
NAT'L INST. OF STAND & TECH R I.C.

II III I II III

AlllOS Ofit.077 NISTIR 5980

Programmer's Guide to the
1996 Demo Executor

D. Flater

^ f ‘

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Gaithersburg, MD 20899-0001

G€

NIST
.U56

NO. 5980

1997

Programmer's Guide to the

1996 Demo Executor

D. Plater

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Gaithersburg, MD 20899-0001

February 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

NISTIR 5980

Programmer’s Guide to the 1996 Demo Executor

Contents

1 Introduction 1

2 The Executor 2

2.1 Logging 3

2.2 Checking status 5

2.3 Commands 7

2.4 Initialized ShopJob fields 9

2.5 State diagrams 9

3 Issues for Future Work 9

3.1 States 11

3.2 Job control commands 11

4 Further Reading 12

A jobjngr.idl 13

B executor.idl 17

C workcell.idl 19

List of Figures

1 Architecture of the NAMT Framework Demo 1

2 Association diagram 3

3 Guardian screen showing logs 4

4 JobManager states 10

5 ManagedJob states 10

6 Proposed ManagedJob states (concurrent model) 11

List of Tables

1 Status operations available on the Executor 5

2 Status operations available on all ManagedJobs 6

3 Additional ShopJob status operations 6

4 Additional ShopProcessJob status operations 6

5 Commands affecting the state of the Executor 7

6 Commands affecting one shop-level job 7

7 Commands affecting all shop-level jobs 8

This work was funded through the National Advanced Manufacturing Testbed (NAMT) project and

the Systems Integration for Manufacturing Applications (SIMA) program.

‘.f
*;

^••' ^tj',
' ’>-J i,’J

‘V •
^ .^‘.C

; .i . -

’/:

-,-« .. -

V \. :

'*' ' ‘ ' ,W l

i.--^4 .,. d <', ^

>
w^

*

Programmer’s Guide to the 1996 Demo Executor

David Flater

Evan Wallace

March 6, 1997

Abstract

This report documents the interfaces and functions of the 1996 demo version of the Executor.

The Executor is the shop controller for the Nationeil Advanced Manufacturing Testbed (NAMT)
Framework demo, a prototype distributed manufacturing system that is used to validate pre-

normative specifications for manufacturing-related protocols and interfaces.

1 Introduction

The National Advanced Manufacturing Testbed (NAMT) Framework [1] demo is a prototype dis-

tributed manufacturing system that serves as a testbed and trial implementation for emerging

industry-developed specifications such as SEMATECH’s Computer Integrated Manufacturing (CIM)

Framework. [2] The core of the NAMT Framework demo is the Executor, which acts as the shop con-

troller in the NAMT Framework architecture (see Figure 1).

The Executor is a multi-threaded Common Object Request Broker Architecture (CORBA) server.

It dispatches discrete parts manufacturing jobs that are requested by a human operator via the

Guardian. The Guardian is the user interface that accepts input from a terminal and translates

it into CORBA commands understood by the Executor. Other components in the architecture

are the Production Information Base (PIB), which uses a commercial object base to maintain lot

information; the Product Data Manager (PDM), which uses another commercial product to maintain

STEP (Standard for the Exchange of Product model data) Part 21 documents containing the routings

for the lots; and the workcell, which is the next level of control down from the Executor, closer to

the actual machines.

mmm

infonnittiofi
ConirDltor

(futurv) Cofftn»6«r

Figure 1: Architecture of the NAMT Framework Demo

1

This guide to the Executor is written at a level to be understood by a programmer, rather

than a casual user, because the Executor itself does not interface directly with the user. It is the

Guardian’s job to provide user-friendly access to the Executor’s functions, and to mediate between

the keyboard and mouse on one hand and the Executor’s CORBA API on the other. The purpose

of this report is to document that API as it is seen by the Guardian or by any other clients of the

Executor that may be built in the future. Documentation at an even lower level that discusses the

internals of the Executor and various implementation issues is available on the NIST intranet at

<URL;http://www-i.cme.nist.gov/framework/doc/papers96/ex96docs/>.

2 The Executor

The primary functions of the Executor are the following:

1. Respond to commands and status requests from the Guardian, which receives control input

directly from the operator.

2. Retrieve lot information from the PIB to determine the routings.

3. Retrieve routings from the PDM and parse them.

4. Activate jobs.

5. Dispatch tasks to workcells.

6. Receive feedback from the workcells.

7. Abort jobs that are botched.

8. Write logging information.

The job control and status monitoring interfaces that the Executor offers to the Guardian are

documented in following sections. The interface provided by the workcell to the Executor is largely

the same as that provided by the Executor to the Guardian; both inherit the primary aspects of

their interface from the same class. The other interfaces supported by the Executor, namely those to

the PIB and the PDM, are out of the scope of this report, since they are defined unilaterally by the

PIB and PDM; however, the interactions with the PIB and PDM are important to understanding

how the Executor works.

In order to show the Executor in context, the following scenario describes its interactions with the

Guardian, the PIB, the PDM, and the workcell by following the path of a job through the system.

Figure 2 illustrates the associations between the various entities that will be discussed below.

• The Guardian asks the Executor to create a new shop-level job.

• The Guardian supplies values for the empty fields in the shop job (job name, lot, and priority),

then informs the Executor that the job is ready to go.

• The Executor gets the lot ID from the job, retrieves the lot info from the PIB, and extracts

the ID of the routing from the lot.

• The Executor retrieves the routing info (a STEP Part 21 document) from the PDM and parses

it.

• The Executor constructs a list of ShopProcessJobs corresponding to the tasks in the routing

and makes note of the workcells that are eligible to perform each one.

• When the shop has resources for another job, the Executor activates the job.

• When a workcell becomes available for the first task in the job, the Executor starts the task in

the same way that the Guardian started the shop-level job: by asking the workcell to create a

new job, filling in the fields, and then asking the workcell to start it.

2

Figure 2: Association diagram

• The workcell performs the task, then informs the Executor when it is done. If the task

is botched, the workcell informs the Executor of this too, so that the Executor can take

appropriate action.

• The Executor recalculates the state of the shop-level job (e.g. Executing, Completed, Stopped,

or Aborted) from the states of its constituent tasks. If the job is still Executing, the Executor

proceeds to dispatch its next task.

In addition to the activity described above, the Executor is continuously polled for status infor-

mation, and logs are maintained.

The Executor’s job control and status monitoring interfaces are defined in IDL, the Interface

Definition Language that is used for CORBA servers. Those IDL files are provided in the appendices

and are explained in detail in following sections. The class hierarchy is very simple:

• JobManager: generic superclass for Executor and workcell controllers.

— ShopJobManager: the class of the Executor.

— WorkcellJobManager: the class of the workcell controller.

• ManagedJob: generic superclass for ShopJob, ShopProcessJob, and WorkcellJob.

- ShopJob: the class of a shop-level job.

— ShopProcessJob: the class that the Executor uses to keep record of workcell tasks.

— WorkcellJob: the class of a workcell task, owned by the workcell.

2.1 Logging

The Executor maintains three of the four logs that are displayed by the Guardian (see Figure 3);

two directly, and one indirectly via the PIB client library. Logging is used to track the nature of the

message traffic between the Executor and the other components. The lines of text are color-coded

to indicate which specification was the source for each message.

The format for a line in a log file is “KEYWORD text...” with KEYWORD being one of the following

choices to indicate the source specification:

• AP203: STEP Part 203, Configuration Controlled Design

3

Figure 3: Guardian screen showing logs

4

• RRM+: Modified Rapid Response Manufacturing (RRM) for PDM/IDL

• CIMF: SEMATECH CIM Application Framework (CIMF)

• CIMF*: Modified CIMF

• SDAI: Standard Data Access Interface (SDAI)

• SDAI*: Modified SDAI

• INFO: Not a message, just useful information

2.2 Checking status

The Executor provides a set of top-level operations by which a client can check the Executor’s status

and get handles to shop jobs and workcells (Table 1). The client can get more information on jobs

and workcells by calling operations on them directly once a handle has been retrieved. Table 2

shows the status operations provided by all ManagedJobs, while Tables 3 and 4 show the additional

specialized status operations provided by ShopJobs and ShopProcessJobs respectively.

Table 1: Status operations available on the Executor

Operation Description

boolean isPaused(); Returns true if the Executor is in the

Paused state.

jm_state jobManagerState(); Returns the state of the Executor as

an enum.

ManagedJob findJobNamed(in string jobName) raises

(ManagedJobRetrievalFailedSignal);

Returns a handle to the requested

job; raises ManagedJobRetrieval-

FailedSignal if not found.

ManagedJob findQueuedJobNamed(in string job-

Name) raises (ManagedJobRetrievalFailedSignal);

Like findJobNamed, but restrict

search to jobs in the Queued or

Queued-Held states.

ManagedJob findActiveJobNamed(in string jobName)

raises (ManagedJobRetrievalFailedSignal)

;

Like findJobNamed, but restrict

search to jobs in one of the following

states: Executing; Pausing; Paused;

Stopping; Aborting; Stopping-

Aborting; Pausing-Stopping;

Pausing-Aborting; Pausing-Stopping-

Aborting.

ManagedJob findCompletedJobNamed(in string job-

Name) raises (ManagedJobRetrievalFailedSignal);

Like findJobNamed, but restrict

search to jobs in the Completed state.

ManagedJobSequence allQueuedManagedJobs(); Returns a sequence of all jobs in the

Queued or Queued-Held states.

ManagedJobSequence allActiveManagedJobs()

;

Returns a sequence of all jobs in

one of the following states: Ex-

ecuting; Pausing; Paused; Stop-

ping; Aborting; Stopping-Aborting;

Pausing-Stopping; Pausing-Aborting;

Pausing-Stopping-Aborting.

ManagedJobSequence allFinishedManagedJobs
()

;

Returns a sequence of all jobs in one

of the following states: Completed;

Stopped; Aborted.

ManagedJobSequence allCompietedManagedJobs(); Returns a sequence of all jobs in the

Completed state.

5

ManagedJobSequence allStoppedManagedJobs(); Returns a sequence of all jobs in the

Stopped state.

ManagedJobSequence allAbortedManagedJobs
()

;

Returns a sequence of all jobs in the

Aborted state.

ManagedJobSequence allCancelledManagedJobs(); Returns a sequence of all jobs in the

Cancelled state.

ManagedJobSequence allManagedJobs ()

;

Returns a sequence of all jobs, ex-

cluding only those that have not yet

been started (i.e. in the Created or

Created-Held states).

WorkcellJobManagerSequence allWorkcells(); Returns a sequence of all the work-

cells’ job manager objects.

Table 2: Status operations available on all ManagedJobs

Operation Description

boolean isAborting(); True if job is Aborting, Pausing-Aborting, Stopping-

Aborting, or Pausing-Stopping-Aborting

boolean isAborted(); True if job is Aborted

boolean isActive(); True if job is Executing, Pausing, Paused, Stopping,

Aborting, Stopping-Aborting, Pausing-Stopping, Pausing-

Aborting, or Pausing-Stopping-Aborting.

boolean isCancelled(); True if job is Cancelled.

boolean isCompleted(); True if job is Completed.

boolean isCreated(); True if job is Created or Created-Held.

boolean isFinished(); True if job is Completed, Stopped, or Aborted.

boolean isPausing(); True if job is Pausing, Pausing-Stopping, Pausing-

Aborting, or Pausing-Stopping-Aborting.

boolean isPaused(); True if job is Paused, Created-Held, or Queued-Held.

boolean isQueued(); True if job is Queued or Queued-Held.

boolean isStopping(); True if job is Stopping, Pausing-Stopping, Stopping-

Aborting, or Pausing-Stopping-Aborting.

boolean isStopped(); True if job is Stopped.

attribute mj-state jobState; Returns the state of the job as an enum.

attribute string jobName; The name of the job.

Table 3: Additional ShopJob status operations

Operation Description

attribute Lot theLot; The Lot that was specified for the job.

attribute short priority; The priority that was specified for the job.

attribute ManagedJobSequence Tasks; The sequence of ShopProcessJobs associated with

this job.

Table 4: Additional ShopProcessJob status operations

Operation Description

attribute WorkcellJob the.task; The WorkcellJob corresponding to

this ShopProcessJob.

6

attribute WorkcellJobManager workcell; The workcell to which this task is cur-

rently assigned (null if not assigned).

attribute ShopJob parentjob; The ManagedJob that contains this

ShopProcessJob.

attribute DocumentSpecification ProcessOperation-

DocumentRef;

The document ref from the routing

for this task.

attribute IdentifierSequence EligibleWorkcells; Sequence of IDs of eligible workcells

copied from the routing.

attribute Duration routingexpectedtimetocomplete; Expected time to complete copied

from the routing.

2.3 Commands

The Executor also provides operations that a client (i.e. the Guardian) can use to control both the

state of shop>-level jobs and the state of the Executor itself. The control functions are divided into

three categories: the functions to control the Executor (Table 5), the functions to control single jobs

(Table 6), and the functions to control all jobs (Table 7). The “all” functions simply broadcast one

of the single-job functions to every job known to the Executor.

All of the operations described in this section are provided by the JobManager class, not by the

ManagedJob class.

Table 5: Commands affecting the state of the Executor

Operation Description

oneway void abortManagerOperations(); Causes the Executor to emergency-stop and cease

to exist.

void pauseManagerOperations(); Causes the Executor to enter the Pausing state

and stop dispatching new shop-level jobs onto the

shop floor. When the shop floor is idle, the Ex-

ecutor enters the Paused state. New jobs will still

be accepted and placed in the queue.

void stopManagerOperations(); Causes the Executor to enter the Stopping state

and stop dispatching new shop-level jobs onto the

shop floor. When the shop floor is idle, the Execu-

tor enters the Stopped state. New jobs will NOT
be accepted.

void resumeManagerOperations(); Causes the Executor to return to the Executing

or Waiting state from Pausing, Stopping, Pausing-

Stopping, Paused, or Stopped.

Table 6: Commands affecting one shop-level job

Operation Description

ManagedJob createJob(); Returns a handle to a newly created,

uninitialized job. The caller should

initialize the job and then pass it to

startJob.

7

void startjob (in ManagedJob aManagedJob) raises

(ManagedJobNotAcceptedSignal);

Place a new job into the queue so

that the Executor will dispatch it.

Raises ManagedJobNotAcceptedSig-

nal if the Executor is Stopping or

Stopped, or if the job has a problem

like duplicate name or invalid lot.

void pausejob (in ManagedJob aManagedJob) raises

(InvalidStateTransitionSignal)

;

Causes the job to enter the Pausing

state and stop dispatching new tasks

to workcells. When all running tasks

have completed, the job enters the

Paused state and remains in the ac-

tive list.

void stopJob (in ManagedJob aManagedJob) raises

(InvalidStateTransitionSignal)

;

Analogous to pauseJob, except that

when all running tasks have com-

pleted, the job enters the Stopped

state and is considered finished. A
stopJob directed at a job that is

merely Queued will cause it to be

Cancelled.

void resumeJob (in ManagedJob aManagedJob) raises

(InvalidStateTransitionSignal);

Causes a paused job to return to the

Executing state.

void abortJob (in ManagedJob aManagedJob) raises

(InvalidStateTransitionSignal)

;

Causes a job to enter the Abort-

ing state and cascade aborts to any

currently executing tasks. When all

tasks have aborted, the job enters the

Aborted state and is considered fin-

ished. An abortJob directed at a job

that is merely Queued will cause it to

be Cancelled.

void removeFinishedJob(in ManagedJob aManaged-

Job);

Causes the Executor to free memory
and forget about the specified job,

which must be Completed, Stopped,

Aborted, or Cancelled. (NOTE:
“Finished” does not normally include

“Cancelled;” this discrepancy results

from extending the CIMF.)

Table 7; Commands affecting all shop-level jobs

Operation Description

void makeAllManagedJobsPausingO

;

Effectively issues a pauseJob for each job. Excep-

tions are not propagated.

void makeAllManagedJobsNotPaused
()

;

Effectively issues a resumeJob for each job. Ex-

ceptions are not propagated.

void makeAllManagedJobsAbortingO; Effectively issues an abortJob for each job. Ex-

ceptions are not propagated.

void makeAllManagedJobsStoppingO; Effectively issues a stopJob for each job. Excep-

tions are not propagated.

8

2.4 Initialized ShopJob fields

When the Guardian wants to start a new shop-level job, it must call createJob, initialize three fields

in the job object that is returned, and then call startjob. The three fields are:

1. attribute string jobName;

The name of the job. Must be unique.

2. attribute Lot theLot;

Must be a valid key in the PIB to retrieve the lot from which the routing spec is retrieved.

3. attribute short priority;

Optional. Controls the order in which queued shop jobs are dispatched onto the shop floor. 0

is the default; lower numbers cause jobs to be dispatched more quickly. (This is analogous to

Unix process priorities.)

2.5 State diagrams

The state sets used by JobManager and ManagedJob are flattened implementations of concurrent

state sets^ derived from the CIMF (CIM Framework). Figure 4 shows the states of the JobManager

class which the Executor implements. The Executor starts up in the Initializing state, then enters

the Waiting state when it is ready to accept jobs. When it is given work to do, it enters the Executing

state and only returns to the Waiting state when it is again idle with no jobs in its queue or active

list.

Once it has received an abortManagerOperations message, the Executor irrevocably heads for

the “aborted” state. (“Aborted” is not really a state; it represents the Executor having terminated.)

Figure 5 shows the states of the ManagedJob class which are used by ShopJob and ShopPro-

cessJob. While a JobManager has only one terminal state, ManagedJobs can end up Completed,

Stopped, Aborted, or Cancelled. A Cancelled job is one that was stopped or aborted before work

on it even began. Unlike the analogous stopManagerOperations, a stopJob command is just as

irrevocable as an abortJob. It is possible to throw a Stopping job into the Aborted state with an

abortJob, but it is not possible to resume it.

As can be seen from reading the descriptions of the various state-changing commands in Tables 5

through 7, pausing or stopping involves reaching a convenient pause-point or stop-point. The Job-

Manager does not pause or stop while there are active shop jobs; neither does a shop job pause or

stop while there are active tasks. Instead, they refrain from starting any new work until the running

jobs or tcLsks have completed, and then enter the Paused or Stopped state. Aborts, on the other

hand, have no preconditions. When it is told to abort, the Executor will terminate immediately,

without waiting for workcell activity to subside. A shop job that is aborted will cascade aborts to

any active workcell tasks so that activity on the shop job will cease immediately. It is then left for

the operator to clean up any problems that result.

3 Issues for Future Work

The preceding represents the interface of the Executor as it was used for the 1996 NAMT Framework

demo. This was only the first year of a five-year project; the Executor is expected to continue to

evolve in response to lessons learned, better understanding of the specifications, and improvements

to the infrastructure. In support of that evolution, commentary on the limitations and possible

problems with the 1996 interface is presented here.

Mn a “concurrent” state model, the state of a machine is modeled using two or more independent state variables.

For example, the state of a two-engine airplane may be modeled using independent state variables for each engine.

9

P = pauseManagerOperations
R = resumeManagerOperations
S = stopManagerOperations Initializing

Figure 4; JobManager states

Figure 5: ManagedJob states

10

Held jobs may not progress
to Executing

Q = start

P = pause
R = resume
S = stop

A = abort
unlabeled = no message

Fault jobs may not progress without
operator intervention

Figure 6: Proposed ManagedJob states (concurrent model)

3.1 States

The concurrent states model of the CIMF has been the subject of controversy and misunderstanding.

Having discussed the issue with Ed Barkmeyer, another member of the Framework team, we now
believe that the concurrency as implemented is not needed, and that another form of concurrency

is needed but lacking.

The combinations of Pausing-Stopping, Pausing-Aborting, Stopping-Aborting, and Pausing-

Stopping-Aborting are not meaningful to us. Aborts take precedence over stops, and stops take

precedence over pauses. The notion that a job can pause in the middle of a stop or abort - to

‘Treeze” immediately, then resume and continue on its way to the stop point or abort point - is

not valid. If a machine is in the process of cutting metal, any kind of “freeze” is equivalent to an

emergency stop, with ramifications even more serious than those of an abort.

Instead of this invalid concurrency, what is needed is a way to represent fault states. For example,

if a workcell has been told to stop, but before it can reach a stop-point a machine gets stuck and

cannot proceed, the state of the task is modeled by Stopping-Fault. The Executing, Pausing, Paused,

Stopping, and Aborting states should all be mutually exclusive, but they may all be concurrent with

the Fault state. That way, it is clear when human intervention is needed, and a task that is in a

fault state can be recovered and continued after an operator has intervened. Figure 6 illustrates this

proposed model.

3.2 Job control commands

In the interface described by this report, job control commands that affect a particular job are part

of the JobManager interface and contain an argument specifying which job to affect. Since the state

of the job can only be queried through the ManagedJob interface, it would make more sense for the

state of the job to be controlled via the ManagedJob interface. That is the way it was organized in

CIMF 1.3.

In the model underlying such an organization, the interface to a JobManager and the interfaces

to related ManagedJobs are different aspects of a single agent. The JobManager provides access

to services for controlling and monitoring the operation of the combined agent as well as some job

control functions that can be applied to the aggregation of its related ManagedJobs. The Managed-

Job interface itself provides for job control and monitoring of individual jobs. These interfaces are

very similar in function to the Administrative and Task components of the Job Controller defined

in the Manufacturing System Integration (MSI) project’s Control Entity Interface (CEI).[3] What
could not easily be done in the CEI, since an object oriented communications infrastructure was not

available, was to make the tasks (jobs) directly addressable. But with CORBA, operations can be

11

defined directly on the job (task) interface.

The existing job control interface, a mixture of CIMF 1.3 and CIMF 1.2, was used because we

could not find a working interpretation of CIMF 1.3. SEMATECH has since explained how they

intended CIMF 1.3 to work, so the NAMT Framework testbed could and should be migrated in that

direction in future development.

4 Further Reading

This is one of a number of documents that are to be written about the 1996 NAMT Framework

project. Most significantly, a Framework Compendium is planned to provide an overview of the

entire project, and a report will be produced that summarizes the results for the validation of the

CIM Framework and SEMATECH’s response. Currently the process of exchanging results with

SEMATECH is still ongoing, and the other documents are not yet finalized.

Related reports will also be available on NIST’s external and internal web servers from

<URL:http://www.nist.gov/framework/> and <URL:http://www-i.cme.nist.gov/framework/doc

/papers96/> respectively.

References

[1] Howard M. Bloom and Neil Christopher. A framework for distributed and virtual discrete part

manufacturing. In Proceedings of the CALS EXPO ’96, Long Beach, CA, October 1996.

[2] Lawrence Eng, Ken Freed, Jim Hollister, Carla Jobe, Paul McGuire, Alan Moser, Vinayak Parikh,

Margaret Pratt, Fred Waskiewicz, and Frank Yeager. Computer Integrated Manufacturing (CIM)

Application Framework Specification 1.3. SEMATECH, 2706 Montopolis Drive, Austin, TX
78741 U.S.A., 1996.

[3] Sarah Wallace, M. K. Senehi, Ed Barkmeyer, Steven Ray, and Evan K. Wallace. Manufacturing

Systems Integration: Control Entity Interface Specification. National Institute of Standards and

Technology, Interagency Report 5272, 1993. Available from the National Technical Information

Service, Springfield, VA 22161 U.S.A.

12

A job_mgr.idl

// Interface definition for generic job aind job manager components of the NAMT

// Framework

// Started: 1996-07-30 by Dave Flater

// Status: Fairly stable

// The following definitions were originally from:

// Part 1: IDL from CIM Framework, specifically:

// Modified IDL from CIM Framework Spec 1.3

// Updated by Paul McGuire, SEMATECH, March 29, 1996

// Many things have been modified for any or all of the following

// reasons:

//

// 1. Working around inconsistencies in the CIMF;

// 2. Correcting obvious errors in the CIMF;

// 3. Reducing complexity for the trial implementation;

// 4. Making NAMT components play together.

#define _J0BMGRIDL

#ifndef .RESOURCEIDL

#include "resource . idl"

#endif

interface ManagedJob;

#ifndef _MJS

typedef sequence<ManagedJob> ManagedJobSequence;

#define _MJS

#endif

// MeuiagedJob states.

// Flattened implementation of the concurrent state combinations from

// p. 41 of the CIMF. Technically, any active state is "EXECUTING,"

// but here MJ_EXECUTING means very specifically the state in which

// we are active, not pausing, not stopping, and not aborting.

//

// Created-held and queued-held have been added

// because a mcikeAllManagedJobsPausing probably Wcints to "hold"

// any queued jobs even if a workcell becomes available. Still

// lacking is a fault state, as described by these comments quoted

// from executor_i . cc

:

// If one of my tasks was stopped or aborted, but the ShopJob was

// running normally, then I have a problem. In the MSI model, the

// ShopJob enters a fault state aind a red light flashes on the

// console to get a humein to do something. The situation is

// resolved when the human sends something like Abort, Retry, Call

// Complete, or Defer. Maybe as future work we will add this to

// the CIMF, but currently all we can do is cascade the stop or

// abort upward.

13

// Also possible is future addition of MJ_PAUSED_STOPPING

,

// MJ_PAUSED_ABORTING, and MJ_PAUSED_STOPPINGABORTING to model various

// strange fault states.

enum mj .state {MJ.CREATED, MJ_CREATED_HELD

,

MJ.QUEUED, MJ_QUEUED_HELD,

MJ.EXECUTING, MJ_PAUSING_EXECUTIQN, MJ.PAUSED.EXECUTION,

MJ.STOPPING, MJ.ABORTING, MJ.STOPPINGABORTING

,

MJ.PAUSINGSTOPPING , MJ.PAUSINGABORTING

,

MJ.PAUSINGSTOPPINGABORTING

,

MJ.STOPPED, MJ.CANCELLED, MJ.ABORTED, MJ.COMPLETED}

;

// JobMcinager states. These are based loosely on the

// MachineResource class of the CIMF (p. 223). JobMainager and

// ProcessJobManager don't seem to have state diagrams.

// Note that CIMF MachineResource doesn’t admit to a STOPPED state.

enum jm.state {JM.INITIALIZING, JM_¥AITING, JM.EXECUTING

,

JM_PAUSING_EXECUTION
, JM_PAUSED_EXECUTION,

JM.STOPPING, JM_ABORTING, JM.STOPPINGABORTING

,

JM.PAUSINGSTOPPING
, JM.PAUSINGABORTING

,

JM.PAUSINGSTOPPINGABORTING
, JM.STOPPED}

;

// Generic JobManager to be inherited by ShopJobManager and WorkcellJobManager

.

interface JobManager

{

// EXCEPTIONS

/* The seaxch operation for a job failed. */

exception ManagedJobRetrievalFailedSignal {};

/* Attempt to create or start a new job rejected. This will happen

if the JobManager is in the JM.STOPPED state. */

exception ManagedJobNotAcceptedSignal {];

/*

OPERATIONS FOR TOP-DOWN CONTROL AND MONITORING

These are taken from JobManager. MachineResource comes with

operations like shutdownNormal and shutdownimmediate that would be

redundant here.

Helpful hints:

1. abortManagerOperations means E-Stop. The JobManager goes away.

2. pauseManagerOperations and stopManagerOperations both mean

that you should let any running jobs finish but don’t stairt

any new ones. The only difference between STOPPED emd PAUSED

is that you can queue up new jobs while PAUSED but not while

STOPPED

.

14

3. You cam either stop or abort a job that is merely created or

queued to send it to the MJ_CANCELLED state.

/

// COMMANDS AFFECTING THE STATE OF THE JOB MANAGER

oneway void abortManagerOperations ()

;

void pauseManagerOperationsO

;

void resumeMajiagerOperations ()

;

void stopManagerOperationsO
;

// COMMANDS AFFECTING THE STATE OF ALL MANAGED JOBS

void maheAllManagedJobsPausingO

;

void makeAllMainagedJobsNotPausedO
;

void maikeAllMemagedJobsAbortingO ;

void makeAllManagedJobsStoppingO

;

// COMMANDS AFFECTING THE STATE OF ONE MANAGED JOB (CIMF 1.2)

// queueJob has been removed; just use staxtJob.

MainagedJob createJobO;
void staxtJob (in ManagedJob aManagedJob)

;

void pauseJob (in ManagedJob aManagedJob)

;

void resumeJob (in ManagedJob aHcinagedJob)
;

void abortJob (in ManagedJob aHanagedJob)

;

void stopJob (in ManagedJob aManagedJob)

;

// OTHER ADMINISTRATIVE OPERATIONS

void removeFinishedJob(in ManagedJob aHanagedJob)

;

// OPERATIONS TO QUERY JOB MANAGER STATE

boolean isPausedO;
jm_state jobManagerStateO

;

// OPERATIONS TO ACCESS MANAGED JOBS

ManagedJob f indJobNamed(in string jobName)

raises (ManagedJobRetrievalFailedSignal)

;

ManagedJob f indQueuedJobNamed(in string jobName)

raises (ManagedJobRetrievalFailedSignal)

;

ManagedJob f indActiveJobNamed(in string jobName)

raises (ManagedJobRetrievalFailedSignal)

;

ManagedJob f indCompletedJobNcimed(in string jobName)

raises (ManagedJobRetrievalFailedSignal)

;

ManagedJobSequence allQueuedManagedJobsO

;

ManagedJobSequence allActiveMemagedJobsO

;

ManagedJobSequence allFinishedMainagedJobs () ;

ManagedJobSequence allCompletedMcinagedJobsO
;

ManagedJobSequence allStoppedManagedJobsO

;

ManagedJobSequence allAbortedManagedJobsO

;

ManagedJobSequence allCancelledManagedJobsO

;

ManagedJobSequence allManagedJobsO

;

// OPERATIONS FOR BOTTOM-UP REPORTING

// Task name instead of a ManagedJob handle is used here due to

15

// implementation difficulties with the other approach,
void informCompletedJob(in string aJobName)

;

void informJobNotCompletedCin string aJobName);

// Not implemented

// void informJobWillBeLate (in ManagedJob aHanagedJob,

// in Timestamp newFinishTime)

;

// Also not implemented is a mechainism for a subordinate job manager
//to report to its superior that it is going off-line.

>;

// Generic ManagedJob to be inherited by ShopJob and WorkcellJob.

interface ManagedJob

// The make* operations are not used in the current configuration.

// The state of the job must be directly modified by its owner.

//To make this easier, jobState is declared as an attribute.

// OPERATIONS TO QUERY JOB STATE
boolean isAbortingO

;

boolean isAbortedO;
boolean isActiveO;
boolean isCancelledO

;

boolean isCompletedO ;

boolean isCreatedO;
boolean isFinishedO

;

boolean isPausingO;
boolean isPausedO; // Returns True for

boolean isQueuedO;
boolean isStoppingO

;

boolean isStoppedO;

"held" jobs

// ATTRIBUTES

attribute mj_state jobState;

// This attribute is called jobName instead of just name because there

// was a conflict with some internal Orb function also called name,

attribute string jobName;

// Any job except the lowest-level job is comprised of a sequence of

// "tasks" or "operations." This attribute provides a place to

// store and access that sequence,

attribute ManagedJobSequence Tasks;

// Priority queues may or may not be supported,

attribute short priority; // Like Unix, 0 = default

>;

16

B executor.idl

// Interface definition for the Executor component of the NAMT

// Framework

// Staxted: 1996-06-03 by Dave Flater

// Major revision: 1996-07-30

// Status: Fairly stable

#define _EXECUT0RIDL

#ifndef _RES0URCEIDL

#include "resource . idl"

#endif

#ifndef _J0BMGRIDL

#include "job_mgr . idl"

#endif

#ifndef _PIBIDL

#include "pib.idl"

#endif

interface ManagedJob;

#ifndef _MJS

typedef sequence<ManagedJob> ManagedJobSequence;

#define _MJS

#endif

interface ShopJob;

#ifndef _SJS

typedef sequence<ShopJob> ShopJobSequence;

#define _SJS

#endif

interface ShopProcessJob;

#ifndef _SPJS

typedef sequence<ShopProcessJob> ShopProcessJobSequence;

#define _SPJS

#endif

interface WorkcellJob;

interface WorkcellJobMemager;

#ifndef _WJMS

typedef sequence<WorkcellJobM 2uiager> WorkcellJobManagerSequence;

#define _WJMS

#endif

interface ShopJobMainager : JobManager

// This function is provided for the benefit of the Guardian.

// c.f, EquipmentManager : : allMachines
,
CIMF p. 208

WorkcellJobManagerSequence allWorkcellsO

;

// Future work: operation to return currently executing plan?

17

/ / Heairtbeat is a method that is invoked at regular intervals by

// polld.

//

// heartbeat returns the pid of the polld associated with this

// Executor, polld is expected to die if this does not match,

long heartbeat ();

// Functions for testing aoid debugging. DO NOT USE!

long counter ();

void makeTestJob ();

// These are what you might call "internal" operations for the

// Executor. In fact I need to declare these here in order for

// them to be easily accessible from the MaragedJob.

void informCompletedShopJob (in ShopJob aShopJob)

;

// void informShopJobWillBeLate (in ShopJob aShopJob,

// in Timestamp newFinishTime)

;

void informShopJobNotCompleted (in ShopJob aShopJob);

>;

interface ShopJob: ManagedJob

C

attribute Lot theLot;

>;

// This job type is for internal use by the ShopJobMamager

.

interface ShopProcessJob: MaragedJob

// This is the WorkcellJob maraged by the workcell,

attribute WorkcellJob the_task;

// The workcell to which this task is currently assigned (null if not

// assigned).

attribute WorkcellJobMarager workcell;

// The MaragedJob that this task belongs to.

attribute ShopJob parentjob;

// DocumentRef to give to the workcell.

attribute DocumentSpecif ication ProcessOperationDocumentRef

;

// List of eligible workcells.

attribute Identif ierSequence EligibleWorkcells

;

// This is the expected time to complete value from the routing.

//It probably isn’t useful to the real workcell, but may be used

// by a workcell simulation.

attribute Duration routingexpectedtimetocomplete;

>;

18

C workcell.idl

// Interface definition for Workcell

// Started: 1996-06-03 by Dave Flater

// Major revision: 1996-07-08

// Status : Semi-stable

#define .WORKCELLIDL

#ifndef _RES0URCEIDL

#include "resource . idl"

#endif

#ifndef _J0BMGRIDL

#include "job_mgr . idl"

#endif

#ifndef .EXECUTOR

#include "executor . idl"

#endif

interface WorkcellJobManager;

#ifndef _WJMS

typedef sequence<WorkcellJobManager> WorkcellJobManagerSequence

;

#define _WJMS

#endif

interface WorkcellJobManager: JobManager

/* Get a description for the machine. /
readonly attribute string description;

/ Get the unique identifier for the Machine. */

readonly attribute string machineldentif ier

;

// Heartbeats to the workcell are issued by the Executor,

void heartbeat ();

};

interface WorkcellJob: ManagedJob

attribute string ShopProcessJobName;

// DocumentSpecif ication is a 4-member struct defined in resource. idl

attribute DocumentSpecif ication ProcessOperationDocumentRef

;

attribute Lot theLot

;

attribute AVPSequence settings;

attribute TimeStamp startTime;

attribute TimeStamp endTime;

readonly attribute Duration estimated_time_to_completion;

// Note that priority is inherited from MainagedJob.

>;

19

v *

/ j-,>:!: if,*, v:>it •t \\ -H
-) r^f^ryis^ \\ a

>
., v)' -',v. i, '. ., lv*li|:'. \\

y, .' ;i 4 "
' \\ ^

',U.

<• .: . '’lat' i*

'^
'-^

• ^^-''
-'>.?:-aI:j;?j!:t'

j
IVhilV^K'. {

^.. <4. ,.

•
^

-’^•:-tt, ?i.

-..: t, ’U \

'

' ' '>
'.

V '

.-

- "-s

-aM

aianft

,r,. f t
*

;";

"
'

i.

•L.Wbt;-,

V ,-

.';r

% _• 4*

/

%

V

r

%

