
OF STAND

MllOS lSb377
NIST

PUBLICATIONS

User's Guide for the
SQL Test Suite,

Version 6.0

David Plater

Leonard Gallagher

Shirley Hurwitz

Joan Sullivan

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

QC
100

U56 NIST
NO.S998

1996

User's Guide for the

SQL Test Suite,

Version 6.0

David Plater

Leonard Gallagher

Shirley Hurwitz

Joan Sullivan

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

December 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Robert E. Hebner, Acting Director

ii

I

I

I

1

User's Guide for the SQL Test Suite, Version 6.0

ABSTRACT: This manual describes the SQL Test Suite (Version 6.0) and the procedures needed

to test and evaluate an SQL implementation through a standard programming language interface or

through Interactive Direct SQL. This release of the SQL Test Suite was completed December 31,

1996, and includes new tests to validate the Intermediate level of conformance to 1992 SQL
standards. The SQL Test Suite, Version 6.0, was developed jointly by the U.S. National Institute

of Standards and Technology (NIST), National Computing Centre Limited (NCC) in the U.K, and

Computer Logic R&D in Greece. The first five versions of the NIST SQL Test Suite were produced

by NIST over the years 1987 through 1995. The donation of tests by NCC and Computer Logic,

under the CTS5 SQL2 Project sponsored by the European Community, has been a major contribution

to the current version.

The SQL Test Suite may be used to evaluate conformance to the following SQL standards

specifications: ISO/IEC 9075:1992, ANSI X3. 135- 1992, FIPS 127-2, and X/Open XPG4 SQL. The

test suite contains tests and procedures to evaluate conformance to various levels of the standards

or profiles: Intermediate SQL, Transitional SQL, Entry SQL, sizing profiles, flagging of extensions,

X/Open profiles. The test suite consists of schemas and test programs for Interactive SQL as well

as ten different programming language test suite types: Embedded C, Embedded COBOL,
Embedded Fortran, Embedded Ada, Embedded Pascal, Module Language C, Module Language

COBOL, Module Language Fortran, Module Language Ada, and Module Language Pascal.

The SQL Test Suite is used to validate commercial SQL products for conformance to ISO, ANSI,

and FIPS SQL standards. The results of the validation service are listed in an online Validated

Products List. The software for the SQL Test Suite can be downloaded from the Web pages of the

NIST Software Diagnostics and Conformance Testing Division. To download this conformance

testing software, go to:

http://www.itl.nist.gOv/div897/ctg/software.htm#pubsoft and select SQL

KEY WORDS: conformance testing; database standards; interoperability; SQL; testing of software;

user guide; Validated Products List; validation of software.

DISCLAIMER: Because of the nature of this report, it is necessary to mention vendors and

commercial products. The presence or absence of a particular trade name product does not imply

criticism or endorsement by the National Institute of Standards and Technology, nor does it imply

that the products identified are necessarily the best available.

I

I

I

I

I

I

I

I

I

I

I

I

I

IV

TABLE OF CONTENTS

1. INTRODUCTION 1

2. TECHNICAL GOAL OF SQL TEST SUITE 6

3. OVERVIEW OF SQL TEST SUITE 7

4. INSTALLING THE TEST SUITE 9

5. CREATING THE TEST SCHEMAS 12

6. RUNNING/DEBUGGING WITH THE TEST PROGRAMS 15

7. RUNNING THE AUTOMATED REPORTING SYSTEM 20

8. PREPARING FOR VALIDATION OR REGRESSION TESTING 23

9. SPECIAL NOTES ON INDIVIDUAL PROGRAMS 24

10. RUNNEsfG THE INTERACTIVE DIRECT SQL TEST SUITE 26

11. EVALUATION INSTRUCTIONS 30

12. SOFTWARE MAINTENANCE 33

13. SQL TEST SUITE REFERENCE MATERIALS 33

14. DESIGN NOTES 35

15. ANNOTATED BIBLIOGRAPHY 38

16. ONGOING SQL STANDARDIZATION - SQL3 40

V

APPENDICES

APPENDIX A. Examples of Driver Scripts

1 . VAX VMS Using Rdb, DCL Listing for Embedded C A. 1.

1

2. VAX VMS Using Oracle, DCL Listing for Embedded FORTRAN A.2.1

3. UNIX Command Language for Unify, Embedded C A.3.1

APPENDIX B. Base Data for Primary Test Tables B. 1 .

1

APPENDIX C. TESTCASE columns (TESTNO, PROG, DESCR) C.Ll

APPENDIX D. TEd Change Files

1 . Sample Downloaded Embedded SQL COBOL File D. 1.

1

2. Vendor-modified File Proposed for Validation D.2.1

3. Accepted Counter-proposed File D.3.1

APPENDIX E. Sample Printout from Program Execution E.1.1

APPENDIX F. Sample Summary Reports

1. PROBLEMS Listing F.1.1

2. TOTALS Listing F.2.1

3. TEST RESULTS Listing F.3.1

APPENDIX G. "SQL Flaggers" Examples G.l.l

APPENDIX H. Automated Reporting System Diagrams

1. Table Definitions for Reporting System H.l.l

2. Test Reporting Structure H.2.1

3. SQL Testing Profiles H.3.1

4. Reporting System Tables H.4.1

APPENDIX L Informational Interactive Concurrency Tests 1.1.1

I

i

I

I

I

I

I

I

I

VI

1. INTRODUCTION

This manual describes the SQL Test Suite (Version 6.0) and the procedures needed to test and

evaluate an SQL implementation through a standard programming language interface or through

Interactive Direct SQL.

The SQL Test Suite may be used to evaluate conformance to the following SQL standards

specifications:

FIPS 127-2

ANSIX3.135-1992

ISO/IEC 9075:1992

X/Open XPG4 SQL

Goals of SQL Test Suite

This test suite was originally developed by the Information Technology Laboratory of the National

Institute of Standards and Technology in support of its federally mandated program of Federal

Information Processing Standards (FIPS). The purpose of this test suite is to help evaluate

conformance of SQL implementations to mandatory requirements of FIPS PUB 127-2. This is the

FIPS Publication that adopts ANSI X3. 135- 1992, a voluntary industry standard for database

language SQL, for use by the federal government. FIPS PUB 127-2 became effective on December

3, 1993, six months after its publication in the Federal Register.

FIPS PUB 127-2 supersedes previous FIPS PUBs 127 and 127-1. The original FIPS PUB 127

required SQL in relational DBMS applications acquired or developed after August 3, 1988. FIPS

PUB 127-1 offered new conformance alternatives, new programming language interfaces, a new

integrity enhancement option, clarification and correction of existing specifications, and additional

considerations for use in procurements. FIPS 127-2 provides a substantial, upward-compatible

enhancement of Database Language SQL. It includes four levels of conformance: Entry SQL,

Transitional SQL, Intermediate SQL, and Full SQL. Entry SQL is a minor enhancement over the

requirements of FIPS PUB 127-1. Version 6.0 of the SQL Test Suite contains tests for Entry SQL,

Transitional SQL, and Intermediate SQL.

An important objective of FTPS PUB 127-2 is:

To reduce overall software costs by making it easier and less expensive to maintain

database definitions and database application programs and to transfer these

deHnitions and programs among different computers and database management

systems, including replacement database management systems.

The programs in this test suite can be viewed as straightforward standard application programs that

a user wishes to transfer from one standard environment to another standard environment. Is this

1

goal achievable on the implementation being tested? Or, is substantial analysis and modification

required before these programs will execute correctly?

The process of installing and running the programs in this test suite is to be documented by the

testers according to instructions provided in this manual. That documentation, along with the

automated summary report of pass/fail results for individual SQL features, can be used to help

evaluate conformance to FIPS PUB 127-2.

Since April 1990, NIST has offered a formal testing service. This service issues Certificates of

Validation for tested products passing all required tests. A Validation Summary Report is issued

for all implementations tested. This validation report documents, to the extent tested, the

implementation's conformance to FIPS PUB 127-2. Beginning July 1, 1997, NIST will turn over

SQL testing services to the private sector. Federal agencies should continue to require validated

products in their SQL procurements, since validation services will continue to be available and since

standard-conforming SQL products are critically important in heterogeneous distributed database

environments.

The test suite can also be used to evaluate the adherence to X/Open XPG4 SQL specifications (with

optional Integrity Enhancement Feature) for X/Open Branding Requirements; it covers the language

bindings Embedded SQL C and COBOL only.

NIST publishes an on-line register. Validated Products List, showing SQL implementations that hold

current Certificates ofValidation and registered Validation Summary Reports. This publication also

lists results of testing for the programming languages (Ada, C, COBOL, and FORTRAN) as well

as Graphics, POSIX, and Security standards. As NIST transitions its testing services to the private

sector, NIST World Wide Web pages will point to a directory of conformance testing programs,

products, and services to provide additional information.

History of SQL Test Suite

The SQL Test Suite was first made available to the public in August 1988 as the NIST SQL Test

Suite, Version 1.1. This version included tests for three programming languages: COBOL,
FORTRAN, and C. Version 1.1 included tests for Embedded SQL as well as Module Language

SQL. In May 1989 the test suite was enlarged and released as Version 1.2. This version included

tests for additional SQL features, as well as tests for Embedded SQL Pascal and a Pascal interface

to Module Language SQL. The NIST SQL Test Suite was distributed, for a fee, under the terms of

a software agreement. Version 2.0 of the SQL Test Suite contained additional tests as well as the

support system (software utilities) to administer the validation process.

Continuing standardization work for SQL resulted in a revised SQL standard, ANSI X3. 13 5- 1989,

published December 1989. This revised standard contained integrity enhancements for SQL,
including referential integrity, default values for columns, and check clauses. FIPS PUB 127-1 was

revised to specify these new integrity features as an optional module which federal agencies could

2

either require or (by default) not require in a procurement. Version 2.0 of the test suite also

contained a set of tests to validate conformance to this optional module.

In the same time frame, ANSI X3. 168- 1989 standardized the embedding of SQL in programming

languages (Ada, C, COBOL, FORTRAN, Pascal and PL/I). The first release of the SQL Test Suite

contained tests for Embedded SQL, in anticipation of this standard. Since numerous

implementations of Embedded SQL already existed, prior to standardization, NIST hoped that the

early availability of tests for that interface would hasten the conformance of implementations to the

revised FIPS PUB 127-1. Version 3.0 provided test suites for Ada bindings to SQL and also tests

for the errata in the SQL Information Bulletin SQLIB-1.

ANSI X3. 135-1992, the 1992 revision of the SQL standard, represents a major enhancement in SQL
functionality. Conformance to FTPS PUB 127-2, Entry SQL, requires additional capabilities from

an SQL implementation beyond those required for minimal conformance to FTPS PUB 127-1. The

Integrity Enhancement Feature is now mandatory. Support for the following additional features is

now required: SQLSTATE status codes, delimited identifiers, renaming columns, commas in

parameter lists, and SQL Errata against ANSI X3. 135-1989 (approved after publication of SQLIB-1).

Version 4.0 of the SQL Test Suite provides tests for all the features in Entry SQL. Although

MUMPS is one of the standard programming language interfaces specified in FTPS 127-2, the SQL
Test Suite does not yet have programs to validate the MUMPS interfaces to SQL.

Version 2.0 was used in the formal testing service offered by NIST which opened in April 1990.

Version 3.0 became the official version of the test suite in July 1992, and Version 4.0 became the

official version in January 1994.

In Version 5.0, tests were included to address features of Transitional SQL features defined in FTPS

127-2, as well as features of the X/Open CAE Specification Structured Query Language (SQL).

Version 6.0 grew substantially through the donation of new tests for Intermediate SQL written by

European collaborators. National Computing Centre in the U.K. and Computer Logic R&D in

Greece. These tests were developed under the Conformance Testing Service Project for SQL-92

called CTS5 SQL2, sponsored by the European Community (EC). Version 6.0 became freely

accessible over the World Wide Web on December 31, 1996.

Description of SQL Test Suite

The SQL Test Suite provides ten programming language test suite types: Embedded (preprocessor)

SQL Ada, Embedded SQL C, Embedded SQL COBOL, Embedded SQL FORTRAN, Embedded

SQL Pascal, Module Language Ada, Module Language C, Module Language COBOL, Module

Language FORTRAN, and Module Language Pascal. The test suite also provides an Interactive

Direct SQL test suite type to test interactive invocation of SQL statements as defined in FIPS 127-2.

In Versions 5.0 through 6.0, new tests for Transitional and Intermediate SQL were not translated into

three interfaces: Module Language FORTRAN, Embedded, and Module Language Pascal. These

3

three interfaces have been the least popular, and generating additional tests for these interfaces is not

cost effective.

The original test programs were developed in Embedded (preprocessor) SQL for the C language.

The design objective for the test programs was to provide a simple test for every general rule in the

standard and to cover fully all SQL syntax.

Ada, COBOL, FORTRAN, and Pascal test routines, as well as module language test routines, were

generated by software (written by NIST) from the original Embedded SQL C language. For this

reason, the style of the translated code may seem unnatural for a given language. The original

Embedded SQL C Language tests are very simple, using only a carefully restricted subset of the C
Language. Otherwise, it would be technically infeasible to translate these tests into the other

programming languages.

The Interactive Direct SQL test files were created by extracting SQL statements from the Embedded

SQL C programs. Test cases were reworked to avoid reference to cursors and host variables. The

resulting text files were annotated with comments describing the test and the expected results

required for a "pass."

Each test is designed to be short and simple, exercising as little of the host language as possible. The

host language compiler should be validated separately to ensure that it conforms to the applicable

standards. The use of complex host language code in SQL conformance programs would make tests

difficult to understand and would make it more difficult to resolve questions of interpretation of the

SQL standard.

Many of the tests involve 3 small tables containing a total of 23 rows. The data types of columns

in these tables are either character string or integer, so the tests will work across all these

programming languages. Other tables are used to test approximate numeric and scaled exact

numeric data types. Additional tests have been written to cover the data type variables specific to

each language.

Each program contains one or more tests. Although allowing only one test per program would

simplify the evaluation of implementations with a high degree of nonconformity, it would impose

additional overhead on implementations with a high degree of conformity. The tests within a

program are intended to be independent so any one test may be removed without affecting the

remaining tests.

Each test is self-evaluating; i.e., each test is written with knowledge of the data in the database and

the correct response for a specific SQL statement. Each test checks for correct execution of the SQL
statement and then inserts into the reporting table, TESTREPORT, a "pass" or "fail" value for that

test. After all the test programs have executed, a summary of test results is produced automatically

by another program which reads TESTREPORT.

4

As each test is executed, a description of the test is printed on standard output (the screen) along with

appropriate data values and the test result. This output should be considered as a "log" of the test

programs. It is intended to assist in debugging and in analyzing nonconformities. This output is not

needed to produce the automated conformance analysis of the SQL test suite.

These tests are not designed to debug DBMS software; however, they may help identify problem

areas. The use of small tables does not challenge the buffer-management strategy of an

implementation. In addition, the frequent use of ROLLBACK (after tests which modify tables), to

restore the base data to its original state (and thus simplify testing), limits testing of the COMMIT
path. Since the SQL standard does not address physical database design, it is likely that schema

definition and DML tests will be run in the simplest manner possible, without optimization.

The test suite includes a few tests for the "SQL Flagger" option specified in Section lO.d of FIPS

PUB 127-2. These tests contain extensions to the SQL standard. In general, if an SQL
implementation supports these extensions, it must be able to flag the extensions with warning

messages. These tests are to be run with the flagging turned off and then, if successful, rerun with

the flagging turned on. Test evaluation for the SQL Flagger is subjective, based upon examination

of any warnings which are printed (or displayed on the screen) when extensions to SQL are used.

The "SQL Flagger" tests are very limited. They are intended to demonstrate the existence and style

of monitoring provided by a vendor. They do not systematically attempt to detect SQL extensions

which are not flagged. For Entry SQL, standard features which are required only by higher levels

(beyond Entry) should all be flagged along with nonstandard features. It is desirable, but not

required (until Intermediate SQL), that the flagging message indicate the exact status (Transitional

SQL, Intermediate SQL, Eull SQL, nonstandard extension) of the flagged feature.

The test suite has a set of programs to test the specifications in FIPS PUB 127-2, Section 16.6,

"Sizing for database constructs." These minimum specifications for the precision, size, or number

of occurrences of database constructs are contained (by default) in procurements which do not

provide alternate specifications. Reporting of the FIPS sizing tests is separate from reporting on

other tests. FIPS sizing tests are not technically considered conformance tests, and passing these

tests is not required for a Certificate of Validation for FTPS 127-2.

The test suite includes a set of programs to test features from the X/Open CAE Specification

Structured Query Language (SQL), Document Number C201, which contain some extensions to the

ISO/IEC 9075:1992 standard.

Utility programs are included to make global and program-specific changes in a controlled and

systematic manner and to document those changes in the automated report.

Unless stated otherwise, all references to sections, syntax rules or general rules in this documentation

are to ANSI X3. 135- 1992 (or equivalently ISO/TEC 9075:1992).

5

2. TECHNICAL GOAL OF SQL TEST SUITE

The technical goal of the test suite is to help evaluate an SQL implementation's conformance to

various levels of the SQL standard, as specified in ANSI X3. 135-1992 (or equivalently ISO/IEC

9075:1992), through one or more standard programming language interfaces.

The test suite contains additional tests to help evaluate conformance to: (1) the minimum sizing

parameters for database constructs specified in FIPS PUB 127-2, Section 16.6, (2) the flagging of

extensions, specified in FIPS PUB 127-2, Section lO.d, SQL Flagger, (3) Interactive Direct SQL,

as specified in FEPS PUB 127-2 Section 16.5, and (4) X/Open Extensions for features specified in

the X/Open CAE Specification.

The test suite contains ten different programming language test suite types. An SQL implementation

claiming conformance to FIPS PUB 127-2 for a particular SQL interface; for example. Embedded

SQL COBOL, should be tested with the appropriate test suite type. The programming language

compiler used for testing should conform to the FEPS standard for that language and should be listed

in the Validated Products List, which is published on the NIST Web Server URL address

ftp://speckle.ncsl.nist.gov/vpLsqlintro.htm.

The intention of NIST is that this test suite should be used to help evaluate compliance of

implementations of SQL to FIPS PUB 127-2. A correct implementation ofFEPS 127-2 requires the

incorporation of the SQL standard document, ANSI X3. 135-1992 (or ISO/IEC 9075:1992), into the

design specifications for the SQL implementation. The SQL test suite then confirms that the

standard has been interpreted and implemented correctly by the SQL supplier. The test suite is

intended to be used in conjunction with the SQL supplier's own independently-developed regression

tests to ensure a robust and internally consistent product. A quality SQL implementation is not

achievable by simply "fixing the product" until it passes the SQL Test Suite.

It is important to recognize the limitations of this test suite and of any test suite. In particular, it

would be incorrect for implementations to claim conformance to FEPS PUB 127-2 simply by virtue

of correct performance of these tests. It is reasonable, however, for purposes of procurement, to

substantiate claims of conformance to FEPS PUB 127-2 by demonstrating correct execution of these

tests.

Performance is recognized as a critical selection factor in many DBMS procurements. Eiowever,

performance is not an issue for standards validation testing and is not measured by this test suite.

Currently, it is the responsibility of the implementor to prepare the driver scripts (i.e. operating

system command files, shells, makefiles, runstreams, JCL) to execute the test suite.

NIST will maintain Version 6.0 of the SQL test suite as resources allow. NIST will evaluate error

reports and distribute documentation of approved corrections via a World Wide Web page on SQL
programs.

6

3. OVERVIEW OF SQL TEST SUITE

The SQL Test Suite contains schemas and programs to test an SQL implementation for various

levels of the SQL standard. The test suite contains 18 users, 19 schemas, 208-463 programs and up

to 849 test cases (depending upon test suite type). The Interactive Direct SQL version is smaller,

with 379 programs and 660 test cases. In all there are 5887 files in the Version 6.0 distribution.

Before testing begins, the Test Editor, TEd, is installed. This editor is used (1) to install maintenance

updates from NIST and (2) to facilitate installation and documentation of any changes made by the

tester to the original test suite files.

Figure 1 shows a system flow diagram for basic SQL testing. Running an SQL test suite consists

of 5 steps.

In step 1 ,
the schema files are processed in some implementation-defined manner, typically using

Interactive SQL.

In step 2, a few programs are mn to insert values into the base tables. The contents of these base

tables will remain unchanged throughout testing; i.e., these values will be restored by each

program that changes them.

In step 3, the test programs are run to interact with the database tables. Each program contains

logic to evaluate the database responses and determine whether a test passes or fails. This

pass/fail decision is recorded by inserting a row into the table TESTREPORT. In general,

programs may be run and remn in any order.

In step 4, static values are inserted into the reference tables. These tables are required to produce

the automated summary report. These tables are also a valuable resource to testers, since they

can be queried interactively to create a variety of useful cross-references. In addition to the static

values, rows are inserted (by the tester, via Interactive SQL) into tables FEATURE_CLAIMED
and BINDING_CLAIMED to specify which profiles and interfaces are to be tested.

In step 5, the report programs are mn to produce three listings for each profile tested:

PROBLEMS - a listing of failed or missing results

TEST RESULTS - a listing of the result (pass / fail / missing / not applicable) for each

individual test in each interface tested

TOTALS - counts for test results for each interface tested

To test Interactive Direct SQL, the tester visually evaluates the execution log (screen display) from

mnning the SQL command files, assigns a pass/fail grade, and completes a check list.

7

System

Flow

Diagram

Figure 1

I

I

I

I

I

I

I

I

I

I

I

(N m

4. INSTALLING THE TEST SUITE

1 . Download files from the World Wide Web. The SQL Test Suite is available as a set of

compressed TAR files. You will download the default SQL TAR file and then will select

from among the TAR files for different programming language interfaces.

The full SQL Test Suite consists of 14 directories, organized as 1 1 TAR files. When you

download the default TAR file, you will receive the basic set of directories needed by all

the other directories. The default SQL TAR file contains a schema directory (SCHEMA),
a reporting directory (REPORT), the Interactive SQL directory (SQL), and the

utility/documentation directory (OTHER). You then download directories for the

programming language interfaces you want to test. The 10 remaining directory names,

consistent with our file-naming conventions (see item 5, below), are: PC, PCO, PFO, PAD,
PPA, MC, MCO, MFO, MAD, and MPA. The most popular of these 10 directories is the

PC directory, for testing the Precompiler C (Embedded C) interface.

2. Uncompress the TAR files in a suitable directory. Each TAR file will create its own
directories. Lock the files so they cannot be changed. DO NOT CHANGE the test suite

filenames in these directories (unless mandated by your operating system). The

maintenance scheme depends on stable naming conventions.

3. Create additional directories. In preparation for a validation, we suggest that you create

at least three additional working directories to store (1) permanent objects which you create

such as driver scripts, TEd input files, makefiles, subroutine AUTHID; (2) generated

intermediate objects that can be recreated at will and deleted en masse, such as temporary

versions of the programs (output of TEd or precompiler), object modules, executables, Ted

executable, etc.; and (3) audit trail/documentation objects such as logs showing schema

creation and test program execution. These logs will be stored on tape or diskette after a

validation, along with the permanent objects which you used to run the tests.

The procedures for creating schemas, preprocessing, compiling, linking, and running will

vary with the operating system, DBMS, programming language compilers, etc. The user

of this test suite is responsible for creating the driver scripts (i.e. operating system

command files, shells, makefiles, runstreams, JCL) to execute the test suite. Sample driver

scripts for a few environments are included as APPENDIX A.

4. Verify that all files have been received for the test suite type being tested. Print the file

RUN*.ALL (where * denotes a wild-card matching symbol in a file name) for the test suite

type being tested. For example, the Embedded SQL C ("PC") test suite will contain a file

RUNPC.ALL. This file lists the programs to be executed. Additional files are CHG*.TED
and RPT*.SQL (i.e. CHGPC.TED and RPTPC.SQL for the "PC" test suite). Print these

files also. All other files in the directory are programs of the type to be tested (e.g..

Embedded SQL C programs - ending in "PC").

9

Note that each test suite type will contain a slightly different list of programs. Certain

programs are tests of the Embedded SQL and are not meaningful tests for module

language. For example, for the following programs you will find only precompiler

versions: DML017 (tests WHENEVER) and DML063 (tests use of reserved words as host

variables). Other programs are meaningful for only one host language. For each of the five

embedded test suite types, there is a sample optional login program, AUTHID, which may

be useful.

Note that directories PPA, MFO, and MPA contain programs which are not listed in the

files RUNPPA.ALL, RUNMFO.ALL, and RUNMPA.ALL. These extraneous programs

are tests for Transitional SQL features. The translation of programs into test suite types

PPA, MFO, and MPA was begun, but not completed because of time constraints and

limited demand. Interfaces PPA, MFO, and MPA will not be validated for conformance

to Transitional SQL. Programs for validation of Entry SQL are complete in all test suite

types.

5. Identify test programs. Each of our test programs is of the form CDRiii.xxx,

DMLiii.xxx, SDLiii.xxx, FLGiii.xxx, MPAiii.xxx, MPBiii.xxx, ADAiii.xxx, CCCiii.xxx,

COBiii.xxx, FORiii.xxx, ISIiii.xxx, ISTiii.xxx, PASiii.xxx, XOPiii.xxx, XTSiii.xxx, or

YTSiii.xxx.

The program prefix has the following meaning:

CDR tests "integrity enhancement" to SQL
— Check clause. Default column value. Referential integrity

DML tests data manipulation language

SDL test schema definition language via DML
ISI information schema for Intermediate SQL
1ST information schema for Transitional SQL
FLG SQL Flagger test

MPA concurrency test, program A
MPB concurrency test, program B, to be run at the same time as program A
XOP X/Open Extension tests, for Embedded SQL C and COBOL only

XTS,YTS Intermediate SQL programs donated by the CTS2 SQL2 project

ADA Ada only

CCC C Language only

COB COBOL only

FOR FORTRAN only

PAS Pascal only

10

The XXX designates the type of program as follows:

.PAD precompiler (embedded syntax) Ada program

.SAD standard (calling module language) Ada program

.MAD Module Language SQL called by a Ada program

.PC precompiler (embedded syntax) C program

.SC standard (calling module language) C program

.MC Module Language SQL called by a C program

.PCO precompiler (embedded syntax) COBOL program

.SCO standard (calling module language) COBOL program

.MCO Module Language SQL called by a COBOL program

.PFO precompiler (embedded syntax) FORTRAlN program

.SFO standard (calling module language) FORTRAN program

.MFO Module Language SQL called by a FORTRAN program

.PPA precompiler (embedded syntax) Pascal program

.SPA standard (calling module language) Pascal program

.MPA Module Language SQL called by a Pascal program

.SQL Interactive Direct SQL statements

The iii stands for an integer, assigned serially.

6. Install the NIST Test Editor, TEd. It is not necessary to use the NIST Test Editor for in-

house evaluations. However, if you plan to have your product validated in the future, you

will need to learn how to use the editor. Keep in mind that the explicit purpose of the

editor is to facilitate running the test suite. Despite the natural resistance of users to

learning yet another editor, and a batch editor at that, we expect that your investment of

time will more than pay for itself.

Our test editor is written in highly-portable C. The name of the source code program in the

OTHER directory is TED.C. Please notify us immediately of any portability issues or

errors which we have overlooked. We will assist you in debugging, if problems arise.

Read the user documentation for TEd to understand why and how we plan to use this

editor. If you change any of our test programs or schemas in the process of testing, we

suggest that you use our editor to accomplish this. At the end of testing, you will have a

single text file of batch editor commands (input to TEd) which documents all the changes

you made. This single file will greatly simplify retesting (and validation) later. A separate

text file may be used for each test suite type and for schema processing. Or, all change

specifications may be stored in a single file.

Each directory contains a sample or "starter" change file, CHG*.TED, which the tester

should modify (with any editor) throughout the testing process. For example, the sample

11

change file for Embedded SQL C is CHGPC.TED. This file also contains instructions for

installing implementation-dependent options.

Prior to scheduling for an SQL validation, the SQL testing laboratory will review the

proposed file and will determine whether proposed changes are nonconformities or

allowable modifications.

7. Download the Version 6 maintenance file UPD600.TED. The approved maintenance

file, UPDbOO.TED, is an important input to TEd. This file should be copied into the same

directory containing your driver scripts and CHG*.TED files. This file should be

referenced with the "-t" option on the TEd command line to effect automatic maintenance

of the SQL Test Suite. From time to time, this file should be replaced with the most recent

version of the maintenance file. See the section titled "Software Maintenance" for more

details.

Since the TEd editor is used to install maintenance, it is important to process every file

from the SQL Test Suite using the TEd editor with the official maintenance file

UPD600.TED. This means that schema files, data files, test programs, reporting programs,

etc. must have maintenance applied before they are used.

Prior to scheduling for an SQL validation, the SQL testing laboratory will review the

maintenance file to verify that it contains the most recent changes.

Note that TEd has an option (-o) to write the edited program (or schema file) with a

different name. If you want to change the downloaded filenames to satisfy naming

conventions for your SQL processor, do so on output from TEd. For example, if your SQL
preprocessor expects Embedded C programs (such as dmlOOl.pc) to have a file extension

of ec, then use the following command:

ted -t upd600.ted -t chgpc.ted -o dmlOOl.ec dmlOOl.pc

This command will read the downloaded Embedded C test program dmlOOl.pc, apply the

changes coded in file upd600.ted, apply the changes coded in file chgpc.ted, and then

write the modified Embedded C test program dmlOOl.ec. If the file chgpc.ted contained

a command such as:

sub dmlOOl.pc //

/E1/E2/

This command would change the text El to the text E2 globally in only program

dmlOOl.pc. It would not change anything if program dmlOOl.ec were input to TEd. So,

it is important not to change filenames prior to applying the NIST file upd600.ted.

5. CREATING THE TEST SCHEMAS

1 . Set up accounts and passwords, with the assistance of the DBA, for the following list of

authorization id's:

12

HU
CUGINI
MCGINN
SULLIVAN 1

PLATER

CANWEPARSELENGTH 1

8

SUN*
SULLIVAN*
SCHANZLE*
CTSl***

CTS2***
CTS3***
CTS4***

T7013bPC***

T7013PC***

X0PEN1++
XOPEN2-M-
XOPEN3++

for file SCHEMA 1

for file SCHEMA2
for file SCHEMA3
for file SCHEMA4
for file SCHEMA5
for file SCHEMA6
for file SCHEMll**
for file SCHEM12***
for file SCHEMA7
for file SCHEMAS
for file SCHEMA9
for file SCHEMIO
for file CTS5SCH2***
for file CTS5SCH3***
for file CTS5SCH1***
for file CTS5SCH5***
for file CTS5SCH4***
has no schema file

has no schema file

for file XSCHEMAl
for file XSCHEMA2
has no schema file

* this authorization and schema are used to test Integrity Enhancement Feature (not used

for one of the X/Open profiles, but required for FTPS 127-2).

-H- this authorization and schema are used to test X/Open profiles only.

** this authorization and/or schema are used to test Transitional SQL profiles.

*** this authorization and/or schema are used to test Intermediate SQL profiles.

If the operating system does not allow a user id of length 18, then replace

CANWEPARSELENGTH18 with another user id which is the maximum length allowed.

If your SQL implementation uses the system user id as the SQL USER value or as the

authorization id for privilege enforcement, then your computer system administrator should

also create system accounts for these users. You may need to process schema and

programs for each authorization id while logged in as that user.

The tester will need to choose passwords for the authorization id's. The SQL standard has

no requirements concerning the passwords chosen. The tester should probably choose

passwords consistent with in-house regression testing procedures, if possible.

2. Define the schema for each of the appropriate authorization id's, processing the

schema definition text files in an implementation-defined manner; e.g., interactively. See

13

Step 1 of Figure 1 . The file RUNSCH.ALL contains pseudo-scripts for creating the

schemas. Use the SCHEMA text files as follows:

a. If your implementation is fully conforming to the standard, use SCHEMA 1.STD
through SCHEMIO.STD. (See item (e) below for a discussion of privilege violation

processing for schemas).

b. If your implementation needs semicolons to terminate SQL schema definition

statements, use SCHEMAl.SMI through SCHEMIO.SMI. Be sure to report this

nonconformity in your final conformance analysis. Note that this will be counted as

a nonconformity for a validation.

c. If your implementation needs semicolons and also requires CREATE UNIQUE INDEX
instead of the UNIQUE declaration, then use SCHEMA l.NC instead of

SCHEMAl.SMI. Be sure to report this nonconformity in your final conformance

analysis. Note that this will be counted as a second nonconformity for a validation.

d. Otherwise, make whatever changes are needed to obtain a logically equivalent syntax

for the schema definition. Keep in mind that changes are generally counted as

nonconformities. It is essential that the tables HU.TESTREPORT, HU.STAFF,
HU.PROJ, and HU.WORKS be installed; otherwise further evaluation of the test suite

is impossible. It may be necessary to change the exact numeric data types to INTEGER
instead of DECIMAL(I). (We chose to use exact numeric data types with a declared

scale so that numeric precision would not be an issue.)

Code your change specifications as inputs to TEd by editing the sample file

CHGSCH.TED or CHGALL.TED, which is provided. If the schema contains a

privilege violation, capture the error message as proof that a privilege violation has

been detected and then edit CHGSCH.TED to specify removal of the offending text.

The appropriate changes may already be coded in the CHGSCH.TED file as comments.

If you are not using TEd, keep a log of your changes as documentation of either

implementation-defined or as nonconformities to be reported in your final conformance

analysis.

e. In an effort to simplify the process of editing schema files to remove schema privilege

violation syntax (demonstrated by the SQL implementation to be a "fatal" error),

alternate files are provided in the test suite. If your schema processor will entirely

reject a whole schema because of a single error, then you may use the schema files

ending in PV* and OK. For example, instead of using SCHEMA2.STD without and

with TEd changes, you may use SCHEMA2.PV1 (with privilege violation #1) to

demonstrate the fatal error, followed by SCHEMA2.0K (no privilege violation).

14

f. Note that there is a file ofDROP TABLE and DROP VIEW statements, DROPHU.NC
(clearly containing extensions to Entry SQL), to drop all views and tables created by

SCHEMA!. There is a similar file, DROPSUN.NC, for SCHEMAS. These files may
prove useful while you are analyzing your implementation's SDL conformance. Note

that SCHEMA 1 and SCHEMAS are the only large schemas.

It is permissible to insert one or more statements at the beginning of the schema file to

login or to establish the ANSI/ISO environment. You may add an implementation-defined

terminator, such as a semicolon, at the end of the schema file. Other variations may be

allowed after consultation with NIST or the SQL testing laboratory.

Verify that the tables have been created. Read the schema files and compare to tables and

views existing in your data dictionary.

6. RUNNING/DEBUGGING WITH THE TEST PROGRAMS

1. Code a procedure to create an executable. Decide how to invoke all processors, such

as precompilers, compilers, and TEd, to create an executable. Be sure to invoke any option

on a processor which is needed to obtain the ANSI/ISO/FIPS behavior. Be sure to keep

notes on which options or parameters are used (whether explicitly or implicitly), because

they should be documented later in your evaluation. Read "Special Notes on Individual

Programs" at the end of this section for variations in creating or running executables. Your

procedure should invoke TEd as the first step, to install changes without touching the NIST
original programs. On output from TEd, you should rename files to suit your SQL
implementation's naming conventions. For example, you may want to rename

DMLOOl.PC to DMLOOl.EC. We do not recommend renaming files before executing

TEd, because the NIST maintenance TEd file will then need to be modified to specify the

new names of the test programs.

To save mass storage space, you will probably want to delete all intermediate files (such

as outputs of TEd, precompilers, and compilers) after successful completion of the

program.

2. Code a script to invoke the procedure for each program. For each test suite type, there

is a text file, RUN*.ALL, listing the programs to be executed to support various claims of

conformance. For example, file RUNPC.ALL lists the Embedded SQL C programs,

organized into sections for the various possible claims. You may ignore programs not

applicable for your claim. The text file may be edited to create a command file that will

create executables or run the test suite. Read the notes in RUN*.ALL for additional

instructions. Also, if you are going to claim support for individual features in addition to

the Entry SQL Profile, you will need to use the automated reporting system to generate the

correct list of programs. The files RUN*.ALL were generated by program REPORTA, and

you may choose to run program REPORTA rather than using files RUN*.ALL.

15

The authorization id for each program is listed in these files to assist you in constructing

driver scripts with the appropriate authorization id values.

If your SQL password is tied to your system login password (and this is not disallowed by

the SQL standard) you will probably need to compile and/or execute each of the test

programs while logged into the system as that user. Since the order of execution of the test

programs is not important, you should group them by authorization id; i.e., in the interest

of efficiency, you should write driver scripts which minimize login and logout.

3. Solve the login problem. The method of establishing a <module authorization identifier>

is implementation-defined in embedded languages. We have chosen to code a CALL to

a subroutine, AUTHID, with a variable, uid, containing the authorization identifier. This

subroutine logs into the database with the given authorization. This solution may not work

for you! You may need to move the authorization identifier into the driver scripts (external

to the program) and logically delete the subroutine call. You may replace the subroutine

call with an include statement or a CONNECT statement - see APPENDIX D. In

Embedded SQL C, you may want to insert after the #include <stdio.h> statement some

other statement which will effect initialization of your database. Or, you may solve the

authorization identifier problem in some other way. Your report of test results should

include a description of how your implementation handles login.

Additional statements are allowed to connect to database components and to establish the

ANSI/ISO environment. Basically, one or more statements to login and to establish the

ANSI/ISO environment will be allowed near the beginning of each test file. For example,

you may make a call to the server to invoke ANSI/ISO mode or to invoke ANSI/ISO-

required features separately (e.g., SERIALIZATION mode, TRANSACTION mode, etc.).

The call to AUTHID is a convenient hook for TEd to make these insertions. It is very

desirable that all ANSI/ISO-required features be default features; however, it is allowable

to invoke them as a group or individually. This invocation may take the form of

precompiler/compiler parameters, configuration files, software installation parameters,

calls from inside a program (prior to execution of test cases), etc.

Since it is implementation-defined (in Entry SQL-92) whether the authorization is checked

at run time or at compile time, the most straightforward approach is to precompile (prepare

executables) and execute each program while logged in as the USER specified (by the

variable uid) inside the test program. For client/server architectures where the catalog is

not referenced until run time, it may be more convenient to compile all programs while

logged on as a single user.

Note that each test program verifies that the correct USER is logged in before executing

the test cases. Incorrect USER value will STOP the program. You may easily use TEd to

remove or replace this verification during debugging if your SQL implementation does not

support the key word USER.

16

4. Make global changes for implementation-defined parameters. We have made an

attempt to code certain constructs consistently so that global changes would be possible as

a means of installing implementation-defined parameters. Edit the sample TEd input file,

CHG*.TED, for the test suite type being run. Specify the appropriate implementation-

defined values according to examples contained in the CHG*.TED file.

Change authorization identifiers which are too long to shorter ones; e.g.,

CANWEPARSELENGTH18 may be changed to CANWEPAR. Exercise care, when

making global changes to character string literals in the Pascal and Ada interfaces, not to

change the length of the literal, since unequal-length comparisons and assignments may not

compile or execute as expected.

The precision of indicator variables is implementation-defined. We have chosen to use

"short" in Embedded SQL C, "integer*2" in FORTRAN, "PIC S9(4) DISPLAY SIGN
LEADING SEPARATE" in COBOL, and "integer" in Pascal. If this is not the correct

precision or exact numeric type for your implementation, you must change the precision

in the declarations of variables beginning with the name "indie"; e.g., indie 1, indic2, etc.

These variables occur in programs CDR003, CDR027, DML004, DML008, DMLOlO,

DML013, DML023, DML025, DML036, DML061, DML071, DML076, DML077,

DML082, SDL026, etc. For Ada programs, the required package SQL_STANDARD (for

SQL-92) or INTERFACES.SQL (for SQL-92 as corrected by Technical Corrigendum #2,

TC2) specifies whether the indicator type is INT or SMALLENT.

The precision of SQLCODE is implementation-defined for COBOL. We have chosen

"PIC S9(9) COMP" in COBOL. If this is not the correct precision for your

implementation, you must change globally the precision of the COBOL SQLCODE
declaration.

COBOL programs may need global changes in the Source-Computer and Object-Computer

paragraphs.

The precision of a CHAR column with DEFAULT USER in SCHEMAS should be

changed to reflect the implementation-defined length for USER.

Implementation-defined keywords (possibly HOURS and PROGRAM), which are not

allowed by your implementation as column and tables names, should be changed globally

to some other word. This does not count as a nonconformity.

Character set is implementation-defined. Contact NIST or the SQL testing laboratory if

your character set (whether SQL processor or host language compiler) is incompatible with

test suite materials. NIST or the SQL testing laboratory will discuss the implications with

you and authorize appropriate workarounds.

17

5. Using TEd, make global changes for documentation purposes. Code a TEd

substitution for "59-byte ID" to identify the SQL product and version being tested and the

test platform, including hardware and operating system. If the length exceeds 59, then the

replacement string may overflow COBOL and FORTRAN source code margins.

(Compulsively wordy testers should investigate the -c option in TEd to specify multiple-

line substitutions.)

For FORTRAN, Ada, and Pascal interfaces, determine how to print date and time for your

system. Code TEd substitutions for "date_time declaration" and "date_time print". These

substitutions will differ among host languages and operating systems. C and COBOL
programs have already been modified to print date and time using standard features.

6. Using TEd, make global changes for nonconformities which must be resolved before

further testing is possible. These global changes should be included in your conformance

analysis as nonconformities. All test suite materials must be supported correctly by the

SQL implementation being tested. That is, in addition to the obvious test programs, all test

suite materials such as schema files, dataload programs, reporting system files (schema

files, report dataload program, programs reporta and reportb), are considered part of the

demonstration of conformance by the SQL implementation under test. Any changes to any

of these materials necessitated by nonconformities of the SQL implementation are to be

documented as nonconformities.

If you are testing Embedded SQL COBOL and your SQL implementation does not support

the COBOL numeric data type [USAGE] DISPLAY SIGN LEADING SEPARATE, you

will need to make global changes to the COBOL programs (.PCO and .SCO) and the

COBOL modules (.MCO). TEd can be directed to change only those declarations within

the scope of the BEGIN and END DECLARE SECTION.

If your implementation of SQL does not support a direct declaration of SQLCODE, but

instead requires an INCLUDE SQLCA statement, you should globally delete the

declaration for SQLCODE and insert one for the required structure. For language C, you

may want to direct TEd to delete all lines containing "long SQLCODE" and insert the

required INCLUDE SQLCA statement before the text "main()". This will be counted as

a nonconformity.

If SQLCODE has some other name in your product, such as SQLCDE or sqlca.sqlcode,

you will want to make a global change to the programs. If the substitute value is longer,

you may also need to split lines which become too long. In C, if the substitute value is

longer, you may prefer to "#define SQLCODE sqlca.sqlcode". This will be counted as a

nonconformity.

We have attempted to code certain SQL constructs in a consistent manner, so global

changes would be possible. These constructs include:

18

EXEC SQL BEGIN DECLARE SECTION
EXEC SQL END DECLARE SECTION
EXEC SQL <key word>

We have taken care to code Embedded SQL statements so the global insertion of a line of

code (such as a "print" of SQLCODE) either before or after executable SQL statements

will not disrupt the logic of any "for" loops or "if blocks containing them.

7. Begin running the script to invoke the programs listed in RUN*.ALL. Run program

BASETAB to load the primary tables. The correct authorization identifier for BASETAB
is HU. Then run programs CUGTAB, FLATTAB, SUNTABO, SUNTABl, SUNTAB2,
SUNTAB3, and SULTABl with the authorization shown in RUN*.ALL. For testing

Intermediate SQL, run program CTS5TAB. For testing of X/Open profiles, run

XBASETAB. For testing X/Open profiles without Integrity Enhancement Feature, there

is no need to execute programs for authorizations SUN and SULLIVAN. See Step 2 of

Figure 1 . Check the printout to verify that the data has been inserted. These programs may
be rerun at any time to re-initialize the data in the primary tables.

8. Run each of the programs which are appropriate to the test suite type. See Step 3 of

Figure 1 . Typically, if a problem occurs in one of the test programs, the tester performs the

following steps: (1) determines the cause of the problem, (2) changes the program by

modifying input to TEd, (3) recreates the executable program, and (4) runs the modified

executable program. Often, for the purpose of debugging, it is helpful to run the Interactive

Direct SQL version of a program. The on-line user interface is often very informative and

the SQL statement in question can be rapidly modified and retried until the problem is

isolated. The test programs may be run and rerun in any order (except for programs

beginning with MP, which must be run in pairs). Other exceptions are the sequence of

programs YTS790 through YTS792 and the sequence of programs YTS793 through

YTS795 for Intermediate SQL, as well as the sequence of programs XOP719 through

XOP723 for X/Open profiles. Each of these sequences must be run in ascending order.

See Special Notes on Individual Programs below.

There are thirteen pairs of programs for concurrent testing:

MPAOOl andMPBOOl through

MPA008 and MPB008 for Entry SQL

MPA009 and MPB009 through

MPA013 and MPB013 for Transitional SQL

Each pair is to be run concurrently, either from separate terminals or windows or started

as separate batch processes. All MPA and MPB programs for a given test suite type may

19

be run at the same time. Any pair of concurrent programs may be run and rerun in any

order.

Start the MPA program first, and then a few seconds later or when prompted by the MPA
program, start the MPB program. It is common to see both programs issue messages to

start the companion program, even after the tester has started both.

The concurrency programs contain tuning variables which may be used to lengthen the

workload or planned waiting periods. This will allow programs to "interleave" better, as

required by program logic to get a "pass."

9. Use TEd to install changes. If the SQL language for a given test (except for a FLG test)

prevents a program containing several tests from running, use TEd to delete the entire

problem test. Then rerun the program to exercise the remaining tests. Note that the

missing test will be reported as a "f2dl" by the automated reporting system. Make only the

global changes to the FLG programs. Do not make any other special changes (except

FLG005) to these programs. (If an SQL Flagger test does not compile and execute, then

the reasons given by the implementor for not compiling or executing may constitute the

"flagging" required by FDPS PUB 127-2.)

Another approach is to change the syntax of the problem test to syntax acceptable to your

DBMS. This would allow you to further evaluate the SQL implementation; however, it

would probably give a false test result of "pass." Code these changes in the SYNTAX
DEHCIENCIES SECTION of the CHG*.TED file. This file is a log of changes applied

to tests which fail syntactically, although they may pass functionally.

10. Run PREDML. When you are ready for a final analysis of a test suite type, remove all

rows for that test suite type from the table TESTREPORT. This will eliminate conflicting

results caused by earlier remnning of changed tests. This is done by executing the program

PREDML for authorization identifier HU. Then rerun all the test programs. Capture the

screen printout of this final run as part of the documentation of your testing.

7. RUNNING THE AUTOMATED REPORTING SYSTEM

1 . Install the Reporting Structure.

Run the following in Interactive SQL as user HU:

a. REPORT.SQL, in directory REPORT (creates the tables) See Appendix H. 1

.

b. DATALOAD.SQL, in directory REPORT (loads the static data)

** ffDATALOAD.SQL causes problems, refer to the long instructions on the media, file

REPORT_L.DOC in directory REPORT.

20

Compile the following programs:

a. REPORTA (any embedded or module language)

b. REPORTB (any embedded or module language)

c. REPORTZX.C, in directory REPORT (ANSI C with no embedded SQL)

Put the executables for REPORTA, REPORTB, and REPORTZX together in a directory

where user permissions will allow the creation of temporary files.

2. Execute the Reporting System.

a. Insert one or more of the following values into BINDING_CLAIMED according to

which bindings you wish to test: 'PCO', PFO', PC ', PPA', PAD', 'MCO', 'MFC, 'MC
', 'MPA', 'MAD', 'SQL'. For example, to test Embedded C: INSERT INTO
BINDING_CLAIMED VALUES ('PC ');.

b. Insert the profile identifiers for the profiles that you want to test into

FEATURE_CLAIMED. For example, to test Transitional SQL:

INSERT INTO FEATURE.CLAIMED VALUES ('P135');.

The profile identifiers can be found in the diagram PROFILES.PS (in directory

OTHER) or by typing the Interactive SQL command:

SELECT * FROM REPORTFEATURE
WHERE FEATURE 1 LIKE 'P%';

The typical FIPS 127-2 validation (for Entry SQL) will use only the following inserts

into FEATURE_CLAIMED:
INSERT INTO FEATURE.CLAIMED VALUES ('PI 25)';

INSERT INTO FEATURE_CLAIMED VALUES ('P325');

INSERT INTO FEATURE_CLAIMED VALUES ('P415');

NOTE: Subprofiles are automatically selected when you select a parent profile. Refer to

the diagram PROFILES.PS in directory REPORT or to Appendix H.3. For example, if you

select 'PI 35' (FIPS 127-2 Transitional SQL), the following subprofiles are automatically

selected: 'PI 10' (FIPS 127-2 Entry Syntax Flags), 'P120' (ISO/IEC 9075: 1992 Entry SQL),

and 'P125' (FIPS 127-2 Entry SQL).

c. Run REPORTA. If you are testing a combination of individual features, rather than

one of the established profiles, then you will need to capture the output to get a list of

programs that you must run to test the feature(s) that you selected. If only some of the

tests in a particular program are required, REPORTA will also provide a TEd change

to delete the extra tests. Include the TEd change specification in your TEd file. Run

any additional test suite programs required for your claim.

21

d. Run RPT*.SQL for each binding claimed (test suite type). Before producing the final

reports, it is often useful to know if there are any unexpected failures, any missing tests,

or any conflicting results (both "pass" and "fail" for a single test). An efficient way to

ensure that the table TESTREPORT contains no surprises is to run the Interactive

Direct SQL queries in the appropriate RPT*.SQL file. For example, for Embedded

SQL COBOL, run RPTPCO.SQL. Run it under authorization HU. RPT*SQL must

be run after REPORTA in order to detect missing tests. If the query results of

RPTPCO.SQL accurately reflect the testing, then you are ready to run the final report.

e. Run REPORTB to generate the temporary files used by REPORTZX.

f. Run REPORTZX and look at COMBINED.LST to see the results of testing. As a

general rule, you should always run REPORTB immediately before running

REPORTZX.

g. If REPORTZX shows a test number is missing or a test has failed incorrectly, then you

will need to follow restart procedures below.

NOTE: The diagram REPORTIN.PS in directory OTHER shows the data flow of the

above procedure.

NOTE: Programs REPORTA, REPORTB, REPORTZX are mn only once to report on all

bindings claimed. This is a different architecture from the one in Version 4.0, where the

reporting programs were run for each binding claimed.

3. Restart Procedures for the Reporting System.

If you do find a test case with conflicting results (e.g., both a "pass" and a "fail") for the test

suite type being tested, then the test will be assigned a "fail" by the automated reporting

system. If a test fails for an operational reason (such as starting two copies of MPAOOl at

the same time) and does not represent a real failure (a nonconformity) and you wish to

remn to demonstrate conformance, then delete all results for that test number and that test

suite type. You may then rerun the program containing the test. A similar procedure is

allowed for a test case which fails because it was executed incorrectly; e.g., before loading

the initial data into the tables. For example, DELETE FROM HU.TESTREPORT
WHERE TESTTYPE = ’PCO' AND TESTNO = ’0099’; will remove all results for the

Embedded SQLCOBOL test number 99. Note that duplicate test results in TESTREPORT
do not cause a problem.

If test cases are missing because you simply failed to mn the containing program, then you

need to mn the missing program(s) and remn REPORTB and REPORTZX. It is not

necessary to remn REPORTA. Refer to Appendix H.2 to see the stmcture of the reporting

system.

22

If you want to change the bindings or features claimed, you will need to adjust tables

BINDING_CLAIMED and FEATURE_CLAIMED using Interactive SQL. You will then

need to rerun programs REPORTA, REPORTS, and REPORTZX.

8. PREPARING FOR VALIDATION OR REGRESSION TESTING

1 . Prepare the final CHG*.TED file. Edit the cumulative change file which has been used

to specify changes to TEd. Remove any of the original NIST comments or examples which

are not applicable. Analyze each change and assign it to one of the sections in the

CHG*.TED file. Create a new section if necessary and document each change with a

comment explaining the purpose of the change.

2. Select a testing strategy. Now that all test programs have been debugged on your SQL
implementation, it is time to plan for regression testing and/or validation. You will want

to develop procedures to run the tests from beginning to end with minimal effort. We have

found, through experience conducting validations, there are two approaches generally used

to execute the test suite.

a. Process/Link/Execute: For each test program, one at a time: (1) prepare the executable

program (execute TEd, precompiler, compiler, linker), (2) execute it, and (3) delete it.

This saves on mass storage and generates a complete log. This approach is

recommended for debugging and for validations running only one or two test suite

types.

b. Prepare executables in advance: An efficient way to run multiple test suite types is the

following: (1) prepare executable versions of each program, (2) prepare a driver script

to execute PREDML and all of the test programs (except the MPB programs) in the

correct order, (3) turn on the "screen capture" or log and start the driver script, (4) when

the MPA programs call for the MPB programs, start the appropriate MPB program

from another terminal, or specify in the driver script that MPB starts a few seconds

after MPA, (5) turn off the "screen capture" or log and print or review the output, and

(6) rerun the reporting programs in batch if the page ejects got lost in the "screen

capture."

Steps 3 through 5 of this strategy typically take us 30 minutes, while step 1 takes 3

hours; although we have seen platforms which complete all steps in 20 minutes. Step

1 can be broken up into several driver scripts, submitted as separate processes or run

from different terminals. There is no need to worry about concurrency during step 1.

While we are running steps 3 through 5, we do worry about concurrency, and we do not

run any test programs from other test suite types.

Each of the concurrency program pairs uses tables used by no other programs in that test

suite type. Consequently, all thirteen program pairs may be run simultaneously, and they

23

may overlap the stream of other test programs in execution without concern for

accidentally altering data used by another test program. However, no two test suite types

should be executed simultaneously.

9. SPECIAL NOTES ON INDIVIDUAL PROGRAMS

AUTHID This is a sample subroutine which can be modified with implementation-defined

statements to accomplish login and/or to establish the ANSI/ISO test environment. It

is entirely optional. Instead of using a subroutine to login, the tester may globally

replace the call to AUTHID in the main routine with some implementation-defined

statement.

CCC004
CCC009

Each of these C language programs contains an additional subroutine, CCC004S
and CCC009S respectively, which needs compilation and additional link statements.

Embedded SQL C test suites contain programs CCC004 and CCC009; Module SQL
C contains only program CCC004.

DML015 Tests in this program are not independent of each other. If one test is deleted, other

tests in the program may be affected.

DML035 In COBOL, this program is optional (and may not compile) because it contains a

nonstandard variable with USAGE COMP-1. Change the data type to suit the

compiler.

DML038 Test number 0205 prints a Cartesian product of three tables. Do not panic and cancel

the program when you see 360 lines scrolling across the screen. Do cancel the job,

however, if you see more than 400 lines!

DML044
DML047

In Pascal, there is no standard way to continue a character string literal onto the

the next line. In order to test database columns for long character strings, we coded a

procedure, "concat," to create a long character string value, "concat" is used in test

0216 to assign a 1 18-byte value to variable vtrl 19 and in test 0222 to assign a 240-byte

value to variable STR240. If procedure "concat" does not work for your compiler,

propose another method to assign the long character string values.

DML063 This is an Embedded (only) SQL program to test the use of SQL key words as host

identifiers. A vendor may declare up to one third of these key words to be "reserved"

and not allowable as host identifiers. The CHG*.TED file must contain specifications

to disallow the "reserved" key words. ^

DML102 Two copies of this program may be run in place of MPA013.PC and MPB013.PC.

This program is a more elegant approach to concurrency testing, but unfortunately, it

24

contains C language constructs which do not translate easily into the other test suite

types. This option is available only in Embedded SQL C.

DML103 Two copies of this program may be run in place of MPA012.PC and MPB012.PC.

DML116 This program contains two subroutines for each Embedded SQL main routine. For

module language interfaces, there are two host language subroutines and three modules

to be linked together.

DML169 Check that some form of flagging relevant to the extension is present for each test that

compiles. Read the comments in the program.

FLG005 This SQL Flagger program must be modified to execute two SQL extensions of the

tester's choosing. If the SQL implementation does not support a character function or

integer function extension, then any extension may be coded. The tester must then

verify that the extensions are flagged. If the SQL implementation does not support

extensions at all, this will need to be demonstrated after discussions with NIST.

FLG* All SQL Flagger programs, except FLG005, which fail to compile because the

extension being tested is not supported, are judged to pass by default. Test cases for

which flagging is based on "catalog lookup," rather than "syntax only," are optional (for

Entry SQL); therefore flagging is not required, even if the feature is supported. These

optional programs are FLG006 and FLG009.

MP* MPA* programs should always be started before the corresponding MPB* program.

If any pair of concurrent programs have no screen display for 15 minutes at the point

where deadlock is expected, then cancel the programs and consider them passed. The

standard does not require deadlock management. It only requires transaction

serializability when the implementation successfully processes SQL statements. If any

pair of concurrent programs appears, from the screen display, to be restarting

transactions over and over without progress, contact NIST for additional program fixes

(program code) to introduce asymmetries into the transaction workload and to provide

expanding time gaps between transactions.

XOP719 through XOP723
This set of programs from the X/Open profile are not independent of each other. The

XTS713

tests are associated with GRANT and REVOKE PRIVILEGES so you need to run them

in the following order: XOP719, XOP720, XOP721, XOP722, XOP723. If any of the

tests in this set need to be run again, you must run the restart SQL command file

XRECREl.NC after XOP723, and then run this set of tests again.

This program uses AUTHORIZATION T7013bPC. Some implementations may need

to create a system or database authorization for this.

25

XTS725-8 Check that some form of flagging relevant to the extension is present for each test that

compiles, specifically check that all FULL SQL functionality is flagged. Read the

comments in the program.

XTS734 This program tests for the National Character Data type in comparison predicates. It

is necessary to incorporate the appropriate National Character set into the program by

replacing the TEd hook "_VANGELIS" to the correct character set name.

YTS767 Three tests in this program should allow alternate syntax for the CHECK clause. If

there is anything but a "pass" for tests 7544, 7545, or 7546, review the

implementation's syntax and substitute, using TEd, with equivalent syntax.

(YTS790 through YTS792) and (YTS793 through YTS795)

These sets of programs from Intermediate SQL are not independent of each other.

Each set must be run in ascending order as they test for the granting and revoking of

privileges. To restart the first set, user CTSl should issue the command REVOKE
USAGE ON CHARACTER SET CS FROM CTS2 CASCADE;

YTS8 14 This program applies to module language interfaces only. It contains special characters

in the LATIN 1 character set which may be inadvertently replaced by utilities (e.g.,

editors or E-mail) manipulating these programs.

10. RUNNING THE INTERACTIVE DIRECT SQL TEST SUITE

Establish Test Environment

Interactive Direct SQL allows the implementor considerable freedom in designing print formats for

the screen. Unlike our programming-language test suites, pass/fail grades are assigned to each test

by a tester, rather than by program logic. Each of our test files is designed to execute some SQL
statements and then have the tester examine the results on the screen (or standard output) for

appropriate responses.

Most Interactive Direct SQL implementations have some command to "run" a text file of SQL
commands; i.e. execute a named file. As a matter of convenience, all the Interactive Direct SQL
tests, except the concurrency tests, should be "run" rather than typed. Support for "interactive access

to the database," as specified by Section 16.5 of FTPS 127-2 will be demonstrated during the

concurrency tests.

We anticipate a variety of screen presentations and do not have any fixed criteria for column

headings, numeric formats, character string wrapping, error messages, or other status feedback.

Our test files have comments after SQL statements, detailing the response needed on the screen to

pass that test. All PASS comments for a given test must be judged to pass, otherwise the test fails.

26

An SQL Flagger test that fails is simply not applicable, since flagging applies only to extensions that

are supported.

Experiment with a few test files to decide how your SQL implementation will allow you to evaluate

responses against our PASS criteria.

If you have some command to force all SQL commands and comments to print on the screen,

interspersed with the SQL query results, then you can simply run all the test files and capture the

screen printing for later evaluation. This command may be something like ECHO or VERIFY.

If not, then some creativity may be needed to force the comments to print on the screen. See the

section "Printing the Interactive Direct SQL Comments" below.

If your SQL implementation has a comment style that is different from the format used in our test

files, you may globally convert the comments in the test files to your format. In all probability, you

can do this with a few TEd commands. Contact NIST for suggestions if it is not obvious how to do

this.

If your SQL implementation has a line-continuation style for SQL statements that is different from

the format used in our test files, you may globally convert the test files to your format. Although it

may be possible to use TEd to accomplish this, you should review the C program ATERM which

was designed to perform this reformatting. ATERM is in the OTHER directory.

Solve the Login Problem

There are many acceptable ways to run the Interactive Direct SQL files. You can actually log in as

the correct USER. You can create a script which logs in as the correct user and then runs a list of

files for that user. You can modify, via TEd, the "— AUTHORIZATION" comment at the beginning

of each module to login or attach to a schema.

Execute Test Files

Run the data load file BASETAB.SQL if data has not been loaded earlier by another test suite type.

Also run data load files CUGTAB.SQL, FLATTAB.SQL, SUNTABO.SQL through SUNTAB3.SQL,

and SULTAB 1 .SQL. For Transitional SQL run the data load file SCHEM 1 1 .STD. For Intermediate

SQL, run the data load files SCHEM 12.SQL and CTS5TAB.SQL. The order of execution of data

load files is important. Run all of the *.SQL test files. The order of execution of test files is not

usually significant. Read the file RUNSQL.ALL for a listing of the test files to be run. Print file

CHECK.LST to use as a worksheet for recording pass/fail results.

SQL files named MPAOlO* or MPBOlO* must be run in the order listed in RUNSQL.ALL; i.e.,

MPAOlOA, MPBOlOA, MPAOlOB, MPBOlOB,... MPAOIOG. Read comments in these files.

27

If you need to modify a test file for whatever reason, do not change the downloaded *.SQL file

directly. Instead, edit the file CHGSQL.TED to specify the changes, and use our editor, TEd, to

install the changes. For debugging only, it may be more convenient to work with a copy of the

downloaded file which is executed and then modified interactively by a local editor.

If at any time, you suspect that a failed test has corrupted the initial data in the HU directory, run the

files SEEHUE.SQL (to verify that all tables in the HU schema which should be empty are empty)

and SEEHUD.SQL (to view tables which should have rows inserted by the dataload programs).

Delete rows from any table listed in SEEHUE.SQL, if necessary. And rerun BASETAB.SQL at any

time to re-initialize the tables listed in SEEHUD.SQL.

Execute Concurrency Test Procedure

There is only one concurrency test procedure for Interactive SQL. Print file MPQUIC.TXT and

follow the instructions for two testers (or equivalent). Previous concurrency procedures were very

time-consuming and duplicated concurrency testing already done by the programming language

interfaces. The MPQUIC procedure verifies that serializability is turned on for the Interactive SQL
interface.

Interactive SQL test files MPAOOl* and MPBOOl* through MPA008* and MPB008* have been

superseded by the MPQUIC procedure, which is much more efficient. These files are still included

in the Interactive SQL test suite because they may be helpful for SQL products which do not have

a programming language interface. Refer to APPENDIX I for detailed instructions on how to

execute these tests.

Evaluate Test Results

Tests may be evaluated on the spot or at some later time by examining the log or captured screen

output. A pass/fail grade is assigned to each test run. The tester should fail any test for which one

or more of the PASS comments is judged to have failed. Tabulate the pass/fail results on worksheet

CHECK.LST, a file in the SQL directory.

Tests for access violations may abort for an Interactive Direct SQL implementation. This is

acceptable. We consider this a demonstration of support for SQL GRANTS. The tester should

simply capture the screen output and then delete that test from the test program before rerunning, so

that the remaining tests in the test program can be run. Capturing the screen output is needed to get

a "pass" for tests which abort due to access violations.

After an UPDATE, INSERT, or DELETE statement, there may be a PASS comment that a given

number of rows were affected. If the SQL implementation being tested does not provide this

information for successful completion, then simply ignore the PASS comment. In most cases, there

will be a subsequent SELECT statement which double checks (verifies) the success or failure of the

database modifications.

28

For a SELECT statement, the rows will be displayed on the screen and should be counted by the

tester. If there is a PASS comment immediately following the SELECT statement, the visual count

of rows selected must match the count required by the PASS comment (the default count is 1 row).

In addition, if the SQL implementation being tested echoes a row count, that row count must be

accurate.

References to SQLCODE and/or SQLSTATE in Interactive Direct SQL are a carry-over from the

original programming language tests. The revised FIPS PUB 127-2 does not require explicit support

for SQLCODE or SQLSTATE. Rather, the tester should expect some implementation-defined

message or messages which map to the SQL concepts of no-data (SQLCODE = 100) and run-time

error (SQLCODE < 0) or to the standard SQLSTATE conditions and values. If, however, explicit

values for SQLCODE or SQLSTATE are given, then an incorrect value is a failure. (Note that it is

allowable for an SQLCODE 100 to be returned after every successful SELECT statement, since the

SELECT may be implicitly implemented as a cursor, fetching until end of data, where SQLCODE
100 is expected.)

SQL Flagging is now required for Interactive Direct SQL. Failure to flag the supported extensions

in the programs FLGOOl, FLG005, and FLG008 will be a nonconformity in the Interactive Direct

SQL interface. However, since flagging which requires schema access is optional, failure to flag for

test files FLG006 and FLG009 is not considered a nonconformity.

Print the Interactive Direct SQL Comments

If your implementation of SQL has some command to force all SQL commands and comments to

print on the screen, then you may ignore this section.

You will note that the comments in our *.SQL files are coded in a very stylized manner. The goal

is to provide "hooks" for you to do global changes with our editor to convert these comments into

some printable object. This may be a system call for printing on the screen or some other facility

allowed by your SQL implementation. Only the comments beginning with

- TEST: and - PASS:

are of interest in test evaluation.

If all else fails, you can always use SQL. You can change the comment
— PASS:0247 If count = 3?

into

SELECT '0247 If count = 3' FROM HU.ECCO;

Using our test editor, TEd, the commands:

sub *.sql /— PASS:/
/’/"/

29

! replace embedded single quotes

sub *.sql /-- PASS:/

/?/’ FROM HU.ECCO;/

sub *.sql /-- PASS:/

/- PASS:/SELECT 7

will cause SQL to print the PASS comments. Similar global changes will force the TEST”

comments to print. The one-row table called ECCO that is needed for this gimmick to work has

already been created.

11. EVALUATION INSTRUCTIONS

The tests in the SQL Test Suite are designed to conform to Intermediate SQL-92. Only programs

designated as FLG should contain extensions to Intermediate SQL-92.

1 . Examine the log of changes you made to each program or to SCHEMA files. If a change

was made to SQL syntax to allow your implementation to complete the test using

nonconforming syntax (such as FOR UPDATE in the DECLARE CURSOR statement),

or even alternate conforming syntax, you should report this change as a nonconformity in

your analysis. You should document, for informational purposes, any changes allowed for

implementation-defined options.

2. Report errors in the test suite. If a change was made to SQL syntax to correct an error

(programming bug or interpretation of the standard) in a test, then report this error to NIST

or an SQL testing laboratory. You should report this discrepancy in your conformance

analysis as an unresolved issue.

3. Examine the output of REPORTZX. Three reports are produced by program

REPORTZX: PROBLEMS .LST, TOTALS.LST, and TESTNO.LST. These three files are

rewritten as one file, COMBINED.LST, to simplify printing. Print COMBINED.LST.

The PROBLEMS list should be almost empty for a conforming SQL implementation. This

is a list of test cases which require attention because they are missing or failed. Typically,

a missing or failed test is a nonconformity; however, there are a few exceptions. Test

number 0399 (for Embedded SQL C only) is always missing, because it require visual

inspection in order to pass. See Special Notes on Individual Programs above. Missing

flagger tests (programs FLG*) are judged to pass if they will not compile because the tested

extension is not supported. The compilation and execution log of any test on the

PROBLEMS list must be reviewed.

The TOTALS list should be compared for accuracy against the file REPORT.TOT in the

directory REPORT. The file REPORT.TOT contains control totals for the most common
profiles. Other profiles are possible. Failure to match the control totals means either the

control totals are wrong (NIST will fix them), the SQL implementation has errors

30

processing the SQL queries in REPORTA and REPORTB (this is a nonconformity), or

there is some operational error in running the automated reporting system.

The TESTNO list shows the contents of TESTREPORT, rearranged for reporting in the

profiles claimed. Test numbers are sorted within the appropriate subprofile. The result

(pass / fail / missing / not applicable) for all test suite types appear on a single line,

facilitating comparison among the supported interfaces. A test number from

TESTREPORT may appear more than once, if it is required by more than one profile; e.g.,

X/Open and FIPS 127-2 Entry. A test number from TESTREPORT will not appear in the

TESTNO list if it is not required by any of the profiles claimed. Duplicate results (e.g.,

duplicate "pass" results) will appear only once. Conflicting results (e.g., "pass" and "fail"

results for the same test number in the same interface) will appear as a "fail".

The TESTNO list subprofile for "Entry Syntax Flags" is special; It must be evaluated

further. For each "pass" result, the SQL implementation is judged to be supporting an SQL
extension and should demonstrate warning message(s) that an extension is being used (as

required by Section lO.d of FIPS 127-2). For each "nogo" or "missing" a fatal compilation

error or run time error must appear in the execution log for the test. This error

demonstrates that the SQL implementation does not support the SQL extension in the test,

and therefore does not need to flag the extension. In summary, each documented error in

the "Entry Syntax Flags" subprofile satisfies its test objective, and is judged to be

conforming.

The TESTNO list subprofiles for "Entry Catalog-Lookup Flagging" and "Miscellaneous

Informational" are strictly informational, listing the optional tests and showing the pass/fail

results for those tests. These subprofiles are routinely run for FIPS 127-2 testing.

4. Prepare a Report Package, including:

a. Full description of test environment. This would include date, testing staff, hardware

make/model, software description and versions for precompiler/ compiler/linker/SQL

engine/communications software/libraries, special installation parameters, special

processor parameters. For client/server architectures, describe both platforms and

communications software/hardware.

b. Automated Summary Report COMBINED.LST

c. Listing of global changes to schema and program files (or listing of the CHG*.TED
files). (This would include data types/precision for SQLCODE and indicator

variables.)

d. Listing of specific changes to individual schema or program files (or listing of the

CHG*.TED files).

31

e. Log of schema creation run. Include earlier logs of failed schema runs containing

privilege violations which were removed.

f. Screen capture or printout of executing programs showing pass/fail printout.

g. Printouts of FLG005 through FLG013 SQL/preprocessor compilations, with the "SQL

Flagger" turned on and again with the flagger turned off. Failure to flag any supported

extensions in the programs FLG005, FLG008, and FLGOlO and FLG013 is a

nonconformity in any of the test suite types, including Interactive Direct SQL.

However, since flagging which requires schema access is optional, failure to flag in

program FLG006 or FLG009 is not considered a nonconformity.

h. Printouts of SQL compilations detecting syntax errors for privilege violations or

standard SQL run-time errors detectable at compilation time. (These will document

the detection of the error and may be needed to change a "missing" to a "pass"

)

i. Listing of driver scripts (i.e. operating system command files, shells, makefiles,

runstreams, or JCL) used to process the schema and program files, including any

special parameters settings.

j. Description of how login was accomplished, including a listing of the modified

AUTHID or included file.

k. A diskette or tape copy of all schema and program files (as modified and run), to be

used for regression testing and to resolve any future disputes over changes made to the

SQL test suite.

l. A diskette or tape copy of a full Interactive Direct SQL run (with the possible

exception of the MP* test cases). You may then avoid the tedium of rereading the

Interactive Direct SQL log at some future date by using a DIFF utility for regression

testing.

If you are a vendor, you will want to use this information (1) to guide your standards-conformance

effort, (2) to assist federal agencies or other users who may be evaluating the conformance of your

product to FIPS PUB 127-2, or (3) to demonstrate to the SQL testing laboratory, when you request

to schedule a validation, that you are prepared to conduct the testing efficiently.

If you are a user, you may use this information (1) as part of your acceptance testing of

implementations claiming conformance to FIPS PUB 127-2 or other SQL profiles, (2) as input to

your RFP process, or (3) as a measure of your current SQL implementation's conformance and hence

a measure of the portability of your standard application programs using standard SQL language.

32

12. SOFTWARE MAINTENANCE

As users of the test suite work with the software, questions arise about allowable changes to the

programs and schema files. Questions usually fall in one of the following areas: (1) interpretation

of the ANSI or ISO SQL standards, (2) interpretation of FIPS 127-2, (3) possible errors in the test

suite, (4) procedures for running the test suite, (5) procedures for validations.

SQL Updates

Answers to questions of general interest which are answered in narrative form will be distributed to

test suite users as SQL TESTING UPDATE newsletters. These newsletters are to be viewed as

updates to our test suite documentation and to our published procedures for validations.

TEd Maintenance File

Some questions result in changes to the test suite software. These approved maintenance changes

will be distributed periodically to test suite users on paper. The changes are formatted as inputs to

the Test Suite Editor, TEd. The changes should be appended to the cumulative maintenance file,

UPD600.TED.

The cumulative maintenance file is available in machine-readable formats. Users may access the

maintenance file on NIST World Wide Web pages.

Validation Considerations

When an SQL testing laboratory performs a validation, a special validation version of the test suite

may be used. This version contains the same SQL test cases as the original distribution version.

There have been only a few changes made to the software in the validation version. With these

changes, test laboratory staff can tell that the validation is being run from the software they bring,

rather than a distribution version downloaded earlier.

The validation version does not contain maintenance updates, so your TEd file UPD600.TED must

have them. Your TEd file should have exactly the same effect on the validation programs as on the

programs of your distribution version. Before the validation, test laboratory staff will review your

TEd file(s) and make sure that all mandatory maintenance changes are included. They will also

review any implementor-proposed changes and determine whether these changes are allowed under

the procedures of the test suite or whether these changes are nonconformities.

13. SQL TEST SUITE REFERENCE MATERIALS

A variety of references are attached to assist you in your testing and evaluation.

33

APPENDIX A. Examples of Driver Scripts

These are just examples which work in certain environments. There is no guarantee that any of these

will work for you. Note that TEd acts as a filter for NIST schema files and program files.

APPENDIX B. Base Data for Primary Test Tables

This is a schematic representation of the simple tables used for most of the tests in the HU schema.

This represents the contents of the tables STAFF, PROJ and WORKS after the program BASETAB
has been run. Note that most of the other tables in the HU schema are empty. In order to make tests

reproducible, programs in the test suite will (1) execute a ROLLBACK if base data is changed or (2)

delete all rows from a table at the beginning of a test if an auxiliary table is used. BASETAB should

be run whenever there is any question that the data in the HU schema may have been corrupted.

For a listing of base data used by the various schemas, refer to the appropriate dataload programs.

The Interactive Direct SQL formats are the shortest and easiest to read.

APPENDIX C. TESTCASE columns (TESTNO, PROG, DESCR)

This is a listing of all the tests in the test suite. It shows the three columns from table TESTCASE:
TESTNO (test number), PROG (program containing the test), and DESCR (a 50-character

description).

APPENDIX D. TEd Change Files

APPENDIX D. 1 is a listing of the downloaded file CHGPCO.TED. There is a similar file for each

of the eleven test suite types and for the schema. APPENDIX D.2 is a listing of this file after editing

by the tester to specify changes to the NIST Test Suite programs. Note that the tester has attempted

to place each change in some category. This file is sent to the SQL testing laboratory as part of the

prevalidation package of the SQL implementation to be tested. The laboratory examines each of the

proposed changes and determines whether it will be considered a nonconformity. APPENDIX D.3

is an example of a counter-proposed file CHGPCO.TED, showing how the SQL testing laboratory

interprets the proposed changes and how it is willing to prepare a validation report.

APPENDIX E. Sample Printout from Program Execution

This is a sample of what will print on standard output upon execution of any of the sample programs.

APPENDIX F. Sample Summary Reports

This is a sample printout of the three reports produced by REPORTZX: PROBLEMS, TOTALS,
and TEST RESULTS. Your results will differ.

34

APPENDIX G. "SQL Flaggers" Examples

Considerable latitude is given to vendors in how to meet the SQL Flagger requirement of FIPS PUB
127-2 (Section lO.d). This appendix is only a suggestion of how a vendor may monitor SQL syntax

for conformance to Entry SQL-92. Desirable features include: designation of the token which

begins the syntax for the extension, identification of the name of the extension being used, and

location of all extensions within each statement (as opposed to locating only the first).

APPENDIX H. Automated Reporting System Diagrams

APPENDIX H.l shows the Table Definitions (CREATE TABLE statements) for the Reporting

System. APPENDIX H.2 through APPENDIX H.4 are diagrams that are helpful in understanding

the architecture of the automated reporting system. These diagrams are not included in the ASCII

version of the SQL User’s Guide in directory OTHER. They are stored as PostScript files in

directory REPORT.

APPENDIX H.2, Test Reporting Structure, depicts a dataflow for the three programs in the reporting

structure (REPORTA, REPORTB, and REPORTZX). This diagram is helpful when switching

reporting options and/or restarting the reporting system. APPENDIX H.2 is PostScript file

REPORTIN.PS.

APPENDIX H.3, SQL Testing Profiles, is a four-page diagram stored in four PostScript files:

PROFIPS.PS shows the FTPS SQL Levels

PROISO.PS shows the ISO/IEC 9075:1992 Levels

PROSIZE.PS shows the Sizing and Optionals Levels, and

PROXOPEN.PS shows X/Open Levels.

APPENDIX H.4, Reporting System Tables, diagrams the major tables defined in APPENDIX H.l.

APPENDIX H.4 is useful in identifying referential constraints among these tables. It is PostScript

file REPTABLS.PS.

APPENDIX I. Informational Interactive Currency Tests

These are detailed instructions on how to test the Interactive SQL interface for serialized

transactions. Eight different concurrency challenges are created by executing files and typing SQL
statements according to scripts.

14. DESIGN NOTES

After six releases of the test suite, many suggestions for improvement have been incorporated into

the software. There are other good suggestions which we have not incorporated, due to either lack

of resources or as a conscious decision. The purpose of this section is to answer questions about the

structure of the test suite and to explain some of our design decisions.

35

Version 5.0 of the test suite is the first version where the test cases for many features preceded all

known implementations of the features. Consequently, the new tests are written with many subtests

and variations on the features under test. We assume implementors will be relying on our tests as

regression tests (for which they are not really intended), so we have made an effort to make the tests

more thorough. Also, there is considerably more printing to assist in debugging.

The following are comments about frequently asked questions which are of general interest.

1 . Most of our early tests determine if an SQL feature passes or fails after checking only some

of the expected results, rather than systematically verifying that all values returned

(including SQLCODE) are identical to expected values. The latter approach requires

considerably more coding. With Version 5.0 of the test suite, we have begun to check

status return codes and retrieved data values more thoroughly. We feel the early approach

will be successful in finding nonconformities; although, it may be less successful in finding

bugs.

2. Many of our early tests base their pass/fail analysis on the returned value of SQLCODE.
Although some of our tests do require an SQLCODE of 100 (no data) to pass, many tests

accept an SQLCODE > 0 when the standard specifies that the value should be 100. In

these circumstances our tests do not adhere strictly to the SQL standard; however, they do

not penalize conforming implementations. The purpose of testing for SQLCODE > 0 is

to prevent the case where an implementation fails tests designed to test features (other than

SQLCODE return values) when that implementation does indeed support those features.

If an implementation does not support the standard values for SQLCODE, then it will fail

tests 8, 13, 18, 24, etc.

3. It would obviously be useful for debugging if SQLCODE return values were printed after

every SQL statement. We suggest you use our editor to install (temporarily) a printout of

SQLCODE after each SQL statement, if needed. New tests (starting with Version 5.0)

print both SQLCODE and SQLSTATE consistently. This makes the screen display look

like a trace and is less pleasing than the earlier style.

4. Testing security (access rules violations) is difficult. We recognize access control may be

enforced differently across implementations. An implementation may reject a program at

syntax-evaluation time or may reject an SQL statement at run time. An implementation

may treat an unauthorized table or column as non-existent or as empty. Our tests expect

that unauthorized users should not be able to modify the rows in the database, nor should

unauthorized users be able to retrieve results based on actual data values.

5. Some vendors produce syntax errors for test cases where it can be determined at syntax

evaluation time that a general rule will be violated at execution time. For example,

inserting a literal NULL into a column which has a NOT NULL constraint can be

determined to be an error at syntax evaluation time. The table TESTCASE contains a

value "synvio_yes" in column T_NOTE for tests in this category to indicate that a syntax

36

I

violation is likely. This message prints on the PROBLEMS list when a test is missing. A
vendor may pass these tests, by demonstrating appropriate error messages.

6. Many of the tests that change the data in the tables (via INSERT, DELETE, UPDATE)
issue a ROLLBACK statement (after test evaluation) to restore the data to its original state

and to make the test repeatable. If the implementation does not support ROLLBACK or

if it has an autocommit feature turned ON then the data is left in a changed state, and the

tests may not be reproducible. If the data is corrupted, the data load programs may be

executed again to restore the data.

7. Most new test programs (for Transitional SQL features) create the tables and views needed

by the test. At the end of the test, the tables and views are dropped in order to facilitate

retesting. This approach makes the test more modular and easier to debug. This approach

was not possible for Entry SQL tests, since schema manipulation is a Transitional SQL
feature.

8. Many of the new tests, especially those for dynamic SQL, need to create long character

strings. Rather than creating a long character string in the host language, we have used the

SQL concatenation expression. This decision was made because our translation software

is not able to process concatenation of C character arrays or continuation of character

literals.

9. Except for the SQL Flagger tests and the privileges violations tests, our goal is to write

programs which adhere strictly to the syntax of the standard. Several beta testers suggested

that we test for violations of syntax; e.g., creating a duplicate table name or a referencing

an undefined column. Unlike some other standards, SQL allows a conforming

implementation to provide additional facilities or options not specified by the standard.

The semantics of such syntax is implementation-defined. It is beyond the scope of our

SQL test suite to evaluate an extension. Our only requirement is that extensions be

explicitly identified when the SQL Flagger is "on."

10. The variable names in the test suite programs are short and consequently not very

descriptive. For most programs, our data names are restricted to six characters so the

programs can be translated into FORTRAN. With this restriction, programs do not have

data names as descriptive as Ada, C, COBOL, and Pascal programmers would expect.

1 1 . Some users noted that our tests do not consistently close each cursor that has been opened.

According to the standard, a cursor that is opened may be closed explicitly by a CLOSE
statement, or implicitly by a COMMIT or ROLLBACK. Our tests use all three methods.

12. SQLSTATE tests are difficult to code for conditions involving implementation-defined

precision or other features. If the code (logic) in a program is unable to cause the error

condition under test, then the program logic assigns a "pass" for that SQLSTATE test.

This does not mean that the SQL implementation actually produces the SQLSTATE code.

37

It means that the SQL implementation did meet all the requirements ofthe test case. It also

means that we need to "build a better mouse trap."

An example ofthis situation is the test for data exception - indicator overflow (SQLSTATE
22022). We create a CKAR(33000) column, hoping to overflow a 16-bit indicator variable

on a SELECT. If the SQL implementation supports more precision in the indicator, then

the overflow condition is not raised. Or, if the SQL implementation does not support

CPiAR(33000), which is larger than the FIPS 127-2 requirement of at least CHAR(240),

then we cannot execute the test case and a "pass" is assigned. Other difficult-to-test

SQLSTATEs are: error in assignment, invalid parameter value, numeric value out ofrange,

and serialization failure. If you have a better test case for any of these difficult-to-test

conditions, please donate it to us. We are always open to suggestions for improved testing

strategies.

13. Many of the Version 3.0 programs carried forward into subsequent versions still contain

references to the SQL-89 standard. We apologize, even though the research to obtain the

correct reference is rather straightforward. The effort to update all programs and re-test

them would have delayed release for several months. In retrospect, the references probably

do not belong in the programs, since the SQL standard evolves rather rapidly.

We have developed a documentation scheme that is intended to satisfy ISO requirements

for test suites to be used internationally. We have documented new test cases in the ISO

format in files DOCUCTS5.TXT and DOCU_V5.TXT as well as inside the programs

themselves (as print statements and comments). Test cases from Version 4.0 are

documented less rigorously in file DOCU_V4.TXT. File DOCUNIST.TXT provides a

convenient list of all test cases developed by NIST for both Versions 5.0 and 6.0. As
always, if users of the test suite have questions about references, or if they wish to

challenge our interpretation of the standard, we welcome their calls and email.

15. ANNOTATED BIBLIOGRAPHY

The following is an informal listing of documents of interest to users of the SQL Test Suite and to

federal agencies acquiring SQL implementations. Frequently requested items are listed first.

Validated Products List

o accessible on the World Wide Web at URL address ftp://speckle.ncsl.nist.gov/vpFsqlintro.htm

o lists tested SQL products and publicly available Validation Summary Reports (VSRs).

o contains testing information for the following Information Technology Standards: Programming

Languages COBOL, Fortran, Ada, and C; Database Language SQL; Graphics; POSIX; and

Computer Security

38

Miscellaneous documents/forms/reports available on NIST Web pages

o The table of contents page for the SQL Projects is URL address

ftp://speckle.ncsLnist.gov/sql-testing/contents_sqLhtm

0 SQL TESTING UPDATES (testing "updates" and "status reports")

o SQL Validation Questionnaire

o SQL Processor Validation Procedures

FIPS PUB 127-2, Database Language SQL
o Federal Information Processing Standard Publication, issued by NIST (30 pages), dated June 2,

1993

o URL: http://www.itLnist.gov/div897/pubs/fipl27-2.htm

o packaged with the adopted specification ANSI X3. 135-1 992 (580 pages) when purchased fi-om

NTIS
o available from NTIS (703) 487-4650

Database Language - SQL
o published as ISO/IEC 9075:1992, Database Language - SQL
o except for a different Foreword, Introduction, and Normative references, this is identical to ANSI

X3. 135-1992

0 available from ANSI international sales office (212) 642-4900

SQL Technical Corrigendum 2

o referred to as ANSI/ISOAEC 9075 TC2, Database Language SQL - Technical Corrigendum 2

o SQL information bulletin to inform the public of responses to interpretation requests and errata

against the SQL standards ISO/IEC 9075:1992 and ANSI X3. 135-1992. It is a list of all

formally approved corrections, including typos, missing rules, corrected rules, etc. from the

originally published SQL-92.

o Technical Corrigendum 2 (TC2), adopted in 1995, supersedes Technical Corrigendum 1 (TCI),

published in 1993.

o included with any new purchase of SQL-92, and can be obtained from ANSI by asking for

document number JTC1/SC21 N10146.

Call Level Interface (CLI)

o published as ANSI/ISO/IEC 9075-3 : 1 995 Database Language SQL - Part 3 : Call Level Interface,

o evolved from the popular ODBC specification

o standardizes over 40 functions used as an application programming interface (API)

o is being extended to support handles for the management of large objects and to extend the

facilities for metadata access and exception diagnostics (expected in 1999).

o available from ANSI.

Persistent Stored Modules (PSM)
o published as ANSI/ISO/IEC 9075-4:1996, Database Language SQL _ Part 4: Persistent Stored

Modules.

o evolved from the popular stored procedure capabilities in may client-server products.

39

o extends SQL to be a computationally complete, block structured programming language with

support for functions, procedures, program variables, flow-of-control statements, and

sophisticated exception handling and exception resolution.

0 available from ANSI

Remote Database Access (RDA)
o published as ISO/IEC 9579-1 and 9579-2, Remote Database Access

o Part 1 : Generic Model, Service and Protocol

o Part 2: SQL Specification

o available from ANSI international sales office (212) 642-4900

0 ISO/IEC 9579-2:1997, RDA SQL Specialization Amendment, adds facilities to support all

conformance levels of Database Language SQL, rather than just Entry SQL as specified in the

original. It is published as a consolidated document, thereby replacing the original

FIPS PUB 193, SQL Environments

o FIPS PUB 193, dated February 3, 1995

o specifies SQL profiles that can be used to support integration of legacy databases and other

non-SQL data repositories into an SQL environment,

o a non-mandatory FIPS that may be invoked on a case-by-case basis subject to various database

integration objectives.

o URL: ftp://speckle.ncsl.nist.gov/isowg3/FIPSdocs/fipsl93. {ps
I

txt}

CAE Specification, Structured Query Language (SQL)
0 Common Applications Environment (CAE) specification produced by X/Open Company Ltd.,

August 1992. The CAE Specification describes X/Open as an independent, worldwide, open

systems organization supported by most of the world's largest information systems suppliers,

user organizations and software companies,

o available from X/Open Company Ltd., U.K., XoSpecs@xopen.co.uk

16. ONGOING SQL STANDARDIZATION - SQL3

The standard specification ofSQL is under continual development with draft documents at various

stages of development available from your National Body representatives in the ANSI/ISO/IEC
standardization process. In the United States, ANSI/X3 technical committee X3H2 (Database) is

a very active contributor and the U.S. technical advisory group (TAG) to this process. Draft

documents are all available from ANSI as JTC1/SC21 working documents and include the

following:

SQL Part 1 - Framework: An overview document intended to explain the new Part structure for

future SQL development. It will also describe procedures for claiming conformance to the base

standard and to various optional levels and components. Publication expected in 1999.

SQL Part 2 - Foundation: The basic definition of the SQL language. A substantial, upward

compatible extension of the language facilities specified in SQL-92, including triggers, assertions.

40

recursion, new data types for handling collections and large objects, as well as user-defined abstract

data types (ADTs), type hierarchies, inheritance, polymorphism, and other facilities normally

associated with object data management. However, object references are specified in Part 8 rather

than in Part 2. This part of SQL will be a leveled specification, with nested levels analogous to those

specified in SQL-92. Implementations will be able to claim conformance at a specific level. This

document reached ISO/IEC Committee Draft (CD) status in 1996 with final adoption and publication

expected by 1999.

SQL Part 3 - Call Level Interface: An upward compatible extension to the existing SQL/CLI

standard, which is published as ANSI/ISO/IEC 9075-3:1995. This document is expected to reach

Committee Draft (CD) status sometime in 1997.

SQL Part 4 - Persistent Stored Modules: An upward compatible extension to the existing

SQL/PSM standard, which is published as ANSI/ISO/IEC 9075-4:1996. This document is expected

to reach Committee Draft (CD) status sometime in 1997 or 1998.

SQL Part 5 - Bindings: Specification of Dynamic SQL and Embedded SQL interfaces to standard

programming languages such as Ada, C, COBOL, Fortran, Mumps, Pascal, and PL/I. The basis of

this document is taken from the Dynamic SQL and Embedded SQL sections of SQL-92, but new

facilities have been added to accommodate handles and other new SQL data types in various

programming languages. This document reached ISO/IEC Committee Draft (CD) status in 1996

with final adoption and publication expected by 1999.

SQL Part 6 - XA Specialization: Originally approved as a project to be developed, if needed, to

supplement the ISO/IEC project on Distributed Transaction Processing - The XA interface. XA is

a collection of popular distributed transaction processing interfaces developed by X/Open. With

successful publication of an ISO/IEC XA specification in 1996 (see document JTC1/SC21 N10133),

it is not clear if this SQL specification is still necessary. The project was not very active in 1996

with very little technical content in the working draft base document.

SQL Part 7 - Temporal: The intent of this project is to add support for temporal data management,

such as valid time and transaction time, to the SQL language. The TSQL2 Language Specification

prevalent in the academic literature during 1994 to 1995 is the basis for much of the new

development. This document is expected to reach Committee Draft (CD) status sometime in 1998.

SQL Part 8 - Extended Objects: The intent of this project is to specify how object identity is to

be handled in SQL. The base document specifies named row types, references to instances of named

row types, and reference and dereference operators, as well as other related facilities for object data

management. This document reached ISO/IEC Committee Draft (CD) status in 1996 with final

adoption and publication expected by 1999.

SQL Part 9 - Virtual Tables: The intent of this newly adopted project is to specify virtual tables

as the mechanism for allowing SQL language access to legacy files and data repositories. The

specification will provide tools that a database administrator can use to simplify the process of

41

making such legacy data available to standard conforming SQL applications. This document is

expected to reach Committee Draft (CD) status by 1999.

ANSI/ISO/IEC 9075 TC3, Database Language SQL - DRAFT Technical Corrigendum 3: This

draft corrigendum to all existing published parts of Database Language SQL includes corrections

informally approved by the SQL development group since publication of TC2 in 1995, including

corrections to SQI7CLI-95 and to SQL7PSM-96. It has not yet been submitted to ISO/IEC for formal

adoption and publication, although such submission is expected sometime during 1997. The draft

document is available from any active participant in the SQL standardization process.

42

APPENDIX A.l

VAX/VMS using Rdb
DCL Listing for Embedded C

$! Database has already been created by DBADMIN with commands:
$! create database filename NIST60
$! multischema is on protection is ansi;

$! grant select, insert, delete, update, references, show,

$! createtab on database alias rdb$dbhandle to HU, CUGINI , . .

.

$!

$! The following three commands really belong in file login.com:
$! Designate file [DBADMIN] NIST60 . RDB as the default database.
$ ASSIGN [DBADMIN] NIST60. RDB SQL$DATABASE
$! Set up convenient reference to precompiler
$ SQLPRE :== SYSSYSTEM : SQL$PRE
$! Set up convenient reference to interactive SQL processor
$ SQL :== SQL

$! Tester has logged in as user HU.

$! Create schema interactively in RDBMS.
$! SCHEMAl.STD is being used.

$! TED is used to install changes
$! and to rename file to extension "sql".

$ ted -t updSOO.ted -t chgall.ted -o schemal . sql schemal . std

$ SQL
SQL> SET VERIFY
SQL> ©schemal . sql
SQL> ;

SQL> EXIT

$! PROCEDURE TO CREATE AND RUN AN EXECUTABLE MODULE:

$! Use TED to remove call to subroutine authid, to install

$! other changes, and to rename file to extension "sc".

$! Pre-process, compile, link and execute embedded C routine.

$ ted -t updSOO.ted -t chgall.ted -o dml001.se dmlOOl.pc

$ SQLPRE/CC/sqlo= (f lag, cons=on, ansi_auth) dmlOOl

$ LINK dmlOOl, SYS$LIBRARY:SQL$USER/LIB, -

SYS$LIBRARY : VAXCRTLG . OLB/LIB , SYS$LIBRARY/VAXCRTL/LIB
$ RUN dmlOOl
$! Delete intermediate files, saving executable dml001.exe:

$ DELETE dml001.se;*
$ DELETE dml 0 0 1 . c ;

*

$ DELETE dmlOOl.obj;*
$ DELETE dml 00 1.1 is;*
====================== end of APPENDIX ===========================

A. 1 .

1

VAX/VMS using Oracle
DCL Listing for Embedded FORTRAN

APPENDIX A.

2

$! create schema interactively in Oracle:

$ I DBA has already authorized user HU with password HU.

$! SCHEMAl.NC is being used with Oracle, Version 6.

$! TED is used to install changes

$ I and to rename file to extension "sql".

$ ted -t upd600.ted -t chgsch.ted -o schemal . sql schemal.nc

$ sqlplus hu/hu
SQL> set echo on
SQL> ©schemal . sql
SQL> exit

$! Use TED to install changes, then
$! pre-process, compile, link and execute embedded FORTRAN
routine

:

$! Note that subroutine AUTHID has been pre-processed and compiled
$ @compile_pfo dmlOOl

COMPILE_PFO.COM:

$ted -t upd600.ted -t chgpfo.ted 'pl.pfo
$proc iname='pl host=fortran include=sys$oracle

:

$for 'pi

$@dra4 : [oracle] loutl 'pi ' pi , authid, sys$oracle : sqllib/lib map$:

s

$run 'pi

END OF APPENDIX

A.2 .

1

UNIX Command Language for Unify
Embedded C

APPENDIX A.

3

$ # set environment

:

$ # point to release library directory
$ UNIFY=/usr/unify/lib
$ # point to the directory that contains the database
$ DBPATH=/usr/sqltest/db
$ #add unify release binary directory to the path
$ PATH=$PATH: /usr/unify/bin
$ export UNIFY DBPATH

$ # create schema:

$ # [note that database has already been created by DBA]

$ # TED is used to install any changes.
$ ted -t upd600.ted -t chgsch.ted schema. std
$ SQL schema. std

$ # precompile, compile, link and go for program dmlOOl:
$ # tester logs in as user whose default authid is HU

$ # Use TED to install changes and to

$ # rename program to desired extension
$ TED -t updSOO.ted -t chgpc . ted -o dml001.ee dmlOOl. pc

$ # precompile dmlOOl
$ EPP dml001.ee
$ # compile dmlOOl
$ ucc -c -I$UNIFY/.. dmlOOl.

c

$ # link dmlOOl
$ sqla.ld dmlOOl dmlOOl.o
$ # run dmlOOl
$ dml 001

END OF APPENDIX

A. 3 .

1

Base

Data

for

Primary

Test

Tables

APPENDIX B.l

B.1.1

)' '

.A

••
,

\

V.
i

Test
'umbe

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0031
0033
0034
0035
0036
0037
0038
0039
0040
0041

APPENDIX C.l

TESTCASE Columns: TESTNO, PROG, DESCR

Program Description

dmlOOl CURSOR with ORDER BY DESC
dmlOOl CURSOR with ORDER BY integer ASC
dmlOOl CURSOR with ORDER BY DESC integer, named column
dmlOOl CURSOR with UNION: ORDER by integer DESC
dmlOOl CURSOR with UNION ALL
dml002 Error for second consecutive OPEN without CLOSE
dml003 Error for second consecutive CLOSE
dml004 SQLCODE = 100: FETCH on empty table
dml004 FETCH NULL value, get indicator = -1

dml004 FETCH truncated CHAR column with indicator
dmlOOS FIPS sizing - DECIMAL (15)

dml006 SQLCODE < 0: DELETE CURRENT at end-of-data
dml006 DELETE CURRENT row twice
dml 007 UPDATE CURRENT
dml007 UPDATE CURRENT - view with check and unique
dml008 SQLCODE <0:2 rows selected by single-row SELECT
dml008 SELECT DISTINCT
dml008 SQLCODE = 100: SELECT with no data
dml008 SQLCODE = 0: SELECT with data
dml008 SELECT NULL value, get indicator = -1

dml008 SELECT CHAR (M) col. into short var., get indie = M
dml009 INSERT (column list) VALUES (literals and NULL)
dml009 SQLCODE < 0 if left -truncate DEC (>= col.def.)
dml009 SQLCODE = 100: INSERT query spec, is empty
dml009 SQLCODE = 0: INSERT query spec, is not empty
dml009 INSERT into view, check option + unique violations
dmlOlO INSERT short string into long column- space padding
dmlOlO INSERT string that exactly fits in column
dml 010 INSERT (column list) VALUES (variables and NULL)
dml Oil UPDATE view without WHERE clause - all rows
dmlOll UPDATE table with SET column in WHERE clause
dmlOll UPDATE with correlated subquery in WHERE clause
dmlOll UPDATE view globally with check option violation
dml 012 DELETE without WHERE clause - all rows
dml 012 DELETE with correlated subquery in WHERE clause
dml013 COUNT DISTINCT function
dml 013 SUM function with WHERE clause
dml 013 MAX function in subquery

C. 1 .

1

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087

dml 013
dml 013
dml 013
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 014
dml 015
dml 015
dml 015
dml 015
dml 016
dml 016
dml 016
dml017
dml017
dml 018
dml 018
dml018
dml 018
dml 018
dml 019
dml 019
dml 019
dml 019
dml 019
dml019
dml 020
dml 020
dml 020
dml 020
dml 021
dml 021
dml 021
dml 021

MIN function in subquery
AVG function
AVG function: empty result NULL value
BETWEEN predicate
NOT BETWEEN predicate
IN predicate with subquery
NOT IN predicate with subquery
IN predicate with value list
LIKE predicate with % (percent)
LIKE predicate with _ (underscore)
LIKE predicate with ESCAPE character
NOT LIKE predicate
IS NULL predicate
NOT NULL predicate
NOT EXISTS predicate
ALL quantifier
SOME quantifier
ANY quantifier
COMMIT WORK closes cursors
COMMIT WORK keeps changes to database
ROLLBACK WORK cancels changes to database
ROLLBACK WORK closes cursors
SELECT USER
SELECT CHAR literal, term with numeric literal
SELECT numeric literal
WHENEVER NOT FOUND (SQLCODE=l 00) , GOTO and CONTINUE
WHENEVER SQLERROR (SQLCODE< 0), GOTO and CONTINUE
HAVING COUNT with WHERE, GROUP BY
HAVING COUNT with GROUP BY
HAVING MIN, MAX with GROUP BY 3 columns
Nested HAVING IN, with no outer reference
HAVING MIN with no GROUP BY
GROUP BY column: SELECT column, SUM
GROUP BY clause
GROUP BY 2 columns
GROUP BY all columns, with SELECT *

GROUP BY 3 columns, SELECT 2 of them
GROUP BY NULL value
Simple 2-table join
Simple 2-table join with 1-table predicate
Join 3 tables
Join a table with itself
Data type CHAR (20)

Data type CHARACTER (2 0

)

Data type INTEGER
Data type INT

C.1.2

0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0135
0137

dml 034
dml 021
dml 034
dml 034
dml034
dml 034
dml 034
dml 034
dml022
dml 022
dml022
dml022
dml022
dml022
dml 022
dml 023
dml 023
dml 023
dml 023
dml 02

3

dml 024
dml 024
dml 024
dml024
dml024
dml 024
dml 02

5

dml 02

5

dml 025
dml 025
dml 02

6

dml 02 6

dml 02

6

dml 02

6

dml 026
dml 026
dml 027
dml027
dml 028
dml 028
dml 028
dml 02

9

dml 02

9

dml 02

9

dml 033
sdlOOl

Data type REAL
Data type SMALLINT
Data type DOUBLE PRECISION
Data type FLOAT
Data type FLOAT (32)

Data type NUMERIC (13 , 6

)

Data type DECIMAL (13 , 6

)

Data type DEC (13, 6)

Subquery with MAX in < comparison predicate
Subquery with AVG - 1 in <= comparison predicate
IN predicate with simple subquery
Nested IN predicate - 2 levels
Nested IN predicate - 6 levels
Quantified predicate <= ALL with AVG and GROUP BY
Nested NOT EXISTS with corr. subqueries, DISTINCT
Subquery with = comparison predicate
SQLCODE < 0 : subquery with more than 1 value
Subquery in comparison predicate is empty
Comparison predicate <> (not equal)
Short string logically blank-padded in = pred.
Search condition true OR NOT (true)

Search condition true AND NOT (true)

Search condition unknown OR NOT (unknown)
Search condition unknown AND NOT (unknown)
Search condition unknown AND true
Search condition unknown OR true
Set functions without GROUP BY returns 1 row
GROUP BY 0 groups returns 0 rows: SEL col., AVG...
GROUP BY 0 groups returns 0 rows : SELECT set fnc

.

Set functions with GROUP BY several groups
Monadic arithmetic operator + (plus)

Monadic arithmetic operator - (minus)

Value expression with NULL primary yields NULL
Dyadic arithmetic operators +, -, *, /

SQLCODE < 0 : divisor shall not be zero
Evaluation order of expression
UPDATE UNIQUE column (key=key+l) interim conflict
UPDATE UNIQUE column (key+1) : no interim conflict
CLOSE, OPEN, FETCH returns first row
OPEN 2 cursors at same time
OPEN 3 cursors at same time
Double quote mark (

') in character string literal
Approximate numeric literal <mantissa>E<exponent

>

Approximate numeric literal with neg. exponent
Upper and lower case letters are distinct
CREATE SCHEMA

C.1.3

0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183

sdl002
sdl003
sdl004
sdl005
sdl006
sdl007
sdl008
sdl009
sdlOlO
sdlOll
sdl012
sdl013
sdl014
sdl015
sdl016
sdl017
sdl018
sdl019
sdl020
dml 035
dmlOOl
dml 001
dml 001
dml 004
dml 004
dml 006
dml 008
dml008
dml 036
dml 013
dml 013
dml 013
dml 013
dml 013
dml 016
dml 021
dml 021
dml 021
dml 021
dml 021
dml 021
dml 021
dml 02

3

dml 023
dml 02

9

cccOOl

GRANT ALL PRIVILEGES TO PUBLIC (SELECT, INSERT)
GRANT ALL PRIVILEGES TO PUBLIC (SELECT, UPDATE)
Priv. violation: GRANT SELECT TO PUBLIC, no INSERT
GRANT SELECT and UPDATE to individual
GRANT SELECT and UPDATE WITH GRANT OPTION
GRANT SELECT and UPDATE on VIEW
Priv. violation: colunm not in UPDATE column list
Fully qualified column specification
GRANT SELECT, DELETE, INSERT
CREATE SCHEMA
CREATE TABLE with NOT NULL
CREATE TABLE with NOT NULL UNIQUE
CREATE TABLE with UNIQUE (...): INSERT VALUES
CREATE VIEW
CREATE VIEW with CHECK OPTION
CREATE VIEW joining 3 tables
Schema def .

-

same table name for different schemas
CREATE TABLE with UNIQUE (...): INSERT via SELECT
Tables are multi -sets, dup . INSERTed via subquery
CURSOR with ORDER BY approximate numeric
CURSOR with UNION and NOT EXISTS subquery
CURSOR with 2 UNIONS, ORDER BY 2 integers
CURSOR with UNION, UNION ALL and ORDER BY
SQLCODE < 0 : FETCH NULL value without indicator
FETCH NULL value with INDICATOR syntax
SQLCODE < 0: DELETE CURRENT without FETCH
Default of SELECT is ALL, not DISTINCT
Truncate CHAR column SELECTed into shorter var.
INSERT NULL value with indicator = -1

SUM ALL function
SUM function
COUNT (*) function
SUM DISTINCT function with WHERE clause
SUM (column) + literal
SELECT USER into short variable
Data type CHAR
Data type CHARACTER
Data type NUMERIC
Data type NUMERIC (9)

:

SELECT *

Data type NUMERIC (9)

:

SELECT column
Data type DECIMAL
Data type DECIMAL (8)

NULLs sort together in ORDER BY
NULLs are equal for DISTINCT
Approx, num. literal with neg . mantissa and exp.
C language embedded host identifiers

C. 1 .4

0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229

CCC002
cobOOl
cob002
cob002
cob002
dml 078
dml078
dml 078
CCC003
CCC003
CCC004
CCC005
cob004
cob004
CCC006
sdl021
sdl022
sdl023
dml037
sdl024
sdl025
dml 038
cob005
cob006
dml 039
dml 040

C language NULL terminator
COBOL - embedded host identifiers
COBOL - CHAR (80)

COBOL - CHAR (132)
COBOL - CHAR(240)
OPTIONAL - CHAR (256)

OPTIONAL -

OPTIONAL -

C language
C language
C language
C language
COBOL PIC S9(12)
COBOL PIC S9(18)
C language AUTO
Priv. violation
Priv. violation
Priv . violation
Host variable

literal
embedded SQL statement

CHAR(512)
CHAR(1024)
continuation of SQL char,
comments within
EXTERN storage class
STATIC storage class

precision test
precision test
storage class
GRANT SELECT to
GRANT INSERT to
GRANT without GRANT OPTION

names same as column names

PUBLIC,
indiv.

,

no
no

DELETE
SELECT

CREATE VIEW on VIEW
Updatable VIEW with AND, OR in CHECK clause
Cartesian product is produced without WHERE
COBOL - continuation of SQL char, literal
COBOL - comments within embedded SQL statement
LIKE predicate with underscore is case sensitive
Join 2 tables from different schemas

1) syntax
7) syntax
CHECK clauses
.00 columns in

cob007 COBOL - PIC S9
cob007 COBOL - PIC S9
dml 041 Enforcement of
dml 04

2

FIPS sizing -

dml 043 FIPS sizing -

dml 04

4

FIPS sizing -

dml 044 FIPS sizing -

in nested views
a row

columns in a

;0 bytes in a

forOOl FORTRAN - continuation of SQL

UNIQUE specification
UNIQUE specification
character literal

dml 04

5

FIPS sizing - 6 columns in GROUP BY
dml 04

5

FIPS sizing - 120 bytes in GROUP BY
dml 04

6

FIPS sizing - 6 columns in ORDER BY
dml 04

6

FIPS sizing - 120 bytes in ORDER BY
dml 04

7

FIPS sizing - CHARACTER (24 0)

forOOl FORTRAN - comments within embedded SQL statements
dml048 FIPS sizing - 10 cursors open at once
dml049 FIPS sizing - 10 tables in FROM clause
dml050 FIPS sizing - 10 tables in nested SQL statements
dml051 BETWEEN predicate with character string values
dml 051 NOT BETWEEN predicate with character string value
dml052 LIKE predicate is case sensitive

C. 1 .

5

0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275

mpaOOl
mpaO 02

mpa003
dml 053
dml 037
cob008
cob008
sdl026
pas002
pasOOl
dml 054
dml 054
dml 054
dml055
dml055
dml 055
dml 056
dml 056
dml057
dml057
dml 057
dml 058
dml 058
dml 058
dml 058
dml 058
dml 058
dml 059
dml 059
dml 059
dml 059
dml 060
dml 060
dml 060
dml 059
dml 060
dml 060
dml 060
mpa004
dml 061
dml 061
dml 061
dml 061
dml 061
dml 062
dml 062

Transactions serializable: assign sequential key
Transactions serializable: SELECT/UPDATE (replace)
Transactions serializable: UPDATE with arithmetic
Tables are multi-sets: duplicate via INSERT VALUE
SQL comments (double hyphen) in SQL statements
COBOL - exact numeric types S9(i)V9(k)
COBOL: SQLCODE < 0: exception losing signif. digit
Identifier length 18
Pascal - comments within embedded SQL statements
Pascal - embedded host identifiers
Updatable CURSOR with ALL, IN, BETWEEN
Updatable CURSOR with LIKE, NULL, >, =, <

Updatable CURSOR with view, correlation name, NOT
FIPS sizing - precision of SMALLINT >=: 4

FIPS sizing - precision of INTEGER >= 9

FIPS sizing - precision of DECIMAL >= 15

FIPS sizing - 100 valuesi in INSERT
FIPS sizing - 20 values in update SET clause
FIPS sizing - binary precision of FLOAT >= 20

FIPS sizing - binary precision of REAL >= 20
FIPS sizing - binary precision of DOUBLE >= 30

COMMIT keeps changes of current transaction
ROLLBACK cancels changes of current transaction
TEST0124 workaround (key = key+1)
Column name in SET clause
Key word USER for INSERT, UPDATE
Key word USER in WHERE clause
SELECT MAX, MIN (COLl + or - COL2)
SELECT SUM (:var * COLl * COL2)
SOME, ANY in GROUP BY, HAVING clause
EXISTS in GROUP BY, HAVING
WHERE (:var * (COLl - COL2)) BETWEEN
WHERE clause with computation, ANY/ALL subqueries
Computed column in ORDER BY
WHERE, HAVING without GROUP BY
UPDATE : positioned - view with check option
UPDATE : positioned - UNIQUE violation under view
UPDATE compound key, interim uniqueness conflicts
Transactions serializable: deadlock management
BETWEEN value expressions in wrong order
BETWEEN approximate and exact numeric values
COUNT (*) with Cartesian product subset
Statement rollback for integrity violation
SUM, MAX, MIN = NULL (not 0) for empty arguments
COMMIT and ROLLBACK across schemas
COMMIT and ROLLBACK of multiple cursors

C.1.6

0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321

dml062
dml 061
dml 061
dml 062
dml 063
dml 064
dml 064
dml 064
dml 065
dml 065
dml 066
dml 066
dml067
dml067
CCC007
CCC008
cob009
cob009
pas003
for002
f lg005
f lg005
pas004
f lg006
cdrOOl
cdrOOl
cdr002
cdr002
cdr002
cdr002
cdr003
cdr003
cdr003
cdr004
cdr004
cdr004
cdr004
cdr005
cdr005
cdr005
cdr006
cdr006
cdr006
cdr007
cdr007
cdr007

View across schemas
Computation with NULL value specification
IN value list with USER, 1 iteral , variable spec.
IN is a 3 -valued predicate, EXISTS is 2 -valued
SQL key words used as embedded host identifiers
Updatable VIEW with ALL, IN, BETWEEN
Updatable VIEW with LIKE, NULL, >, =, <

Updatable VIEW with view, correlation name, NOT
INSERT, SELECT character strings with blanks
INSERT, SELECT integers with various formats
Compatibility of structures and host variables
Compatibility of arrays and host structures
Embedded - multiple identifiers in 1 declaration
Embedded - multiple declare sections
C language common placement of SQL statements
C language SQL statements in functions
COBOL - VALUE IS initialization
COBOL - placement of SQL statements
Pascal - placement of SQL statements
FORTRAN - placement of SQL statements
FIPS Flagger - vendor provided character function
FIPS Flagger - vendor provided integer function
Pascal - SQL statements in functions
FIPS Flagger - identifier length > 18

DEFAULT value literal + number in a table
DEFAULT value USER in a table
CHECK <comp. predicate> in <tab. cons.>, insert
CHECK <comp. predicate> in <col . cons.>, insert
CHECK <between predicate> in <tab. cons.>, insert
CHECK <null predicate> in <tab. cons.>, insert
CHECK X IS NOT NULL, NOT X IS NULL are equivalent
CHECK <like predicate> in <tab. cons>, insert
CHECK <in predicate> in <tab. cons.>, insert
CHECK combination predicates in <tab. cons .

>

CHECK X NOT IN, NOT X IN equivalent, insert
CHECK NOT NULL in col . cons . , insert, null explicit
CHECK NOT NULL in col . cons . , insert, null implicit
CHECK <comp. predicate> in <tab. cons.>, update
CHECK <comp. predicate> in <col . cons.>, update
CHECK <between predicate> in <tab. cons.>, update
CHECK <null predicate> in <tab. cons.>, update
CHECK X IS NOT NULL, NOT X IS NULL same, by update
CHECK <like predicate> in <tab. cons.>, update
CHECK <in predicate> in <tab. cons.>, update
CHECK combination pred. in <tab. cons.>, update
CHECK if X NOT LIKE/ IN, NOT X LIKE/ IN same, update

C. 1 .

7

0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367

cdr007
cdr008
cdr008
cdr008
cdrO 08

cdr009
cdr009
cdr009
cdr009
cdr009
cdrOlO
cdrOlO
cdrOlO
cdrOll
cdrOll
cdrOll
cdrOll
cdrOll
cdr012
cdr012
cdr012
cdr013
cdr013
cdr013
cdr013
cdr014
cdr014
cdr015
cdr015
cdr015
cdr016
cdr016
cdr016
cdr017
cdr017
cdr017
cdr017
cdr017
cdr018
cdr018
cdr018
cdrOlS
cdr018
cdr019
cdr019
cdr019

CHECK <null predicate> in <col . cons>, update
(2 pr.,1 son), both P.K e, F.K e, insert another F.K

1 son) , 1 P.K exist , another not. insert F.K
1 son), both P.K e, F.K e, delete 1 P.K
1 son), P.K e, no F.K, modify P.K
1 son) , check PRIMARY KEY unique via insert
1 son), F.K exist, modify P.K
1 son) , check PRIMARY KEY unique via modify
1 son), modify F.K to no P.K corr.

son), modify F.K to P.K corr. value

(2 pr.

(2 pr.

(2 pr.

(2 pr.

(2 pr.

(2 pr.

(2 pr.

(2 pr . , 1

(self ref
(self ref
(self ref
(self ref
(self ref
(self ref
(self ref
(self ref
(ref
(ref

. each other)

. each other)
(ref. each other)
(ref. each other)
(ref. each other)
(ref. each other)
(ref. each other)

P.K exist, insert a F.K
delete P.K but F.K exist.
update P.K, no corr. F.K
insert a F.K but no corr. P.K
update P.K, but corr. F.K e.

update P.K, check P.K unique via var.
update F.K and no corr. P.K
update F.K and corr. P.K exist

insert F.K and corr. P.K e

delete P.K but corr. F.K e

update P.K and no corr. F.K
update P.K and corr. F.K e

update F.K to no corr. P.K
update F.K to corr. P.K e

insert F.K and no corr. P.K
insert
+ no corr . P.K
+ corr. F.K e

+ no corr . F.K
+ corr. P.K e

update
to no corr. P.K
to corr. P.K e

+ no corr. P.K
+ corr. F.K e

but corr. F.K e

Lnique, update
to no corr. P.K
without P.K
but corr. F.K e

but corr .F.K e

Lnique , update
to no corr. P.K

check P.K + F.K

FIPS sz

.

(comb . keys=6)

,

P.K unique
FIPS sz

.

(comb . keys=6)

,

insert F.K
FIPS sz

.

(comb . keys=6)

,

delete P.K
FIPS sz

.

(comb . keys=6)

,

update P.K
FIPS sz

.

(comb . keys=6)

,

update P.K
FIPS sz

.

(comb . keys=6)

,

P.K unique
FIPS sz

.

(comb . keys=6)

,

update F.K
FIPS sz

.

(comb . keys=6)

,

update F.K
FIPS sz

.

(1 pr . , 6 son) , insert F.K
FIPS sz

.

(1 pr
. , 6 son) , delete P.K

FIPS sz

.

(1 pr
. , 6 son) , update P.K

FIPS sz

.

(1 pr . , 6 son) , check :key 1

FIPS sz

.

(1 pr
. , 6 son) , update F.K

FIPS sz

.

(6 pr
. , 1 son) , insert F.K

FIPS sz

.

(6 pr . , 1 son) , delete P.K
FIPS sz

.

(6 pr . , 1 son) , update P.K
FIPS sz

.

(6 pr. , 1 son) , check :key 1

FIPS sz

.

(6 pr
. , 1 son) , update F.K

(3 -level schema)

,

check insert F.K
(3 -level schema)

,

check delete P.K
(3 -level schema)

,

update mid. tab

.

C.1.8

0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414

cdr019 (3-level schema), check update P.K
cdr020 update P. K, set F1=F1+1, interim violation
cdr020 update F. K, set F1=F1+1, interim violation
cdr020 update self-ref table, interim violation
cdr020 delete self-ref table, interim violation
cdr003 insert with embeded var.+ indie, var. CHECK clause
cdr003 computation in update, CHECK clause
cdr017 ref. integrity with computation
cdr017 ref. integrity with join
edrOOl DEFAULT value with explicit NULL
cdr021 (ref . acr

.

sch.) delete P.K and corr . F.K e

cdr021 (ref . acr

.

sch.) update P.K and corr . F.K e

cdr022 (ref

.

acr

.

sch.) insert F.K and no corr. P.

cdr022 (ref

.

acr

.

sch.) update F.K to no P. K corr.
cdr023 (ref

.

acr

.

sch.) with GRANT OPTION, insert
cdr023 Priv

.

violation

:

GRANT without GRANT OPTION
cdr023 Priv

.

violation

:

SELECT, but not REFERENCES
cdr024 character default column values
cdr024 exact numeric default column values
cdr024 approximate numeric default column values
cdr024 FIPS sz. default column values
dml068 95-char ASCII collating sequence (PL vs. SQL)

dml072 Short char column value blank-padded in larger var
sdl027 Correlation names used in self-join of view
for003 FORTRAN - placement of additional SQL statements
dml073 SUM, MAX on Cartesian product
dml073 AVG, MIN on joined table with WHERE
dml073 SUM, MIN on joined table with GROUP BY
dml073 SUM, MIN on joined table with WHERE , GROUP , HAVING
sdl028 Grouped view
cccOll Embedded C initial value
CCC009 C language storage class and class modifier comb.
sdl027 View with computed columns (degrees F to C)

cdr025 Computed GROUP BY view over referencing tables
cdr025 View on computed GROUP BY view with joins
dml069 2 FETCHes (different target types) on same cursor
dml069 2 cursors open from different schemas (coded join)

dml069 Subquery from different schema
dml069 SELECT INTO :XX ... WHERE :XX =

dml069 UPDATE references column value BEFORE update
dml070 Effective outer join--join with two cursors
dml076 NULL value in OPEN CURSOR
dml070 Effective set difference
dml070 Effective set intersection
cdr025 Computed SELECT on computed VIEW
dml071 WHENEVER NOT FOUND, multiple settings

C. 1 .

9

0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461

dml 071
dml071
dml 073
dml 073
dml 073
sdl028
dml 074
dml 074
dml 074
adaOOl
ada002
ada002
adaO 03

ada004
ada005
dml075
dml 075
dml 075
dml075
dml076
dml 076
dml 076
cdr026
cdr026
cdr026
dml 076
dml 075
dml077
dml077
dml077
cdr027
cdr027
cdr027
cdr027
cdr027
dml079
dml 079
dml 079
flg008
flg009
ada006
mpa005
sdl029
sdl029
sdl029
sdl029

WHENEVER SQLERROR, multiple settings
WHENEVER NOTFOUND overlaps WHENEVER SQLERROR
Cartesian product GROUP BY 2 columns with NULLs
AVG , SUM , COUNT on Cartesian product with NULLs
SUM, MAX, MIN on joined table view
View with multiple SELECT of same column
Module language constants and expressions
Module language order of SQLCODE (not first)
Module language multiple SQLCODE parameters
Ada embedded host identifiers
Ada comments
Ada initial value
Ada common placement of SQL statements
Ada placement of SQL statements
Ada unqualified type spec - without SQL_STANDARD
Redundant rows in IN subquery
Unknowns in subquery of ALL, SOME, ANY
Empty subquery of ALL, SOME, ANY
GROUP BY with HAVING EXISTS-correlated set fnc
Host variables in UPDATE WHERE CURRENT
NULL values for various SQL data types
NULL values for various host variable types
(partial -NULL F.K) F.K INSERT supported
(partial -NULL F.K) F.K UPDATE supported
(partial -NULL F.K) no restrict P.K update/delete
NULL value for various predicates
DISTINCT with GROUP BY, HAVING
VIEW with check option rejects unknown (NULL)

Updatable cursor, modify value selected on
Values not assigned to targets for SQLCODE=100
Table CHECK constraint allows unknown (NULL)

NULLs with check constraint and check option
PRIMARY KEY implies UNIQUE
Constraint definition is case sensitive
Referential integrity is case sensitive
UNIQUEness is case sensitive
Order of precedence, left-to-right in UNION [ALL]

NULL with empty subquery of ALL, SOME, ANY
SELECT nonGROUP column in GROUP BY
Relaxed union compatability rules for columns
Module language Ada subtype enforcement , name assoc
Transactions serializable: phantom read
Priv . violation : GRANT only SELECT to individual
Priv . violation : GRANT only INSERT to individual
Priv. violation: GRANT only UPDATE to individual
Priv .violation : GRANT only DELETE to individual

C. 1 . 10

0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507

dml 080
dml 080
sdl030
sdl030
sdl030
sdl030
sdl031
sdl03

1

sdl031
sdl031
sdl032
sdl033
sdl034
sdl034
sdl034
sdl035
sdl035
sdl035
sdl035
sdl036
sdl036
sdl036
sdl032
sdl032
cdr028
dml 081
dml 081
dml 081
dml 081
dml 082
dml 082
dml 082
dml 082
sdl037
dml 083
dml 091
dml 083
cccOlO
dml 083
dml 083
dml 081
dml 084
dml 084
dml 082
mpa006
mpa007

Priv. violation
Priv. violation
Priv. violation
Priv. violation

Priv. violation
Priv. violation
Priv. violation
Priv. violation
Priv. violation
Priv. violation
Priv. violation
Priv . violation
Priv . violation
Priv. violation

SQLCODE 100: DELETE with no data
SQLCODE 100: UPDATE with no data
Priv .violation : GRANT only SELECT to PUBLIC

GRANT only INSERT to PUBLIC
GRANT only UPDATE to PUBLIC
GRANT only DELETE to PUBLIC
individual without any privileges

GRANT ALL PRIVILEGES to individual
GRANT ALL PRIVILEGES to public
Priv. violation : GRANT privilege not grantable

individual SELECT, column UPDATE
GRANT all on view but not table
need SELECT for searched UPDATE
GRANT ALL w/o GRANT OPTION
GRANT OPTION view but not table
GRANT only SELECT on view
GRANT only INSERT on view
GRANT only UPDATE on view
GRANT only DELETE on view
no privileges on view

GRANT ALL PRIVILEGES on view
Priv . violation : GRANT UPDATE not grantable on view

SELECT and column UPDATE on view
SELECT and column UPDATE cursor
illegal REFERENCES
successful completion
cardinality violation
no data
data exception/division by zero
data exception/indicator overflow
data exception/invalid escape char
data except ion/inval id escape seq.

data except ion/numeric val . range 1

illegal GRANT to self
data exception/null but no indie
data exception/numeric val. range 2

data exception/string right trunc.
data exception/unterminat . C string
warning/null elim. in set function
warning/string right truncation
invalid cursor state
syntax error or access rule vio.l
syntax error or access rule vio.2
with check option violation
trans . rollback/serialization fail

.

Priv . violation
Priv . violation
Priv . violation
SQLSTATE 00000
SQLSTATE 21000
SQLSTATE 02000
SQLSTATE 22012
SQLSTATE 22022
SQLSTATE 22019
SQLSTATE 22025
SQLSTATE 22003
Priv. violation
SQLSTATE 22002
SQLSTATE 22003
SQLSTATE 22001
SQLSTATE 22024
SQLSTATE 01003
SQLSTATE 01004
SQLSTATE 24000
SQLSTATE 42000
SQLSTATE 42000
SQLSTATE 44000
SQLSTATE 40001
Transactions serializable: dueling cursors

C. 1 . 11

0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0554
0556
0557
0558
0559
0560
0561
0562
0564
0565
0566
0567
0568
0569

dml 085
dml 085
dml 085
dml 086
dml 090
dml 090
dml 141
dml 132
cdr03 0

mpa008
dml 087
dml087
dml 087
dml 088
cdr029
dml 090
dmll32
dml 132
cdr03

1

dml 142
dmll42
dml 14

3

mpquic
mpquic
ada007
ada008
ada009
cobOlO
cobOlO
cdr029
cdr029
mpquic
dml 085
dml 123
dml 12

3

dml 123
dml 12

3

mpaOlO
dml 149
mpquic
dml090
dml 092
dml 093
dml 094
isiOOl
isi002

Delimited identifiers
Renaming columns with AS for ORDER BY
<parameter name> = <column name> (OK with SQL- 92)

CHECK clauses in nested views (clarified in SQL-92)

<value expression> for IN predicate
NUMERIC (4) implies CHECK BETWEEN -9999 AND 9999

SQLSTATE 23000: integrity constraint violation
FIPS sizing: NUMERIC (15) decimal precision
SQLSTATE 23000: integrity constraint violation
Transactions serializable: Twins Problem
CREATE VIEW with DISTINCT
CREATE VIEW with subqueries
Underscores are legal and significant
New format in MODUljE-<parameter declaration list>
No implied natural join on FROM Tl, T2

<value expression> for BETWEEN predicate
FIPS sizing: 100 Items in a SELECT list
FIPS sizing: 15 Table references in SQL statement
FIPS sizing: Length FOREIGN KEY column list = 120

Priv. violation: HU
Tables are multi-sets: cursor operations
Priv. violation: SELECT in <insert statement>
Interactive SQL serializability : dirty read
Interactive serializability: non-repeatable read
package SQLSTATE_CODES
Mi sc. in package SQL_STANDARD
ADA Tasks
COBOL - BINARY PICTURE for INTEGER, SMALLINT type
FIPS sizing - COBOL BINARY decimal precision >= 9

Table check constraint: column vs. column
With check option: column vs. column
Interactive SQL serializability: phantom read
More column renaming - single row select with join
Static insert, dynamic fetch, static commit
Static insert, dynamic commit, static rollback
Dynamic insert, static delete, dynamic count
Static insert, dynamic rollback, static fetch
Table privileges vs. column privileges
Double SET TRANSACTION
Interactive serializability: ISOLATION MODE
Outer ref. directly contained in HAVING clause
VARCHAR for Transitional SQL
VARCHAR for TSQL: dynamic version
CHAR type in Dynamic SQL
INFORMATION_SCHEMA. TABLES definition
INFORMATION SCHEMA. VIEWS definition

C. 1 . 12

0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615

isi003
isi004
isi005
isi006
isi007
isiOOS
dml 095
dml 096
dml 097
dml 098
dml 098
dml 099
dml099
dml 099
dml 092
dml 093
dml 098
dml 100
dml 101
mpa013
mpa012
dml 104
dml 104
dml 1 04

dml 104
dml 105
dml 105
dml 105
dml 105
dml 106
dmll07
dml 106
dml 107
istOOl
ist002
ist003
ist004
ist 005
ist 006
ist 007
istOOS
dml 106
dml 107
dml 106
dml 107
dml 106

INFORMATION_SCHEMA. COLUMNS definition
INFORMATION_SCHEMA. SCHEMATA definition
INFORMATION_SCHEMA.TABLE_PRIVILEGES definition
INFORMATION_SCHEMA.COLUMN_PRIVILEGES definition
Orphaned IS data structures. Intermediate SQL
VARCHAR in INFORMAT ION_SCHEMA
NUMERIC type in Dynamic SQL
DECIMAL type in Dynamic SQL
INTEGER and SMALLINT types in Dynamic SQL
FIPS sizing, Dynamic SQL exact numerics
FIPS sizing. Dynamic SQL approximate numerics
Implicit numeric casting (feature 9) dynamic
Implicit numeric casting (feature 9) static
FIPS sizing. Dynamic SQL character strings
FIPS sizing, VARCHAR (254) strings (static)
FIPS sizing, VARCHAR (254) strings (dynamic)
Sizing of FLOAT in a descriptor (dynamic)
SET TR READ ONLY / READ WRITE (static)
SET TR READ ONLY / READ WRITE (dynamic)
SET TR ISOLATION LEVEL (static)
SET TR ISOLATION LEVEL (dynamic)
NATURAL JOIN (feature 4) (static)
INNER JOIN (feature 4) (static)
LEFT OUTER JOIN (feature 4) (static)
RIGHT OUTER JOIN (feature 4) (static)
NATURAL JOIN (feature 4) (dynamic)
INNER JOIN (feature 4) (dynamic)
LEFT OUTER JOIN (feature 4) (dynamic)
RIGHT OUTER JOIN (feature 4) (dynamic)
UNION in views (feature 8) (static)
UNION in views (feature 8) (dynamic)
DATETIME data types (feature 5) (static)
DATETIME data types (feature 5) (dynamic)
INFO_SCHEM. TABLES definition
INFO_SCHEM. VIEWS definition
INFO_SCHEM. COLUMNS definition
INFO_SCHEM. SCHEMATA definition
INFO_SCHEM.TABLE_PRIVILEGES definition
INFO SCHEM. COLUMN PRIVILEGES definition
Orphaned IS data structures. Transitional SQL
VARCHAR in INFO_SCHEM
FIPS sizing, DATETIME data types (static)
FIPS sizing, DATETIME data types (dynamic)
<datetime value function> (static)
<datetime value function> (dynamic)
DATETIME-related SQLSTATE codes (static)

C.1.13

0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661

dmll07
dml 108
dml 109
dml 110
dml 111
dml 112
dml 113
dml 112
dml 113
dml 112
dml 113
mpaOlO
mpaOlO
mpaOll
mpaOll
dml 112
dml 113
dml 112
dml 113
dml 114
dml 115
dml 114
dml 115
dml 114
dml 115
dml 114
dml 115
dml 133
dml 116
dml 117
dml 118
dmlll9
dml 120
dml 121
dmll22
dml 121
dml 12

2

dmll24
dml 124
dmll24
dmll24
dml 12

5

dml 12

5

dml 12

5

dml 12

6

dml 121

DATETIME-related SQLSTATE codes (dynamic)
DATETIME with predicates, set fns (static)
DATETIME with predicates, set fns (dynamic)
DATETIME cursor operations (static)
DATETIME cursor operations (dynamic)
DATETIME NULLs (static)
DATETIME NULLs (dynamic)
OUTER JOINS with NULLs and
OUTER JOINS with NULLs and
ADD COLUMN and DROP COLUMN
ADD COLUMN and DROP COLUMN
<grant statement> (static)
<revoke statement> (static)
<grant statement > (dynamic)
<revoke statement > (dynamic)
Datetimes in a <default clause>
Datetimes in a <default clause>
TRIM function (static)
TRIM function (dynamic)
Feature 13, grouped operations

grouped operations
Qualified * in select
Qualified * in select

empty tables
empty tables
(static)
(dynami c

)

(static)
(dynamic)

Feature 13,

Feature 14,

Feature 14,

Feature 15,

Feature 15,

Feature 16,

Feature 16,

Feature 17,

Feature 18,

Feature 19,

Feature 19,

Feature 20,
Feature 20,
Feature 22,
Feature 22,
Feature 24,
Feature 24,

Descriptors
Descriptors
Descriptors
Descriptors
Descriptors
Descriptors
Descriptors
Dynamic SQL

(static)
(dynami c

)

(static)
(dynamic)

list (static)
list (dynamic)

Lowercase Identifiers (static)
Lowercase Identifiers (dynamic)
PRIMARY KEY enhancement (static)
PRIMARY KEY enhancement (dynamic)
Multiple schemas per user
Multiple module support
Referential delete actions (static)
Referential delete actions (dynamic)
CAST functions (static)
CAST functions (dynamic)
Explicit defaults (static)
Explicit defaults (dynamic)
Keyword relaxations (static)
Keyword relaxations (dynamic)
DESCRIBE OUTPUT
INTO SQL DESCRIPTOR
USING SQL DESCRIPTOR
datetimes
VARCHAR
SQLSTATE codes
TSQL orphaned features

SQLSTATEs
Errata: datetime casting (static

C. 1 . 14

0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0706
0707
0708
0709

dml 122
dmll21
dml 12

2

dml 12

7

dml 12

7

dml 152
dml 152
dml 152
dml 126
dml 126
dmll52
dmll52
dml 12

8

dml 128
dml 129
dml 12

9

dml 130
dml 130
dml 130
dml 12

9

dml 130
dml 131
dml 131
dml 131
dml 131
dml 131
dml 134
dml 134
dml 134
dml 134
dml 135
dml 135
dml 135
dml 135
dml 136
dml 137
dml 138
dml 139
xop700
xop701
xop702
xop703
xop706
xop707
xop708

* xop7 0 9

Errata

:

Errata

:

Errata

:

Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost
Diagnost

datetime casting (dynamic)
datetime SQLSTATEs (static)
datetime SQLSTATEs (dynamic)

ics : statement information
ics : condition information
ics : access violations
ics : COMMAND_FUNCTION (static)
ics : COMMAND_FUNCTION F# 3, 11

ics : COMMAND_FUNCTION (dynamic)
ics : DYNAMIC_FUNCTION
ics : Multiple conditions
ics SQLSTATE

:

inv. cond. number
ics : TSQL orphaned features
ics : MORE
ics : VARCHAR

INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO_SCHEM
INFO SCHEM

VAJRCHAR with <like predicate>
Data type semantics with NULL / NOT NULL

Table data types
View data types
Varchar data types
Datetime data types
Changes are visible
Visibility to other users
Privileges and privilege views
Primary key enh. is not null
Multiple schemas per user
Dynamic changes are visible

Many Trans SQL features #1 : inventory system
Many Trans SQL features #2 : talk show schedule
INFO_SCHEM: SQLSTATEs for length overruns
Many TSQL features #3: enhanced proj /works
Many TSQL features #4 : enhanced INFO_SCHEM
Interval Arithmetic and Casts
<updatability clause> in <declare cursor>
Many TSQL features #5 : Video Game Scores
Erratum: drop behavior, constraints (static)
Erratum: drop behavior, constraints (dynamic)
<drop behavior> on a REVOKE (static)
X/0, DEFAULTS and LIMITS for DATA TYPES
X/0, WHENEVER SQLWARNING and scoping of C labels
X/0, ALTER TABLE ADD
X/0, CREATE INDEX on existent/non-existent tables
X/0, CREATE INDEX on at least 6 columns
X/0, Limit on depth of nested sub-queries
X/0, Limit on the total length of an Index Key
X/0, SQL Escape Clause Processing

C. 1 . 15

0710 xop710
0712 xop712
0719 xop719
0720 xop720
0721 xop721
0722 xop722
0723 xop723
0724 xop712
0725 xop725
0829 dml 140
0830 fIgOlO
0831 flgOll
0832 flg012
0833 flg013
0834 dmll44
0835 dml 14

4

0836 dml 14

5

0837 dml 14

5

0838 dml 14

6

0839 dml 144
0840 dml 14

7

0841 dml 14

7

0842 dml 14

7

0843 dml 14

8

0844 dml 14

8

0845 dml 150
0846 dml 14

9

0847 mpa009
0848 dml 153
0849 dml 154
0850 dmll55
0851 adaOlO
0852 dml 154
0853 dml 151
0854 dml 154
0855 dml 156
0856 dmll57
0857 dml 158
0858 dml 159
0859 dml 160
0860 dml 160
0861 dml 161
0862 dml 161
0863 dml 162
0864 dml 163
0865 dml 163

X/0, Acceptance of correctly placed SQLCA
X/0, MAPPING OF DATATYPES ONTO SQL DECIMAL
X/0, GRANT ALL with optional PRIVILEGES omitted
X/0, GRANT ALL with optional PRIVILEGES omitted
X/0, REVOKE ALL with optional PRIVILEGES omitted
X/0, REVOKE ALL with optional PRIVILEGES omitted
x/0, DROP TABLE with outstanding grants and views
X/0, MAPPING ONTO SQL SMALLINT, DECIMAL AND INTEGER
X/0, INCLUDE SQLCA IN LINKAGE SECTION
<drop behavior > on a REVOKE (dynamic)
FIPS Flagger - WHENEVER SQLWARNING
FIPS Flagger - ADD (column, . . .

)

FIPS Flagger - CREATE INDEX
FIPS Flagger - INCLUDE SQLCA
<length expression> (static)
<character substring function> (static)
<length expression> (dynamic)
<character substring function> (dynamic)
<character substring function> varchar
Composed <length expression> and SUBSTRING
Roll back schema manipulation
Multiple- j oin and default order of joins
Multi-column joins
Ordering of column names in joins
Outer join predicates
Parameters and indicators in dynamic SQL statement
Feature 20, CAST functions (static) nits
Dynamic SQL: serializability
Query spec with subquery is now updatable
Descriptors: datetime length in positions
Comparing fixed vs. variable length char strings
Errata: SQL_STANDARD changed to Interfaces . SQL
Transitive grant in COLUMN_PRIV, TABLE_PRIV
Exceptions not affecting position of cursor
Informational: mixing SDL and DML
Dynamic SQL syntax errors
Transitional Schema Definition
<join condition> set function, outer reference
? (dyn parm spec) in <having clause>
<joined table> contained in <select list>
Domains over various data types
CURRENT_USER

, SESS ION_USER , SySTEM_USER
CURRENT_USER etc. with set session authid
<joined table> directly contained in cursor, view
Intermediate Dynamic SQL syntax errors
Result data types for case expressions

C. 1 . 16

0866 dml 163
0867 dml 164
0868 dml 164
0869 dml 164
0870 dml 165
0871 adaOll
0872 ada012
0873 dml 166
0874 dml 167
0875 dmll67
0876 dml 168
0877 dml 169
0878 dml 168
0879 dml 168
0880 dmll70
0881 dmll70
0882 dmll71
0883 ada013
0884 dml 172
0885 dml 173
0886 dml 174
0887 dmll75
0888 dmll76
0889 dmll77
0890 dmll77
0891 dml 178
0892 dml 179
0893 dml 180
0894 dml 181
0895 dml 182
0896 dml 183
0897 dml 184
0898 dml 185
0899 dml 186
7001 xts700
7002 xts798
7003 xts799
7004 xts701
7005 xts701
7006 xts701
7007 xts702
7008 xt s702
7009 xts702
7010 xts703
7011 xts703
7012 xts703

Case expressions in other than SELECT
LIKE enhancements: keyword search
More <unique predicate>
More table operations
Non-identical descriptors in UNION
Errata: Interfaces . SQL . Numerics- -TC3 clause 23.3
Errata: Interfaces . SQL . Varying- -TC3 clause 23.3
Dynamic schema creation
INFORMAT ION_SCHEMA catalog columns
INFORMAT ION_SCHEMA column coverage
SQL_IDENTIFIER and CHARACTER_DATA domains
Intermediate DB, Flag at Entry level
Keyword COLUMN in ALTER TABLE is optional
<drop table constraint definition>
Long constraint names, cursor names
Long character set names, domain names
More full outer join
Errata: Interfaces . SQL . Varying . NCHAR- -TC3 , 23.3
ASCII_FULL and SQL_TEXT in column definition
FIPS sizing, CHAR (1000)
FIPS sizing, VARCHAR (1000)

FIPS sizing, NCHAR (500)

FIPS sizing, NCHAR VARYING (500)

FIPS sizing, INTEGER binary prec >= 31

FIPS sizing, SMALLINT binary prec >= 15

FIPS sizing, 250 columns, 4000 char data statement
FIPS sizing, rowlen >= 8000, statement var >= 4000
FIPS sizing, descriptor occurrences >= 100
FIPS sizing, length of column lists >= 750
FIPS sizing, columns in list >= 15

FIPS sizing, 50 WHEN clauses in a CASE expression
Constraint usage redux
COLUMN_DEFAULT interpretation
FIPS sizing, INTERVAL decimal leading field prec
NULLIF producing NULL
NULLIF producing non-NULL
COALESCE with three <value expression>s
Compound char, literal in <comparison predicate>
Compound character literal as inserted value
Compound character literal in a <select list>
LIKE with unrestricted <match value>
LIKE with general char, value for pattern + escape
LIKE with zero-length escape
UNIQUE predicate, single table, all values distinc
UNIQUE PREDICATE, table subquery with non-null dup
UNIQUE predicate, duplicates containing null

C. 1 . 17

7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7058
7059
7060

xts713
xts714
xts715
xts716
xts717
xts718
xt s 7 1

9

xts720
xts72

1

xts722
xts723
xts724
xts725
xts726
xts727
xt s 7 2 8

xts72 9

xts7 3 0

xts73

1

xts732
xt s 7 3 3

xts734
xts735
xts736
xts737
xts738
xts739
xts740
xts741
xts742
xts744
xts745
xts746
xt s 7 4 7

xts748
xts749
xts750
xts751
xts752
xts753
xts754
xts755
xts756
xts758
xts759
xts760

Schema definition in an SQL statement -single table
Schema definition named schema, implicit auth-id.
Schema definition - explicit name and auth-id.
SET SESSION AUTHORIZATION to current auth-id.
SET SESSION AUTH. to current auth-id in. transactn
SET SESSION AUTHORIZATION to different value
Access to KEY_COLUiy[N_USAGE view
Access to VIEW_TABLE_USAGE view
Access to VIEW_COLUMN_USAGE view
Access to CONSTRAINT_TABLE_USAGE view
Access to CONSTRAINT_COLUMN_USAGE view
Access to COLUMN_DOMAIN_USAGE view
Flagging - Full SQL INSENSITIVE cursor
Flagging Full SQL - cursor FOR UPDATE and ORDER BY
Flagging - Full SQL - <explicit table> in <qry exp
Flagging, Full SQL,<null predicate> with two-col ro
Column name with 19 and 128 characters - regular.
Table name with 19 characters - delimited.
View name with 128 characters - delimited.
NATURAL FULL OUTER JOIN <table ref> -- static.
FULL OUTER JOIN <table ref> ON <search condition>
National Character data type in comparison predica
INSERT National character literal in NCHAR column
Update NCHAR VARYING column with value from NCHAR
Scrolled cursor with ORDER BY DESC, FETCH NEXT
Scrolled cursor with ORDER BY DESC, FETCH PRIOR
Scrolled cursor with ORDER BY int, name ASC, FETCH
COUNT (ALL <column name>) with Nulls in column
COUNT(ALL NULLIF...) with generated Nulls
COUNT ALL <literal>
Presence of SQL_CHARACTER in CHARACTER_SETS view
Presence of ASCII_GRAPHIC in CHARACTER_SETS view
Presence of LATINl in CHARACTER_SETS view
Presence of ASCII_FULL in CHARACTER_SETS view
Named constraint in column definition in schema de
Named table constraint in table definition.
Named domain constraint

.

Name of violated column constraint returned in dia
ALTER TABLE ADD TABLE CONSTRAINT
ALTER TABLE ADD COLUMN WITH <data type>
ALTER TABLE ADD COLUMN WITH domain and constraint
ALTER TABLE DROP COLUMN RESTRICT
ALTER TABLE DROP COLUMN CASCADE
Scrolled cursor FETCH ABSOLUTE non-literal, after
Scrolled cursor on grouped view, FETCH RELATIVE, FIR
MAX of column derived from <set function specifics

C. 1 . 18

7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7534
7535
7536
7537
7538

xts761 Defined character set in <comparison predicate>
xts762 Defined character set in <like predicate>
xts763 Access to CHARACTER_SETS view
xts764 REVOKE USAGE on character set RESTRICT
xts765 REVOKE USAGE on character set CASCADE
xts766 Drop character set no granted privileges
xts767 DROP character set, outstanding granted privileges
xts768 Presence of SQL_TEXT in CHARACTER_SETS view
xts769 <Character set specif ication> of LATINl in <litera
xts770 <Character set specification> of SQL_CHARACTER in
xts771 CHARACTER SET ASCI I_GRAPHIC in <data type>
yts750 CREATE DOMAIN -SQL Procedure statement, no options
yts751 CREATE DOMAIN as SQL proc statement with default
yts752 CREATE DOMAIN-SQL proc statement with constraint
yts753 DROP DOMAIN RESTRICT
yts754 DROP DOMAIN CASCADE - domain definition in use
yts755 DROP DOMAIN CASCADE -domain w. default + constraint
yts756 Domain Constraint Containing VALUE
yts757 INSERT value in column defined on domain
yts757 Put value in col defined on dom breaking constrain
yts759 GRANT USAGE on a domain
yts776 DROP SCHEMA - empty schema with restrict
yts777 DROP SCHEMA - non-empty schema
yts783 Scr. cursor, no ORDER, FETCH all , FIRST, LAST, NEXT
yts784 Scr. cursor with joined table, FETCH ABS literal
yts762 <query expression> with EXCEPT
yts763 <query expression> with INTERSECT CORRESPONDING
yts764 <query expression> with UNION ALL CORRESPONDING BY
yts778 ALTER TABLE SET COLUMN DEFAULT
yts779 ALTER TABLE DROP COLUMN DEFAULT
yts788 CREATE CHARACTER SET, implicit default collation
yts789 CREATE CHAR SET in schema def , COLLATION FROM DEFLT
yts790 GRANT USAGE on character set, WITH GRANT OPTION
yts791 GRANT USAGE on character set, WITH GRANT OPTION
yts792 GRANT USAGE on character set, WITH GRANT OPTION
yts793 GRANT USAGE on character set, no WGO
yts794 GRANT USAGE on character set, no WGO
yts795 GRANT USAGE on character set, no WGO
yts796 <scalar subquery> as first operand in <comp pred>
yts799 <subqry> as<row val constructor>in<null predicate>
yts800 <nul predxinterval value exp> as <row value cons>
yts760 CASE expression with one simple WHEN
yts761 CASE expression with searched WHEN
yts781 Set local time zone - valid value
yts765 Explicit table constrnts in TABLE_CONSTRAINTS view
yts765 Column constraints in TABLE_CONSTRAINTS view

C. 1 . 19

7539 yts765
7540 yts766
7541 yts766
7542 yts766
7543 yts766
7544 yts767
7545 yts767
7546 yts767
7547 yt s 7 6 7

7548 yts802
7549 yts803
7550 yts768
7551 yts769
7552 yts770
7553 yts771
7554 yts772
7555 yt s 7 7 3
7556 yt s 7 7 4
7557 yts775
7558 yts797
7559 yts798
7560 yts780
7561 yts782
7562 yts805
7563 yts806
7564 yts807
7565 yts808
7566 yts809
7567 yts810
7568 yts811
7569 yts812
7570 yts813
7571 yts814

Unique identification in TABLE_CONSTRAINTS view
Explicit table constrnts - REFERENTIAL_CONSTRAINTS
Column constraints in REFERENTIAL_CONSTRAINTS view
Unique id in REFERENTIAL_CONSTRAINTS view
Values in columns of REFERENT IAL_CONSTRAINTS view
Explicit table constr. in CHECK_CONSTRAINTS view
Column constraints in CHECK_CONSTRAINTS view
Domain constraints in CHECK_CONSTRAINTS view
Unique identification in CHECK_CONSTRAINTS view
Support of SQL_FEATURES tab. in documentatn schema
Support SQL_SIZING table in documentation schema
Access to SCHEMATA view
Access to DOMAINS view
Access to DOMAIN_CONSTRAINTS view
Access to CHARACTER_SETS view
Access to ASSERTIONS view
Access to SQL_LANGUAGES view
Access to INFORMATION_SCHEMA_CATALOG_NAME base tab
SQL host prog, with duplicate local variable names
<scalar subquery> in SET of searched update
<scalar subqry> in <sel.list> of single-row sel

.

<time zone inte 2rval> in literal
Set local time zone - invalid value, exception
Schema with crossed referential const, bet. tables
NATURAL FULL OUTER JOIN <table ref> - dynamic
TIMEZONE_HOUR + TIMEZONE_MINUTE in <extract expr .

>

LOCAL time zone in <datetime value expression>
TIME ZONE in <datetime value expression>
FULL OUTER JOIN<table ref >ON<search condition> dyn
WHERE <search cond.> referencing column
<null predicate> , concat . in<row value constructor>
<null predct>, <numrc val expr> in <row val cons>
<module character set specification>

899 rows selected

NOTE This listing was created by the following query:
select testno, prog, descr from testcase order by testno;
======================== end of appendix ===============

C. 1 . 20

APPENDIX D.l

TEd Change File
Sample Downloaded Embedded SQL COBOL File

IDENTIFICATION SECTION
Embedded COBOL

sub *.* /59-byte ID/
/59-byte ID/ /

1

! Document version of TEd used, for audit purposes.
I

sub *.* /TEd Version #/ -m
"TEd Version #"TEd Version $ver"

MAINTENANCE SECTION

Use the -t option on TEd to apply the official maintenance file.
Then use a second -t option on TEd to apply this file.

OR
Insert the entire maintenance file in this position.

LOGIN SECTION

The login problem is solved here:
If passwords are system- login passwords, then no changes are necessary.
For other implementations, changes may be needed.

The call to AUTHID may be replaced with some implementor-defined syntax.
For example, you may choose to code:
rep *.pco /CALL "AUTHID"/

EXEC SQL CONNECT :uid IDENTIFIED BY :uid END-EXEC

Other changes to establish the ANSI-standard environment would be coded here.

IMPLEMENTOR-DEFINED SECTION

Install implementor-defined precision of SQLCODE
For example, to change precision from 9 to 4, code:

sub *.pco /SQLCODE/

D. 1 .

1

/S9(9)/S9(4)/

Install implementor-defined data type for indicator variable
For example, to change data type to COMP, code:

sub *.pco /indie/
/DISPLAY SIGN LEADING SEPARATE/COMP/

Modify dml063 to declare vendor-reserved key words
For example, to declare UPDATE a vendor- reserved key word, code:

del *dml063.pco /01 UPDATE /

del *dml063.pco / :UPDATE/MOVE UPDATE TO/

! Install vendor- supplied extensions to demonstrate FIPS Flagging:

! (Replace the underscores with vendor- supplied extensions.)
I

sub * { f IgOOS , xop709 } .pco //
/SUBSTR (EMPNAME, 1, 3) = 'Ali'/ /

/ABS (GRADE) = 12/ /
I

! Change 18-character AUTHORIZATION ID to max supported in this DBMS/OS:
! sub *.* /CANWEPARSELENGTH18/
! /CANWEPARSELENGTH18/WECANPARSE12/
I

! Change COBOL programs to specify correct source and object computers
sub *.[ps]co /COMPUTER/
/xyz/ /

APPROVED CHANGES SECTION

Include here any changes approved by NIST for this validation:

For example, to lengthen concurrency test #0230 (according to documentation)

,

to allow interleaving for a DBMS using "burst" mode CPU allocation:
sub *mp?001 . [ps]

*

/keymax/ -i

/50/300/

SYNTAX DEFICIENCIES SECTION

If a program cannot be executed because the precompiler issues
a fatal syntax error message for a minor deficiency which is not
the purpose of the test case, propose a change to NIST.

A syntax change should be made to allow an SQL implementation
to demonstrate functionality, i.e. semantic conformance.

D.1.2

A global change will be counted as a single deficiency.

DELETED TESTS SECTION

If a program cannot be executed because the precompiler issues
a fatal syntax error message for one of the tests, either propose a

change to NIST or delete the entire test so that the rest of the tests
in the program may execute. If this test is required, and not a FIPS
Flagger test, it will appear as a deficiency on REPORT 4.

For COBOL, a performed paragraph is found at the end of the program.
So a separate delete command is needed for a perfoirmed paragraph.

For example, to remove test number 278, code
del *dml061.pco /BEGIN TEST0278/END TEST0278/

END OF APPENDIX

D. 1 .

3

..
'?.

" '

.
.

;
' M 1

1

4'W

OC;! : :v
•

'

'

:

.

I r:
' '

' -
^

'

' .

V

^..;.;J V' J- ^-v, -"t;
' 37'y"

..Yv ..rv Y.^• y-'' '7'!
''

-'
^.: "k ‘1^- ^

•
•

.k.-
;''

'••if, 7 ./ '-•'. , •..
' -

,.
.

. •:, ,'j:; - ; ^'
j;,,.

'. ''YYi .*s*i

1

i’i:

f n ' s3.:;V

(

APPENDIX D.2
SAMPLE TEd Change File

Vendor-modified File Proposed for Validation
Embedded COBOL File CHGPCO.TED

IDENTIFICATION SECTION
Embedded COBOL

sub *.* /59-byte ID/
/59-byte ID/BugFreeDB v.783, UNIX SYS X 2.2, SuperPC 440/

I

! Document version of TEd used, for audit purposes.
I

sub *.* /TEd Version #/ -m
"TEd Version #"TEd Version $ver"

MAINTENANCE SECTION

Note: maintenance is included as first TEd file, via command:
ted -t upd400.ted -t chgpco . ted -o dmlxxx.eco dmlxxx.pco

where dmlxxx.pco is a NIST-supplied test file
and chgpco. ted is this file.
Note that our product uses file extension eco, instead of pco

.

LOGIN SECTION

! The call to AUTHID is replaced with LINK statement,
rep *.pco /CALL "AUTHID"/

EXEC SQL LINK SCHEMA :uid WITH PASSWORD :uid END-EXEC
I

! Other changes to establish the ANSI -standard environment.
ins> mp*.pco /EXEC SQL LINK SCHEMA/

EXEC SQL SET TRANSACTION
ISOLATION LEVEL SERIALIZABLE END-EXEC

IMPLEMENTOR-DEFINED SECTION

! We declare SQLCA which includes SQLCODE
! So replace SQLCODE with SQLCA, but outside of the DECLARE SECTION,
del *.pco /*01*SQLCODE*/ -p

ins> *.pco /WORKING- STORAGE/

D.2 .

1

EXEC SQL INCLUDE sqlca END-EXEC
I

! Our implementor -defined data type for indicator variable is COMP,

sub *.pco /indie/ -i

/DISPLAY SIGN LEADING SEPARATE/COMP/
I

! Modify dml063 to declare vendor-reserved key words: WHERE and ROLLBACK.
I

del *dml063.pco /01 WHERE /

del *dml063.pco /:WHERE/MOVE WHERE TO/
del *dml063.pco /01 ROLLBACK /

del *dml063.pco /: ROLLBACK/MOVE ROLLBACK TO/

! Vendor- supplied extensions to demonstrate FIPS Flagging:
I

! We don't support SUBSTR, but we can demonstrate LOWER:
sub * { fIgOOS , xop709 } .pco //
/SUBSTR (EMPNAME, 1,3) = 'Ali' /LOWER (EMPNAME) = 'alice'/
i

! No substitution for ABS (GRADE) =12, it works for us.
I

! AUTHORIZATION ID max length is 8:

sub *.* /CANWEPARSELENGTH18/
/ CANWEPARSELENGTH 1 8 /E IGHT_OK/
sub *.* /SULLIVANl/
/SULLIVANl/SULLIVNl/

I

! Change COBOL programs to specify correct source and object computers
sub *.[ps]co /COMPUTER/
/xyz /SuperPC -440/

APPROVED CHANGES SECTION

! To lengthen concurrency test #0230 (according to documentation)

,

! Our DBMS uses "burst" mode CPU allocation:
sub *mp?001 . [ps]

*

/keymax/ -i

/50/300/

SYNTAX DEFICIENCIES SECTION

! The following syntax changes are made to allow for further testing.
1

1 our precompiler doesn't understand END-EXEC; it wants semicolon,
sub *.pco /END-EXEC/
/END -EXEC/ ;

/

D.2 .2

I

! our numeric literals must not end with a decimal point,
sub *dml005.pco /LONG_INT/
/OO ./OO .0/

I

I

! DELETED TESTS SECTION

! UNION and UNION ALL not supported in same SQL statement
! Remove test number 160 and the paragraphs it performs
del *dml001.pco /BEGIN TEST0160/END TEST0160/
del *dml001.pco /P43./ ./

I

======================== end of appendix ================

D.2 .3

'1

APPENDIX D.3
SAMPLE TEd Change File

Accepted Counter-proposed File
Embedded COBOL File CHGPCO.TED

! IDENTIFICATION SECTION
! Embedded COBOL
I

1

sub *.* /59-byte ID/
/59-byte ID/BugFreeDB v.783, UNIX SYS X 2.2, SuperPC 440/

I

! Document version of TEd used, for audit purposes.
I

sub *.* /TEd Version #/ -m
"TEd Version #"TEd Version $ver"

MAINTENANCE SECTION

! Note: maintenance is included as first TEd file, via command:
! ted -t upd400.ted -t chgpco.ted -o dmlxxx.eco dmlxxx.pco
! where dmlxxx.pco is a NIST-supplied test file
! and chgpco.ted is this file.
! Note that our product uses file extension eco, instead of pco.

LOGIN SECTION

! The call to AUTHID is replaced with LINK statement,
rep *.pco /CALL "AUTHID"/

EXEC SQL LINK SCHEMA :uid WITH PASSWORD :uid END-EXEC
1

! Other changes to establish the ANSI -standard environment.
ins> mp*.pco /EXEC SQL LINK SCHEMA/

EXEC SQL SET TRANSACTION
ISOLATION LEVEL SERIALIZABLE END-EXEC

I

I

I

1 IMPLEMENTOR-DEFINED SECTION

! Our implementor-defined data type for indicator variable is COMP,

sub *.pco /indie/ -i

/DISPLAY SIGN LEADING SEPARATE/COMP/

D. 3 .

1

! Modify dml063 to declare vendor-reserved key words: WHERE and ROLLBACK.

I

del *dml063.pco / 01 WHERE /

del *dml063.pco /:WHERE/MOVE WHERE TO/

del *dml063.pco / 01 ROLLBACK /

del *dml063.pco /: ROLLBACK/MOVE ROLLBACK TO/

1

I

! Vendor- supplied extensions to demonstrate FIPS Flagging:
I

! We don't support SUBSTR, but we can demonstrate LOWER:

sub * { f IgOOS , xop709 } .pco //
/SUBSTR (EMPNAME, 1, 3) = 'Ali' /LOWER (EMPNAME) = 'alice'/

I

! No substitution for ABS (GRADE) =12, it works for us.

i

! AUTHORIZATION ID max length is 8:

sub *.* /CANWEPARSELENGTH18/
/ CANWEPARSELENGTH 1 8 / E IGHT_OK/
sub *.* /SULLIVANl/
/SULLIVANl/SULLIVNl/

I

! Change COBOL programs to specify correct source and object computers
sub *.[ps]co /COMPUTER/
/xyz/SuperPC-440/

APPROVED CHANGES SECTION

! To lengthen concurrency test #0230 (according to documentation)

,

! Our DBMS uses "burst" mode CPU allocation:
sub *mp?001 . [ps]

*

/keymax/ -i

/50/300/
I

I

! SYNTAX DEFICIENCIES SECTION

! We declare SQLCA which includes SQLCODE
! So replace SQLCODE with SQLCA, but outside of the DECLARE SECTION.
! 1. Does not support ANSI SQLCODE declaration:
del *.pco /*01*SQLCODE*/ -p
ins> *.pco /WORKING- STORAGE/

EXEC SQL INCLUDE sqlca END-EXEC
I

! our precompiler doesn't understand END-EXEC; it wants semicolon.
! 2. Does not support COBOL END-EXEC:
sub *.pco /END-EXEC/
/END-EXEC/;/

D.3.2

! our numeric literals must not end with a decimal point.
! 3. Does not support exact numeric literal ending in decimal point,
sub *dml005.pco /LONG_INT/
/OO ./OO . 0/

! DELETED TESTS SECTION
I

I

! UNION and UNION ALL not supported in same SQL statement
! Remove test number 160 and the paragraphs it performs
del *dml001.pco /BEGIN TEST0160/END TEST0160/
del *dml001.pco /P43./ ./

I

======================== end of appendix ================

D.3.3

5
.;'

APPENDIX E.l

Sample Printout from Program Execution

NIST SQL Test Suite, V6 . 0

,

Embedded COBOL, dmlOOl.pco

BugFreeDB v.783, UNIX SYS X 2.2, SuperPC 440

Ted Version 5.1 5/17/95

Date run YYMMDD : 961231 at hhmmssff: 09514908

TESTOOOl
declare with ORDER BY < column specification > DESC
reference X3. 135-1992 section 13.1 General Rules 3) a)

*** FOR SELECT EMPNUM, HOURS
* * * FROM WORKS
*** WHERE PNUM='P2'
*** ORDER BY EMPNUM DESC

EMPNO=E4
EMPNO=E3
EMPNO=E2
EMPNO=El

and HOUR1=20
and HOUR1=20
and HOUR1=80
and HOUR1=20

EMPNO=El
, i=4

The answer should be EMPNO=El, i=4 &

order by EMPNO DESC.

*** pass ***

END OF APPENDIX

E.1.1

i. '1 ClXT'!.

"'
, ' I

T'

^

-'
C t

’

APPENDIX F.l

Sample Summary Reports
PROBLEMS Listing

************************* PROBLEMS *************************
**

>>>>>>>>>>>>>>>>>>> FIPS 127-2 Entry SQL <<<<<<<<<<<<<<<<<<<

FIPS 127-2 Entry Syntax Flags

0296 Test 0296 in flgOOS: FIPS Flagger - vendor provided character function
0296 MAD = fail

0832 Test 0832 in flg012: FIPS Flagger - CREATE INDEX
0832 MAD = missing
0832 PC = missing
0832 PCO = missing
0832 PFO = missing

ISO/IEC 9075:1992 Entry SQL

0003 Test 0003 in dmlOOl: CURSOR with ORDER BY DESC integer

,

named column
0003 PC = missing
0003 PFO = missing

0005 Test 0005 in dmlOOl: CURSOR with UNION ALL
0005 MAD = fail

0007 Test 0007 in dml003

:

Error for second consecutive CLOSE
0007 MAD = missing
0007 PC = fail
0007 PCO = missing
0007 PFO = fail

0399 Test 0399 in ccc009: C language storage class ^and class modifier comb

.

0399 NOTE : visual chk
0399 PC = missing

0429 Test 0429 in ada005: Ada reminder to check SQL_STANDARD package format
0429 NOTE : visual chk
0429 MAD = missing

0503 Test 0503 in dml084: SQLSTATE 42000: syntax error or access rule vio . 1

0503 NOTE: synvio yes
0503 PFO = fail

Total number of problems

:

15

F. 1 .

1

SQLSTATE 42000: syntax error or access rule vio.l0503 Test 0503 in dml084:
0503 NOTE: synvio_yes
0503 PFO = fail

Total number of problems: 15

====================== end of appendix

F. 1 .2

Sample Summary Reports
TOTALS Listing

APPENDIX F.2

*******************************-*****************************
************************** TOTALS **************************
***********•*•**•*•******••*•**•***•*•*•************•**'*****

>>>>>>>>>>>>>>>>>>> FIPS 127-2 Entry SQL <<<<<<<<<<<<<<<<<<<

MAD PC PCO PFO
REQUIRED

pass 431 440 442 433
fail 2 1 0 2

missing 3 3 2 2

nogo 0 1 1 0

OPTIONAL
pass 0 0 1 0

fail 0 0 0 0

missing 0 0 0 0

nogo 0 0 0 0

UNDER REVIEW
pass 0 0 0 0

fail 0 0 0 0

missing 0 0 0 0

nogo 0 0 0 0

NA 50 41 40 49
DL 0 0 0 0

WD 0 0 0 0

486 486 486 486

Grand total = 1944
Problem total = 15

END OF APPENDIX

F.2.1

APPENDIX F.3
Sample Summary Reports
TEST RESULTS Listing

**
*********************** TEST RESULTS ***********************
.****.**.***•*********

>>>>>>>>>>>>>>>>>>> FIPS 127-2 Entry SQL <<<<<<<<<<<<<<<<<<<

FIPS 127 -2 Entry Syntax Flags

TESTNO MAD PC PCO PFO
0296 fail pass pass pass
0297 pass pass pass pass
0454 pass pass pass pass
0830 NA pass pass pass
0831 pass nogo nogo pass
0832 missing missing missing missing
0833 NA pass pass pass

- ISO/IEC 9075 : 1992 Entry SQL

TESTNO MAD PC PCO PFO
0001 pass pass pass pass
0002 pass pass pass pass
0003 pass missing pass missing
0004 pass pass pass pass
0005 fail pass pass pass
0006 pass pass pass pass
0007 missing fail missing fail
0008 pass pass pass pass
0009 pass pass pass pass
0010 pass pass pass pass
0012 pass pass pass pass
0013 pass pass pass pass
0014 pass pass pass pass
0015 pass pass pass pass
0016 pass pass pass pass
0017 pass pass pass pass
0018 pass pass pass pass

0563 pass pass pass pass
0564 pass pass pass pass

Total :number of tests: 486

** denotes OPTIONAL/ INFORMATIONAL •test

END OF APPENDIX

F.3 .

1

^ cC;n

*

V

APPENDIX G.l

"FIPS Flaggers" Examples

Program FLG005:
|

$SQLPRE/COBOL/ansi/f lag FLG005.PCO
WHERE SUBSTRING (EMPNAME FROM 1 FOR 3) = 'All';

1

%SQL- I -NONSTASYN92E
, (1) Nonstandard SQL92 Entry-level syntax

WHERE GRADE = ' -12
'

;

1

%SQL-I -NUMCMPTXT, (1) Numeric column compared with string literal as text
WHERE GRADE = '-12';

2

%SQL-I-NONSTACON, (2) The standard does not permit this data type conversion

Program FLG006:
|

$SQLPRE/COBOL/ansi/f lag FLG006 .PCO
EXEC SQL INSERT INTO TABLEFGHIJKLMNOPQ19 VALUES

1

%SQL-I-NONSTAIjNM, (1) Nonstandard long name
FROM TABLEFGHIJKLMNOPQl 9 END-EXEC

1

%SQL-I-NONSTALNM, (1)

EXEC SQL
Nonstandard long name
SELECT COLUMN123456789IS19

1

%SQL-I-NONSTALNM, (1)

FROM
Nonstandard long name
VIEWABCDEFGHIKLMN19 END-EXEC
1

%SQL-I-NONSTALNM, (1) Nonstandard long name

(299)

Program FLG009:
|

$SQLPRE/COBOL/ansi/flag FLG009 .PCO
SELECT PTYPE, CITY FROM PROJ;

1

%SQL-I-NONSTACUC, (1) The standard requires columns merged by UNION be identical
SELECT EMPNUM, HOURS FROM WORKS;

1

%SQL-I-NONSTACUC, (1) The standard requires columns merged by UNION be identical

====================== end of appendix ===========================

G.1.1

!

I

I

1

APPENDIX H.l

Automated Reporting System Diagrams
Table Definitions for Reporting System Diagrams

NIST SQL Test Suite, V6 . 0 , report . sql

-- Schema for reporting structure of SQL Test Suite, Version 6.0
-- Followed by sample data and queries

Static tables to define the test suite structure

-- This table is an enumeration of all features
and collections of features (profiles) to be tested.

-- This is a reference table of codes (FEATURE!) and a

lookup table of names.
-- A profile has the value P in columnl of FEATUREl.
-- A logical profile has the value L in columnl of FEATUREl.
-- A lowest -level "leaf" feature is numeric in columnl of FEATUREl.
-- [A logical profile is a convenient grouping of features or

profiles, for purposes of recursion, but not reporting.]

.

CREATE TABLE REPORTFEATURE
(FEATUREl CHAR (4) NOT NULL PRIMARY KEY,
FEATURENAME CHAR (30) NOT NULL)

;

-- This table describes the reporting structure for SQL testing;
i.e., the network of relationships between REPORTFEATURE rows.

-- Each row is a directed arc in the network.

-- Profiles and logical profiles are nodes in the hierarchy.

CREATE TABLE IMPLICATION
(PARENT_F CHAR (4) NOT NULL REFERENCES REPORTFEATURE,
CHILD_F CHAR (4) NOT NULL REFERENCES REPORTFEATURE);

-- List of programs, authorization identifiers, and
special notes on how to run each the program.

-- P_NOTE indicates whether a test is a concurrency test,
requires a subroutine, etc.

CREATE TABLE TESTPROG
(PROG CHAR (6) NOT NULL PRIMARY KEY,

AUTHID CHAR (18) NOT NULL,
P_NOTE CHAR(IO));

-- List of test cases, descriptions, containing program, and
special notes on operational problems, such as

H. 1 .

1

may not compile, may cause segmentation error, requires
visual inspection (ergo no pass/fail in TESTREPORT) , etc.

CREATE TABLE TESTCASE
(TESTNO CHAR (4) NOT NULL PRIMARY KEY,
DESCR CHAR (50) NOT NULL,
PROG CHAR (6) NOT NULL REFERENCES TESTPROG,
T_NOTE CHAR (10),

ISQL CT DECIMAL(2) NOT NULL)

;

-- Each test is for one or more features.
-- This table describes the test cases in the programs.

CREATE TABLE TESTFEATURE
(TESTNO CHAR (4) NOT NULL REFERENCES TESTCASE,
FEATURE 1 CHAR (4) NOT NULL REFERENCES REPORTFEATURE

,

PRIMARY KEY (TESTNO, FEATURE!));

-- On-line cross reference to SQL-92 (population deferred)
-- Sequence number is decimal to facilitate adding references

between existing references without renumbering.
-- [same idea as Dewey Decimal system used in libraries]

CREATE TABLE TESTREFERENCE
(TESTNO CHAR (4) NOT NULL REFERENCES TESTCASE,
SEQ DECIMAL (6,4) NOT NULL,
TESTREF CHAR (50) NOT NULL,
PRIMARY KEY (TESTNO, SEQ))

;

Tables to specify vendor claims follow:

-- Features supported for this testing:

CREATE TABLE FEATURE_CLAIMED
(FEATUREl CHAR (4) NOT NULL UNIQUE REFERENCES REPORTFEATURE);

-- Bindings supported for this testing:

CREATE TABLE BINDING_CLAIMED
(BINDINGl CHAR (3) NOT NULL UNIQUE,
CHECK (BINDINGl IN

(
' PCO

'

,
' PFO

'

,
' PC

'

,
' PPA

'

,
' PAD

'

,
' PMU

'

,
' PPL

'

,

' MCO
'

,
' MFO

'

,
' MC

'

,
' MPA

'

,
' MAD

'

,
' MMU

'

,
' MPL

'

,
' SQL ')))

;

Tables to generate vendor-specific requirements follow:

H.1.2

-- Features required, to be derived recursively,
including claim to be tested -- Cl,

lowest reporting profile -- PI, and
lowest recursive link -- LI.

-- FI is the feature to be tested.

CREATE TABLE F_REQ
(Cl CHAR (4) NOT NULL,
PI CHAR (4) NOT NULL,
FI CHAR (4) NOT NULL,
LVL INTEGER)

;

-- Working version of F_REQ,
needed because an INSERT cannot be self -referencing

CREATE TABLE F_TEMP
(Cl CHAR (4) NOT NULL

,

PI CHAR (4) NOT NULL

,

FI CHAR (4)

,

LVL INTEGER)

;

CREATE TABLE R_STRUCTURE
(Cl CHAR (4) NOT NULL,
PI CHAR (4) NOT NULL,
TESTNO CHAR (4) NOT NULL,
LVL INTEGER)

;

-- Tests selected for this validation,
corresponding to the features selected and
corresponding to the bindings selected.

-- Result will be derived later from TESTREPORT.

CREATE TABLE
(TESTNO
PROG
BINDINGl
REQOPTNA
RESULT

COMMIT WORK;

T_REQ
CHAR (4) NOT NULL,
CHAR (6) NOT NULL,
CHAR (3) NOT NULL,
CHAR (3) NOT NULL,
CHAR (4))

;

=============END OF APPENDIX ================

H. 1 .

3

APPENDIX H,2

TEST REPORTING STRUCTURE

Static Vendor-Supplied

H.2.1

APPENDIX H.3

SQL Testing Profiles: FIPS SQL Levels

1996-12-31

0046 Named character sets
0050 Documentation schema

0004 Joined Table
0005 DATETIME Data Types
0007 TRIM Function
0008 UNION in Views
0016 PRIMARY KEY Enhancement
0017 Multiple Schemas per User
0018 Multiple Module Support
0019 Referential Delete Actions
0020 CAST Functions
0021 INSERT Expressions
0022 Explicit Defaults
0023 Privilege Tables
0024 Keyword Relaxations

0001 Dynamic SQL
0002 Basic Information Schema
0003 Basic Schema Manipulation
0006 Varchar Data Type
0009 Implicit Numeric Casting
0010 Implicit Character Casting
0011 Transaction Isolation
0012 Get Diagnostics
0013 Grouped Operations
0014 Qualified * in Select List
0015 Lowercase Identifiers

Analogous to Reporting Tables:

^ IMPLICATION

CDO REPORTFEATURE

H.3.1

SQL Testing Profiles: ISO/IEC 9075:1992 Levels

1996-12-31

0027 Compound character literals
0028 LIKE enhancements
0029 UNIQUE predicate
CC30 Table operations
0031 Schema definition statement
0032 User authorization
0033 Constraint tables
0034 Usage tables
0035 Intermediate information schema
0036 Subprogram support
0037 Intermediate SQL Flagging
0038 Schema manipulation
0039 Long identifiers
0040 Full outer join
0041 Time zone specification
0042 National character
0043 Scrolled cursors
0044 Intermediate set function
0045 Character set definition
0047 Scalar subquery values

Analogous to Reporting Tables:

^ IMPLICATION

n=2O REPORTFEATURE

H.3.2

SQL Testing Profiles: Sizing, Optionals, and Individual Features

1996-12-31

/ Individual Features ^X P998 /

Analogous to Reporting Tables:

^ IMPLICATION

[=1O REPORTFEATURE

H.3.3

SQL Testing Profiles: X/Open

1996-12-31

XPG4 SQL
ONLY Sizing Test

OXSZ

XPG4 SQL,
App. C, C.2 > Entry

0XC2

XPG4 SQL
Profile without lEF

P210

XPG4 SQL,
App. C, C.3 extension

0XC3

0001
0002
0003
0006
0009
0010
0011
0012
0013
0014
0015

Dynamic SQL
Basic Information Schema
Basic Schema Manipulation
Varchar Data Type
Implicit Numeric Casting
Implicit Character Casting
Transaction Isolation
Get Diagnostics
Grouped Operations
Qualified * in Select List
Lowercase Identifiers

Sizing

Test - Transitional

OSZT

Sizing

Test - Entry

OSZE

SQL-92 New
Entry SQL Feature

OENT

SQL-89
Level 2

00L2

Analogous to Reporting Tables:— IMPLICATION

O REPORTFEATURE

H.3.4

REPORTING

SYSTEM

TABLES

APPENDIX H.4

H.4.1

FEATURE_CLAIMED

FEATUREl

CHAR

(4)

UNIQUE

APPENDIX I .

1

Informational Interactive Concurrency Test

Interactive SQL test files MPAOOl* and MPBOOl* through MPA008* and MPB008* have
been superseded by the MPQUIC procedure, which is much more efficient. They are
now considered optional. These files are still included in the Interactive SQL
test suite because they may be helpful for SQL products which do not have a
programming language interface. Each concurrency test has four parts.
MPA*I.SQL initializes data in the test tables and is to be run first. MPA*T.SQL
evaluates the test tables after the concurrency test and is to be run last.
MPA*R.SQL and MPB*R.SQL are to be typed by two testers. These transactions are
intended to be run concurrently. Print all of the MP*.SQL files and use them
as worksheets to be filled out and retained as documentation. Instructions are
provided for executing each test case.

In general, two testers are needed for each concurrency test, and the testers
proceed as follows. For each concurrency test, one tester should run MPA* I. SQL.

Then one tester should type as directed by the instructions in MPA*R.SQL while
the other tester should type according to MPB*R.SQL. The testers should begin
simultaneously. Then each tester should work at his own pace, and as the SQL
implementation allows, given there will be some locking. There are explicit
instructions for each test. If ROLLBACK statements are needed and it appears
that no progress is being made by either tester, then after a tester types a

fifth ROLLBACK statement for a given test, the testers should alternate
transactions, rather than executing them concurrently, in order to complete the
workload. Finally, one of the testers should run MPA*T.SQL.

It is permissible for the SQL implementation to issue error messages if its
strategy for serializability detects circumstances where it cannot deliver
serializable transactions. It is NOT permissible for the SQL implementation to
execute non-serialized transactions without warning. Hence, the testers should
be prepared to terminate (ROLLBACK) a transaction which encounters error or
warning messages and to retry the transaction.

For Each Program Pair

Print the MP*.SQL files and use as worksheets.

Run the stored procedure file MPA*I.SQL to initialize.

Type or run the MPA*R.SQL and MPB*R.SQL tests as described below, following
the instructions in the worksheet.

Testers may use "up arrows," function keys, and other shortcuts commonly used
in the environment being tested.

Run the MPA*T.SQL file to evaluate the test results.

1 . 1.1

Concurrency Test #1

The first concurrency test has 2 simultaneous transactions attempting to
insert a row, assigning the next available key number (MAX(KEYNUM) + 1)

.

Each tester, MPA and MPB, types a SELECT to determine the current maximum key
and then an INSERT to create a new row with the next highest key number.
Each tester records on the worksheet the ANUM values committed.

If SQL issues a warning message for either SQL command in the transaction,
the tester types a ROLLBACK and repeats the transaction; otherwise, the
tester types COMMIT. If all appears to go well for the COMMIT, the tester
considers the transaction to have terminated successfully.

After 5 successful transactions, the tester waits for the other tester to
finish

.

Concurrency Test #2

The second concurrency test has 2 simultaneous transactions attempting to
transfer money into the same account.

Each tester, MPA and MPB, types a SELECT statement to determine the dollar
balance for row number 25. The tester then adds 10 to the dollar balance and
types an UPDATE statement to set the balance to the new amount . Each tester
records on the worksheet the DOLLARS values committed.

If SQL issues a warning message for either SQL command in the transaction,
the tester types a ROLLBACK and repeats the transaction; otherwise, the
tester types COMMIT. If all appears to go well for the COMMIT, the tester
considers the transaction to have terminated successfully.

After 5 successful transactions, the tester waits for the other tester to
finish

.

Concurrency Test #3

The third concurrency test has 2 simultaneous transactions attempting to
transfer money from one account to another.

Each tester, MPA and MPB, types two UPDATE statements to transfer money from
a common account into separate accounts. If SQL issues a warning message for
either SQL command in the transaction, the tester types a ROLLBACK and
repeats the transaction; otherwise, the tester types COMMIT. If all appears
to go well for the COMMIT, the tester considers the transaction to have
terminated successfully. The tester then checks a box on the worksheet to
count the successful transaction.

After 5 successful transactions, the tester waits for the other tester to

finish.

1 . 1.2

Concurrency Test #4

The fourth concurrency test has 2 simultaneous transactions headed towards
deadlock

.

The two testers run their test files simultaneously. If SQL issues a warning
message to a tester, then the tester types ROLLBACK and repeats the
transaction; otherwise, the tester types COMMIT. If all appears to go well
for the COMMIT, the tester stops.

These tests must be typed rather than mn as a stored procedure if it appears
that one transaction completes entirely before the other begins. There are
instructions for shortening the test case if it is actually being typed.

If both testers deadlock twice, then MPB004R.SQL should wait until
MPA004R.SQL completes a third attempt and commits before attempting again.

Concurrency Test #5

The fifth concurrency test determines whether uncommitted inserted rows are
visible to another transaction.

The fifth concurrency test starts out with 25 rows in a table. MPA then
alternately deletes and inserts batches of 5 rows until MPB has completed its
workload. The MPB transaction alternately reads and counts the rows in the
table. The MPB transaction expects to see results with either 20 or 25 rows.

If SQL issues a warning message for any SQL command in either of the
transactions, the tester affected types a ROLLBACK and repeats the
transaction; otherwise, the tester types COMMIT. If all appears to go well
for the COMMIT, the tester considers the transaction to have terminated
successfully

.

After 6 successful typings of the MPB script, the MPB worksheet is completed
and both testers may stop.

Concurrency Test #6

The sixth concurrency test is a rerun of the fourth test with the intention
of reviewing the deadlock message, if any, to ensure that it notifies the use
of transaction rollback or statement rejection (statement rollback) , as

appropriate

.

The two testers type their test scripts simultaneously. If SQL issues a

warning message to a tester, another query is typed to determine whether
there was a statement rejection or a transaction rollback. The message must
indicate which action is taken and must be accurate.

1.1.3

Concurrency Test #7

The seventh concurrency test starts with 1 row in table AA. and 1 row in table
BB. MPA attempts to transfer (READ/ INSERT/DELETE) all rows from table AA to
table BB; whereas MPB attempts to transfer all rows from table BB to table
AA.

If SQL issues a warning message for any SQL command in the transaction, the
tester types a ROLLBACK and repeats the transaction; otherwise, the tester
types COMMIT. If all appears to go well for the COMMIT, the tester considers
the transaction to have terminated successfully. The tester then checks a

box on the worksheet to count the successful transaction.

After 2 successful transactions, the tester waits for the other tester to
finish

.

Concurrency Test #8

The eighth concurrency test determines whether MPB can insert a row with
primary key which MPA has deleted, but not committed.

MPA deletes row with primary key value of 3 . MPA then inserts a different
row with primary key 3 and COMMITS. MPA repeats this scenario twice and
should see no error messages. MPB meanwhile tries to insert a row with
primary key value of 3 . MPB should never be successful because the primary
key value of 3 already exists. MPB notes error messages and quits after
three attempts.

1.1.4

I

I

I

I

