
A111D5 DAbrnB

m'
Nisr

NISTIR 5985

A Fortran 90 Interface for OpenGL

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

QC

100

.U56

NO. 5985

1997

NIST

NISTIR 5985

A Fortran 90 Interface for OpenGL

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

*v»::
.1 ,

*

‘i 'i«-

if''

M '

:!?.. ’if!'-.

. .VI.

jliL^ \

A Fortran 90 Interface for OpenGL

William F. Mitchell*

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

william.mitchell@nist.gov

Abstract

It is important to provide a good fortran interface to OpenGL and related libraries

for scientific visualization in mathematical software. OpenGL currently provides a fortran

interface which can be used by fortran 77 or fortran 90 progreims. However, this interface

relies upon several extensions to the fortran 77 standard. By using the new features of

fortran 90 it is possible to define an interface to OpenGL that does not depend on any

extensions to the standard and provides access to the full functionality of OpenGL. This

document defines such an interface.

1 Introduction

Most mathematical software for scientific computing is written in fortran, and most scientific

computing applications require 3D graphics for visualization. It is therefore important to pro-

vide a good fortran interface to OpenGL and related libraries. OpenGL [3] currently provides

a fortran interface [1] which can be used by fortran 77 or fortran 90 programs. However, this

interface relies upon several extensions to the fortran 77 standard. Although some of these

extensions are commonly used by fortran compilers (e.g., real*4, real*8, integer*4) and

some have been made standard in fortran 90 [2] (e.g., include, identifiers up to 31 charac-

ters, underscore character in identifiers), others are not widely supported (e.g., logical*!,

integer*!, integer*2, identifiers longer that 31 characters), which makes OpenGL difficult

or impossible to use from some fortran processors. Also, some of the OpenGL functionality

cannot be achieved by any fortran processor under the current fortran binding (e.g., arbitrary

length character string function result).

By using the new features of fortran 90 it is possible to define an interface to OpenGL that does

not depend on any extensions to the standard and provides access to the full functionality of

OpenGL. It can also increase the capability of robustness and portability in the user application

code, and increase the similarity between the fortran and C interfaces.

* Contribution of NIST, not subject to copyright in the United States. OpenGL is a registered trademark of

Silicon Graphics Computer Systems.

1

2 W. F. MitcheU

Tliis docTiment defines a fortran 90 interface for OpenGL. It is not intended to replace the

existing fortran interface (henceforth referred to as the fortran 77 interface) at this time, since

the existing interface will be required on systems that are still using a fortran 77 compiler.

The fortran 90 interface is intended to provide an alternative through which the fortran 90

programmer can achieve robustness and portability in an OpenGL apphcation program. A
reference implementation of the fortran 90 interface has been made available to the pubhc at

http://math.nist.gov/f90gl.

The major differences between the fortran 77 and fortran 90 interfaces are:

• The interface is accessed through modules, rather than include statements. Among other

advantages of modules, this provides explicit interfaces to the OpenGL procedures for

improved robustness.

• Kind type parameters are provided for matching fortran types to C types. This elimi-

nates the need for nonstandard “*byte” declarations. It also provides a mechanism for

transparently handhng type mismatches on systems in which the fortran processor does

not support aU the C types used by OpenGL, for increased portability.

• Fortran derived types are provided where C structs are used in the interface. This increases

the similarity between the fortran and C interfaces, and provides a mechanism through

which the implementor can encapsulate whatever interface data is required.

• The fortran functions corresponding to C functions that return a pointer to a character

string now return a pointer to an array of characters. This increases the similarity between

the fortran and C interfaces, and adds the capability of arbitrary length character string

return values.

• Extremely long names are truncated to 31 characters to comply with the fortran 90

standard, and the prefix is changed to f90gl to avoid name space clashes with the OpenGL
library and fortran 77 interface.

This interface exphcitly covers the OpenGL 1.1 core library, and the GLU library. The prin-

ciples laid out in this interface can also be applied to related libraries, toolkits, and OpenGL
extensions. Some entities from the OpenGL tk toolkit and the Graphics Library Utihty Toolkit

(GLUT) are used for illustration in this document.

2 Interface Definition

This section describes and discusses the fortran 90 interface to OpenGL.

2.1 Modules

The fortran 90 interface to OpenGL is accessed through modules. The modules provide access

to kind type parameters, defined constants, procedures, and derived types (structures).

A Fortran 90 Interface for OpenGL 3

The module f90glJdnds contains the definitions of the kind type parameters as described in

Section 2.2. This module is not normally used directly in application code, but is inherited

through the other modules. The kind type parameters are defined as integers of default kind

with the parameter attribute.

The module f90gl provides access to the core OpenGL library procedures, defined constants,

and kind type parameters. It may also provide access to one or more OpenGL extensions, along

with the related defined constants and derived types.

Additional modules provide access to related libraries, and are given a descriptive name be-

ginning with f90. For example, module f90glu contains the procedures, defined constants and

derived types for the OpenGL Utility Library (GLU).

2.2 Types

2.2.1 Numeric

The correspondence between fortran and C numeric types is achieved through use of kind type

parameters. The module f90glJdnds contains the definition of these parameters such that the

C representation of an entity of a given OpenGL type agrees with the fortran representation

of an entity of the corresponding type and kind whenever possible. When the corresponding

representation is not provided by the fortran processor, the lack of said representation remains

transparent to the user.

The OpenGL numeric types and the corresponding fortran 90 type(kind) are:

GLbyte

GLubyte

GLshort

GLushort

GLint

GLuint

GLenum
GLbitfield

GLsizei

GLfloat

GLclampf

GLdouble

GLclampd

integer (f90glb3rte)

integer (f90glub3rte)

integer (f90glshort

)

integer (f90glushort)

integer (f90glint)

integer (f9Ogluint

)

integer (f90glenuin)

integer (f90glbitfield)

integer (f90glsizei)

real(f90glfloat)

real(f90glclampf

)

recLl (f90gldouble)

real (f90glclampd)

The user’s code should always specify the kind parameter for all actual arguments passed to

OpenGL procedures to insure correspondence between C and fortran types and portability of

the user’s code:

• Variables should have the kind parameter in the declaration

• Constants should have the kind parameter attached (e.g., 1.0jf90glfloat)

4 W. F. MitcheU

• Expressions should evaluate to a value with the appropriate kind parameter

The fortran standard does not specify what kinds are to be provided for each type. It is possible

that some OpenGL types do not have a corresponding type(kind) on a given fortran processor.

On current systems this is highly unlikely for the float, double and long integer types, but

may occur with the short integer types. In this case, the implementation of the interface will

match fortran and C types in a manner that is transparent to the user. There are at least two

approaches that can be taken for this. In the first approach the interface accesses the OpenGL
library routine that accepts the available type, rather than the type expected according to the

procedure name. In the second approach the C procedure that is called by the fortran procedure

converts the arguments to the type specified by the OpenGL definition. If there are any return

values of the missing type, they are converted to the available type before returning to the f90gl

procedure.

For example, suppose GLshort is a 2-byte integer, GLint is a 4-byte integer, and the fortran

compiler supports 4-byte integers but not 2-byte integers, and assume the fortran 90 interface

is implemented by a set of “wrapper” functions. Then f90glshort wiU be set to the same value

as f90glint, which is the kind parameter such that integer (f90glint) is a 4-byte integer.

Consider an invocation of f90glVertex2s. In the first approach, the wrapper function simply

invokes glVertex2i. In the second approach, the C procedure invoked by the f90gl procedure

will accept an argument of type GLint, convert it to type GLshort, and invoke glVertex2s.

For the user’s application code, this is aU transparent. The user declares the argument to

be of type integer(f90glshort). If the equivalent of a GLshort is supported by the fortran

processor, then the short integer is used; if not, then the equivalent of GLint is used with one of

the above methods for handling mismatched type. The user’s code works in both environments

unchanged.

Note that the equivalent of GLbyte (probably a 1-byte integer) may be supported by the fortran

processor, may require promotion to the kind f90glshort, or may require promotion to the

kind f90glint depending on what kinds of integers are supported by the fortran processor.

2.2.2 Logical

The OpenGL logical type and the corresponding fortran 90 type(kind) is:

GLboolean logical (f90glboolean)

The type GLboolean is typically a l-byie entity with the value 0 representing false and nonzero

representing true. The fortran processor may or may not support a 1-byte logical type. The kind

parameter f90glboolean, defined in module f90glkinds, is normally set to the kind parameter

for a 1-byte logical if it is supported, or the default kind parameter for logicals if it is not.

If the 1-byte logical is not supported, or the fortran representation of logical values does not

correspond to the C representation, then the interface routines will perform appropriate type

conversions similar to the type conversions described in the section on numeric types.

A Fortran 90 Interface for OpenGL 5

2.2.3

Character

Some procedures in related libraries and toolkits have character string arguments. These cause

no problem in the fortran 90 interface; the dummy argument is given the type character (len=*)

OpenGL functions that return a character string are also no problem in fortran 90. In C the

resulting string can be arbitrarily long. In fortran, this is obtained by declaring the function

result to be a pointer to an array of type character(len=l), and allocating the pointer inside

the function. The user can obtain the number of characters using the size intrinsic function,

and, if the result is assigned to a pointer variable, can deallocate the memory.2.2.4

Pointer

Some OpenGL procedures, or procedures in related hbraries and toolkits, may require the user

to maintain the value of a C pointer. Fortran does not provide pointers in this sense, so this

use of pointers is restricted to obtaining a C pointer from an OpenGL procedure, and passing

it to another procedure as an actual argument. Thus what is required is a means of storing

the bit patterns contained in C pointer variables. The user may also copy a C pointer from

one variable to another, which precludes the use of numeric types which are allowed to change

the representation (for example, by normalizing the exponent). In the fortran 90 interface

a sufficiently long character string is used to store the C pointer one byte at a time. The

required length is set in f90glcptr in module f90glJdnds. This is typically 4 and 8 for 32-bit

and 64-bit addressing schemes, respectively. Thus a variable of type “C pointer” is declared

with character(f90glcptr). This is guaranteed to place the bytes in contiguous “character

storage units”, which are one byte units for the default character set on all known current

fortran processors. The bytes are stored in an order that mahes the character string useful as

a C pointer.

Some apphcations require that a C pointer be compared to NULL, thus a null pointer value

must be provided. This is defined in module f90glJdnds as

character (f90glcptr)
,
parameter :: f90glnullptr = char (0) //.. .//char (0)

where the number of char (0) is equal to f90glcptr, the number of bytes to store a C pointer.

2.2.5

Structures

Some related libraries and toolkits define structures that are used as arguments to the proce-

dures. The fortran 90 interface defines derived types corresponding to these structures. The

name of the derived type is obtained from the name of the structure, subject to the same

name modification rules used for the fortran 90 procedure names in section 2.3. The derived

type definitions are contained in the module for the given library or toolkit. The components

of the derived type contain whatever information is required to fulfill the specification of the

procedures that operate on that type. Components that may be useful to the user are public,

but other components may be private. An example of where the components are useful to the

user is provided by the tk toolkit where a tk procedure sets the components of a derived type,

and a GLU procedure needs the values in the components:

6 W. F. MitdieU

type (f90tk_rgbimagerec) , pointer : : image

image => f90tkRGBImageLoad(TABLE-TEXTURE)

err = f90gluBuild2DMipmaps(GL_TEXTURE_2D, 3_f90glint, image'/.sizeX, ft

image*/,sizeY, GL_RGB, GL-UNSIGNED-BYTE, image*/,data)

For functions that return a C pointer to the struct, the fortran 90 function returns a for-

tran pointer of the derived type. If the C pointer is NULL, then the fortran pointer is nulli-

fied (disassociated), so that the C test “if (cptr == NULL)” is achieved in fortran with “if

(.not. associated(fptr))”, where cptr and fptr are pointer variables in C and fortran, re-

spectively.

For example, consider the GLU type gluQuadricObj. The fortran 90 type

t3rpe f90gluquadricobj

character (f90glcptr) : : addr

! there may be other components, which may be private

end type f90gluquadricobj

is defined in module f90glu. The function f90glunewquadric would have the effect of

function f90glunewquadric()

type(f90gluquadricobj)
,
pointer :: f90glunewquadric

allocate (f90glunewquadric)

f90glunewquadric7,addr = gluNewQuadricO

if (f90glunewquadric*/,addr == f90glnullptr) then

deallocate (f90glunewquadric)

nullify (f90glunewquadric)

endif

end function f90glunewquadric

2.2.6 Void

Many OpenGL procedures use the type GLvoid for an argument that may be one of sev-

eral different types. Generic interfaces provide this capability in fortran 90. Procedures with

a GLvoid argument have a generic interface (with the usual name for the procedure as de-

fined in section 2.3) to a set of specific routines, one for each type specified by the OpenGL
definition. Additionally, it interfaces to a specific routine that accepts an argument of type

character (f90glcptr) to allow the GLvoid argument to be a C pointer returned by a prior

call to an OpenGL procedure.

Processors that do not support the short integers require additional work here, but it remains

transparent to the user. Consider the situation where the fortran processor does not support

the kind of integer that corresponds to GLshort. Then f90glshort is the same as f90glint, so

there is no specific routine for the type integer(f90glshort). If the user passes an argument

A Fortran 90 Interface for OpenGL 7

of type integer (f90glshort), then the specific routine that is called is the one with dummy
argument of type integer(f90glint). But, in aU such core OpenGL and GLU routines there

is another argument that tells what type the GLvoid argument is to be interpreted as. If

that argument indicates that the user is passing a GL.SHORT, but the specific routine for

integer (f90glint) is called because f90glshort is the same as f90glint, then the interface

will handle the mismatched types as described in section 2.2.1. The situation is similar for

f90glbyte, except that f90glbyte could be either f90glshort or f90glint, depending on the

fortran processor.

2.3 Procedures

All OpenGL procedures are available in the fortran 90 interface. The argument lists and return

values are identical, subject to the equivalences described in section 2.2. C functions of type void

are fortran subroutines; C functions of other types are fortran functions of the corresponding

type.

The procedure names in the fortran 90 interface are derived from the C names as follows:

• The name is prepended with f90. This insures there are no name space confiicts with

either the C library routines or the fortran 77 interface.

• Case is insignificant. This conforms to the fortran 90 requirement that lower case letters

are equivalent to the corresponding upper case letters except in a character context.

• Any names that are longer than 31 characters after prepending with f90 are truncated to

31 characters. This conforms to the fortran 90 requirement that the maximum length of

a name is 31 characters. There are no names that require truncating in the core OpenGL
and GLU libraries.

2.4 Defined constants

All OpenGL defined constants are provided in module f90gl as integers with the appropriate

kind, the parameter attribute, and the same value as in the C interface.

The names for the fortran 90 symbolic constants (parameters) are derived from the OpenGL
defined constants as follows:

• Case is insignificant.

• Any names that are longer than 31 characters are truncated to 31 characters. There are

no names that require truncating in the core OpenGL and GLU libraries.

• Any names that are not unique after discarding case are replaced with a suitable descrip-

tive name. Specifically, the tk toolkit contains lower case key constants, TK_a through

TK-z, and upper case key constants, TK_A through TK_Z. In module f90tk the lower case

key constants are named TK_LC_A through TK_LC-Z, with LC standing for lower case.

There are no case dependent defined constants in the core OpenGL and GLU libraries.

8 W. F. MitcheU

Note that the names are not prepended with f90 because the symbolic constants are module

variables and there is no possibility of name space clashes.

2.5 Dummy procedures

Some routines in related libraries and toolkits take a procedure as an argument. These are

declared with the external attribute in the explicit interface provided with the fortran 90 in-

terface. While it is considered by many to be more desirable to provide a complete interface

block for dummy procedures, this is not always possible because in some cases there is more

than one valid interface for the actual argument.

When the argument is used as a callback function, the procedure may allow NULL as the value of

the argument to indicate that the corresponding callback is to be disabled. For example, GLUT
uses this technique. When this is the case, the fortran 90 interface for this library provides an

external procedure by the name lihrary-prefixDXil\±'\mc which can be passed in place of NULL.
For example, the fortran 90 interface to GLUT provides the function f90glutnullfuiic. Each

library requires its own nuUfunc procedure in order to preserve the independence of the modules

corresponding to each library.

2.6 Array arguments

The explicit interfaces of the fortraji 90 interface declare array arguments to be assumed-size

arrays, i.e., declared with dimensionC*) . They are not assumed-shape arrays, declared with

dimension (:), because most fortran 90 processors pass assumed-shape arrays as dope vectors

containing the dimensions of the array in addition to the starting address. The wrappers would

thus be more complicated, to extract the address from the dope vector, and less portable since

there is no standard for the dope vectors. There is no loss of functionality by using assumed-size

arrays.

3 Implementation

In the fortran 77 binding, the user calls C functions from the fortran program, leading to

portability issues and the requirement for the binding to address the interfacing of fortran

and C procedures. The fortran 90 interface to OpenGL does not address this issue. The

user interface is entirely on the fortran side of the fortran/C interface, therefore the fortran/C

interface is contained entirely inside the fortran 90 interface to OpenGL. It is anticipated that

most vendor implementations will be for a specific system with specific fortran and C compilers.

The containment of the fortran/C interface leaves these implementors free to use whatever

system dependent techniques are required for the fortran/C interface without affecting the

interface to the user application code. In the case of an implementor attempting to provide

an implementation that is portable over several fortran/C/OS combinations, it is left to the

implementor to determine how to achieve portability, however the reference implementation

may be a useful guideline.

A Fortran 90 Interface for OpenGL 9

Fortran 90 Fortran 90 C C

Figure 1: Example implementation using wrappers.

There is no requirement on the actual architectural design of the fortran 90 interface to OpenGL.

The only requirement is that the aforementioned modules be provided, and that they provide

access to the kind type parameters, procedures, symbolic constants, and derived types described

above. However it is anticipated that most implementations will simply provide “wrapper”

functions on top of an existing OpenGL implementation. Here the wrapper functions would

most likely fall on both the fortran and C sides of the interface. An example of how this might

be implemented is illustrated in figure 1.

In this approach, the fortran 90 names for all the OpenGL procedures are defined in generic

interfaces in module f90gl. Some of them are used simply to rename the existing fortran 77

interface. Other generic interfaces may include interfaces to module procedures which call new

wrapper functions. In particular, this would be used when type conversions are used because

the fortran processor does not support the requested type or kind, when one of the arguments

is of type GLvoid with several valid types for that argument, or when one of the arguments is

a derived type.

In this example, module f90gl would also contain the definition of all the symbolic constants as

integers with the parameter attribute and would also use module f90glJdnds, which makes the

kind parameters available to any program unit that uses f90gl.

4 Potential problems

4.1 Assumptions on compilers

The fortran 90 interface to OpenGL is considerably more robust and portable than the fortran

77 interface, however until there is a standard for inter-language calling sequences, it must be

assumed that the compilers provide a sufficient inter-language calling convention. Most fortran

90 and C compilers satisfy the following conventions, which are sufficient:

• the kinds of numeric types supported by the fortran processor contain at least the types

that the C compiler uses for GLint, GLfloat and GLdouble.

10 W. F. MitcheU

• the numeric types that the fortran and C compilers have in common have the same internal

machine representations.

• the fortran and C compilers use the same default character set.

• the fortran processor passes numeric arguments “by reference”, i.e., such that the C
procedure receives a pointer.

• the fortran processor passes procedure arguments by passing the starting address of the

procedure, i.e., such that the C procedure receives a pointer to a function.

• the fortran and C compilers use the same mechanism for transferring arguments between

routines, for example pushing them on a runtime stack in the order they appear in the

argument list.

Some other assumptions on the compilers can be avoided by using type conversions on both

sides of the interface when problems exist:

• assumptions on character string arguments can be avoided by converting the character

string to an array of integer (fSOglint) (or fSOglbyte if the kind is equivalent to

GLbyte) on the fortran side, and back to a character string on the C side.

• assumptions on the existence of a 1-byte logical in the fortran processor can be avoided by

converting the logical to an integer (fSOglint) on the fortran side, and to a GLboolean

on the C side.

4.2 Expression actual arguments

Some OpenGL and GLU procedures internally set a pointer to one of the arguments so that the

argument can be used by a different procedure called later. In this case it is important that the

actual argument not be an expression, which will generate a temporary variable that wiU no

longer exist after returning from the called procedure. Note that array sections and constants

are expressions in this context. The user should be warned of this situation. The OpenGL core

and GLU procedures effected by this are glBitmap, glFeedbackBuffer, glSelectBuffer, gluNurb-

sCurve, gluNurbsSurface, gluPwlCurve, and gluTessVertex,

4.3 Unsigned int

Fortran does not provide unsigned integer types; signed integers of the same size are used for

these types. The fortran intrinsic function ibset can be used for setting values in which the

leading bit is a 1. For example, the hexadecimal pattern 8000000A can be set in either an

assignment statement or an initialization expression using ibset as follows:

integer (fSOgluint) :: u = ibset(10,31) ! use bit pattern for 10 and set 31st bit

Unsigned integers can also be set in a data statement using BOZ notation:

integer (fSOgluint) u

data / u / z’SOOOOOOA’

A Fortran 90 Interface for OpenGL 11

4.4 Array order

The user should remember that fortran stores multidimensional arrays in column major or-

der, whereas C stores them in row major order. Some multidimensional fortran arrays may
require transposition. The exception is the transformation matrices passed to glLoadMatrix

and glMultMatrix which, as a 4x4 array, are assumed to be in column major order.

5 System installation

The location of the software for the fortran 90 interface to OpenGL is system dependent. The

OpenGL documentation provides this information for the user.

5.1 Libraries

The fortran 90 interface procedures may be placed in either the same libraries as the OpenGL
procedures (libGL, libGLU, etc.) or in separate libraries (libfOOGL, libfOOGLU, etc.).

5.2 Module files

Many fortran 90 compilers generate a file containing module information. The name of the file is

usually the module name followed by a compiler dependent suffix, for example fOOgl.mod. If the

compiler generates module files, these are located in the same directory as the OpenGL include

files (e.g., gl.h). Some fortran 90 compilers provide a command line option for specifying the

location of module files (e.g., -I); with other compilers the module files wOl have to be copied

(or linked) to the user’s source code directory.

6 Reference implementation

A reference implementation of the fortran 90 interface for OpenGL is available in the software

package called f90gl available from http://math.nist.gov/f90gl. Version 1.0 of the reference

implementation covers the OpenGL 1.0 core, GLU, tk, GLUT, and some extensions. A future

release wiU extend this to OpenGL 1.1.

References

[1] Alien Akin, OpenGL FORTRAN Binding Proposal,

http://www.sgi.com/Technology/openGL/fortran.html

[2] ANSI, American National Standard for Programming Language - Fortran - Extended, ANSI,

New York, 1992.

12 W. F. Mitchell

[3] Jackie Neider, Tom Davis and Mason Woo, OpenGL Programming Guide, Addison-Wesley,

1993.

