
NATL INST. OF STAND & TECH R.I.C

AlllDS DfiVOD?

NIST

PUBLICATIONS!

yH'i'Hi*!®)!!
jfif

NISTIR 6076

Translating IGRIP Workcells into VRML2

Qiming Wang
Sandy Ressler

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

QC
100

.U56

NO.6076

1997

NIST

NISTIR 6076

Translating IGRIP Workcells into VRML2

Qiming Wang
Sandy Ressler

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

September 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Robert E. Hebner, Acting Director

*1

Translating IGRIP Workcells into VRML2

Qiming Wang and Sandy Ressler

Information Technology Laboratory

National Institute of Standards and Technology

Abstract

IGRIP has been widely used for the simulation of off-line robot programming and

manufacturing processes in various industries. The Virtual Reality Modeling Language version 2

(VRML2) enables the creation of three dimensional (3D) interactive worlds incorporating

behaviors and animations which can be operated over the Internet. VRML2 models can be

automatically generated directly from existing IGRIP workcells through the use of an efficient

translator written at NIST. This work benefits users wishing to share their manufacturing

simulations on the World Wide Web. VRML2 IGRIP workcells can also be easily integrated

with models generated using other software products.

A translator for an IGRIP workcell to VRML2 written in C, the Igrip2Vrml translator, has

been implemented for Unix systems. This software can be used for translating IGRIP devices,

workcells, and their behaviors to VRML2 files. The translator converts the Deneb Parts file

format, IGRIP device, workcell, and recording file formats into VRML2. The IGRIP device,

workcell, and recording file formats were reverse engineered in order to accomplish this.

Technical issues of translation, such as the conversions of the IGRIP transform matrix to a

VRML2 Transform node, the IGRIP device hierarchy structure to the VRML2 hierarchy, and

workcell recordings to VRML2 key frame animations, are presented in this paper. The resulting

VRML2 worlds contain complex Deneb workcells with devices that operate according to the

Deneb simulation. The advantages and limitations of the translator are discussed. Several

examples of translated IGRIP workcells from different projects are presented.

Introduction

Deneb IGRIP is an interactive, three dimensional (3D) graphics-based simulation software

package which provides tools for evaluating and verifying production concepts, workcell designs,

off-line robot programming, and manufacturing processes. It has been extensively used in a

variety of industries and research institutions. Typical of IGRIP workcells that have been

developed are simulations of robot motion, ship movement, machinery operation, and human
workers.

Virtual Reality Modeling Language (VRML) is a file format for describing 3D worlds over

the Internet. VRML Version 1.0 (VRMLl) does not support behavior in the 3D world. VRML
Version 2 (VRML2) describes 3D interactive worlds incorporating behaviors and animations

which can be operated over the Internet. VRML2 allows sharing of 3D worlds over the Internet.

It can also act as a Web publishing media to integrate the 3D models from different software

products. 3D manufacturing workcell models and simulations of their behavior is an important

application area of VRML2.
Building 3D VRML worlds from scratch is time-consuming work. Even with a good VRML

authoring tool, it can take several days to build a VRML model. On the other hand, there are lots

of existing 3D models generated by other 3D modeling packages. Translating those 3D models

with different formats to VRML files is an ideal way to generate VRML worlds. Various

translators for VRMLl, such as DXF to VRMLl, IGES to VRMLl, have already been

developed by others. The translation of the Deneb Part and QUEST model files without

behaviors to VRMLl was a precursor to the work described here. VRMLl translators consist

primarily of straightforward file format translation.

We developed a simple translator of IGRIP workcells to VRML2, the Igrip2Vrml translator
,

which translates not only the 3D geometry, but also the animation. Currently, this translator

does the geometry translation of parts, devices, and workcells. It also translates the simple

kinematic motions of devices, and workcell simulations recorded in the IGRIP recording file.

The translator does not translate the IGRIP Graphic Simulation Language (GSL) programs. In the

following sections, we describe the functionality of the translator, technical issues, limitations of

the translator, and present example VRML2 files translated from IGRIP.

Overview of The Translator

The translator is implemented in C under the UNIX operating system environment. It can be

called with three options, -d for only translating an IGRIP device, -w for translating an IGRIP

workcell without a recording file, and -p for translating an IGRIP workcell with a recording file.

For options -d and -w, the user provides the IGRIP device or workcell file name and generated

VRML2 file name. For option -p, the user inputs two additional parameters: the recording file

name, and animation cycle time.

For option -d or -w, the generated VRML2 device or workcell file includes two sections. The

first is a nested Transform node which contains the geometry of the device or workcell. This

node’s children may have other nested Transform nodes. The hierarchy structure of the

Transform node is in accordance with the hierarchy structure of the device and workcell. Each

joint of a device is translated to one named Transform node and one related TouchSensor node.

The second section of the VRML2 file consists of all the key frame nodes which show the joint

motions of the devices, and related ROUTE nodes. When navigating a translated VRML2 model

on a browser, a mouse click on the part associated with a certain joint causes the part and its

children parts to move according to the joint’s initial value, lower limit value, and upper limit

value. For option -p, there is an additional section in the generated VRML2 file. This is a group

of key frame nodes translated from the recording file, and related ROUTE nodes. A click on the

part without any joints, usually the base of one device, starts the animation.

An IGRIP workcell is made up of several devices, and a device is made up of several parts.

The IGRIP workcell file has three sections, head, device, and path. All device information is

provided in the device section. The IGRIP part files are distributed in several directories which

are specified in the configuration file . telpthf ig in the HOME directory. The devices in the

device section refer to their part files with the file names. Figure 1 illustrates the IGRIP files

structure and generated VRML files structure.

IGRIP Parts translation is based on the file format specification given by Deneb, the

translator reads the point coordinates and the indices of the polygons from IGRIP part file, and

outputs VRML IndexFaceSet nodes in the generated VRML2 part file.

IGRIP device translation is the heart of the translator. The IGRIP device file format was

reverse engineered due to the lack of a specification. The essential information for translation

extracted from the IGRIP device file or workcell file includes device joint information, part file

paths, part transform matrices, and the attachment information of the parts. The translator creates

one sub directory for each device in the working directory, the name of the directory is the device

name with the prefix d_. For example, if the device name is DBlOO, the device directory is

named d_DBlOO. Each generated VRML2 part file is saved in the device directory to which the

part belongs. The VRML2 device uses Inline nodes to connect to the translated VRML2 parts.

Details about the translation of the device hierarchy structure are discussed in the next section.

IGRIP workcell and recording file formats were also reverse engineered. Basically, the

workcell translation is made of the device translations described in the previous paragraph. In

addition, it deals with the workcell hierarchy structure because of the attachments of the devices.

The resulting VRML workcell file is a nested Transform node. The IGRIP recording file consists

of the information of all device locations, joint motions, and device attachments with time. The

translator reads the information from the recording file and generates the related VRML
Interpolator nodes for all devices and Joints in the resulting VRML file.

Figure 1: Dlustration of IGRIP files and VRML files

Technical Issues

Translating the transform matrix of IGRIP to a Transform node in VRML2
The VRML2 specification uses the Transform nodes with fields: center, translation, rotation

...to represent the coordinate systems instead of using a transform matrix concept. The rotation

in VRML2 is defined as the rotation around a specified axis, the rotation field in the Transform

node has four values, x, y, z, r, where x, y, z are the unit vector of the axis, r is the rotation angle.

The rotation in the transform matrix is composed of the rotations around X, Y, and Z according

to certain rules. Deneb software uses a normalized transform matrix to represent the coordinate

system. In order to translate the transform matrix of IGRIP to the Transform node in VRML2,
some calculation is required. The scale values and translation values can be obtained from the

CONTRIBUTION OF THE NATIONAL INSTIlUTIi)

OF STANDARDS AND TECHNOLOGY.

NOT SUBJECT TO COPYRIGHT

transform matrix easily according to the definition of the matrix. For the rotation components, we
adopted the method described by Michael E. Pique[l] for converting between the matrix and

axis-amount representation. See the Appendix for more detail about the mathematics of the

translation.

Hierarchy of coordinate systems

To build an IGRIP device after creating all needed parts, a user retrieves a base part first, then

attaches all parts together in specified local coordinate systems. To build an IGRIP workcell, a

user attaches the devices to certain parts of other devices. The attachments of the parts construct

the device’s hierarchy structure, and the attachments of the devices construct the workcell’s

hierarchy structure. Translating the attachments of the parts and devices is the core of the

translator.

The part attachment information within a device can be found in the device file or the device

section of the workcell file. There is a set of bits called the attach flag for each part representing

the position of the part in the hierarchy structure which is related to the attachment between the

part and another part in the same device. AH’ means opening one new layer in the device

structure, ‘0’ means closing the current layer. For example, if the flag is ‘01’, it means closing

current layer after putting this part in the structure, then opening another new layer.

The device attachment information in an IGRIP workcell can be found at the end of the

device section. There is an integer for each device to represent the device attachment, its value is

- 1 or a positive integer. If the value is -
1 , then the device is not attached to any other part. If the

value is positive, the device is attached to a part. The positive value tells which part the device is

attached to. For example, if the value for a device attachment is ‘3’, then that device is attached

to part number 3. All part numbers in a workcell are sequentially numbered from zero and are

unique.

The translator creates an integer sequence to represent the layer structure of the workcell after

processing all the part attachments and device attachments. In the sequence, integer 999 indicates

opening a layer, -999 indicates closing a layer, any other integer represents the part number. The

sequence is used to create the nested VRML Transform node which has the same hierarchy

structure with the IGRIP workcell. For example
,
an IGRIP workcell has the following structure:

Device 1 : part 0 attach flag = 0

Device 2 ; part 1 attach flag = 0

Device 3 : part 2 attach flag = 1

part 3 attach flag = 00

Device attachments: -1,-1, 1

The generated integer sequence is {999, 0, -999, 999, 1, 999, 2, 999, 3, -999, -999, -999}. The

translated VRML world has the hierarchy structure :

Transform
{

children [

Transform
{ children

[
part 0] }

Transform
{ children

[
part 1

Transform { children
[
part 2

Transform { children [
part 3] }

Recording file translation

When running a workcell simulation in IGRIP, a user can turn the “recording” on, and save

the simulation in a recording file. This function provides an opportunity to play the simulation of

a generated VRML2 workcell in a VRML environment. The recording file records the transform

matrix and all joint data for each device at each time step. It also records the attachments of the

device to the part of another device which change during the simulation. The translator generates

one Interpolator node and related ROUTE nodes for each joint of each device. The type of

Interpolator node, which is Positioninterpolator, Orientationinterpolator, or Scaleinterpolator,

depends on the kinematics information of the joint.

The Grab function of GSL programs is often used in workcell simulations. The device

grabbed by other device changes its attachment during a Grab function. For example, a workcell

has three devices: device_l, device_2, and device_3. Each device has only one part.

The device_l’s part is partO, the device_2’s part is parti, and the device_3’s part is

part2. The device_2 is attached to device_l, and device_3 will grab device_2
during the simulation. The grab happens at the time ‘time_grab’. Therefore, the device_2 is

attached to device_l before the grabbing, and is attached to device_3 after the grabbing.

There are two problems for the translation. First, the geometry structure changes because of the

change of attachment. Second, the attachment change should happen at a certain time. In this

translator, the VRML Switch nodes are used to deal with the geometry structure problem, and

Scalarinterpolator nodes with associated Script nodes are used to deal with the time problem.

Following is the simplified VRML file generated for above example:

DEF TIME TimeSensor { . .
.

}

Transform
{ children [partO

DEF Switch_l Switch
{
whichChoice 0

choice [parti] }

Transform
{
childem [part2

DEF Switch_2 Switch
{
whichChoice -1

choice
[
parti] }

DEF Script_l Script {
eventin SFFloat switch_time

eventOut SFInt32 sw

url “javascript:

function switch_time(value)
{

if (value < 0.5) sw = 0;

else sw = -1;

}”

}

DEF Script_2 Scirpt
{

eventin SFFloat switch_time

eventOut Int32 sw

url “javascript:

function switch_time(value)
{

if (value < 1.) sw = -1

;

else sw = 0;

DEF Scale Scalarinterpolator
{

key [0, time_grab, time_grab,l]

keyValue [0,0, 1,1]

}

ROUTE TIME.fraction_changed TO Scale.set_fraction

ROUTE Scale.value_changed TO Script_l.switch_time

ROUTE Script_l.sw TO Switch_l.whichChoice

ROUTE Scale.value_changed TO Script_2.switch_time

ROUTE Script_2.sw TO Switch_2.whichChoice

Limitations

Because Deneb’s IGRIP is a powerful 3D graphics simulation software package, there are

many functions that could not be translated directly to VRML2. In addition, the file format of

the device, workcell and recording files were partially reverse engineered. Therefore, this initial

translator has many limitations, such as:

(1) The translator must be modified if Deneb IGRIP file format changes.

(2) The curves, surfaces, texts, and textures are not transferred.

(3) The device joint related information represented as functions of the degree of freedom,

such as =...dof(l), are ignored. The function is replaced by zero.

(4) Command Line Interpreter (CLI) commands embedded in GSL programs are ignored.

They are not shown when playing the VRML2 recording file

(5) The color seen in the VRML environment is the color defined in the part file. If the color

of a part is redefined in the IGRIP device, it is ignored.

(6) Every device can only grab/release one other device and it can only be grabbed/released

by one device during a simulation.

Due to these limitations, some translated VRML2 workcell models may need additional

authoring work. Even in this case, the translator still provides a good initial model for further

improvement. Some examples shown in this paper were modified using a text editor.

Examples

In this section, three example workcells are described. More examples can be found on the

Web page:

http://www.nist.gov/itl/div894/ovrt/OVRThome.html

PCAR model

This IGRIP Car Welding model was developed by Deneb and the workcell file is one of the

IGRIP Demos. It was translated to VRML2 file using this translator without any additional

efforts. It has two welding guns which are grabbed and released by two Deneb Robots. The

welding guns have sparks that appear when welding the car. Fig.2(a) is the IGRIP model and

Fig. 2(b) is the VRML2 model.

Figure 2(a): IGRIP Car Welding model Figure 2(b): VRML2 Car Welding model

from Deneb Demos translated from IGRIP

NIST Hexapod model

The IGRIP Hexapod model in Fig. 3(a) was developed by Nickolas Dagalakis of the

Manufacturing Engineering Lab, National Institute of Standards and Technology (NIST). The

Octahedral Hexapod is a machine tool for the production of the parts, which combines speed,

accuracy, stiffness, and multiaxis versatility. CLI commands were embedded in IGRIP GSL
programs to draw lines which visualize the error and sensor vectors (whisker lines) during the

simulation, the coordinates of the lines were calculated and saved in a file.

An initial VRML2 Hexapod generated using the translator includes the geometry and the

animation of the robot without drawing the whisker lines. It was enhanced with hand-coded

Script nodes for drawing the lines. Fig. 3(b) shows the final model.

Figure 3(a): IGRIP Hexapod model from Figure 3(b): Generated VRML2 Hexapod

MEL,NIST model

Assembly model

The IGRIP assembly model in Fig. 4(a) was developed by Xiangyu Zhou of the

Manufacturing Engineering Lab, NIST. This model illustrates one work station in the Black &

Decker miter saw assembly line[2]. The VRML2 model is shown in Fig. 4(b). Because it has

complex Grab/Release actions of the devices during the simulation, additional authoring work

has been done.

Figure 4(a): IGRIP Assembly model from

MEL, NIST
Figure 4(b): Generated VRML2 Assembly

model

Summary
The Igrip2Vrml translator will generate 3D VRML models from existing IGRIP workcells

which include the kinematic joint motions and workcell simulations. Some IGRIP models can be

translated to VRML2 models without any further work, some may need more authoring to the

generated VRML file due to limitations of this version of the translator. The IGRIP software is

not necessary to translate the IGRIP workcell if all related files are available. The source code of

the translator are available on the Internet at the web page:

http://www.nist.gov/itl/div894/ovrt/OVRThome.html.

Acknowledgments

The authors thank Nickolas Dagalakis of MEL, NIST and Xiangyu Zhou from

Technological University for providing the IGRIP models.

Appendix Converting between matrix and axis-amount representation

Let matrix R[3,3] to present the rotation about an arbitrary axis through the origin:

/

R =

\

tx^ -he

txy-sz

txz+sy

txy-hsz

ty2 -he

tyz-sx

\
txz-sy

tyz-hsx

tz^ -hc

/

where x, y, z are the components of a unit-vector along the axis, 0 is the angular amount of

rotation, and s = sin(0), c = cos(0), t = l-cos(0). Given the matrix R, 0 can be calculated from

cos(0) = (R[0,0]+R[l,l]-hR[2,2]-l) / 2.

Providing sin(0) ^ 0,

x = (R[l,2]-R[2,l])/(2sin(0))

y = (R[2,0]-R[0,2]) / (2sin(e))

z = (R[0,l]-R[l,0]) /(2sin(0))

There are two possibilities to make sin(0) = 0. First, 0 = 0, the axis is undefined. Since this

has no meaning for the translation, the result of the rotation will be (0,0,0,0). Second, 0 = 7t, the

R becomes

/2x2-1 2xy 2xz \

R = 2xy 2y2 -1 2yz

\2xz 2yz 2z2-1 /

From it, abs(x), abs(y) and abs(z) can be computed as

abs(x) = sqrt((R[0,0]+l)/2)

abs(y) = sqrt((R[l,l]+l)/2)

abs(z) = sqrt((R[2,2]+l)/2)

The signs of x, y, and z are determined by the signs of xy = R[0,1], xz = R[0,2], yz = R[l,2],

and the values of abs(x), abs(y) and abs(z).

References

[1]

Andrew S. Glassner, “Graphics Gems”, 1990, p466.

[2]

Ressler S. ,
Wang Q., Bodarky S., Sheppard C., Seidman G. “Using VRML to Access Ma

nufacturing Data”, Proceedings of VRML 1997, pi 09-1 16.

t' :; : ii '^^^iV^J^^ ':t-iiZ\Tl

/: :

;;

_:
,;

,

'"' W'

'^'
'

V '.J

^

. V -frK
'

• •
,

'•\,

*' .’ .5'***'
••* ' ’• * J

.

.:1.

,

'
'• ''ft'*..

,

1 ('..

‘iV
. , ,

,: Htt y .'.

I-:/-' ..'/y:'-. *’ - 'J

.’ i
'tU'-

