
NAT L INST. OF STAND & TECH R.I.C.

A111DS 15b474

NIST
NISTIR 6022

U.S. Department ofCommerce
National Institute ofStandards and Technology

High Performance Systems and Services Division

Scalable Parallel Systems and Applications Group

S-Check, by Example

Robert Snelick

QC

100

.U56

NO. 6022

1997

I

June 1997

Supported by NIST task number 40131 and ARPA task number 7066.

NISTIR 6022

S-Check, by Example

Robert Snelick

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

High Performance Systems and Services Division

Scalable Parallel Systems and Applications Group
Gaithersburg, MD 20899-0001

June 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Robert E. Hebner, Acting Director

S-Check, by Example

Robert Snelick

Abstract: S-Check is a software toolfor identifying performance bottlenecks in parallel and

networked programs. The system uses and incorporates sophisticated statistical techniques

and synthetic perturbation for extracting code sensitivities. The methodology demands exten-

sive setup and execution procedures. S-Check automates much of this process. Even still,

using S-Check at first glance can be formidable because of its unfamiliar scheme for perfor-

mance analysis. To alleviate the initial learning curve we present a simple walk through exam-

ple ofhow to set up and conduct an S-Check performance analysis.

Introduction

We describe how to use the sensitivity analysis tool S-Check [3] by work-

ing through a simple example. This step-by-step procedure can be used to

familiarize yourself with S-Check’s basic window layout and flow (Figure

1). You can follow along on-line by going to the example code directory

given with the S-Check distribution (release 2.0 and later) [2]. The sample

code (a simple quicksort program) is under the example directory in the top

level of the distribution. Start S-Check while in this directory. As we go

through the example, user actions will be outlined in highlighted boxes. It

is assumed that the reader is familiar with basic S-Check concepts

[3,4,5,6].

Below is a listing of the steps and procedures required by S-Check to com-

plete its analysis of your code. Some steps are trivial, requiring just a sim-

ple user response or are completely automated by S-Check. Others involve

moderate input and interaction from the user.

• select experiment name (pick a name to identify the experiment)

S-Check, by Example 1

Introduction

• identify run environment (e.g., IBM SP2 using LoadLeveler)

• indicate your test code (your application)

• indicate compile and runtime instructions (e.g., include parallel routine

library)

• select type of S-Check analysis (e.g., a basic screening of computational

segments)

• pick suspect code locations to test (where do you suspect performance

bottlenecks)

• define response interval (e.g., overall run time of the program)

• select DEX plan (trade-off between cost and information)

• select number of experiment replication (increase for a noisy system)

• select delay value (duration of delay)

• build experiment (compile code with instrumentation)

• run experiment (run all program variants, record data)

• calculate effects (solve set of linear equations)

• view results (fist or plot results from previous step)

• tune code accordingly and/or change experiment parameters and return

to a prior step

2 S-Check, by Example

Introduction

Figure 1 . S-Check Window Layout and Flow.

S-Check, by Example 3

Step-by-Step Example

Step-by-Step Example

gfgpt Before starting S-Check make sure that it is installed correctly. This

S-Check includes having S-Check’s executables in your path and making sure that

S-Check is reading its resource file. See “How to install S-Check” in Using

S-Check [1]. To invoke the tool just type scheck while in the example direc-

tory or in the directory in which your code resides.

% cd <your_^af/*>/scheck2.0/example
% scheck &

Create
Experiment

Configure
Experiment

The first window you see is the Experiment List Window (Figure 2). This

window allows you to create new experiments and/or recall previously

saved experiments. We refer to an experiment as the entire process (static

and dynamic aspects) that defines a particular S-Check analysis. To create a

new experiment, give it a name and click on Open.

> type in test.l in the New Experiment Name text field

> click on the Open button

SCttec*.

Since this is a new experi-

ment, S-Check launches the

Configuration Window (Fig-

ure 3) where the platform

type
,

test code
,
and experi-

ment type can be initialized.

The Platform Type indicates

to S-Check what environ-

ment your source code will

run on. The Platform Type

option menu allows you to

select your platform. For Figure 2. Experiment List Window
simplicity, we demonstrate the tool on a uniprocessor Unix workstation.

Therefore, we use the default Platform Type (Unix). This requires no action

4 S-Check, by Example

Step-by-Step Example

by the user. Next, we tell S-Check which code we are going to test. S-

Check lists all .c files in the current directory. Here we need to select all the

files that will make up the executable program. Drag and hold your pointer

over the files listed under the Directory Contents selection window to high-

light the files. Click on the Add button to include them in the Work Set. The

Work Set contains the list of files that will be edited for the purpose of

picking test points. Any flags (or other attributes) that you need to set to

compile or run the code are identified next. In our simple example the only

parameter that needs to be filled in is the command line Arguments text

field. Here we enter 1000000. This instructs the example program to sort

1000000 numbers. We enter command line arguments in the same manner

as if we were running the code from the shell.

> leave Platform Type set at Unix and Experiment Type set to Screening
> highlight all files in Directory Contents by dragging the pointer on them
> add the selected files to the Work Set by clicking on the Add button
> enter 1000000 in the Arguments text field

> click on the OK button to exit the Configuration Window

Next we select the

Experiment Type.

There are 4 options:

Screening, Barrier,

Communication, and

Scaling. In our exam-

ple, we just want to

evaluate the impact of

certain suspect compu-

tational code seg-

ments. Therefore, we
keep the default selec-

tion (Screening). This

will run S-Check

basic sensitivity analy-

sis. Clicking on OK

Figure 3. Configuration Window

S-Check, by Example 5

Step-by-Step Example

Select
Test

Locations

exits this window and leads us to the Experiment Control Window.

> open bubble.c by double-clicking on it in the Experiment Control Window
> move your pointer to line 21 in bubble.c and click on “swap(&list[i],
> move your pointer to line 10 and click on the code segment
> click on the OK button to exit the editor

Before we can access

many of the functions of

the Experiment Control

Window (Figure 5), we
must first select the

code segments that we
wish to investigate and

define the response

interval. So we will do

that first. One way to

select points to screen is

to use S-Check’s Factor

Editor Window (Figure

4). In the upper left hand

comer of the Experiment

Control Window is the

list of Work Set files we
previously selected in

the Configuration Win-

dow. To open a Factor

Editor, double-click on

the desired file.

We select test locations Figure 4. Factor Editor Window

(called factors) by simply clicking on the desired code segment. This

action highlights a section of text where you clicked. The delay instrumen-

tation will be inserted between the left most character and the right most

character of the reverse video. Some exceptions to this rule for certain com-

pound statements exist, see Chapter 4 in the user’s guide [1].

6 S-Check, by Example

Step-by-Step Example

> open parte by double-clicking on it

> move to line 23 and click on the “more to do” variable, the “ {“ section of
the line is highlighted (the body of the while loop will be tested)

> click on the OK button to exit the editor

Once a factor has been selected, the factor count is updated for the current

file that is being edited. A global factor count for the experiment is main-

tained on the Experiment Control Window (Figure 5). A fist of the cur-

rently selected factors are shown in a panel under the source code viewer.

In our example Factor Editor screen (for bubble.c) we selected two test

points. For the entire program we will select three locations (two in bubble.c

and one in part.c).

A Factor can be removed by clicking on the location again. The text area

will no longer be highlighted in reverse video. Factors can also be selected

in groups with the use of S-Check’s automatic factor selection utility. See

the Profile button under the Utility Menu on the Experiment Control Win-

dow. We don’t use this feature in our simple case study, but it can be very

useful in large programs.

> open main.c by double-clicking on it

> click on the Select Response button
> scroll down to line 40 and select it (a B is placed in the annotation column)
> scroll down to line 44 and select it (a E is placed in the annotation column)
> exit the Factor Editor window

Set
Response
Interval

Next we need to define the response interval which is the section of the

code we want to improve. This response measure is usually set to record

the run time for the whole program. To define the response interval, we
open up a Factor Editor for the file where we want to set it, usually the

main driver. When started, a Factor Editor by default is automatically set to

factor selection mode (as we have seen previously). To change this mode
we use the Select Response button (lower right on the Factor Editor Win-

dow). This button is used for setting the Begin (B) and End (E) of the tim-

ing interval. Upon clicking on the Select Response button, the cursor

changes to a red downward pointing arrow. This symbol indicates that the

S-Check, by Example 7

Step-by-Step Example

Build

Experiment

Start

Experiment

Begin can be set (click

to mark it). After the

Begin location is set

the cursor points

upward and is ready

for defining the End

point. Another click

sets the End location

and completes the

response interval.

the test

response

Now that

points and

interval are defined,

we can set up the rest

of the experiment. We
do this using the

Experiment Control

Window. Here we can

open Factor Editors (as

response tine[6] is: 5.52 100
response tine[7] is: 5.21 000
response tine[8] is: 7.76 001
Variance conputed uith 1 degree (s) of Freedon
You need at least 10 for a neaningful estinate

: Variance = 0.000215
Standard error 0.014676

Figure5

discussed), select a designed ofexperiment plan, set the number of replica-

tions, and determine the delay value. In S-Check, all of these have default

settings or can be generated. In our example, we use the default settings.

> click on the Build button of the Experiment Control Window

In addition, we use the Experiment Control Window to build and start

experiments. To build an experiment we click on the Build button. This

compiles the program with our instrumentation instructions. Once the pro-

gram is built, S-Check runs sample tests to determine a suitable delay

value. The progress of this phase (as well as other phases) is chronicled in

the Messages area (bottom of window).

Upon completion of this phase, the Start button becomes functional. We
begin the experiment by selecting this button. S-Check proceeds to execute

8 S-Check, by Example

Step-by-Step Example

each program variant and displays various status information on the Exper-

iment Control Window. A running trace of each trial run is shown in the

Messages area. The response time and the corresponding delay pattern is

displayed.

> click on the Start button to begin the experiment
> upon completion, select the List Effect button from the Results menu

View
Results

Upon successful completion of the experiment, the List button under the

Results menu is enabled. Select this choice to bring up the List Effects

Window (Figure 6) to view the sensitivity analysis. S-Check displays the

effects for each factor defined in the factor selection phase of experiment

initialization. It can also display the interaction effects for these factors (if

available). An interaction effect indicates the affect of code efficiency

changes on two or more factors together.

SCtecfi: list Wioctow

&!perii»eafcj|teSt.i

rHain

j2tv}

J3rd Orster

jfill

Experinent Profile:
Experinent :

Plaffom :

Test Type :

Factors :

Plan :

Replication:
Std Error : 0.01
Delay Value: 1

test.l
Uorkstation
Screening
3
Full Factorial

An effect reflects the impact the code efficiency changes (the delay) had on

the run time of the

program. The

higher the effect,

the more likely the

corresponding

code segment is a

bottleneck. The

tuning effort

begins at the high-

est ranked code

segment. The sig-

nificance of an

effect is deter-

mined by its rela-

tive magnitude to

other effects and a

standard error

V Index

Value

EffecE Order Tern [line 8]File

[23]part.c partition_list()

[21Jbubble.c tuible.sortO
[lOlbubble.c biiible sortO

Figure 6. List Effects Window

S-Check, by Example 9

Step-by-Step Example

measure. Effects should be at least 3 standard errors from zero to be con-

sidered significant. As shown in the List Effects Window, each effect mea-

sure is related back to a corresponding section of code. Double-clicking the

right mouse button on a code segment opens a Factor Editor for viewing

the code segment in question. Investigation (improvement) of code sections

proceeds down the ordered list until a desired performance level is

obtained. Alternatively, further exploration of the program can be per-

formed by discarding some or all factors and adding more factors and then

retesting. The process can be iterative.

Interpretation

of Results
The 3 factors we selected to analyze are for demonstration purposes and

correspond to the operations of (1) exchanging elements (using swap()) in a

bubble sort routine (2) calls to the bubble sort routine, included here for a

baseline measure and (3) comparing elements in a fist. A typical result pro-

duced by S-Check will look like:

ID Effect Order Term [line #] File Function Text

2 2.43 1 2 [23]part.c partition_list() while(more_to_do) {

0 0.25 1 0 [21]bubble.c bubble_sort() swap(&list[i], &list[i+1]);

1 0.01 1 1 [10]bubble.c bubble_sort()
{

Standard Error = +/- 0.02

Of the three elements that we decided to investigate, the main comparison

loop (ID=2) of partition_list() is ranked the highest in terms of its overall per-

formance cost. This is to be expected given that one of the central opera-

tions involved in the quicksort algorithm is comparing and subsequently

exchanging elements to split fists. In comparison bubble_sort() is less

costly because it is only used to sort subfists of sufficiently (economically

wise) small length. In bubble_sort(), we examined two code areas: swapping

elements (ID=0) and the function’s entry point (ID=1). As expected (for

our data set), the swapping phase’s impact on performance exceeds that of

the function’s entry point impact. In fact, since calling the bubble sort plays

a minor role in the algorithm, its (ID=1) influence on performance is barely

noticed in S-Check’s analysis. In contrast the key component of the sort,

the partitioning phase (ID=2), is resoundingly brought to attention.

10 S-Check, by Example

Conclusion

The simple example presented here describes S-Check’s core usage and

shows how to apply its performance analysis to tune programs. Although

the example is trivial, the same procedure and analysis just as easily applies

to complex programs on a variety of parallel and networked architectures.

The tool is quite robust—the largest code it has analyzed had 44, 000 lines.

Save
Experiment
& Results

Our experiment can be revisited at a later or more convenient time by sav-

ing the experiment and results. Results are saved under the Save button in

the Results menu. Experiment settings are save under the Save button in the

File Menu. The use of these mechanisms can aid and log an ongoing per-

formance evaluation of an application.

> select Save under the Results menu on the Experiment Control window
> name the file and click on SAVE
> select Save under the File menu on the Experiment Control window
> select Quit under the File menu on the Experiment Control window

Exit S-Check To exit S-Check, select the Quit button under the File menu on the Experi-

ment Control Window.

Conclusion

We illustrated S-Check’s multistage process for assessing and identifying

performance bottlenecks in parallel and distributed codes. The intention

was to introduce the user to the basic S-Check concept and process. For

clarity and brevity, many features and options were intentionally omitted.

The users guide and related publications can further explain S-Check

usage.

S-Check, by Example 11

Disclaimer

Disclaimer

The National Institute of Standards and Technology (NIST) contribution is

not subject to copyright in the United States. Certain commercial products

are identified in this paper to adequately specify experimental procedures.

Such identification does not imply recommendation or endorsement by

NIST, nor does it imply that the products identified are necessarily the best

available for the purpose.

References

[1] R. Snelick et al., Using S-Check, N1STIR 5789, February 1996. (An

updated version of this document is available at the URL http://

www.scheck.nist.gov/scheck)

.

[2] S-Check’s URL and ftp site. URL: http://www.scheck.nist.gov/

scheck; anonymous ftp site: ftp:cmr.ncsl.nist.gov

[3] R. Snelick, S-Check: A Tool for Tuning Parallel Programs. Proceedings

of the 11th International Parallel Processing Symposium (IPPS’97),

Geneva. April 1-5, 1997, pages 107-112.

[4] G. Lyon, R. Snelick, and R. Kacker, Synthetic-perturbation tuning of

MIMD programs, Journal ofSupercomputing 8(1)(1994) 5-8.

[5] R. Snelick, J. Ja’Ja’, R. Kacker, and G. Lyon, Synthetic-perturbation

techniques for screening shared memory programs, Software - Practice and

Experience 24(8)(1994) 679-701.

[6] R. Snelick, M. Indovina, M. Courson, A. Kearsley, Tuning Parallel and

Networked Programs with S-Check. To appear in the Proceedings of 1997

International Conference on Parallel and Distributed Processing Tech-

niques and Applications (PDPTA’97), Las Vegas, Nevada. June 30-July 3,

1997.

12 S-Check, by Example

