : N
q
— 1)

and the array a(0 : £ x ,
0 : £2 , — ,

0 : tq )
of parameters are given, a(0, 0, ..., 0) is equal to 0 so that

X(ii, i2 ,
..., i

q )
does not depend on itself, and ti « Ni for l = 1, 2, ..., q. As before, any term is

assumed to be zero if its indices are out of their defined bounds.

To simplify the multi-index cumbersome notation, we will introduce some notations and

conventions. Let

• 71 = {(r l5 r2 , ..., rq ) |

r
t = 0, 1, ...£/ for all l = 1,2, ..., g}, and any r in 71 is by convention

a vector r = (r l5 r2 ,
~-,rq ).
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• 'll' = {(n, r2 ,
rq_i) I

ri = 0, 1, ...t; for all l = 1,

2

,

q

- 1}.

• 71* = 71 — {(0, 0. 0)}, that is, the set 71 except of the zerotuple.

• 71'* = 71' - {(0,0,...,0)}.

• X = { (zi, z 2 ,
iq)

|

ii = 0, 1, ...TV; — 1 for all l = 1,2, ..., q), and any / in X is by convention

a vector i = (ij, i 2 , ..., i
q ).

• X' = {(?!, z2 , ..., i
q-i) |

ii = 0, 1, ...TV; - 1 for all l = 1,2, ..., q - 1}.

• Convention: If r = (ri, r2 , ..., rq )
is an index vector in 71

,
then r' is vector derived from

r by dropping the last term of r. Clearly, r' = (r 1? r2 , ..., rq_i) G 71', and
(
R',r

q )
= r.

Similarly, for any index vector / in X, denote by /' the vector derived from / by dropping

the last term from the latter.

• Convention: For any ^-dimensional array M and any integer i
q ,

denote by Miq the (q
—

l)-dimensional array such that Mi
q
(ii, i2 , ..., i

q~i) = M[ii, z2 , ..., i
q~\, i

q ). Equivalently,

Miq (r) = M(i).

Accordingly, equation (26) becomes

*(/)= E a(«)X(f - «) + £(/).

RaTV
(27)

Using the last two conventions indicated above, the last equation translates to

Xi,(i')= E oWAi.-Jr -R') + Ei,
(/').

R~1Z-

Split the multiple summation on the right hand side of the previous equation into two parts:

one for r
q = 0 and another for r

q ^ 0. This leads to

= Y, a{R',0)Xig {r -R')+J2 a(R',r
q
)Xiq.rq {r - r') + Elq {r). (28)

R'eTl'* R'eTl'

At this point we introduce the generalization of the shift operator. For each vector r' =
(rq, r2 , ..., r9_i) of non-negative components, define the shift operator Sr to operate on {q

— 1)-

dimensional arrays V of size x TV2 x • • • x TV
9
_ X as follows: Sr'V is vector of the same

dimensional structure as V such that
(Sr'V)(i') = V(r — r') for all /' G X'. Therefore, Xiq (r

—

r'
) = (Sr'X1q

)(r). Note that if r; > TV; for some /, then SR ’ is the zero operator, that is Sr>V
is equal to the zero array of size TVX x TV2 x • • • x TV

9
_ X . Note also that if R' and s' are two index

vectors in 71', then it can be easily verified that SR'Ss< = <Sr'+s'- Indeed, we can correspond

to SR > a polynomial term x
r

f x
r

2
2
...x

r

q

q
Xi of q

— 1 variables; the product (i.e., the composition)

of two operators SR'SS' is equivalent to the product of their corresponding polynomial terms.

Hence, one can define "multivariable” polynomial operators.
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Definition 3 Given a (q-1) -dimensional real array T(i'), r G T
,
the operatorT — J2rej' T(i')Sp,

called the multivariable polynomial operator of characteristic array T, is such that for any array

V of size Ni x N2 x • • • x Nq- 1} TV" = T(i')(Sr V).

Equation (28) can now be put in the following form:

t
<)

Xi,{v) = ( E a(*',0)SffXi,)(/') + E( E '•l*,T
q)SB:Xi,- T,)(r) + £„(,'). (29)

RelZ'* r<= 1 R'elZ'

Since, the vector-index r is the same in all the terms of the previous equation, we can drop

it resulting in a compact (q
— l)-dimensional array equation

tq

Xl
q = X ^(^,0)5^^ + X X a

{
R'i rq)^R'^iq-Tq + Eiq . (30)

R'elZ'*
r^ 1 R'elZ'

Next, move the first summation on the right hand side to the left, and factor Xlq out. This

results in

(1- X a(R',0)SR/)Xiq

R'elZ'*

tq

X X! a
{
R'') rq) <SR' X-iq-Tq

r<
?
=1

R'elZ'

+ E (31)

We simplify the notation by defining

7o = 1 — X a(R',0)SR', Trq = X a (R,Tq)SR', for r
q = l,2,...,t

9
.

R'elZ'* R'elZ'

As a result, equation (31) becomes ToXiq = TlTi Tq
Xiq-Tq 4- Eiq ,

leading to

Xi, = E 7T%Vi,-,, + Ta~'Eiq (32)
Tq= i

The next theorem, which combines and generalizes Theorems 2 and 3 to multivariable

polynomial operators, will show that the application of a multivariable polynomial operator

to an an array is equivalent to multidimensional partial convolution, that the inverse of T
exists and can be computed by solving recursively a (q — l)-index recurrence relation of order

(ti, t2 , ..., t
q
- 1 ), and that the product of two multivariable polynomial operators is a polynomial

operator whose characteristic array is the partial convolution of the characteristic arrays of the

factor operators. To that effect, we first define partial multidimensional convolution, and then

prove the theorem afterwards.

Definition 4 The partial convolution of two N\ x A7

2 • • • x Nq-\ arrays U and V is an N\ x

N2 • • • x Nq-i array W
,
denoted W = U<8>V, such that

W (*!, *2 , Vi) = Er1=oX2

2=o - EXUo U (
r i, r2 ,

r

q
-i)V(A - rx ,

i2 - r2 ,
..., i

q- 1 - r,_i).
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Theorem 4 1) Let T and V be two N\ x N2 x — x Nq-i arrays, and 7~ i/ie multivariable

polynomial operator of characteristic array T. Then, TV = T®V

.

2) 7q
1 = where C is an N\ x N2 x • • • x array that satisfies the following

(q — l)-mde:r recurrence relation of order (ti,t2 ,

C(0.0,....0) = 1, C{i')= 2 a(R',0)C(/'-R') (33)

r'FR'

3) For every i, = 1,2 V'VS = Hrehip Biq (i')Sy, where

Biq =C®a iq , (34)

and a*, is an Ni x N2 x x .V
g_i array sac/z that aiq (ii,i2 ,

...,iq-\) = a(ii,i2 ,
...,i

q
_ 1: i

q ) if

(ii,i2 ,
...,i

q
_ i) ?5 m 72/

,
and equal to zero otherwise.

Proof: The proof of (1) follows the same reasoning as in the proof of Theorem 2. The proof

of (2) and (3) follows the same reasoning as in the proof of Theorem 3.

Now, by using the previous theorem, we convert equation (32) to a form identical to equa-

tions (20) (correspond i
q
to j and r

q
to s):

Xi
q
= 2r,=i Frq®Xiq_Tq + Fiq (35.a)

Fiq =C®Eiq . (35. b)

Clearly, equation (35.a) is a 1-indexed recurrence relation of order t
q ,

where every term is

an jVj. x A^2 x - • • x N
q_i array. This completes the dimension shifting from index dimension to

term dimension. The shifting of the order dimension to term dimension from here on mirrors

the same process conducted in the previous section starting from equation (21) onward, and,

therefore, will not be repeated. The resulting 1-index recurrence relation of order 1, similar to

equation (21), is

Xi
q
= AQXi

q
-\ + Fi

q (36)

The definitions of A
,
Xiq ,

Fiq , Fi
q ,
rq ,

and © are formally the same as in the previous section,

with the proper substitutions. Note in particular that A is a t
q
x t

q
matrix where every term

is an Ni x N2 x • • x N
q
- 1 array, and the convolution © involved in the definition of 0 is

now a (q
— l)-dimensional convolution on N\ x N2 x • • • x 7V

g_! arrays.

The architecture is naturally an N\ x N2 x • • x N
q
mesh of hypercubes or of partitionable

buses. As in the previous section, the mesh can be viewed as N
q
submeshes (as opposed to

columns), each being an ATi xA^x • • • xN
q-i mesh. The submeshes are labeled 0, 1, Nq

— 1. On
the other hand, the whole mesh can be viewed as partitioned into N

q
/tq contiguous subsystems

of tq contiguous submeshes each. The subsystems are labeled 1, 2, ..., Nq
/t

q ,
and the submeshes

within each subsystem are labeled locally 1,2, ...,t
q

.

Data Assignment
Assume that each subsystem has the parameter array a such that the (sub) array arq is stored in

the r
9
-th submesh of each subsystem, one term per processor. In addition to array a\, submesh

0 of the mesh has the array a0 . The arrays Eiq and Fiq are stored in submesh i
q ,

that is,

E{i\, i2 ,

i

q )
and F(ii, i2 , ..., iq ) are in processor (f l5 i2 , ..., iq). Each local submesh r

q
of each

subsystem i
q
hosts arrays BTq , Ai^q

for all i = 1,2 and FiqjTq .
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The algorithm for solving equation (36) is largely identical to the Index-2-order-k-t algorithm

for equation (21) presented in the previous section. To map the latter algorithm to an algorithm

for equation (36), only three major changes are needed:

• Step 1 of the algorithm must be a recursive call to compute the array C of the (q
— 1)-

indexed recurrence relation (33) of order (£1? t2 ,
i
9_i).

• Add a basis step corresponding to the case where q = 2, in order for recursion to work.

• Substitute “submesh” for “column” and “Grid-column”, “(g-l)-dimensional convolution”

for “convolution”, “array” for “vector column”, t
q
for £, Nq

for n, i
q
for j, r

q
for s.

Algorithm General(input: £(0 : Ni , ..., 0 : N
q ), a(0 : ti , ..., 0 : £

g ); out: X(0 : iVi, ..., 0 : N
q ))

begin

0. Basis step: if q = 2, call algorithm Index-2-order-k-t and return;

1. Submesh 0 calls the algorithm “General” recursively to compute C(0 : iVi, ..., 0 : N
q
~ i)

by solving the
(

q

— l)-indexed scalar recurrence relation (33) of order (f^ £2 ,
••-, £<?- 1 )-

Afterwards, C is broadcast along dimension q to all the submeshes.

2. for i
q
=0 to N

q
— 1 pardo

3. Submesh i
q
does: Flq = C®Ei

q
by a parallel convolution algorithm;

endfor

4. for r
q = 1 to t

q
pardo

5. Local submesh r
q
of each subsystem does: Br<] = C®aTq ;

Atq}Tq = BTq ,

endfor

6. for i = t
q
down to 2 do

7. Local submesh 1 of each subsystem broadcasts A^i along dimension q to all the

submeshes of its subsystem;

8. Each submesh r
q = 2. 3, ..., t

q
in each subsystem sends the vector array A^rq one

step down along dimension q in the mesh;

/* Steps 7 and 8 deliver data to processors to compute A next. */

9. for r
q = 1 to t

q
pardo

10. Local submesh r
q
of each subsystem does: i ir? = Brq ®Ai^ + A^rq+ i\

endfor

endfor

11. for i
q
= 1 to Nq/tq pardo

12. for r=l to t
q
pardo

13. Local submesh r of subsystem i
q
does:

it gets Ftq iq
—rq from local submesh r

q
of subsystem iq ,

for r
q = r,r + 1,

it then computes FiqJ = Ftqiq-r +
endfor

endfor

14. All the subsystems of the mesh work together to solve the 1-indexed recurrence relation

Xiq = A(DX iq -

1

+ Fiq in parallel, where Xiq resides in subsystem i
q ;

end
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Analysis

Let T(Ni,ti, A2 ,
t2 i

N

q ,
t
q )

be the parallel time complexity of the whole algorithm, and let

A = NxN2 ...Nq . Step 1, being a recursive step, takes T(A1 ,t1 ,
A2 ,f2 , ...,N

q-i,tq-i) time. The
time of all the remaining steps is dominated by the last step, step 14, which is the solution of the

1-indexed recurrence relation of order 1, equation (36), and thus takes 0((TG+T+ )
log time.

Note that © is a matrix-vector product where the matrix is t
q
x t

q
and the multiplication oper-

ation is replaced by (q - l)-dimensional <8>. Multidimensional convolution can be implemented
by multidimensional FFT, performed one dimension after another, in 0(log A], + logN2 H 1-

log Ng-i) - 0(log(Ari7V2 ...A9_ 1 )) time because FFT in dimension l takes O (log Ni) time. Since

Te = 0(t
q
T®) (as was explained after equation 23), it follows that T0 = 0(tq

log(N/N
q )). Since

also T+ = 0(1), it follows that step 14 takes 0(t
q log(NiA2 ...A9_i) \og(Nq/tq )). Consequently,

we have

T{NU t l5 ..., Nq ,
t
q )
= T(Ni, tu ..., Nq

_uVO + 0(t
q
log^.-A^) \og(N

q
/t

q)).

This recurrence relation easily yields that

T(NU tu A2 ,
t2 , ..., Nqi t

q )
= T(Ni, t x ) + 0(Ef=2 ti lo&(Ni—Ni-i) log(JVi/t4 ))

Clearly, T(NX ,
t x ) = 0(t x log ^) because it corresponds to solving a scalar 1-indexed recurrence

relation of order t x . Since \og(Ni...Ni-i)\og(Ni/ti) < logN log(Ni /t
t )
< \ogN\ogNi < log

2 A,
the time formula for the whole algorithm simplifies to

T(Nu ti,N2 ,t2,...,Nq ,tq ) = 0(QTf
z )
log

2
N).

i=i

Since the sequential time of solving equation (26) is 0(tit2 ...t
q
N), it follows that the speedup is

logMv )’ an<^ efficiency is 0(^^^j^p-^), where N is the size of the output array

X. In the typical cases where the ti s are small constants, the overall time becomes 0(log
2 N),

and the speedup and efficiency become 0(N/ log
2 N) and 0(1/ log

2
A), respectively.

9 Conclusions

In this paper we developed a dimension-shifting approach for novel parallel solution of multi-

indexed recurrence relations of arbitrary order in square-logarithmic time, using a mesh of

hypercubes or of partitionable buses. Multi-indexed recurrence relations have not been ad-

dressed before, but hold special significance due to their application to DPCM, which is a

standard image compression technique.

We introduced two other techniques, index sequencing and index decoupling. The first

is very simple and works well for a small number of processors, but does not exploit all the

potential for parallelism. The second is limited in its applicability, but when applicable it is

faster than the other two techniques. Indeed, it takes logarithmic time, which is optimal.

For future work, it is of practical interest to consider how best to load-balance and possibly

pipeline the algorithms “Index-2-order-k-t” and “General” on a system of fewer processors than

the size of the output A, for the purpose of minimizing the parallel time complexity.
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