
Allies ISbHlb

MS
gPUBLICATIONS

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NISTIR 5993

Information

Technology
Laboratory

Operating Principles of the

PCI Bus MultiKron interface

Board

Alan Mink
Wayne Salamon

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaitherburg, MD 20899

CMRF March 1 997

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATIONS

Partially sponsored by the

Defense Advanced Research Projects Agency

QC
100

.U56

N0.5993
1997

NISTIR 5993

Operating Principles of the
PCI Bus MultiKron Interface

Board

Alan Mink
Wayne Salamon

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Computer Measurement Research Facility

for High Performance Parallel Computations

Gaithersburg, MD 20899-0001

Partially Sponsored by the

Defense Advanced Research Projects Agency

March 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

/ .

*

Operating Principles of the PCI Bus MultiKron

Interface Board

Alan Mink and Wayne Salamon

Scalable Parallel Systems Group

National Institute of Standards and Technology*^

amink@nist.gov

September 19, 1996

Abstract

The MultiKron^ Experimenter’s Toolkit contains a MultiKron interface

printed circuit board (currently we have interface boards for the VME bus,

SBus, and PCI bus), installation software, data logging software, and analysis

software; all of the software supplied is written in C. The Toolkit allows users to

take advantage of the NIST MultiKron performance measurement chips (Mul-

tiKronJI and MultiKron_vc) in systems that do not already have a MultiKron

designed into them. The toolkit board is applicable to both multiprocessor

systems and single-processor systems. The Experimenter’s Toolkit allows re-

searchers to obtain hands-on experience with the MultiKron performance mea-

surement chips, without the engineering effort required to design and build a

hardware interface between the MultiKron and their computer. Over 800,000

Trace Samples can be collected via the MultiKron.II during an experiment to

the dedicated toolkit board memory; a practically-unlimited number of Sam-

ples can be collected if an optional external data-collection computer is used.

The optional MultiKron.vc chip provides 8,192 virtual counters.

Key wordsrComputers; hardware support; MIMD; multiprocessor com-

puters; performance characterization; printed circuit board; PCB; VLSI

INTRODUCTION
The MultiKron Experimenter’s Toolkit contains a MultiKron interface printed

circuit board (currently we have interface boards for the VME bus [MIN93], SBus

*This National Institute of Standards and Technology contribution is not subject to copyright

in the United States. Certain commercial equipment, instruments, or materials may be identified

in this paper to adequately specify experimental procedures. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology, nor does

it imply that materials or equipment identified are necessarily the best available for the purpose.

Mhis work was partially sponsored by the Defense Advanced Research Projects Agency.

^MultiKron is a Trademark of NIST

1

[MIN95A], and PCI bus), installation software, data logging software, and analysis

software. The toolkit board is to be inserted into the corresponding I/O bus of the

computer being measured, in this case the PCI bus. All of the software supplied with

MultiKron Experimenter’s Toolkit is written in C and distributed in source code. The
Toolkit allows users to take advantage of the NIST MultiKron performance measure-

ment chips (MultiKronJI [AIIN94] and MultiKron.vc [MIN95B]) in systems that do

not already have a MultiKron designed into the system. The toolkit board is applica-

ble to both multiprocessor systems and single-processor systems. The Experimenter’s

Toolkit allows researchers to obtain hands-on experience with the MultiKron perfor-

mance measurement chips, without the engineering effort required to design and build

a hardware interface between the MultiKron and their computer. Up to 838,860 Trace

Samples can be collected via the MultiKronJI during an experiment to the dedicated

toolkit board memory; a practically-unlimited number of Samples can be collected

if an optional external data-collection computer is used. The optional MultiKron_vc

chip provides 8,192 virtual counters.

During execution of a program under test, performance measurement data (Sam-

ples) are acquired as directed by measurement probes. There are two types of mea-

surement probes, hardware and software. A hardware measurement probe is a wire

physically connected to an electrical signal in the system being measured. One of the

options for the MultiKron Resource Counters is to count the occurrences of these ex-

ternal signals via a dedicated pin for each Resource Counter. A software measurement

probe is the code that generates a Sample. This code is an assignment statement to

a memory mapped MultiKron address. An experimenter wishing to obtain perfor-

mance measurements via the toolkit board must insert measurement probes at points

in their program. The probe code can be inserted into the source code, requiring

re-compilation, or directly into the executable code via a binary patch. The Samples

acquired can be processed ”on-the-fly” using a separate data-logging computer or pe-

riodically reading the local MultiKron memory. Otherwise they are processed, after

program execution, by reading the Samples out of the toolkit board local memory.

A toolkit board/MultiKron initialization routine and an performance measurement

data analysis program are supplied as part of the MultiKron Experimenter’s Toolkit,

but the experimenter can replace or modify them as desired.

1 FUNCTIONAL OVERVIEW
The toolkit board provides the necessary interfacing capabilities between a pro-

cessor and the MultiKronJI/MultiKron_vc via a standard PCI bus, and provides

MultiKronJI output data collection facilities.

1.1 Processor Interface

The toolkit board is memory mapped, so all interactions are memory reads and

writes (i.e., assignment statements in high level languages) to addresses listed in Ta-

ble 1. The PCI bus is an I/O bus and thus processor interactions are slower than

if the MultiKron were directly interfaced to the processor memory bus. The toolkit

2

board provides facilities to control, access, and test the MultiKron from the processor

being measured. The PCI bus-to-toolkit board data path dynamically and trans-

parently configures to handle 32 or 64 bit data as indicated by the PCI protocol.

Although the MultiKronJI/MultiKron_vc are 64-bit devices, they can accommodate

32-bit data transfers with the aid of an internal holding register. Thus the Multi-

Kron_II/MultiKron_vc must be placed in their 32-bit mode when used in a 32 bit

PCI bus. Both the MultiKronJI and MultiKron.vc have an internal holding register

which is designed to hold the 32 high order MultiKron data bits (bits 32-63) during

CPU interactions. This is a single register used for both input and output CPU inter-

actions. For a 64-bit input (CPU write) operation, the experimenter should first load

the MultiKron internal holding register with the high order 32 bits of data to be writ-

ten (if any), and then write the low-order 32 bits directly to the MultiKron causing

a full 64-bit input to the MultiKron. Similarly for output, the experimenter should

read the low-order 32 bits of data directly from the MultiKron, which causes the

high-order 32 bits of data to be loaded into the MultiKron internal holding register.

Then the experimenter can read the high-order 32 bits of data from the MultiKron

internal holding register.

Neither the MultiKronJI nor the MultiKron.vc provide the mechanism to handle

their 32-bit mode as an indivisible operation. Thus, if an interrupt occurs between

writing the high-order 32 bits of data into the MultiKron internal holding register and

writing the low-order data to the MultiKron, another MultiKron write may occur that

will overwrite the MultiKron internal holding register. A similar problem could hap-

pen between reading the low-order 32-bit data and the high-order 32-bit data. Since

the MultiKronJI and the MuItiKron.vc are separate devices, each with their own

internal high-order 32 bit holding register, they must be managed separately. If the

computer being measured is a multiprocessor the problem is even more pronounced.

It is up to the experimenter to guarantee that register overwrite will not occur. Be-

cause of the anticipated processing overhead to handle this indivisibility correctly, it

is recommended that only 32-bit data fields be transferred to the MultiKronJI in

time critical Sampling operations over a 32 bit PCI bus. This reduces the range of

values possible in Sampling data by wasting the upper bits of the data path. Less

time critical operations, for example loading the Resource Counter control registers

on either the MultiKronJI or the MultiKron.vc, should occur very infrequently and

can endure the required overhead.

1.2 Configuration Register

A toolkit board Configuration register (Table 2) provides the means for an experi-

menter to control the MultiKronJI, the MultiKron.vc, and the toolkit board, and

are defined as follows. On reset, the contents of bits 0-23 this register are initialized

to zeros. Bits 24-31 are the read only board version number and never change.

Bits 0-7, CPU_ID, of the toolkit board Configuration Register represent the

individual processor ID signals to the MultiKronJI. The CPUJD signals are used in

multiprocessor applications to identify which processor triggered each measurement

Sample and select the corresponding MultiKronJI Source Address Register to be

3

included in that Sample. Assuming a single processor, one can permanently set

CPUJD = 01 (Hex), resulting in Source Address Register 0 being selected for each

Sample.

Bit 8, TEST, of the toolkit board Configuration Register is used for testing and

should always be in the operational state (”0”) indicated in Table 2.

Bit 9, LOCAL, of the toolkit board Configuration Register selects the desti-

nation of MultiKronJI measurement Samples. The choice is between the toolkit

board local memory (”1”) or to another machine via an external cable (”0”). This is

discussed in more detail below.

Bit 10, EXT_CPU, of the toolkit board Configuration Register selects whether

the MultiKronJI CPUJD inputs are connected to the external hardwired toolkit

board input signals (”1”) that the experimenter may configure, or to bits 0-7 of the

toolkit board Configuration Register (”0”).

Bit 11, WAIT-CPU, of the toolkit board Configuration Register enables a wait

state for both the MultiKronJI and the MultiKron.vc on all processor interactions.

This value is read by the MultiKronJI and the MultiKron.vc only upon a RESET,
either a hardware reset or a software reset. For fastest operation no wait state (”0”)

is recommended, while a wait state (”!”) will provide slower operations. Invoking a

wait state will provide an additional clock cycle for the MultiKron input address lines

setup time. This in not necessary on the toolkit boards.

Bit 12, TESTB, of the toolkit board Configuration Register is used for Multi-

Kron testing and should always be in the operational state (”!”) indicated in Table

2 .

Bit 13, MK_OE, of the toolkit board Configuration Register is the output enable

signal to both the MultiKronJI and the MultiKron.vc. This bit must be placed in

the operational state (”!”) when using either the MultiKronJI or the MultiKron.vc.

If this bit is off (”0”) then All MultiKron output signals are disabled. This will result

in a program crash due to a bus time-out or bus operation abort, or if there is no

time-out (as in some PCs) the system could hang or abort the operation with no

indication!

Bit 14, WRAPB, of the toolkit board Configuration Register controls whether

the toolkit board local memory operates as a simple buffer (”!”) or a circular buffer

(”0”). This is discussed in more detail below.

Bit 15, ENJEXT, of the toolkit board Configuration Register is used to select

the source of the NODECLK and RESET signals which are shared by both the

MultiKronJI and the MultiKron_vc. The choice is between a local 40 MHz oscillator

on the toolkit board (”0”) or an externally supplied clock signal (”!”). The toolkit

board uses the PCI bus clock for all its processor interactions (33 MHz maximum). A
toolkit board reset command, always resets the MultiKronJI and the MultiKron.vc.

If the external clock option is selected, then in addition to the toolkit board reset

command, an externally supplied signal will also cause a MultiKron reset.

Bit 16, DIS_STATE, of the toolkit board Configuration Register is used to

enable (”0”) or disable (”!”) the state machine which controls the transfer of data

out of the toolkit board FIFO. Disabling the FIFO state machine is mainly for testing

purposes, normal operations should keep the state machine enabled. There are 3 FIFO

4

state machine sequences, one is transferring 4 data bytes to the memory, a second

is transferring 2 data bytes to the external cable using the S16D protocol [EDT91],

and the third is transferring 1 data byte to the CPU. Once a state machine sequence

begins it cannot be disabled, it must continue to completion. Only a reset can clear a

hung state machine sequence. When the DIS.STATE bit is active (”!”) a new state

machine sequence will not begin. If the MultiKronJI is generating samples, the EIFO
state machine is active and switching modes (e.g., TEST or LOCAL) in the middle

of a sequence can cause undetermined results or even hang the state machine. The

function of the DIS_STATE bit is to place the FIFO state machine in its initial idle

state so modes can be safely switched. A common test operation is to write to the

toolkit board memory address pointer, which requires either TEST to be active or

LOCAL to be inactive. Switching these modes can adversely effect the FIFO state

machine, if it is not idle. Also, when LOCAL is inactive the S16D protocol is active

and any FIFO data will be transferred out of the FIFO following that state machine

sequence if the state machine is not disabled.

Bit 18, TS_RATIO, of the toolkit board Configuration Register is used to select

the Timestamp clock rate as a function of the NODECLK rate. The Timestamp clock

rate equal to 1/4 of the NODECLK rate (”0”) is the default, or 1/3 of the NODECLK
rate (”1”) can optionally be selected. The Timestamp clock is a common signal used

by both the MultiKronJI and the MultiKron.vc.

Bit 19, DIV2, of the toolkit board Configuration Register is used to select

the MultiKron NODECLK clock frequency. The choices is either the local toolkit

board 40 MHz oscillator (”0”) or that oscillator frequency divided by two (”1”).

The NODECLK clock is a common signal used by both the MultiKronJI and the

MultiKron.vc. If the EN_EXT signal is active the NODECLK clock frequency is used

directly from the external pin and DIV2 has no effect on it. The recommended settings

are to use the local 40 MHz oscillator frequency for the NODECLK (DIV2=”0”), and

1/4 of the NODECLK rate for the Timestamp clock (TSJIATIO=”0”). This would

yield NODECLK = 40 MHz and Timestamp clock = 10 MHz.
Bit 20, WAIT_MEM, of the toolkit board Configuration Register is used to

enable a wait state for the MultiKron.vc virtual counter SRAM memory. This value

is read by the MultiKron.vc only upon a RESET, either a hardware reset or a software

reset. For fastest operation no wait state (”0”) is recommended, while a wait state

(”1”) will provide slower operations. Invoking a wait state will provide an additional

clock cycle for storing and retrieving each virtual counter in a page on the dedicated

SRAM. At the 40 MHz toolkit board frequency no wait state is necessary.

1.3 Output Data Collection

The toolkit board provides two ways in which to collect MultiKronJI output, se-

lectable via the ’’LOCAL” option, bit 9 of the toolkit board Configuration Register.

One can collect Samples directly in the toolkit board local memory, which is acces-

sible immediately, without any additional devices or wires. The Samples can remain

stored there until they are read out for processing or storage. The second method is

to collect Samples on an external machine. In this case an external cable connects the

toolkit board to a hardware interface, an S16D commercially available SBus interface

[EDT91], on another machine with an SBus. Information will be supplied by NIST
to allow the experimenter to obtain the correct cable and connector. Using the S16D
interface option on the toolkit board allows experimenters to perform ”on-the-fly”

analysis of the measurement data and store more Samples than will fit in the toolkit

board local memory.

The toolkit board local memory contains 16 megabytes, and can store up to

838,860 Samples (20 bytes per Trace Sample). This memory can be read and written

directly by the CPU as 32-bit words, even simultaneously while Samples are being

taken. The toolkit board has a dedicated address pointer which it uses to contigu-

ously place Samples into the toolkit board local memory. The CPU can read this

address pointer to find out how many Samples are in the local memory and where

the last Sample is located. The CPU can also write to this address pointer, but this

is primarily for testing purposes and it is not expected to be used operationally.

The toolkit board local memory can be configured as a simple buffer, or as a

circular buffer, via the ”WRAPB” option, bit 14 of the toolkit board Configuration

Register. As a simple buffer, loading starts at address 0 and ends at 3FFFFF. Once

the memory address pointer reaches its maximum value, it stops incrementing, and

new writes are disabled. Any Samples arriving after the local memory is full will

be discarded. As a circular bufiPer, loading starts at address 0, but upon reaching

3FFFFF the memory address pointer ’’wraps around” to 0 and starts overwriting

older data. Thus, when configured as a simple buffer the toolkit board memory
will retain the oldest data, and when configured as a circular buffer it will retain

the newest data (the cockpit voice recorder mode). The memory address pointer

register is 24 bits wide, although only 22 bits are needed to fully address the entire 16

megabyte memory (as 4M x 32-bit addressable words) since the two least significant

bits (bytes) are not stored. Thus when the memory address pointer is configured as

a circular buffer and increments from 3FFFFF the results are actually 400000, and

from 7FFFFF to 800000, ...
,
and from BFFFFF to COOOOO, and from FFFFFF to

0. These are all effectively address 0. The high order 2 bits provide an indication of

how many times the memory has wrapped around.

Default Configuration

Initially, it is anticipated that the experimenter will not connect any external wires

to the toolkit board. Therefore, the toolkit board Configuration Register should be

set to 003201 (Hex). This configuration sets all the test controls inactive, causing

storage of MultiKronJI Samples in the local memory, treating it as a circular buffer.

All Samples are identified with CPU ID 0 (bits 0-7 of the toolkit board Configuration

Register set = 01 (Hex)) and Source Address Register 0. For both the MultiKronJI

and the MultiKron_vc, their outputs are enabled and no processor wait states are

invoked by setting WAIT.CPU to 0. The local 40 MHz oscillator is selected and

its frequency is used directly for the NODFCLK clock. The NODFCLK frequency

is further divided by four to obtain the Timestamp frequency. This is the default

setting used by the initialization routine supplied with the Experimenter’s Toolkit.

6

2 HARDWARE ARCHITECTURE
The toolkit board is designed to provide control, access, and testing of both the

MultiKronJI and the MultiKron.vc, and also to provide collection of the MultiKronJI

output measurement Samples. The principal signals shared by the MultiKronJI and

MultiKron.vc are the address and data lines (used for processor interaction), the

resource counter external inputs (a selectable option used to count external signal

occurrences), and control lines (used for testing and initialization). Specific to the

MultiKronJI are signals for the output network lines (for output of measurement

Samples to the dedicated 16 Mbyte DRAM memory or the external cable), and the

processor ID input lines (used to identify the CPU triggering a Sample). Specific

to the MultiKron.vc are signals for the dedicated 8 Kbyte SRAM memory used to

transparently store the virtual counters. A block diagram of the PCI toolkit board

is shown in Figure 1 and the printed circuit board layout is shown in Figure 2.

Processor access to the toolkit board is provided via the PCI bus interface. The
toolkit board and the MultiKron chips are memory mapped into the 32-bit memory
address space. The PCI toolkit board address decoders recognize PCI bus accesses

and convert them into the specified toolkit board operations. Configuration, access,

and testing of the MultiKrons are supported through PCI bus access and the toolkit

board Configuration register. Two MultiKronJI output Sample collection methods

are supported by the toolkit board. One method is to the toolkit board local memory,

which requires a memory address pointer. The other method is via an external cable

connected to an S16D interface card [EDT91] on a separate machine with an SBus.

The architecture of these facilities is discussed more fully below.

The toolkit board is based on a synchronous design using the PCI bus supplied

clock. A local oscillator, or an optionally supplied external clock, is used to derive

various clocks for both the MultiKronJI and the MultiKron.vc. All decoding and

controls are implemented in programmable devices.

2.1 PCI Bus Interface

The toolkit board is a short PCI bus card and fits into a standard PCI bus slot. All

toolkit board accesses are 32-bit or 64-bit data transfers aligned on 32-bit boundaries

(the two least significant address bits are zero); Block transfer and DMA requests are

not implemented. The PCI bus protocol implements a base register address mapping,

where each PCI interface board recognizes its own base address and the offset address

bits are used internally by the board. The offset address map for the toolkit board is

listed in Table 1.

2.2 MultiKron_II CPU ID Signals

The eight, unencoded CPU ID lines are used to allow hardware identification of

individual processors in multiprocessor environments. In its intended use, this feature

has two functions: (1) it is encoded in a three-bit field in the Sample header to identify

the processor taking the Sample, and (2) it selects the contents of one of the eight

32-bit Source Address registers to be placed in the Sample. The MultiKronJI Source

7

Address registers are written before Sampling starts and should be updated, by the

operating system, on context switches. They are intended to contain the node number

(if applicable) and the process identification of the process writing the Sample. The

CPU ID consists of eight input lines-one per processor, so only one line may be

asserted at any time. The toolkit board provides for two options to drive these lines:

(1) an toolkit board register - bits 0-7 of the Configuration Register, or (2) external

signal lines, via the toolkit board connector, for hardware identification of the active

processor. EXT.CPU, bit 10 of the Configuration Register (see Table 2) controls

this selection. The connector option will require custom wiring to the connector and

consultation with NIST to obtain the connector specification. For single processor

machines, the toolkit board register option should be selected and initialized once.

The effect is to select a single MultiKronJI Source Address Register for all Samples.

2.3 MultiKron External Counter Signals

The external counter inputs are one of the selectable counting sources shared by both

the MultiKronJI and MultiKron.vc Resource Counters. A toolkit board connector

option to provide these external signals will require custom wiring to the connector

and consultation with NIST to obtain the connector specification.

One of the PCI bus signals, DEVSEL#, is a device active signal. To measure the

utilization of the PCI bus we hardwired two versions of the DEVSEL# signal to the

external input pin of the MultiKron Resource Counters, numbers 0 and 2. One version

is the direct signal. The other version is the signal gated only when the toolkit board

is active. These signals can be used to determine the overall PCI bus utilization, and

the fraction used by the toolkit board. By properly configuring counters number 0

and 2 to use these input signals as enables, they will tally the total number of clocks

that the PCI bus is busy and busy only with the toolkit board, respectively. These

counters provide the numerator for our utilization fraction. Configuring counter 4

to tally the total number of elapsed clocks, will provide the denominator for our

utilization fraction. These clocks are operating at a rate faster than the PCI bus

clock, thus yielding a fairly accurate measure. Each MultiKron Resource Counter is

a 32 bit counter, but ’’even” numbered counters can be configured as 64 bit counters by

concatenating them with their neighboring ’’odd” numbered counter. When counting

high speed clocks, a 32 bit counter will overflow quickly (e.g., in less than 90 sec at

50 MHz).

2.4 Toolkit Board FIFO

The MultiKronJI output network sends measurement Sample data to the toolkit

board FIFO, which is 16 bits wide by 1024 ranks deep. Only 10 of the 16 bits are

used. Each transfer consists of eight data bits along with an ’’end of Sample” flag

and an odd parity bit. The ’’end of Sample” flag and an odd parity bit transferred

from the MultiKronJI are discarded, only the eight data bits are saved. The toolkit

board FIFO provides buffer storage for up to 51 20-byte Trace Samples to improve

peak Sample rate performance and reduce the risk of Samples being lost due to

collection delays. For diagnostic purposes, there are toolkit board commands to

manually control the flow of data from the toolkit board FIFO.

The input and output of the FIFO are independent of one another. A toolkit

board FIFO write clock is produced by the MultiKronJI (at half the rate of the

MultiKronJI input NodeClk). The FIFO read clock is the PCI bus clock. The

FIFO full flag generated by the FIFO input logic is fed into the MultiKronJI, where

it can stop further MultiKronJI output when the toolkit board FIFO is full. The

MultiKronJI can continue to generate Samples until its small internal FIFO is filled,

at which point it either forces the processor to wait until room is available or discards

new Samples and sets an error flag. The course of action to take is determined by

bits in the MultiKronJI CSR, which are written prior to Sampling. The FIFO empty

flag generated by the FIFO output logic is used to determine whether there is data

available to read. This data will either be sent over the external cable (16 bits at

a time) to an S16D interface on another computer or written into the toolkit board

local memory (32 bits at a time), depending on the toolkit board configuration option

selected.

2.5 FIFO Testing

A test mode can be activated by bit 8 of the toolkit board Configuration register.

Enabling this test mode allows processor control of the toolkit board FIFO output.

A read to the toolkit board TEST address (see Table 1) will remove one entry from

the FIFO and send it to the processor via the PCI bus. A write to the toolkit board

TEST address will remove four entries from the FIFO and send it to the toolkit board

local memory at the location pointed to by the toolkit board memory address pointer.

The toolkit board memory address pointer will then be incremented.

2.6 External Cable Interface

The External Cable Interface provides the logic needed to extract two entries from

the toolkit board EIFO, combine them into a single 16-bit value and send it over an

external cable to an S16D interface [EDT91], a commercial SBus I/O interface board,

installed on another machine. The S16D board plugs into an SBus slot of the external

data collection computer. Disabling the LOCAL option (”0”), bit 9 in the toolkit

board Configuration register, allows experimenters to perform ”on-the-fly” analysis

of measurement Samples and also store more Samples than the toolkit board local

memory. The average Sample collection rate is slower via the non-LOCAL option

than the toolkit board local memory.

2.7 Toolkit Board Local Memory

The 16 Mbyte toolkit board memory is configured as four banks of IM x 32 bits,

built from 4M x 16 bit DRAM chips. Four entries are extracted from the FIFO and

combined into a 32-bit word and then written into the local memory via a pipeline

holding register. Although a FIFO entry is 16 bits, only 8 bits are Sample data. The

9

toolkit board local memory requires 22 address bits to access any 32-bit word, 2 bits

for bank select and 20 bits for word select. Since these are word accesses, aligned on

word boundaries, the byte level address is always 00. The toolkit board local memory
may be accessed via the PCI bus at any time, since toolkit board memory arbitration

will interleave PCI bus access with Sample storage. Writing to the toolkit board local

memory by the processor is provided mainly for testing purposes.

A 24-bit counter serves as the (32-bit word) memory address pointer for Sample

storage; the PCI bus (byte) address is used for processor access. In principle, this

counter may be read or written by the processor at any time. However, since a write to

the counter while it is storing MultiKronJI Samples could cause the stored Samples to

be scrambled, a safety interlock has been programmed into the controlling logic which

ignores any write to the memory address pointer while in LOCAL mode. If there is

a need to write to the counter during the course of an experiment, the experimenter

should disable the FIFO state machine via the DIS_STATE control bit, and wait for

the current state machine sequence to complete, then disable LOCAL mode in the

toolkit board Configuration register and write the new value into the memory address

pointer, then re-enable LOCAL mode and enable the FIFO state machine. Enabling

or disabling LOCAL while Samples are being taken has an undetermined effect on

the state machine handling that transfer and, therefore, care should be taken that

the FIFO state machine is idle.

Before sampling begins, the user should initialize the toolkit board memory ad-

dress pointer. The initialization code distributed with the Experimenter’s Toolkit

provides for this initialization. The user can read the memory address pointer during

the experiment to determine how much of the memory space has been written. The
memory address pointer indicates the next available memory location.

In the simple buffer mode. Sample writing is halted when the memory is full. If

new Samples continue to be generated, the toolkit board will discard all new Samples

arriving from the MultiKronJI.

In the circular buffer mode, when the memory is full, Sample writing continues

from the beginning of memory by wrapping the memory address pointer around to

zero, overwriting the oldest Samples and thus retaining the most recent Samples

generated.

3 SOFTWARE FOR PCI/LINUX

The software included with the MultiKron toolkit consists of a device driver to

map the MultiKron Interface Board into user memory, some test programs, sample

applications, and basic programs to retrieve the data from the MultiKron interface

board. Analysis software is also included to produce time interval reports based on

the MultiKron data. The software is distributed in source form.

The requirements for using the software are: A PCI bus personal computer with

the MultiKron Interface Board installed; Linux kernel version 1.3.84 or higher in-

stalled. (The software will work with earlier 1.3.x kernels with minor modification).

The kernel must be compiled with module support. The Gnu C compiler, version

10

2.7.0 or later must also be installed. (Other C compilers may work, but have not

been tested because Gnu C is the standard Linux compiler.)

3.1 Obtaining the Software

The software may be downloaded from cmr .ncsl .nist .gov as follows:

ftp cmr.ncsl.nist.gov

Name: anonymous

Guest login ok, send your complete e-mail address as password

Password: e-mail address

ftp> cd pub/mult ikron

ftp> bin

ftp> get mk.Linux.tajr .Z

ftp> quit

3.2 Installing the Software

The software is distributed as one Unix tape archive file called mkJLinux.tar .Z. The

file must be uncompressed with the Unix uncompress utility. When the tape archive

is extracted using the tar command, an install subtree mk.toolkit JLinux is created.

In the root directory of the install subtree, there are two scripts: prepare .mk and

install. mk. prepare. mk will compile the device driver module, data retrieval and

reduction code, and the test programs. Run prepare. mk before install. mk

The script install .mk will:

• copy the “man” pages to the specified directory from the install subtree.

• copy the header file mk . h to the specified directory.

• install the library libmk . a.

• copy the driver module and load/unload scripts to /dev.

• run /dev/mk.LOAD to load the MultiKron driver module.

The install. mk script must be run with root permission. The target install

directories can be changed by modifying the shell scripts.

A typical installation would be as follows, assuming the downloaded tar file is in

directory /tmp:

cd /usr/local/

uncompress /tmp/mk_linux.tar .Z

tar -xvf /tmp/mk_linux.tar

cd mk_toolkit_linux

The tar command will create the following directories:

11

/usr/local/mk_toolkit_linux

/usr/local/iiik_toolkit_linux/docs

/usr/local/mk_toolkit_linux/install

/usr/local/irik_toolkit_linux/src

3.3 Installing the Device Driver

Two shell scripts are provided to assist in loading the MultiKron device driver. The

shell script mk.LOAD will install the device driver naodule and create the special file

/dev/mkO used to access the device. The shell script mk. UNLOAD will unload the driver

and remove the special file. Both of these scripts are installed in the /dev directory

by the install .mk script, and require root access to run. The script install .mk will

run mk.LOAD to load the driver module.

To manually load the kernel module, use the insmod command:

insmod mk.o

See the “man” page for the insmod command for more information.

To unload the module, use the rmmmod command:

rmmmod mk

The device driver module only needs to be loaded once per system boot, or after

it has been unloaded. A call to /dev/mk.LOAD could be placed in the local startup

script to ensure that the module is loaded automatically at boot time.

To list the currently loaded modules, use the Ismod command.

3.4 Running the Test Programs

There are several programs provided with the toolkit that are used for testing the

operation of the MultiKron chip and the MultiKron interface board. Examination

of these programs will show how to access various parts of the MultiKron interface

board. The programs are located in src/tests. A make file is provided for compiling

all or part of the test suite.

The program mkjiiem_test tests the operation of the MultiKron interface board

memory. To run the program, enter:

mk_mem_test <start> <count>

where start is the memory word location to start the test, and count is the number

of memory words to test. This test program writes a pattern into each memory word,

then reads the pattern back. If the value read does not match that written, then an

error is reported.

The program testunk is used to test the basic data flow to and from the MultiKron

chip. Reads and writes are performed to one source address register in order to verify

the data transfer occurs correctly. A resource sample is taken to verify the capture of

12

the resource data from the user. Next, the first 2048 locations of memory are written

then read. Last, the MultiKron timestamp register (low 32-bits) are displayed before

and after a 10 second wait. This test verifies that the timestamp register is counting

at the correct rate.

The program mk-sample.test tests the operation of the trace and resource sam-

pling functions. This program shows how to use the source address registers and how

to take trace and resource samples. The data from the MultiKron is displayed after

the samples are taken. Trace samples are captured with the CPU ID set to 0, then

CPU ID set to 1. The 20 bytes of data from the trace sample are then displayed,

along with the value of the memory address pointer. For resource samples, the 84

bytes for each sample are displayed. Again, the samples are taken for CPU ID set to

0, then CPU ID set to 1.

The program mk_nite_test performs continuous, extensive testing of the Multi-

Kron, and is designed to be run for several hours. The tests exercise the memory,

sampling, and register usage of the MultiKron chip. The program checks the Multi-

Kron operation against expected results, and reports any errors found. The program

is designed to be run with no user interaction except for the final check of the results.

To stop the tests, press CTRL-C at any time.

3.5 Data Retrieval and Reduction

In the directory src/misc are several programs used to retrieve the data from the

MultiKron interface board and reduce the data.

longlong.c A set of utility functions to handle 64-bit math

mk_rdsample . c retrieves the data from the MultiKron interface board

and writes the data into the binary file mk.dat, which is used by

iiik_expand and mkjrpt

mk_expand . c prints the MultiKron data from the file mk.dat in human
readable form

mkxrpt.c analyzes the data from file mk.dat, producing a condensed re-

port with several statistics based on the data

mk.status reports the status of the MultiKron interface board and the

MultiKron chip

Using mkjrdsample:

mk_rdsample [-f filename] [-s start_addr] [-e end_addr] [-v]

where options are:

-f filename write data to file filename instead of default file mk.dat

-s stcLrt_addr retrieve data starting from memory location start_addr;

default location is 0

13

-e end.addr stop retrieving data at memory location end_addr; default

is to stop at the current interface board memory address pointer

location

V verbose flag; print some progress messages

Using mk_expand:

mk.expand [-c] [-e] [-h] [-rfdox]] [-s[dox]] [-tfdox]] [-u[dox]] [-x]

where options are:

c output counters for resource samples; default is to print the header,

timestamp,source ID, and user data for resource samples

e output elapsed time; default is actual timestamp value for sample

h print a heading at top of data output

r select radix for resource counter output data format; see below

s select radix for source address output data format; see below

t select radix for timestamp output data format; see below

u select radix for user data output data format; see below

X expand header data by separating the bits in the header

For options r, s, t and u, the user must also specify x for hexadecimal output,

d for decimal output, or o for octal output. The default radix for these values is

hexadecimal.

Using mk_rpt:

mk.rpt [-v] [-f file] [-h] [-e value] [-s] [-n] [-d]

where options are:

v verbose output

f file use file as the interval description file instead of the default

interval . info file

h create histogram data

e change event size from default (see below)

s create summary histogram across all processors

n don’t sort the histogram, list in chronological order

d use double (64 bit) math for timestamp values

14

mkjrpt is an analysis program which provides simple statistics from the MultiKron

data. The binary input data file mk.dat, which contains the MultiKron measurement

data, must be present in the current directory. This file is normally created by

mkjrds ample. One other input file is needed; interval . inf o, although this file can

be of a different name if the -f option is used. The file interval . info contains the

user’s description of the MultiKron measurement data. It is an ASCII file, and can

be created by the user with any editor.

mk_rpt does not process resource counter information. If a resource sample is

encountered, the resource counters are discarded and the sample is processed in the

same manner as a trace sample.

In the following description below, sequence numbers are the numbers assigned to

arbitrary events by the experimenter and are written to the MultiKron by the probe

code in the program being measured. See the sample program src/scimple/ samplel . c

for an example on how to do this. Another example can be found in src/tests/iiik_sample_test . c.

The ASCII file interval . info contains lines broken into fields. The number

of fields is dependent on the class of the interval. The are currently four classes

supported by mk_rpt:

Class 1 a single interval delineated by 2 events:

Event 1 the beginning of the interval

Event 2 the end of the interval

For example, the line in interval . inf o might be;

1 10 20 "whole program"

where 1 is the class, 10 is the sequence number for the beginning event, 20 is the

sequence number for the end event, and ^

^ whole program' ' is the description

of the interval.

Class 2 a single interval with 2 possible outcomes, e.g., a successful end or a failed end,

or an if-then-else clause, consisting of a sequence of 2 out of 3 events;

Event 1 the beginning of the interval

Event 2 the first possible end of the interval

Event 3 the second possible end of the interval

For example, the line in interval . info might be;

2 81 82 83 "if then" "if else"

to show the path of an if check, where 2 is the class, 81 82 and 83 are the user

selected sequence numbers for the three events, and "if then" "if else" are

the text descriptions of the intervals.

15

Class 3 an interval consisting of two consecutive sub-intervals, where the end of the first

sub-interval indicates the beginning of the second sub-interval

Event 1 the beginning of the interval which also indicates the beginning of the first

sub-interval

Event 2 the end of the first sub-interval which is also the beginning of the second

sub-interval

Event 3 the end of the interval which is also the end of the second sub-interval

So, the line in interval . inf o might be:

3 8 17 12 "process input" "write output"

where 3 is the class, 8 17 and 12 are the user selected sequence numbers for the

three events, and "process input" "write output" are the text descriptions

of the intervals. The report also displays the total interval with the name “sw6-

interval-1 sub-interval-S’\ which in this example would be "process input

process output".

Class 4 an interval delineated by two events, where the the start and end events may
be out of sequence, but are always ordered chronologically, (e.g. nested or

overlapped):

stcLTtl stcLrt2 . . . endl end2

or

startl start2 endl start3 end2 end3

The software can only handle one event of this type, for now. The line in

interval . info might be:

4 27 36 "message timer"

where 4 is the class, 27 is the send message event, and 36 is the acknowledgment

of receipt event, but multiple sends may go out before a message is received,

and "message timer" is the text description of the interval.

3.5.1 Putting it all together

What follows is a brief overview of the steps to take to use the MultiKron board and

software provided in this toolkit. First, the program to be measured must be modified

by inserting software measurement probes. The example below shows a measurement

probe in both the sender and receiver code. Next, create an interval . info file with

the class, event numbers, and text descriptions of the intervals that are to be traced.

Run the modified programs to be measured, then execute mk_rdsample to retrieve

16

the measurement data from the MultiKron, creating the file mk.dat. One can use

mk.expand to inspect the raw measurement data in file mk.dat. Finally, use ink_rpt

to produce the condensed interval reports with their associated statistics from the

data file mk . dat.

3.6 Running the Sample Programs

In the directory src/sample are programs that show some basic application use of

the MultiKron interface board, src/sample/samplel . c shows how to use interval

classes 1, 2, and 3. The program does some system calls inside of a loop, and the

overall time spent in various parts of the program can be calculated from the data

captured by the MultiKron. Note that the time values are wall clock time, and not

process time.

What follows is some pseudo-code showing how class 4 would be used. The code

consists of two separate processes running on separate machines. Each process takes

trace samples in its own MultiKron. The data is then read from each machine by

mkjrdsample, and combined into one mk.dat file by a simple concatenation.

Sender process Receiver process

#define SEND.EVENT 10 #define RECEIVE.EVENT 20

{

/* init MultiKron device

MK.DEFAULT.MAPO ;

*/

{

/* init MultiKron device

MK.DEFAULT.MAPO ;

for(; ;) { for(
; ;) {

mk.tsl = SEND.EVENT; mk.tsl = RECEIVE.EVENT;

send_msg()

;

send.msgO ;

> }

The interval . info file would look like this;

4 10 20 "message send/receive latency"

*/

17

References

[EDT91] Engineering Design Team, Inc., ”S16D High Speed 16-bit I/O Interface for

the SUN Sparc station-User’s Guide,” 1100 NW Compton Dr, Beaverton,

OR 97006, July 1991.

[MIN93] Mink, A., Roberts, J. W. and Antonishek, J., “Operating Principles of the

VME MultiKron Interface Board,” National Institute of Standards and Tech-

nology, NISTIR 5233, Aug. 1993.

[MIN94] Mink, A. “Operating Principles of MultiKronJI Performance Instrumenta-

tion for MIMD Computers,” National Institute of Standards and Technology,

NISTIR 5571, Dec. 1994.

[MIN95A] Mink, A., Nacht, G. G., and Antonishek, J., “Operating Principles of

the SBus MultiKron Interface Board”, National Institute of Standards and

Technology, NISTIR 5652, May 1995.

[MIN95B] Mink, A., “Operating Principles of MultiKron Virtual Counter Perfor-

mance Instrumentation for MIMD Computers,” National Institute of Stan-

dards and Technology, NISTIR 5743, Nov. 1995.

18

TABLE 1: PCI Toolkit Board Offset Byte Address Map
Address (Hex) Description

0,000,000 - 0,000,FFC

0,001,000 - 0,001,IFC
0,001,200 - 0,001,200

0,001,200

0,001,204

0,001,208

0,001,200

N/A
MultiKronJI

toolkit board

toolkit board Software Reset

toolkit board Configuration Register

toolkit board Memory Address Pointer

toolkit board TEST Operation

Read - read 1 data byte from the FIFO
Write - assemble 4 data bytes from the FIFO
and write it into memory and incr the MAP

0,001,210 - 0,003,FFC

0,004,000 - 0,007,FFC

0,008,000 - 0,FFF,FFC

1,000,000 - 1,FFF,FFC

N/A
MultiKron.vc (if installed)

N/A
toolkit board Local Memory

19

TABLE 2: PCI Toolkit Board Configuration Register Format
This register is located at relative (byte) address 0000,1204 (Hex)

Its recommended default value is 003201 (Hex)

Bits Name Description

0-7 CPUJD[0..7] CPUJD to MultiKron (multiplexed with XCPU[0..7] via EXT.CPU)

8 =^TEST Used for toolkit board testing-operationally set to 0

1 = ’’manually” control the output of the toolkit board FIFO

9 LOCAL 1 = MultiKronJI Samples are stored in local toolkit board memory,

0 = MultiKronJI Samples are sent to the External Cable Interface

10 EXT_CPUID Select the source of the MultiKronJI CPU ID inputs

1 = use toolkit board external inputs XCPU[7..0]

0 = use CPUJD [7.. 0] from the toolkit board Configuration register

11 WAIT_CPU Enable a MultiKron CPU Wait State (1 active)

12 *TESTB Used for MultiKron testing-operationally set to 1

0 = places MultiKron into TEST mode

13 MK_OE 1 = enable MultiKron outputs (if Low ALL outputs are disabled)

14 WRAPB 1 = toolkit board memory configured as a simple buffer

0 = toolkit board memory configured as a circular buffer

15 EN_EXT Enables the use of an external source for the toolkit board clock and reset

1 = use external source for the toolkit board clock and reset

0 = use local clock & reset, ignore external clock k, reset signals

16 DIS_STATE 1 = Disable board FIFO state machine

0 = Enable board FIFO state machine

17 N/A

18 TS_RATIO 1 = 3-1 ratio of MultiKron NODECLK clock to Timestamp clock

0 = 4-1 ratio of MultiKron NODECLK clock to Timestamp clock

19 DIV2 1 = Divide local Osc by 2 for MultiKron Node clock

0 = Use local Osc directly for MultiKron Node clock

20 WAITAIEM Enable a MultiKron.vc memory wait state (1 = active)

21-23 N/A

24-31 VJ\TM Toolkit Board Version number = 0x90 - Read Only

*used for testing only
20

o

Figure

1.

Block

diagram

of

PCI

Toolkit

Board.

i ‘ ^

'M'

iiiiiiiiiiiiimiim IIIIIIIIIIIIIIIIIIIII iiiiiiim nil

0

«r7i

0
oCJ un

1 1 1 1 1 1 1 1 1

1

C

nil
iiiiiiNiiiiiiNinii lininiiininintii

-CT

nniiniiiMinnm miniiinmmnn
''PI

1 1 11 J IIJ f 3 Lt J T

U55 U59 Ca Oin
oOl nmiiiiiiin

itniniMinniiiiii

tlllllllMMIMIIIIII

iiiiniiiiiiiiiiiini

1 1 1 1 1 1 1 1 1 1

1

f 1 1 1 1 1 1 1 1

1

ujao*«*

c
<jiii

0

III iiininn

inmininnnnni nnnninmnnin III iiininn

iiiiniMiiiiiiiitiii llllllllllllllllllllt

o.m Uil U57

0 0

iiiiiniiiniiiitiiii
tsa rsa »S8 7sa

iZi] (iZi EH] EH EH
iiiiiiiiiiiiiiiiiiiii

+ fMl

UL 5 s

oCJ

69(1

II III

99(1

mil

4

= pmiiiiiiuiuiuiuiiiti

•H I I U
bO = = >
o
hJ

= S i

c

'U
= => H o

5-1

CO •H

o = = •U

CQ S H I—

1

iiiiiBiiiiiuiininunniiiui—
1 f

3
2

G3
C16

V.ni]iiiuitmiuiiiiiuuiitiiiiiisQi[niiiu]J

[iJl
r UIMIIIIIIIIIK-)

f71->

IL(G

o
[l,

—

lEJ^
®_
IHJ"

Oi

= =
V. iiiiiiiiiiiniti

J

puiiiiitiiitiuiiiiiiiiiuiaiiuiiiiBiiiiiiiiiiu-]

= c =
i o §

I ^ I
= AJ 1
= “
= D =IS 1
'viiniiiuiiiiiiiitiniiitiiiiiiiiiiauuiiiiiiflJ

pujiiuiiiummasiuiiiiiiiiiiiuiuiiuju—

I

lU'

bC
O
hJ

Ph

VniniiiifliiiuiiiuiiiiiimuiimiuiiuiiiJ —

+
f®,

IMJ'

II 11 nil.

>
lO

iiiiMim iimiii C

f \i VrTmrTT
II I HI 11 TTrrrno to

Csl
O

I ^
OO Q)— o ^ c_>

2: 12 > Q.

FiguTG

2.

PCI

MultiKron

toolkit

printed

circuit

board

layout;

surface

mounted,

single—

sided

.

I
t

•tJi . M,
‘^^••

. ! --U, I

-,)vi ‘i"Mjiin,?jUir!'(

t .rrr.. -iju

’

'
fr-

I
7!.-, I

; n '
'

I tj

I

’

m 7’' 7T'

:
'

1
’. 5 ;i i '-M r > j !

j

'

,v». "'P! ; 'ft-

I

QT'^ V

I'iTT
'I

.

T'.

5

'

-a

./I

• n

