
NAT'L INST. OF STAND & TECH R.I.C.

NtST

REFERENCE publications

A 1 1 1 5 DfibStiM

CIM Framework Experience
Report for 1996

David Flater

Edward Barkmeyer
Evan Wallace
Peter Denno
Mike luliano

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

QC

100

.U56

NIST

NO. 6057

1997

CIM Framework Experience
Report for 1996

David Hater
Edward Barkmeyer
Evan Wallace
Peter Denno
Mike luliano

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Gaithersburg, MD 20899-0001

September 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Robert E. Hebner, Acting Director

/'

NISTIR 6057

CIM Framework Experience Report for 1996

Contents

1 Introduction 1

2 Job Management 1

3 Specification Management 3

4 Machine Management 5

5 Materials Management 6

6 Conclusion 6

A Comments on CIMF “Abstract” Interfaces 7

B Detailed Comments on CIMF Job Management Interfaces 7

C Detailed Comments on CIMF Specification Management Interfaces 8

D Detailed Comments on CIMF Machine Management Interfaces 11

E Detailed Comments on CIMF MachineResource Component 15

F Detailed Comments on CIMF Process Definitions 20

G Other Miscellaneous Comments on CIMF 26

List of Figures

1 NAMT Framework Architecture 2

This work was funded through the National Advanced Manufacturing Testbed (NAMT) project and

the Systems Integration for Manufacturing Applications (SIMA) program.

CIM Framework Experience Report for 1996

David Flater

Edward Barkmeyer

Evan Wallace

Peter Denno

Mike Iuliano

September 18, 1997

Abstract

The National Advanced Manufacturing Testbed (NAMT) Framework prototype is a distributed,

object-oriented manufacturing system that serves as a testbed and trial implementation for

emerging industry-developed specifications. This report documents the findings of the Frame-

work team in 1996 with respect to version 1.3 of SEMATECH’s CIM Framework (CIMF).

1 Introduction

The National Advanced Manufacturing Testbed (NAMT) Framework project [1] has constructed a

prototype distributed manufacturing system that serves as a testbed and trial implementation for

emerging industry-developed specifications. The first year of the Framework project resulted in a

substantial number of problems found with applying version 1.3 of SEMATECH's Computer Inte-

grated Manufacturing (CIM) Application Framework Specification^] in the context of our testbed

architecture. The following sections detail those issues.

Since the version that we reviewed was effectively only a draft, the issues that we describe below

should not be interpreted as problems with the CIMF as released; the CIMF has continued to

evolve, and our intent was merely to identify potential sources of misunderstanding that could slow

the eventual deployment of the specification.

2 Job Management

The purpose of the job control interfaces in CIMF 1.3 was to specify the operations used for creating,

starting, and otherwise controlling jobs. However, the intent behind the specific operations chosen

was ambiguous. There were two major possibilities, neither of which was fully confirmed or denied

by the text:

• The intention was to provide a plug-and-play architecture, where the interfaces were defined

with sufficient clarity to enable interoperability between software components from different

companies. In this case, the architecture was not clear, and the interfaces defined in the CIMF
did not form a coherent functioning whole.

• The intention was to support the union of all architectures, providing enough operations on

each interface to enable the usage of any possible model of job control. In this case, the

semantics of many of the operations were unclear, some operations were still missing, and the

subsets that yielded workable models of job control were not identified.

The following quotes from the Implementation Handbook for version 1.2
1 were later found to

support the second theory:

*A revision of the Implementation Handbook for version 1.3 has not been released.

1

Figure 1: NAMT Framework Architecture

The SEMATECH CIM Application Framework Specification seeks to unify a wide range

of Manufacturing Execution Systems (MES) software by categorizing common features

found among them in an object-oriented manner. The specification, however, does not

explain how to interpret this common object model to create pluggable applications.

Interoperability among applications does not automatically result from using CIM Frame-

work objects. In order for two or more applications to be pluggable, they must share

the same “binding.” A major part of this document is devoted to explaining what

SEMATECH has learned about the binding, from low level “nuts and bolts” issues of

communication, to placement of CIM Framework object instances across physical ma-

chines in a distributed architecture. Even with the same binding, applications do not

automatically become “pluggable” via use of the CIM Framework[3].

Unfortunately, the possible “bindings” were not identified, and we were not able to find a binding

that would produce a working system within the NAMT architecture (see Figure 1). The NAMT
architecture includes several levels of control, including at least the shop level, the workcell level, and

the machine level. The components (shown as boxes in Figure 1) are connected by several means

of communications (shown as arrows), including CORBA[4]. The shop level includes the scheduling

(if any) as well as the dispatching of tasks to workcells; the workcell level may correspond to the

CIMF Machine object, and the machine level (exemplified in Figure 1 with a Fixturing Controller

and Measurement Controller) may correspond to the CIMF Machine Resource object. However,

it really is not clear which classes from the CIMF should be used by the controller at each level,

and any given mapping that we attempted to make between the CIMF and the NAMT architecture

posed serious problems.

The NAMT workcell is an abstraction comprising one or more mechanical subsystems (i.e.

,

machines) and possibly an operator. The purpose of the abstraction is to make a meaningful division

between shop-level control and the lower levels of control. While the shop controller manages

processes at the routing level (which tasks will be done at which stations), the workcell controller

manages all processes at one station, a level between the shop and the machine. An example of

2

a workcell task would be: “Rough cut workpiece xxx.” The workcell controller decomposes this

into steps performed by its components: “(1) Get the operator to load workpiece xxx. (2) Get the

machine to run NC-program yyy. (3) Do the following extra things. (4) Finish.” Note that the

NC-program defines a complex task at the next level down, which we call the machine level. And
for the operator (or a positioning robot) there is a set of instructions for loading and positioning the

part that is analogous to the NC program for the cutting machine.

The CIMF contains multiple classes that seem to map imperfectly to the workcell. One of the

causes of this is the necessity of distinguishing the persistent view of a controller (any controller) from

the non-persistent view. The question “Are you turned on?” cannot be addressed to the controller

itself, since it cannot answer if it is turned off. Instead, a persistent database component such as the

Production Information Base must serve as its proxy to answer questions relating to power status,

scheduled downtime, and so on. Unfortunately, even this understanding does not suffice to explain

the classes in the CIMF, because control operations like pause, resume, and makeActive that only

make sense for the non-persistent, live controller are included on classes that can only pertain to the

persistent view. The flow of control that results is unusual.

The other side of the problem is that the CIMF contains no classes that map to the shop

controller. ProcessJob and ProcessJobManager are both specialized to the workcell level, and Man-

agedJob and JobManager are intended simply as abstract superclasses. Furthermore, neither Job-

Manager nor ProcessJobManager has an associated set of states. There is a distinction between job

states and job manager states that must be preserved - the action of pausing the dispatcher, allowing

currently executing jobs to complete normally but not initiating any new activity, is distinct from

the action of pausing all jobs that are currently running. The most appropriate set of states for both

the shop and workcell controllers (job managers) seems to be that of the MachineResource class,

but the rest of the MachineResource class is not applicable above the machine level. According to

the comments that we have received from SEMATECH, the MachineResource class is slated to be

merged with Machine. Also, like ManagedJob, MachineResource lacks “fault” states. It is not clear

how a controller can inform its superior and/or its operator that human intervention is needed, and

there is no state flag that can be set to indicate that a job or a controller is stuck waiting for help.

Ultimately, we found no consistent interpretation of these CIMF classes that allowed us to map
them to components in our system. It was always necessary to take pieces of one class and pieces

of another. In some cases, there were superfluous operations; in others, necessary operations were

missing.

In the process of trying to find a consistent interpretation of the CIMF, we identified four

possible models of job control - four different generic approaches for choreographing the component

interactions that would enable our system to function correctly. That which distinguishes one model

of job control from another is the allocation of objects among physical machines. These models

would correspond to different CIMF “bindings” if the CIMF provided the classes needed for the

shop controller and defined all of the communication channels between the shop and workcells. This

is the subject of a separate paper [5].

The summary comments that were delivered to SEMATECH can be found in Appendix B.

3 Specification Management

The Document Management Component of the CIMF is incomplete as a specification for an interface

to a commercial Product Data Manager (PDM) or Electronic Document Manager (EDM), even for

the limited needs of a production system. The Document Management Component contains the

classes (and concepts) DocumentManager, DocumentSpecification, and DocumentRevision and the

misnamed Version Manager, which actually deals with Engineering Change Orders. The following

additional concepts are needed:

1. DocumentType. In addition to its “name,” which identifies a particular document instance,

such as a particular NC-Program, it is also important to model its “type,” which identifies

the kind of document it is, e.g., that it is an NC-Program and not a CAD model. In a

commercial PDM/EDM, the behavior of a Document - workflow, access rules, versioning rules,

3

etc. - is associated with its type. (It is, of course, possible to embed the type in the naming
convention, but this is often inconvenient to both the sender and the receiver of document
access operations.)

2. DocumentForm. A given revision of a given specification may need to be represented in

different forms (or file formats) for different consumers, e.g., a drawing may be stored in the

native format of the CAD package in which it was created, but also in a standard display form

for use in operator displays. In general, a software package retrieving the document must be

able to specify the form it wants.

3. DocumentRelationship. For engineering purposes, it is important to model and maintain cer-

tain relationships among documents and other “business objects” managed by the PDM/EDM:
“contains” allows for the management of objects that are packages of documents, such as the

collection used at a given workcell; “depends on” captures which versions of other documents

a given document depends on, so that ripple effects of changes can be determined; “derived

from” supports traceability of specifications; “supersedes” supports version management. This

capability, however, does not seem to be needed for production-only usage of the PDM/EDM.

In addition, the concept of version management is critical to automating the transmission of

engineering specifications to production. In PDMs, the following concepts are all aspects of version

management.

• “version” - a specification modified for a particular use,

• “revision” - a change in the specification,

• “effectivity” - the range of dates or product instances to which a particular revision applies,

and

• “change notice” - a directive to make a set of revisions simultaneously effective in production.

The CIMF supports a much simpler model of these concepts. The CIMF model seems to be “lin-

ear effectivity by date,” that is, the “current” revision of a document is in effect until the date on

which the “next” revision becomes active. Presumably, making related specifications simultaneously

effective is the responsibility of the user. One would expect this to be the function of the ChangeNo-

tice, but no relationship between the ChangeNotice and any specification revisions is modelled or

even discussed. Moreover, the ChangeNotice does not itself have an effective date! Apparently its

“activation” makes it effective as of that moment.

The CIMF Version Management model may be adequate for semiconductor fabrication, but it

is inadequate for the manufacture of electro-mechanical parts. Because of staggered deliveries of

materials and substitutes, and because of pre-emption of resources by higher-priority jobs, it is

common for multiple batches of the same product to be on the shop floor in different stages of

processing, and each batch may have a different set of processing specifications. This makes it

possible for multiple revisions (or versions) of a specification to be “active” at any given time, with

the effectivity tied to batch or lot numbers, or to the date on which the lot “started.” A Change

Notice itself must have an “effectivity,” by date or batch/lot and possibly by location (i.e.
,
which

factories), and that effectivity is usually set some time in advance of its occurrence. And, it is the

Change Notice effectivity that defines the effectivity of the related production specifications for the

target facility. Supporting this capability requires a number of significant changes to the CIMF
model.

Finally, the CIMF model of “document content” is “any.” This is too general, as it does not

make clear whether the user retrieving a document content will get a file name or a file text. While

we agree that there is a need for other possibilities as well, it is necessary to make clear whether an

operation gets the file text, and how a large file text can be handled. (Appealing to other CORBA
services is a reasonable solution, but it needs to be documented.)

In addition to these major issues, there are also many apparent anomalies, unexplained changes

and outright errors in the comments and descriptions for the specification management interface. A
detailed enumeration of these can be found in Appendix C.

4

4 Machine Management

The major problem with the Machine Management component is that several classes combine con-

cepts that must be physically separated in useful implementations. With respect to factory re-

sources, the agent who manages description of a resource (the persistent view of a resource, as

discussed above), and the agent who manages control of a resource (the non-persistent view) should

be distinct. But in the CIMF, they are not. Examples:

• The class Machine has control operations like pause and resume, but also descriptive oper-

ations: configuration operations like addProcessResource, and scheduler “gating” operations

like reserveFor.

• The class MachineResource, and all its subtypes except for ProcessResource, have purely

descriptive operations, but MachineResource is modelled as a subtype of MovementResource,

which accepts “handoff commands,” i.e., transfer control operations. And the ProcessResource

subtype of MachineResource also has the control operations doProcessJob and canMakeActive.

• The description of the ProcessJobManager class (the obvious model of the controller) indicates

that it should receive new Job invocations from the ProcessResource and new material flow

invocations from the TransferResource.

The CIMF apparently models an agent who maintains the persistent information and also serves

as a front-end for the actual machine controllers, using other standard and non-standard protocols

for the actual communications. This is certainly a possible architecture, but merging the control

and description operations into one class forces it to be the only possible architecture. And this

architecture is not desirable for the future - it makes it impossible for future controllers to conform to

the CIMF as a standard by providing the standard control operations themselves, and thus eliminate

the front-end. By comparison, separating the control and descriptive operations into different classes

allows many architectures - one implemented agent can support one class or multiple classes.

A lesser, but also important, problem is the handling of “machine setup.” A “process capability”

is the ability of a given machine to perform a given process with some configuration; a “machine

setup” is a specific machine configuration and/or the work needed to achieve that configuration. In

the general case, the relationship between the two is many-to-many: a single setup may support

multiple processes, and a single process may be possible with different setups of a machine or require

different setups on different machines. It seems that the CIMF model is intended to hide the machine

setup altogether, so that a machine at any given time has a “set of ProcessCapabilities,” i.e., those

that correspond to its setup. The weakness of this model lies in the fact that machine setup is also

a process that consumes resources and time, and good schedulers need to know both what process

capabilities are currently present on a machine - what the setup state is - and what resources need

to be scheduled to create a particular set of capabilities on otherwise idle machine - what the setup

process requires.

Finally, the aspects of machine description and control that relate to material storage and move-

ment are inadequately explained and in some cases very confusing. The problem centers on the

terms Port and Portal, whose definitions can be easily construed to overlap and whose operations

are conflicting. It appears that the meaning of some of these objects and relationships changed

from a prior version and not all of the operations and terminology were made consistent between

the “materials transfer” models and the “materials processing” models. The problem is exacerbated

by the attempt of the CIMF to keep pace with the terminology and material handling models of a

separate ongoing semiconductor industry standard. There should be a unifying model here, but it

is not present in CIMF 1.3. This makes it difficult to develop a clear appraisal of the utility of this

model to the analogous objects and operations in the manufacture of electro-mechanical products.

A detailed enumeration of individual problems can be found in Appendix D.

5

5 Materials Management

The Materials Management component is the one component of the CIMF that is likely to be directly

useable in the manufacture of electro-mechanical products. The one complaint is that many of the

operations assigned to subtype SCMaterialManager (semi-conductor materials) should properly be

assigned to the general (super)class MaterialManager, as they relate to Lot management in general,

and not to wafer management in particular.

For electro-mechanical part manufacture, however, the model of Durables (Tooling and Fix-

tures) is not adequate. This is to be expected, because tooling for semiconductor fabrication is

much simpler. Unfortunately, (reversing the behavior of SCMaterial versus Material) several over-

simplifications have been introduced into the general class Durable. These must be modified to

produce a generally useful model.

A minor point is that the nomenclature “Product” is used in the CIMF (and in semiconductor

fab jargon) to mean “Workpiece,” but this terminology does not generalize to discrete parts, or even

to the discrete aspects of semiconductor manufacture (dice, mount, test and package). In almost all

discrete parts industries, the term “product” refers to a type of manufactured object, as opposed

to “instances in process,” which are called “parts,” “pieces” or “units.” (The term is used for the

in-process material in process industries, but there is no equivalent “piece” aspect.)

A detailed enumeration of individual problems can be found in Appendix E.

6 Conclusion

As a result of the work done by the Framework team, ambiguities and technical problems that

threatened the applicability of the CIM Framework were reported to SEMATECH while the doc-

ument was still in its early stages. While some problems in machine management and document

management had been discovered by other reviewers, our analyses of job management and machine

setups provided unique input.

SEMATECH intends for version 2.0 of the CIM Framework to be a complete and polished

specification, the end result of the l.X revision cycles. We are gratified to have contributed to that

process.

References

[1] Howard M. Bloom and Neil Christopher. A framework for distributed and virtual discrete part

manufacturing. In Proceedings of the CALS EXPO ’96
,
Long Beach, CA, October 1996.

[2] Lawrence Eng, Ken Freed, Jim Hollister, Carla Jobe, Paul McGuire, Alan Moser, Vinayak Parikh,

Margaret Pratt, Fred Waskiewicz, and Frank Yeager. Computer Integrated Manufacturing (CIM)

Application Framework Specification 1.3. SEMATECH, 2706 Montopolis Drive, Austin, TX
78741 U.S.A., 1996.

[3] Ken Freed. Implementation Handbook for the Computer Integrated Manufacturing (CIM) Appli-

cation Framework Specification 1.2
,
page 1. SEMATECH, 2706 Montopolis Drive, Austin, TX

78741 U.S.A., 1995.

[4] OMG home page. <URL:http://www.omg.org/>.

[5] David Flater, Edward Barkmeyer, and Evan Wallace. Four Models of Job Control. National

Institute of Standards and Technology (forthcoming), 1997. To be available from the National

Technical Information Service, Springfield, VA 22161 U.S.A.

6

A Comments on CIMF “Abstract” Interfaces

What is the purpose of OwnedEntity?

The class OwnedEntity is a pure factorization (“mix-in”) that seems to be some kind of implemen-

tation convenience. Its only attribute is attribute any owner; . Such a model is a guideline, not a

class: an OwnedEntity is something that has an “owner” attribute. But there is no commonality of

the type of owners. This characteristic is clearly better modelled by giving each “OwnedEntity” type

its own owner attribute with the proper object type. A few OwnedEntity types might have to settle

for “object,” because different members of the class can be “owned” by objects of different classes.

But at least this would encourage the documentation to specify the range of classes intended in that

case. In any case, “any” is too broad - all owners must be objects. Of course, the implementation

conscious might want to use “any,” so that the owner could be implemented as a “string,” but in

this case, “string” is a just a poor model for NamedEntity.

Thus the class OwnedEntity should be discarded and each of its current subtypes should declare

the owner attribute properly. If there is an implementation intent here, then it should be explained

and the use of OwnedEntity as a supertype should match that intent.

Redundant operations on ComponentManager

What is the relationship between the operations ComponentManager::makeStartingUp() and

Resource::startUp(), ComponentManager::makeShuttingDown() and Resource::shutdownNormal(),

ComponentManager::makeStopped() and Resource::shutdownImmediate()?

Because ComponentManager is modelled to inherit from Resource, it will actually have all 6

operations. It seems that either the operations on Resource are intended to be “virtual” and should

be removed from the IDL, or the operations on ComponentManager are redundant and should be

removed from the IDL. In any case, there should not be two sets of operations and the spelling

should be made consistent.

B Detailed Comments on CIMF Job Management Interfaces

No Class for Shop-Level Job Manager

The ProcessJobManager class corresponds to what we would call the workcell level of control. It

seems to us that most factories will have at least two levels of control: the workcell level, and the

shop level. The CIMF provides no class for the shop-level controller.

We believe that the control interface at the shop level and at the workcell level should be nearly

identical; they should each inherit the same interface from a generic superclass, i.e., JobManager.

This then extends easily to hierarchical control with more than two levels.

No States for Job Managers

Neither JobManager nor ProcessJobManager has an associated set of states. There is a distinction

between job states and job manager states that must be preserved. Only having one or the other is

not adequate; pausing all managed jobs is different than pausing the controller. The most appropriate

set of states for both the shop and workcell controllers (job managers) seems to be that of the

MachineResource class. But the rest of the MachineResource class is not applicable above the

machine level, and according to the comments we have received, the MachineResource class is slated

to be merged with Machine.

Superfluous and Misleading Job Control Operations

Feedback that we have received previously from SEMATECH has done much to clarify the intended

job control architecture of the CIMF. In a nutshell, we no-w understand the intended job control

architecture to be the following:

7

1. The supervisory controller invokes createJob in the subordinate to create a job.

2. Operations of the form make-something (makePausing, makeNotPaused, makeAllManaged-
JobsAborting, etc.) are the commands to control the state of jobs and/or job managers.

3. The status of jobs is reported back to the supervisor through events.

However, this interpretation leaves us with the following issues:

1. The doProcessJob operation is superfluous. Instead you should use makeQueued and/or make-
Active.

2. The informCompletedJob operation is superfluous. There is a JobCompletedEvent.

Based on our own experiences, we would be inclined to add operations along the lines of in-

formJobPausing, informJobAborting, informJobAborted, and so on, and to stop using events for

closing the control loop between supervisor and subordinate. However, this is not consistent with

the direction that the CIMF has chosen.

No Fault Handling

In real manufacturing facilities, being able to deal intelligently with unexpected failures is among
the most important design considerations. Unfortunately, this capability does not appear to have

been provided in the CIMF.
Let us consider the scenario where an operator has instructed the controller to pause a particular

job, but while the job is approaching the next convenient pause point, a piece of machinery gets

stuck and somebody needs to go give it a nudge. When we try to communicate this fact using the

CIMF facilities, we find two problems.

First, we find that the states associated with ManagedJob do not adequately distinguish between

normal states and fault states. As far as we know, our unfortunate job remains in the concurrent

state described by Executing, Pausing, NotStopping, NotAborting. We need an additional qualifier

to indicate that the job requires human attention. Simply throwing the job into the Aborted state

is unacceptable, since this will needlessly ruin a workpiece and may even induce higher-level jobs to

abort similarly.

Second, we find that it is not clear how a controller can inform its superior and/or its guardian

(operator interface) that human intervention is needed. An operation or event is needed for this

purpose.

Missing Operations

JobManager has allQueuedManagedJobs, allActiveManagedJobs, allFinishedManagedJobs. all-

StoppedManagedJobs, and allAbortedManagedJobs. It lacks allCompletedManagedJobs and all-

CancelledManagedJobs.

C Detailed Comments on CIMF Specification Management
Interfaces

P. 161, clause 4. 2.4.1: “document specifications” should be “specification documents.”

P. 161, Document Management component: There are 3 missing objects in the OMT diagram:

a. DocumentType. That is, a “type” which specifies the behavior, workflow, access rules, al-

lowable states signoff rules, allowable forms, etc. for a DocumentSpecification. The concept

DocumentType is missing from the CIM Framework, but is critical to all WorkFlow Manage-

ment software systems.

8

b. DocumentForm. The user needs to be able to represent multiple forms of the same conceptual

revision. A revision has a master form (the original), e.g. Pro/E native form, and derived forms,

e.g. IGES, DXF. Each form has its own documentContent. So there seems to be a missing

object here. That is, a DocumentRevision has DocumentForms and each DocumentForm has

a formType (string), which might be its (NamedEntity::)name, and a documentContent.

c. DocumentRelationship. Documents may have relationships important to configuration man-

agement. Specific subclasses, e.g. ProductSpecification, may have specific modelled relation-

ships, but the PDM must be aware of “dependency” relationships. In addition, users may de-

fine other relationships, such as product families. A document relationship has a one-to-many

relationship with DocumentRevisions (not Specifications, we think) and MAY have a 1-to-l

relationship with a particular DocumentRevision (sometimes parent - relationship based.on,

sometimes dependent - relationship depends.on).

P. 162, DocumentManager::createDocumentNamed: The new DocumentSpecification should

be related to a “DocumentType” by a parameter in the create operation. See above.

P. 163 Class DocumentManager: The operation removeDocumentNamed has a misspelling of

the exception name: DocumentSpecificationHasRevisionsNoRemoveSignal.

P. 163 Class DocumentManager: The operation sequence<DocumentRevision> allRevisions();

is not an operation on the DocumentManager object; it should be sequence<DocumentSpecification>

allDocumentsQ;

P. 163 Class DocumentManager: findDocumentNamed should raise DocumentSpecification-

NotFound if it fails, rather than DocumentSpecificationRetrievalFailed. It is not clear why the vl.2

specification was changed in this regard. ...NotFound indicates there is no specification with the

given name, which is the case here. NotFound is neither more nor less of a problem for “find” than

it is for “remove,” so why the difference?

P. 164 class DocumentRevision: Only one “active” version is an extremely strong limitation.

The assumption being made is that the “effectivity” of one revision [first-date of use, last-date

of use] does not overlap the effectivity of any other. In the general case, particularly of complex

assemblies, this is not true - one revision may describe parts currently in the first fabrication phase,

while another describes parts in a late fabrication phase, and a third describes parts in some post-

fabrication assembly phase, all of which are currently active because of feedback, tooling changes,

materials changes, etc.

P. 164 DocumentRevision attribute documentContents: Since the type is “any,” how does

the user determine what the “form” of the contents is?

P. 164 class DocumentRevision: Is holds() the same operation as _get_documentContents(), i.e.

the retrieval operation on the documentContents attribute? If not, what is it?

P. 164 class DocumentRevision: It appears that holds(), or _get_documentContents, could fail

and be able to raise DocumentContentsRetrievalFailed, an exception that is not documented. When
the DocumentManager classes are implemented in a PDM, the contents files may or may not be

resident within the PDM itself, and thus their retrieval can fail even when the Revision object is

“intact.”

P. 165 class DocumentRevision: The user needs to be able to represent multiple forms of the

same conceptual revision. See DocumentForm above.

P. 170 Class DocumentSpecification: What is meant by “lineage order” for the sequence of

DocumentRevisions? Note that addRevision and createRevisionNamed do not provide for position-

ing, so “lineage order” is derived from some other datum or behavior: activationDate? chronological

order of add/create invocations?

9

P. 170 Class DocumentSpecification: Operation findRevisionNamed should raise Documen-
tRevisionNotFound if it fails, rather than DocumentRevisionRetrievalFailed. It is not clear why the

vl.2 specification was changed in this regard. (See above argument.)

P. 170 Class DocumentSpecification: For operations addRevision and createRevisionNamed,

the descriptive text does not make clear the functions of these operations.

Is addRevision intended to be a “copy constructor,” i.e. an operation that makes a new Documen-
tRevision object with the same (initial) contents as an existing one? If so, the text should say

that.

It seems that createRevisionNamed.with also “adds a document revision to the list of revisions that

are associated with the DocumentSpecification.” Otherwise why would it be an operation on a

DocumentSpecification object?

The alternative interpretation is that one uses createRevisionNamed.with to construct a Documen-
tRevision object and addRevision to link it to a DocumentSpecification, but then addRevision should

return void and createRevisionNamed.with should not be an operation on DocumentSpecification.

P. 170 DocumentSpecification::createRevisionNamed_with: This operation seems to have a

missing parameter: Form of the versionedObject - AP203file, ASCIItextfile, DXFfile, etc.

P. 170 DocumentSpecification::createRevisionNamed_with: If versionedObject is a BIG file,

how does it get moved? Is the client supposed to have it in a large “string” in memory? Or is moving

the file a separate service supplied by the client’s system and used by the DocumentManager?

We suggest that both cases should be supported. Filename should be one of the types permitted for

versionedObject and the DocumentType for the DocumentSpecification should determine whether

the file is copied or pointed to. This means that there is really another operation:

/* creates a revision from a file accessible to the DocumentSpecification,

* possibly by invocation of some remote file access services.

* Whether the file is copied into the Specification or simply pointed

* to (and retrieved on a request to retrieve documentContents) is an

* implementation and policy issue. */

DocumentRevision createRevisionNamed_fromFile (

in string revisionName , in string documentFormat

,

in string filename)

raises (DocumentRevisionDuplicateSignal

,

DocumentTextRetrievalFailedSignal)

;

P. 170 class DocumentSpecification, removeRevisionNamed: The comment that describes

the operation should read: “Remove the named DocumentRevision associated with the Docu-

mentSpecification.”

P. 174 class ChangeNotice:

The parameters to operation createChangeNoticeNamedinDocument don’t match the OMT model

on p. 161. The OMT model allows a (production) ChangeNotice to refer to one or more documents,

but the operation, and the attribute ChangeNotice: specification (p. 174) only allow ONE Docu-

mentSpecification to be associated. The relationship modelled in the IDL is that the ChangeNotice

itself is a document, that has text, is subject to revision, etc. This relationship is between the

ChangeNotice object and the corresponding DocumentSpecification and this is one-to-one. So the

OMT model should be corrected.

P. 172 classes VersionManager and ChangeNotice:

A production “change notice” is itself a document that references other documents - a feature

noticeably lacking from either DocumentRevision or ChangeNotice. (This could be addressed by

10

DocumentRelationship, as indicated above.) In our experience, a change notice going to the floor

requires a separate approval process from the approval process for the documents it references. So

these two ideas should be separated. Any document can incorporate other documents by reference

and be subject to some approval path. Approvals have signatories and dates. Change notices are

a kind of document that has in particular an effectivity date (that is separate from the approval

dates). Note also that effectivity of the ChangeNotice is what really determines whether and when

a Document is “active.”

Both the OMT model and the IDL should be corrected to support this understanding. ChangeNotice

should have two additional attributes:

/* set/get the set of DocumentRevisions made effective by this

* ChangeNotice. */

attribute sequence<DocumentRevision> associatedRevisions;

/* set/get the date on which all associatedRevisions become effective

* in production. */

attribute TimeStamp ef fective_date

;

P. 174 class ChangeNotice: makePreparingToActivate does not “Approve a change notice.”

Rather it submits the draft change notice to the approval officer for signature, as indicated in the

state table (p. 176). makeActivated should be “approve and activate a change notice.”

P. 174 class ChangeNotice: “default SignOff set” is a curious term. The real default Signoff list

would be automatically attached to all ChangeNotices, but that is not what these operations modify.

It appears that the notion is misnamed. What is being modified by these operations is not the Default

Signoff List, but rather the actual Signoff List for this ChangeNotice. Note also that the ordering of

the Signoff List may be important (i.e. a routing), as the comment under defaultSignOffSet() says.

So the semantics is not usually a Set. Change the operations to: addNameToSignOffList (...); and

removeNameFromSignOffList (...); and signOffList (...);

P. 172fF, classes VersionManager and ChangeNotice:

This model of signoff creates more problems than it solves. If multiple signoffs are required to

get from PreparingToActivate to Activated, there are intermediate states that don’t have names,

and a date and some form of signature, possibly electronic, that needs to be associated with the

Sign Off operation. Our general concern is that the CIMF is flirting with Workflow Management
here, but not producing a robust model, and thus saddling subtypes with a dubious half-model.

Recommendation: “drink deep or taste not.” Dump the DefaultSignOffSet operations.

D Detailed Comments on CIMF Machine Management In-

terfaces

Persistent and non-persistent views of the Machine

It is necessary in any implementation of the CIM Framework to distinguish between the persistent

view of the Machine and the non-persistent “dynamic” view.

- The persistent view describes the past, present and future states of the hardware - config-

uration, staffing, maintenance schedule, etc. The “persistent” view is so-called because the

objects in it must be available (to planning systems) even when the machine and its controller

are physically shut down. We foresee the persistent view being supported by a database-like

equipment management agent.

11

- The “dynamic” view describes the current operating states, the current ProcessJobs and Trans-

ferJobs, and other transient information one would expect to be supported by the machine

controller. And we foresee the object server supporting the dynamic view being the machine

controller.

The controller can expect to have access to the persistent information provided by the equipment

manager, and therefore the “controller” server can respond to messages that require persistent

information, if this is considered convenient. But the equipment manager can not expect to have

access to the information possessed by the controller.

From the proposed revisions to CIMF 1.4, we conclude that the class Machine, together with its

MachineResources, is intended to represent the persistent view, and the MachineManagement com-

ponent is intended to represent the equipment management server. From CIMF 1.3, we also con-

cluded that the ProcessJobManager and TransferJobManager classes represent the “dynamic” or

“controller” services. (This dichotomy helps to explain the existence of multiple classes in the CIMF
that seem to map imperfectly to the same manufacturing object - the “machine.”)

If this is the case, CIMF 1.4 should NOT contain in the MachineManagement component ANY
operations which are to be understood as commands to the system to perform a physical function!

All such operations are properly directed to the xxxJobManager classes. Related operations on

the MachineManagement classes record the logical and physical changes of state of the hardware

systems. (In many cases, the clients for these operations will be the controllers.) This clarification

should appear in the comments describing those operations in CIMF 1.4, and in a few cases, the

operations should probably be renamed to avoid confusion.

Recommendation:

a. Delete the following operations on class Machine: pause, resume, canMakeActive, doPro-

cessJob, informProcessJobStarted, informProcessJobCompleted, informTransferJobStarted, in-

formTransferJobCompleted, makeAUProcessJobsAborting. transportResourceAvailable and

the four related “events.”

b. Delete the following operations on ProcessResource: doProcessJob, canMakeActive, makeAc-

tive

c. On MachineResource remove the comment “Perform any activities associated with ...” from

the operations: materialLocation_received, materialLocation_sent

d. On PortMaterialLocation (to be MaterialPort?) remove the comment “Do any activities based

on this.” from the operations: material-hereAt, material.goneAt

(We recognize that this particular CHOICE of assignments of server functionalities to interface

classes is controversial. We would be satisfied with any resolution which makes a clear distinction.

Exactly which classes do we propose to be provided by the vendor of a machine controller?)

Capabilities vs. Setups

“Capability” seems to have two different meanings as used in the ProcessResource operations. In

the definition of class ProcessCapability, and in ProcessResource::possibleCapabilities(), it means a

collection of processes the resource can perform:

/* Answer a sequence of ProcessCapabilities representing the total set

* of designed processes for this ProcessResource. */

ProcessCapabilitySequence possibleCapabilitiesO

;

But in currentCapability() and assignedCapabilitiesQ, it apparently means “Setup,” viz.:

12

/* Set and get the single ProcessCapability representing the current setup

* (configuration of consumables and fixtures) of this ProcessResource

.

* This ProcessCapability must be in the assigned list. */

attribute ProcessCapability currentCapability

;

/* Answer a sequence of ProcessCapabilities representing setups allowed

* for this ProcessResource. This must be a subset of the total possible

* capabilities. */

ProcessCapabilitySequence assignedCapabilit ies ()

;

If the definition of class ProcessCapability is right, then currentCapabilityQ and assignedCapabilities

are either misnamed or misused.

These notions are not the same, and in general there is a many-to-many relationship between “process

capabilities” and “machine setups.” That is,

- for many machines, a single standard setup may support more than one “process,” depend-

ing on how finely the concept “process capability” is delineated. (1 setup, multiple process

capabilities)

- for some machines, different standard setups of the machine may support some common pro-

cessing capabilities, and the “setup" for the same “process” may be different for an alternative

machine. (1 process, multiple possible setups)

Furthermore, a machine Setup is an activity in its own right - it takes time and staff, and for

many machines it may require material deliveries. Thus it is a non-process activity that can be

“scheduled.” Setups should have a name, so that schedulers can determine eligible machines for

a process and/or cost of re-setup. The concept “machine setup” is generic to many dissimilar

manufacturing industries.

Note that, at least in mechanical parts manufacture, there is a distinction between Machine setup

and Part/Product setup. Machine setup refers to the configuration of the machine for one or more

“process runs,” wrhile Part setup refers to the (usually manual) operations of loading and positioning

individual workpieces (Products) for processing. Machine setup should be scheduled in, while Part

setup is just factored into the “Operator instructions” and time for a specific process. And the

parameters/settings for the machine Setup and the Part processing may be different. This distinction

is correctly supported in CIMF 1.3 by setupSettings for Machine and current ProcessSettings for

ProcessResource.

Recommendation:

a. Introduce a new “object class” - MachineSetup or ResourceSetup - to represent the Setup

concept, and copy setupSettings from Machine into this class. (Leave ProcessCapability as is.)

/* Machine Setup models the configuration of a machine for one or

more "process runs". A given setup may be specific to a single process,

or "standard" in the sense that it supports a common set of processes.

The configuration defined by a MachineSetup is supported by

specifications for the process of configuring the machine.

*/

interface MachineSetup : NamedEntity {

/* Answer the set of ProcessCapabilities supported by the Machine with

* this MachineSetup. */

ProcessCapabilitySequence capabilitiesSupportedQ

;

13

/* Answer the specification for performing the reconfiguration. */

ProcessDef inition def initionO ;

/* Return the setup-specific settings for the Machine with this Setup. */

sequence <setting> setupSettingsO

;

>

b. Change ProcessResource::currentCapability to currentSetup:

/* Set and get the single MachineSetup representing the current setup
* (configuration of consumables and fixtures) of this ProcessResource

.

* This MachineSetup must be in the assigned list. */

attribute MachineSetup currentSetup;

c. Change ProcessResource::assignedCapabilities to assignedSetups:

/* Answer a sequence of MachineSetups representing setups allowed for
* this ProcessResource. */

sequence <MachineSetup> assignedSetups ()

;

Machine: rsetupSettings

/* Set and get current setup-specific settings for the Machine. */

attribute settingSequence setupSettings

;

Are these settings for the Machine (generally) or for some particular ProcessResource? The CIMF
distinguishes between a Machine and its ProcessResources and thus it appears that setupSettings is

an attribute of the wrong object. Or is there a hidden assumption that a Machine has at most one

ProcessResource?

In any case, the “setupSettings,” as distinct from the current process settings (which are correctly

supported by ProcessResource), are part of the machine setup. If the above recommendation is

taken, then this should be an attribute of MachineSetup.

Machine: :processCapabilities

/* Answer ProcessCapabilities this machine has. */

ProcessCapabilitySequence processCapabilities ()

;

Which “capabilities?” The ProcessResource distinguishes “assignedCapabilities,” “possibleCapabil-

ities” and “currentCapability.” It appears that the intention here is really ProcessCapabilities and

that the intention is “currentCapabilities,” as distinct from that attribute of the ProcessResource

which is called “currentCapability,” but means the (single) “current Machine Setup.” This just

needs to be clarified in the comments.

Machine::reserveFor

/* Reserve a Material for production. Material may be reserved for

* only one entity. Return true if successful. */

boolean reserveFor (in NamedEntity requester)

;

14

/* Unreserve a Material for production. */

void unreserveO;

/* Return true if the Material has been reserved for production. */

boolean isReserved()

;

/* Return the NamedEntity for which the Material has been reserved. */

NamedEntity reservedFor ()

;

The word “Material” should be “Machine” in all occurrences here. These are operations on the

Machine, not on some Material in it.

Also, machine reservation is not just for “production.” Rather a machine is reserved for some

particular upcoming production or setup or maintenance task. NamedEntity is obviously a synonym

for “any” here, and far too gross. A Machine is really reserved by some Person (with authority) for

some not necessarily identifiable (because it may be future or engineering) Job.

Recommendation:

a. Change reserveFor to:

boolean reserve (in Person requester, in string purpose);

When it is reserved for a Job, the “purpose” can be the Job identifier.

b. Change reservedFor to:

/* Returns the Person who has reserved the Machine, or NIL. */

Person reservedByO
;

/* Returns the purpose for which the Machine is reserved, or NIL. */

string reservedFor ()

;

E Detailed Comments on CIMF MachineResource Compo-
nent

Machine: ifindMaterialNamed

/* Answer the material with this name or nothing. */

Material f indMaterialNamed(in string materialName)

;

This operation has the form of the name-lookup operation on MaterialManager. Whatever this

operation is supposed to mean, it should not be so named.

Why is this an operation on Machine? Is this supposed to find the Material if this Machine has it?

If so, this operation is conceptually:

/* Answer true if the Material is somewhere on this Machine. */

boolean f indMaterial (in Material aMaterial)

;

or perhaps better:

/* Answer the location of the Material in this Machine, if it is

* present, or NIL if it is not present on this Machine. */

MaterialLocation f indMaterial (in Material aMaterial);

15

Machine: MovementResource vs. MachineResource: MovementResource

This is an aspect of a general architectural problem with the Framework. The implementation is

confused with the service interfaces.

If an implementation provides instances of both Machine and MachineResource, then the transport

protocols defined for MovementResource should not be defined for the Machine class, and Machine

should not inherit from MovementResource. And in practice, the transfer protocol operations should

be directed to the MachineResources that inherit from MovementResource.

It is envisioned that a single CORBA “server” may support an instance of Machine and instances of

all its MachineResources. So the same server implementation will in fact provide all elements of the

“MovementResource” protocols. The Framework will support this architecture without overloading

Machine with the operations that are properly assigned to the other classes supported by the same
server.

If an implementation may elect not to provide instances of MachineResource, then the Framework

model must be altered to support that implementation. That is, that implementation is supporting

a class which inherits from both Machine and MachineResource and calling it “Machine.” This

behavior should not be specifically included in the CIMF.

Recommendation: Change Machine so that it does not inherit from MovementResource.

What is a PortResource?

Does a PortResource model a single “port?” The following operations apparently make this as-

sumption:

Machine: : f irstAvailablePort

PortResource : rmakelnputPort , makeOutputPort , makelnputOutputPort

PortResource : : isLoaded

That is, these operations seem to presume that the PortResource has only one externally accessible

container location (PortMaterialLocation). E.g. firstAvailablePort returns a PortResource and not a

MaterialLocation, so the PortResource is either totally available or totally unavailable. And makeln-

putPort makes ALL container receptacles at the port incoming. And the definition of isLoaded refers

to the PortMaterialLocation.

But the IDL (and the OMT diagram) indicate that a PortResource can have more than one Port-

MaterialLocation, i.e. externally accessible container location. If multiple container locations are

accessible, then one would expect that the individual locations would be set to input or output and

be separately available or occupied. Something is wrong here.

PortResource: .-isLoaded

/* Check to see if any Material is at the PortMaterialLocation (i.e.,

* a Posit ionalContainer/Cassette) . */

boolean isLoadedO
;

In general, this operation is on the wrong object. It should be an operation on PortMaterialLocation.

Does this operation mean “check to see if there is a PositionalContainer in any PortMaterialLocation

at the port?” If so, the comment should be restated, as it clearly assumes that there is only one

PortMaterialLocation.

16

If the assumption that there is only one PortMaterialLocation is valid, this service is redundant, as

the service is already provided by MaterialLocation::isOccupied(), and therefore on PortMaterial-

Location, which inherits from it.

Alternatively this could mean “check to see if there is Material in any PositionalContainer at the

port.” If so, the comment should be restated to make that clear.

PortResource::transferOrder() and ProcessResource::transferOrder()

This operation is an unnecessarily complicated means of specifying the required access order. The
given method requires a separate operation to find out what the MaterialLocations are, and assumes

that they are all to be used. Why not simply provide the sequence of MaterialLocations in the order

they are to be accessed?

And even that is not necessary if the sequence doesn’t change dynamically. Since the

(Port)MaterialLocations of a PortResource or ProcessResource can be accessed by the inherited

MaterialLocationSequence materialLocations () from MachineResource, all that is wanted is

the convention that for a PortResource the (returned) Sequence is significant and reflects the re-

quired order of access.

We would also suggest adding an operation:

boolean access IsRandomQ

which returns true if the MaterialLocations can be accessed in any order.

MaterialLocation::content

The attribute of Material called “format” corresponds to the attribute of a MaterialLocation or

Container called “content.” The latter is a poor choice since the true “content” of a MaterialLocation

or Container is its “currentMaterial” or “containedMaterial.”

Recommendation: rename MaterialLocation"content to “contentType” or “contentFormat.”

MaterialLocation status model

For MaterialLocation, the model of “status” is badly confused by attempting to make it like “states”

of other objects. In particular,

a. makeAllocated() allocates the MaterialLocation to receive a particular Material, and it could

fail, but there is no exception, and there is no way to interrogate the MaterialLocation for

the allocated Material. isAllocated returns boolean, rather than what the MaterialLocation is

allocated to.

Recommendation: change makeAllocated(in Material aMaterial) to:

allocateTo (in Material aMaterial)

raises (MaterialLocationNotAvailable)

;

/* Return the Material to which this MaterialLocation is allocated,

* if any, else NIL. */

Material allocatedToO
;

One can leave boolean isAllocatedQ, for clients who don’t need the details.

17

b. isInService is a “state” that is independent of all the others. That is, a MaterialLocation can

be simultaneously InService and Occupied. So the model is:

attribute boolean isInService;

There is nothing wrong with the current methods, except that they follow a pattern that is

elsewhere only applied to mutually exclusive states.

c. makeOccupied() and makeNotOccupied() are totally inappropriate. The model is:

boolean isOccupiedO { materialO != NIL };

That is, isOccupiedQ is simply the interpretation of the fact that the material() operation does

not return NIL, and the means of modification is materialReceived() and materialSent().

Recommendation: makeOccupied() and makeNotOccupied() should be deleted,

d. isNotOccupied is not a useful function. First, it is the same as ~ isOccupied(). (And there are

no parallel isNotAllocated or isNotAvailable functions.) Second, isAvailable() is the question

that the client should ask.

Recommendation: delete isNotOccupiedQ.

e. The comment on isAvailableQ says:

/* Available = InService and not Allocated, Reserved, or Occupied. */

but there is no operation that “reserves” a MaterialLocation. It is possible that there should

be.

Recommendation: Either remove the word “Reserved” from the comment, OR add reserveFor()

and isReservedQ.

MaterialLocation::resourceOwner

The comments say that a MaterialLocation “is a place in a MachineResource,” and the definition of

MachineResource confirms that. But method resourceOwner() is:

/* Return the owning Resource. */

Resource resourceOwner ()

;

Recommendation: change it to

MachineResource resourceOwner ()

;

Qualification of MaterialLocation “names”

The qualification of MaterialLocation “names” is correct, but inadequately described.

Recommendation:

a. Change the comment on machineNameQ from

/* Return the name of this MaterialLocation qualified to the Machine. */

to read:

18

/* Return the name of this MaterialLocation qualified to the Machine

* that owns the MachineResource, i.e.\ the resourceOwner () . */

b. Change the comment on resourceNameQ from

/* Return the name of this MaterialLocation qualified to the

* MachineResource. */

to read:

/* Return the name of this MaterialLocation qualified to the owning

* MachineResource. */

MaterialLocation should not inherit from Resource

MaterialLocation is said to inherit from Resource. This implies that it must support startup(),

shutdown(), etc. This is almost certainly wrong, and nothing else useful is inherited directly from

Resource. The resourceOwner () (which should be a MachineResource) should support startupQ,

shutdown(), etc. and the naming conventions are already supported by specific methods on Materi-

alLocation.

Recommendation: Change MaterialLocation to delete the inheritance from Resource.

LocationPortal should be a kind of MaterialLocation

LocationPortal has no modelled properties, except a many-to-many relationship with MaterialLo-

cation. It is the subject of several transfer operations. It inherits from Resource a name and an

ownership relationship, although what might own it is not clear (a MachineResource? a Machine?).

It also inherits from Resource startup and shutdown operations which are completely inappropriate.

It seems that a LocationPortal - the point at which a change of ownership occurs - must be a physical

place which is able to hold a Material or a Container. And that would make it a MaterialLocation

of yet another specialized type. Thus it seems that a LocationPortal should inherit most methods

from MaterialLocation: it too can have content, format, inService, allocation, etc.

Recommendation

:

a. make LocationPortal inherit from MaterialLocation

b. make a new interface, e.g. StorageLocation, to inherit from MaterialLocation and provide the

methods (moved from MaterialLocation):

/* Answer the portals the MaterialLocation may be accessed by. */

LocationPortalSequence portals ()

;

/* Add a LocationPortal to the MaterialLocations ’ s collection of

* access portals. */

LocationPortal addLocationPortal (in LocationPortal aLocationPortal)

;

/* Remove a LocationPortal from the MaterialLocations 5 s collection of

* access portals. */

LocationPortal removeLocationPortal (in LocationPortal aLocationPortal)

;

/* Answer the current portal the MaterialLocation has been using. */

LocationPortal portalQ;

19

(It will be seen immediately that these are cognate to the three methods supported by Loca-

tionPortal objects.)

How is a PortMaterialLocation related to a LocationPortal?

It is not clear how a PortMaterialLocation is related to a LocationPortal, but the definition of

LocationPortal certainly fits a PortMaterialLocation. It seems in fact that these are two different

models of the same objects. If there is a real difference, at least one of the definitions needs to

make clear what it is. If the above model of LocationPortal is adopted, it seems that one of

PortMaterialLocation and LocationPortal can be deleted, since they have identical models.

A guess is that people modelling storage resources (like an ASRS) model their input/output ports as

LocationPortals and think of MaterialLocations as storage locations, while people modelling process

resources model their input ports as PortMaterialLocations, which to them is just a special kind of

place to hold material - a MaterialLocation. But the CIMF has to reflect an integrated conceptual

model, in which the critical question is: do these objects have the same properties and operations?

And the answer appears to be: yes.

Do PortResources have MaterialLocations that are not PortMaterialLo-

cations?

The definition says

/* A PortMaterialLocation is a location owned by a PortResource
,
and only

PortResources may own PortMaterialLocations. A PortMaterialLocation is a

specialized MaterialLocation used to hold a container at a port. Its use

with a PortResource distinguishes it from other specializations of

MaterialLocation.

*/

It appears that the second sentence is the definition. It should appear first. It appears that

the first and third sentences say exactly the same thing, but what they are trying to say is:

Every MaterialLocation in a PortResource is a PortMaterialLocation, and every PortMaterialLo-

cation is owned by a PortResource. Is this correct? (What is not clear from the wording is whether

a PortResource can also have MaterialLocations that are not PortMaterialLocations.)

How do the PortResource operations addPortMaterialLocation and removePortMaterialLocation

relate to the inherited (from MachineResource) operations addMaterialLocation and removeMateri-

alLocation? Why should a PortResource have both?

Recommendation: Delete operations addPortMaterialLocation and removePortMaterialLocation.

F Detailed Comments on CIMF Process Definitions

Global Type definitions (4.1.1)

typedef struct setting_struct {

string settingName; //// the name of the setting

// (e.g., "Temperature")

// the value for the setting

// (e.g., 125)

// the units of the setting

any settingValue
;

unit units
;

20

// (e.g., "degC"

} setting
;

This use of “any” is needless and complicates the CORBA interface for both the client and the

server. The datatype of “settingValue” should be “string.” For those cases in which settingValue

needs to be interpreted as an integer or floating-point number, the server knows what to expect and

most processing languages provide “built-in” conversion routines of one form or another. By making

it “any,” all one does is substitute the ORB-provider’s favorite conversion routine and complicate

the interface into a discriminated union.

ProcessDefinitionManager

/* This signal is raised when attempt is made to remove a

* ProcessDef inition when it contains a sequence of ProcessDef initions . */

exception ProcessDef initionContainsASequenceNoRemoveSignal

{ string processDef initionName ; } ;

Why?

/* This signal is raised when a ProcessDef inition removal operation fails.*/

exception ProcessDef initionNotFoundsignal

{ string processDef initionName
; } ;

/* This signal is raised when a ProcessDef inition retrieval fails. */

exception ProcessDef initionRetrievalFailedSignal

{ string processDef initionName
; } ;

This is the strange view of exception returns again. They should both be NotFound. Find by name
is not a “retrieval.” All that is returned is the object-reference.

/* Creates an atomic level ProcessDef inition (no sequence of

ProcessDef initions)
,
places it by name in the collection of

ProcessDef initions, and sets the pointer to its Document. */

ProcessDef inition createProcessDef initionNamed_inDocument

(in string processDef initionName,

in ProcessDef initionSequence processDef initions

,

in DocumentSpecif ication aDocumentSpecif ication)

raises (ProcessDef initionDuplicateSignal)

;

The second argument to this method contradicts the comment. By definition, the sequence must be

empty. Recommendation: delete the second argument, or change the comment to explain what this

really means.

/* Creates a ProcessDef inition (with a sequence of ProcessDef initions)

,

places it by name in the collection of ProcessDef initions
,
and sets

the pointer to its Document. */

ProcessDef inition createProcessDef initionNamed_withSequence_inDocument

(in string processDef initionName

,

in ProcessDef initionSequence processDef initions

,

in DocumentSpecif ication aDocumentSpecif ication)

raises (ProcessDef initionDuplicateSignal)

;

Some part of 4. 2. 4.3 needs to make clear what the meaning of the ProcessDefinitionSequence pa-

rameter (and attribute of ProcessDefinition) means. Is the newr ProcessDefinition to be interpreted

as the concatenation of the ProcessDefinitions in the sequence? Or is it to be interpreted as the

sequence of (what will become) ProcessFlow'Nodes by assigning one ProcessFlowNode to each un-

21

derlying ProcessDefinition? And what is the relationship to the Document object? i.e. how does it

define the process and reference these “included” ProcessDefinitions?

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* from a ProcessFlow. */

ProcessFlowContext createProcessFlowContext_forProduct

(in ProcessFlow aProcessFlow, in Product aProduct)

;

This seems to be an incorrect substitute for what is really wanted: assignment of a ProcessFlow-

Context for a particular Lot. Only in the degenerate case will a (possibly subdivided) Lot consist of

a single workpiece. I assume that the thinking here is to capture rework and feed-forward process

modifications, but rework often involves changing the routing and the routing unit is a Lot. Note

that the Materials Management component allows for decomposition and recomposition of Lots.

Using a per-Product routing model here defeats the whole purpose of that model.

Changing only the process parameters for a particular workpiece should be addressed by some other

means.

Notes: ProcessFlowContext and ProcessFlow

Although the OMT diagram shows a relationship between these classes, and there is an operation

on ProcessDefinitionManager that creates a ProcessFlowContext from a ProcessFlow, there is no

operation on the ProcessFlowContext that returns the associated ProcessFlow.

This relationship is “internal” to the component (implementation). The manufacturing executive

deals only with ProcessFlowContext:: beginNextProcessOperation and currentProcessOperation.

And therefore ProcessFlow should be an internal object to the component that exposes no operations.

(The external object is a ProcessDefinition, from which the Flow is created.)

But the ProcessFlow object is what is attached to the ProductSpecification. This also seems incor-

rect. If the ProductSpecification is supported by a Product Data Management (PDM) system, for

example, what will be attached is the ProcessDefinition object that defines the ProcessFlow.

Recommendation:

a. delete the ProcessFlow object.

b. change

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* from a ProcessFlow. */

ProcessFlowContext createProcessFlowContext _forProduct

(in ProcessFlow aProcessFlow, in Product aProduct);

to

/* Creates the ProcessFlowContext for a particular Product (workpiece)

* using its ProductSpecification. */

ProcessFlowContext createProcessFlowContext_forProduct

(in Product aProduct)

;

ProcessStep

/* The ProcessStep class specifies what to do to a material. It is the

application of the product’s specification of processing for a

22

particular product given the product’s history. It is created from a

single (atomic level) ProcessDef inition and contains settings and a

ProcessResource set and a ProcessCapability

.

*/

While the settings and resource set and capability are attributes of this class, the ProcessDefinition

is not. This is an error - the ProcessDefinition is what gives meaning to the ProcessStep object.

Add:

/* the definition of the operation to be performed */

stepDef inition: ProcessDefinition;

ProcessDefinition

ProcessDefinition addFirst (in ProcessDefinition aProcessDef inition)

ProcessDefinition add_after (...)

ProcessDefinition remove (...)

The naming of these methods does not conform to the vl.3 naming conventions.

/* Set and get the ProcessOperationSpecif ication to use for the

* ProcessDefinition. */

attribute ProcessOperationSpecif ication

referenceProcessOperationSpec if ication

;

This relationship is not on the OMT diagram 4.28, and disagrees with the 4. 2. 4.3 description of the

model.

On the OMT diagram, the relationship is to ProcessFlowNode. In this, the OMT diagram is wrong.

Only “Operation” Nodes have associated ProcessDefinitions.

On the OMT diagram, this relationship is one-to-many. That is, several different ProcessOpera-

tionSpecification nodes may reference the same ProcessDefinition. In this, the OMT diagram is

correct. The attribute should be

attribute sequence<ProcessOperationSpecif ication> . .

.

In fact, this models a not clearly useful “inverse” relationship. The important relationship is that

each ProcessOperationSpecification node points to its definition (the ProcessDefinition), and (tech-

nically) many may point to the same one.

/* Adds a time estimate for this ProcessResource set used in the

* process. This information is used for planning and scheduling. */

void addTimeEstimate.for

(in long timeUnits, in ProcessResourceSequence aProcessResourceSet)

;

Should not “long” above be Duration? (The great advantage of Duration is that it reconciles

“timeUnits” from different process engineers.)

Note that one can addTimeEstimate_for but not removeTimeEstimate_for. This suggests that the

intended implementation is that the time value is added only for those Resources in aProcessRe-

sourceSet which already happen to be in the hidden “eligibleProcessResources” list (maintained by

addSettingsJor, removeSettings_from). This suggests that there is either a missing method or a

missing exception here.

/* The ProcessCapability to use for the ProcessDefinition. */

attribute ProcessCapability requiredProcessCapability

;

23

Suggest replacing the comment with:

/* The ProcessCapability required for a ProcessResource to perform
* the process defined by this ProcessDef inition. Note — an

* impaired ProcessResource might lose some of its Capabilities,
* so this is not redundant with the eligible ProcessResource set. */

/* Remove settings for a set of ProcessResources . The sequence of settings
* and ProcessResources that are passed into the service do not have any
* implied order. */

void removeSettings_from (in settingSequence settings,

in ProcessResourceSequence aProcessResourceSet)

;

Is it intended that removal of a setting be conditional on both the Name and the Value of the

setting matching the one in the list? Or just the Name? If the intent is Both, then some kind of

exception should certainly be possible. And if the intent is only Name, then the method seems to

be misdefined, in that the first argument should be simply:

in stringSequence settingNames

;

/* Return the settings for a given ProcessResource. The order of the

* returned sequence of settings is unspecified. */

settingSequence settingsFor (in ProcessResource aProcessResource)

;

This method should “fail” and return an exception if aProcessResource is not in the eligible Pro-

cessResources list. Returning the empty set implies that the ProcessResource is there and has an

empty list of settings.

Relationship of ProcessDefinition to ProcessResources

The relationship between the ProcessDefinition object and the ProcessResources which can perform

it is strangely modelled.

First, no such relationship is depicted in the OMT diagram. Rather the OMT diagram shows the

relationship to ProcessResource to belong to the ProcessOperationSpecification. In this, the OMT
diagram is not quite right. The real relationship is between the underlying ProcessDefinition and

the eligible ProcessResources, and the ProcessOperationSpecification derives its eligible resources

from that relationship.

Second, the relationship between the ProcessDefinition and the eligible ProcessResources seems to

involve a “hidden object,” since that relationship itself has attributes - timeEstimate and (control)

settings. This hidden object need not appear on the OMT diagram, but it MUST be explained in

the text.

Third, there is apparently an unstated rule that it is only possible to add an eligible ProcessResource

to the list by supplying the associated “settings.” That is, the means of adding a ProcessResource to

the list is called addSettings_for. This is not at all clear from the comment, but there is no method

for attaching the eligible ProcessResource by itself.

This rule fails to understand the engineering reality. A process engineer can determine by vari-

ous means what resources can perform an Operation long before he can perform the experiments

to determine the proper settings, or the estimated time. So there should really be methods to

set/add/remove eligible ProcessResource relationships, in addition to methods to attach the set-

tings and timeEstimates to those relationships.

Fourth, it is not at all clear that removeSettings_from actually removes the resources themselves

from the eligible list, but there is no other way of removing a ProcessResource from that list.

24

Fifth, there is no method that returns the list of all eligible ProcessResources.

Recommendation: Add an attribute:

/* The ProcessResources which could (normally) perform the process

* specified by this ProcessDef inition

.

* The sequence of ProcessResources does not imply preference. */

attribute ProcessResourceSequence eligibleProcessResources

;

and possibly two additional methods:

void addEligibleProcessResource (in ProcessResource aProcessResource)

;

void removeEligibleProcessResource (in ProcessResource aProcessResource)

;

ProcessFlow

This class represents the sequence of ProcessDef initions that define

how to manufacture the product. The processFlow itself is made up of

ProcessFlowNodes (graph nodes) which comprise a general graph

structure. The primary entry points to the flow are determined by using

the entryPoints service. The ProcessFlow can then be traversed using the

supplied protocol below. Each node in the graph that is a

ProcessOperationSpecif ication will be used to create a ProcessOperation

which can be used by the processResource.

First, the intent is that the ProcessFlow is in the general case a directed graph, having at least parallel

flows and apparently optional flows. Therefore it is not the “sequence” of ProcessDefinitions.

Second, it is not clear from any of the text what “entryPoints” actually returns. If the Process-

Flow is a linear sequence, then does entryPoints() return that sequence, i.e. the sequence of all

ProcessFlowNodes? And if the graph is not simply a linear sequence, then what “sequence” does

entryPoints() return, and what is the meaning of the ordering?

Finally, the last sentence is a comment on ProcessOpSpec and not on ProcessFlow.

/* Returns a sequence of ProcessFlowNodes that axe the immediate

* successors of this ProcessFlowNode . */

ProcessFlowNodeSequence nextProcessFlowNodesFrom

(in ProcessFlowNode aProcessFlowNode)

raises (ProcessFlowNodesRetrievalFailedSignal)

;

This is misidentified as an operation on a ProcessFlow. It is, by its nature, an operation on a

ProcessFlowNode.

Also, if the “sequence” returned is all “immediate successors,” then the “sequence” is logically a

“set,” that is, the ordering has no meaning. Or does it?

Recommendation: Either change “a sequence” to “the set,” or specify the meaning of the ordering.

Question: Why is the interface set up to retrieve first/next only for ProcessOperationSpecifications?

One would think that the scheme would apply to ProcessFlowNode generally. The implication of

the interface as written is that intervening nodes that are not ProcessOperationSpecifications wrould

be skipped. Is this intended?

ProcessFlowContext

/* Updates the current ProcessOperation to the next ProcessOperation in

25

* the flow. This service is also used to start the ProcessFlowContext
* "walk" by positioning at the first ProcessOperation. */

void beginNextProcessOperationO
raises (NoMoreProcessOperationsSignal)

;

The nomenclature is misleading. Following vl.3 conventions, we recommend:

informNextProcessOperationStartedO

ProcessOperationSpecification

long processingTimeFor_on

(in long numberOfProducts,

in ProcessResource aProcessResource)

;

The use of “long” here is inappropriate. The datatype should be Duration.

G Other Miscellaneous Comments on CIMF

Person::responsibilities

The description of the operation in IDL is different from the description in English in the comments:

/* Return the responsibilities (objects within a factory) which are

* assigned to a Person’s responsibility category. For example, return all

* of the DocumentSpecif ications in the category "specification management".

*/

personResponsibilitySequence responsibilities () ;

As defined the operation returns all responsibilities as a list of pairs (category, responsibility-object).

This is probably a useful operation, but not what the comment describes. If the intention is to return

all responsibilities in a specific category
,
as the comment indicates, then the operation should be:

anySequence responsibilities (in string responsibilityCategory)

;

Person::personResponsibility

The comment does not correctly describe the IDL data structure:

/* This type represents a dictionary of key/value pairs that represents
* Personal responsibility associations. The key is

* the "responsibility category name" while the value is the set of factory

* objects associated with that category. */

typedef struct personResponsibilitystruct {

string responsibilityCategory
;

any responsibility
;

} personResponsibility

;

typedef sequence<personResponsibility> personResponsibilitySequence

;

“This type” refers to “personResponsibilitySequence” (the second typedef, not the first) and is

correctly described as a “dictionary” of key/value pairs. But in each pair the value is one factory

object ..., not “the set of factory objects”

26

History::at

What sort of “key” is envisioned for the “any” in operation “at?”

/* returns the HistoryEvent at the key */

HistoryEvent at (in any historyKey)

raises (KeyNotFoundSignal)

;

The only attribute modelled for type HistoryEvent is a TimeStamp. Subtypes of histories that

have subtypes of events with other keys will need to model the appropriate key search operations.

Recommendation: Change “any” to “TimeStamp,” viz.:

/* returns the HistoryEvent at/nearest the specified time key */

HistoryEvent at (in TimeStamp historyKey)

raises (KeyNotFoundSignal)

;

History::from_to

/* returns a collection of all the HistoryEvents that occurred between
* start ingEvent to endingEvent (inclusive) from the History. */

HistoryEvent from_to

(in HistoryEvent startingHistoryEvent

,

in HistoryEvent endingHistoryEvent)

raises (KeyNotFoundSignal)

;

According to the comment this function should return type HistoryEventSequence.

ProcessRun: rvalue

ProcessRun inherits attribute “value” from HistoryEventData, where it is declared type “any.”

What is really intended is:

/* Set and get the value of the HistoryEventData. */

attribute ProcessRunlnformation value;

Since type “any” has a very high programming and support overhead in CORBA implementations,

such “template” methods and attributes as HistoryEventData: :value should be commented out (until

IDL acquires “virtual” operation declarations) and the overrides for specific subtypes should be

included in the running IDL.

ProcessRunInformation::inputs()

Are these the same as “settings?”

Since ProcessRunlnformation is attached to the ProcessResource and not to the Product or Prod-

uctSpecification, it appears that either the concept “inputs” is heavily overloaded, or there is a

missing attribute: the Lots processed during the run. Suggest adding:

/* Answer a sequence of the Lots processed during this run,

* in the order they were processed. */

LotSequence lotsProcessedO

;

/* Add a Lot at the end of the sequence of Lots processed
* during this run. */

27

void addLot(in Lot aLot)

;

