
STOPWATCH User's Guide
Version 1.0

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

QC

100

.056

NO. 5971

1997

NIST

\

'

f

i 11.

*T

#

4

i
'

./;.?v:|i

itom

}

• .'•

Si

,>,

s

^1 .tfr:

STOPWATCH User's Guide
Version 1.0

William F. Mitcheli

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

March 1997

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

StopWatch User’s Guide Version 1.0

William F. Mitchell

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA

March 3, 1997

Abstract

StopWatch is a Fortran 90 module for portable, easy-to-use measurement of execution time.

It supports four clocks - wall clock, CPU clock, user CPU clock and system CPU clock -

and returns aU times in seconds. It provides a simple means of determining which clocks are

available, and the precision of those clocks. StopWatch is used by instrumenting your code

with subroutine calls that mimic the operation of a stop watch. StopWatch supports multiple

watches, and provides the concept of watch groups to allow functions to operate on multiple

watches simultaneously.

The StopWatch software and documentation have been produced as part of work done by

the U.S. Government, and are not subject to copyright in the United States.

The mention of specific products, trademarks, or brand names in the StopWatch documenta-

tion is for purposes of identification only. Such mention is not to be interpreted in any way as an

endorsement or certification of such products or brands by the National Institute of Standards

and Technology. All trademarks mentioned herein belong to their respective owners.

Contents

1 Introduction 3

2 Quick Start 4

3 Obtaining and Connipiling StopWatch 5

4 Using StopWatch 7

4.1 Watches, Clocks and Watch Groups 7

4.2 Operations on Watches 9

4.3 Operations on Watch Groups 10

4.4 Options and System Inquiries 10

5 Examples 12

6 Trouble Shooting 13

7 Subroutine cpu_second 15

8 Acknowledgments 17

9 Reference Manual 18

CREATE.WATCH 19

CREATE_WATCHGROUP 22

DESTROY_WATCH 24

DESTROY_WATCHGROUP 27

END_PAUSE_WATCH 29

1

32INQUIRY_STOPWATCH

JOIN.WATCHGROUP 34

LEAVE.WATCHGROUP 36

OPTION_STOPWATCH 38

PAUSE-WATCH 41

PRINT.WATCH 44

READ-WATCH 47

RESET-WATCH 50

START-WATCH 53

STOP-WATCH 56

2

Chapter 1

Introduction

StopWatch is a Fortran 90 module for measuring execution time of program segments. Mea-

suring execution time is an important part of software development, especially for benchmark-

ing and performance tuning. Unfortunately, Fortran has never supported the measurement

of execution time, except through non-portable vendor extensions. Fortran 90 introduced a

subroutine for measuring waU clock time, but overlooked the more desirable CPU time. It is

anticipated that the next Fortran standard, Fortran 95, wiU include a CPU time subroutine,

but it does not break the time into “user” and “system” time like many CPU clock routines,

and the standard still does not guarantee that either the wall clock or CPU clock routines will

necessarily contain clock information. Moreover, direct use of the routines can be unwieldy,

requiring multiple variables to keep track of returned values, differencing the returned values,

and conversion of the values to useful units.

StopWatch is designed to be a portable, easy-to-use means of measuring execution time. It

supports the wall clock, CPU clock, a breakdown of the CPU clock into user and system times,

and returns all times in seconds. It provides a simple means of determining which clocks are

available, and the precision of those clocks. It is written in a style that allows it to be used

with the subset languages ELF90 and F, as well as full Fortran 90 and Fortran 95 compilers.

StopWatch is used by instrumenting your code with subroutine calls that mimic the oper-

ation of a stop watch. The primary routines are start_watch, stop_watch, reset_watch,

read-watch and print.watch. StopWatch supports multiple watches, and provides the

concept of watch groups to allow functions to operate on multiple watches simultaneously.

3

Chapter 2

Quick Start

This section provides just enough information to start using the basic features of StopWatch.
If you run into trouble or want to learn about the advanced features, read the rest of the

StopWatch User’s Guide and the man pages.

1. Select a makefile that matches the configuration of your system. The makefile names

are of the form mf.<os>.<compiler>.<cpusec> where <os> is the operating system,

<compiler> is the Fortran 90 compiler, and <cpusec> is the form of subroutine cpu_second.

If you don’t find your system, select a makefile for a similar system and modify it. The

makefile contains examples of how to compile your program along with StopWatch.

2. Using an example program as a model (for example, “simple”), modify the makefile to

compile your program.

3. In each program unit that calls a StopWatch subroutine, insert the statement

use stopwatch

4. Declare one or more variables to be of type watchtype, for example

type (watchtype) w

5. Instrument your code as appropriate with subroutine calls:

call create„watch(w)

call start_watch(w)

call stop_watch(w)

call reset_watch(w)

call print_watch(w)

call read_watch(val,w,s)

call destroy„watch(w)

where s in read_watch is one of the character strings ’cpu’, ’user’, ’sys’, or ’waU’, de-

pending on what clock you want to read, and val is a real variable (of default kind) in

which the clock value is returned.

4

Chapter 3

Obtaining and Compiling StopWatch

Information on StopWatch is available at the World Wide Web page

http: //math. nist .gov/StopWatch.

StopWatch can be obtained by anonymous ftp from

ftp : //math .nist
.
gov/pub/mitchell/stopwatch/stopwatch-x . x . tgz

where x.x is the version number. This is a gzipped tar file which must be uncompressed with

gunzip and expanded by tar.

Untarring the file will create a directory called stopwatch with subdirectories doc and src. doc

contains the User’s Guide in postscript and html formats, man pages for every StopWatch
subroutine, and an overview man page, src contains the source code for the stopwatch module,

example programs, and makefiles.

The makefiles illustrate how to compile StopWatch along with your program. A makefile is

provided for several systems; see Table 3.1 for a Hst of the makefiles and the systems they have

been tested on. If your system matches one of these, then you need only modify the makefile to

use your Fortran 90 programs instead of the examples. If your system is not hsted, you might

need to modify one of the makefiles to match your system configuration. You might also need

to create a new cpu_second subroutine; see section 7. K you succeed in running StopWatch
on a different system, you can contribute your makefile and/or cpu.second by sending email

to william.iiiitchell@nist.gov.

Contributions will be made available on the WWW page, so check there first before writing

your own.

5

makefile computer operating system compiler

makelf.bat Pentium Pro Windows NT 3.51 Lahey Elf90 v. 2.00c

maksalf.bat Pentium 90 Windows NT 3.51 Salford FTN90 V2.15

mf.aix.xlf.etime_ IBM RS/6000 AIX 4.1 XLF 4.1

mf. Cray.cf90 .cray Cray C90/6256 UNICOS 8.0.3.2 CF90 1.0.3.5

mf.dec .decf90 .etime DEC AlphaServer

2100 5/250

Digital UNIX V4.0 Digital Fortran 90 V4.1

mf.dec.decf90.f95 DEC AlphaServer

2100 5/250

Digital UNIX V4.0 Digital Fortran 90 V4.1

mf.hpiLX.lipf90.etime HP 9000/710 HP-UX 10.10 HP Fortran 90 1.0

mf.hpiixlO .nag.etime HP 9000/735 HP-UX 10.20 NAGWare F90 2.2 (284)

mf.lipux9.nag.etime HP 9000/735 HP-UX 9.05 NAGWare F90 2.1 (676)

mf.linuxaont .nag . c 1 80486DX-50 Linux 1.2.13 NAGWare F90 2.1

mf.linnxelf.F.c2 80486DX-50 Linux 1.2.13 Imaginel F Compiler, R.96

mf.mac.absoft.nil PowerMac

9500/120

MacOS V7.5.3 Absoft F90 VI.

0

mf. Solaris .fujitsu .etime Sun SPARC 10 Solaris 2.3 Fujitsu Fortran 90 2.03

mf.solaris.snnsoft.etime Sun SPARC 10 SunOS 5.4 SunSoft F90 1.1

mf.sun4.epc.etime Sun SPARC 10 SunOS 4.1.3 EPC Fortran 90 V. 1.1.2

mf.sun4.nag.etime Sun SPARC 10 SunOS 4.1.3 NAGWare F90 2.1

Table 3.1: Available makefiles.

6

Chapter 4

Using StopWatch

The entities in StopWatch that have public accessibility are two derived types and fifteen

subroutines. Any program unit that references any of these entities must use the stopwatch

module, i.e., must contain the statement

use stopwatch

The derived types are:

• watcht3rpe - used for declaring a variable to be a watch

• watchgroup - used for declaring a variable to be a handle for a group of watches

These two types have public accessibility, but the internals of the type are private. Any opera-

tions performed on a variable of one of these types must be performed by one of the StopWatch
subroutines.

This section describes, in general terms, the operations that can be performed by the Stop-

Watch subroutines. The formal interfaces and detailed descriptions of the routines can be

found in Section 9.

4.1 Watches, Clocks and Watch Groups

A watch is a variable declared to be of type watchtype. It can be passed to subroutines as an

actual argument or through modules like any Fortran variable, but can only be operated on by

the StopWatch subroutines. Watches must be created by subroutine create_watch before

they are used. Attempting to use a watch that has not been created will generate a Fortran

90 error, because this amounts to passing a pointer with undefined association status to the

Fortran intrinsic function associated. Watches must be destroyed when no longer useful. For

example, consider a local variable of type watchtype in a subroutine. Since the contents of

7

a local variable are lost when the subroutine returns, the watch should be destroyed before

returning to the calling program. Failure to destroy watches can lead to a memory leak.

• create_watch - creates a watch

• destroy-Watch - destroys a watch

Watches can optionally be given a name (up to 132 characters) through an optional argument,

name, in create_watch. This name is used in error messages and print_watch to identify the

watch in the printed output.

Different apphcations demand different definitions of “time”. StopWatch supports four clocks

in each watch, with each clock measuring a different concept of time, AU of them measure time

in seconds.

• user - the amount of CPU time used by the user’s program

• sys - the amount of CPU time used by the system in support of the user’s program

• cpu - the total CPU time, i.e., user+sys

• wall - the wall clock time, i.e., elapsed real time

It is not required that all clocks be used. A watch can be created with any combination of the

four clocks. You can also specify a set of default clocks to be used whenever the clocks are not

exphcitly determined.

Since Fortran 90 does not contain an intrinsic function for CPU time, the implementation of

the cpu, sys and user clocks is system dependent. Some implementations may support only cpu

and wall, not user and sys. Some implementations may support only wall. Since the Fortran

90 standard requires the existence of a system-dock subroutine, but does not require that

it provide clock information, it is possible that some implementations might not support wall.

Clock availability can be determined by inquiry-stopwatch (see Section 4.4). Unavailable

clocks wlQ automatically be removed from the set of default clocks, but if a clock that is not

available is explicitly requested, a warning message wiU be generated.

StopWatch supports multiple watches simultaneously. Often it is useful to perform the same

operation on several watches. This is essential for correct operation of pause.watch and

end-pause_watch and is convenient for procedures like read-watch, print-watch and re-

set-watch. To facilitate this, StopWatch supports the concept of watch groups. When calling

a StopWatch subroutine, a watch group can be specified instead of a watch. The group is

referenced by a variable of type watchgroup. Watch groups must be created before they are

used. Attempting to use a watch group that has not been created wiU generate a Fortran

90 error, because this amounts to passing a pointer with undefined association status to the

Fortran intrinsic function associated. Watch groups must be destroyed when no longer useful.

The watches themselves are not destroyed, only the grouping of them. Failure to destroy watch

groups can lead to a memory leak.

8

• create-watchgroup - creates a new watch group

• destroy-watchgroup - destroys a watch group (but not the watches in the group)

Most StopWatch subroutines take watch as the first dummy argument, and accept several

forms of watch. The forms are:

• type (watchtype) watch - a single watch

• type (watchtype) watch(:) - an array of watches

• type (watchgroup) watch - a watch group handle

In most StopWatch routines, an array of watches can be specified by an array constructor in

the calling statement, for example:

t 3rpe (watchtype) watch :: wl, w2, w3

call print_watch((/wl,w2,w3/))

However, this can not be used in routines where watch has intent OUT or intent INOUT,
because the array constructor is actually an expression, not a list of the variables. Currently

this prohibits the use of array constructors in the arguments to the routines create_watch and

destroy-watch.

Most StopWatch subroutines take clock as the (optional) second dummy argument to deter-

mine which of the four clocks will be affected by the action, clock can be one of the character

strings ’user’, ’sys’, ’cpu’, or ’wall’, or can be an array of such character strings to specify

more than one clock. Since clock is always intent IN, an array of clock types can be built with

an array constructor. However, note that Fortran 90 requires all character strings in such a

construction to have the same length. Thus ’sys’ and ’cpu’ should be padded with a blank, as

in:

call stELTt.watch (watch, (/^user^’sys ’,’cpu V))

If the optional argument clock is omitted, the current set of default clocks is used. The set

of default clocks is set with option_stopwatch (see Section 4.4) and initially consists of all

available clocks.

4.2 Operations on Watches

StopWatch is used by inserting subroutine calls into your program. These subroutine calls

correspond to the actions performed with a common stop watch. The basic operation of a

watch involves starting it, stopping it, and resetting it’s value to 0.

9

• start_watch - starts an idle watch, like the Start/Stop button on a stop watch

• stop-watch - stops a running watch, like the Start/Stop button on a stop watch

• reset.watch - sets the clocks on a watch to 0.0, like the Reset button on a stop watch

Of course, running a stop watch is of little use unless you can see what it says. The following

routines can be called regardless of whether a watch is running, stopped or paused.

• read-watch - returns the current clock value of a watch, like looking at the display of a

stop watch

• print-watch - prints the current clock value of a watch to an output device. To push

the analogy to the limit, imagine a stop watch with a printer attached to it.

read-watch returns the clock value in the first argument. The result variable is either a

scalar, a pointer to an array of rank one, or a pointer to an array of rank two depending on

whether watch and clock are scalars or arrays. Unless it is a scalar, the result variable should

be deallocated after use to avoid memory leakage.

When measuring CPU time, it is often desirable to not include the time used by certain parts

of the code, such as printing or graphics. In a subroutine, you might not know which of the

clocks are currently running, so you can not simply stop them before the I/O and start them

up again after the I/O. For this. StopWatch provides the pause function.

• pause.watch - temporarily suspend any of the specified watches that are running

• end_pause_watch - resume suspended watches that were running before pause.watch

was called

4.3 Operations on Watch Groups

Besides create.watchgroup and destroy-watchgroup, there are two operations that can be

performed on watchgroup variables:

• join.watchgroup - adds a watch to a watch group

• leave.watchgroup - removes a watch from a watch group

4.4 Options and System Inquiries

Subroutines are provided to set several options within StopWatch, to determine the current

value of these options, and to determine system dependent values of the implementation.

10

• option-stopwatch - sets options within StopWatch.

• inquiry-Stopwatch - returns values of options and system dependent values

AH arguments to these subroutines are optional. All arguments to option_stopwatch are

intent IN, and aU arguments to inquiry.stopwatch are intent OUT. The options that can be

set by option-stopwatch and read by inquiry.stopwatch are:

• default.clock- character(len=*) or character(len=*)(:) (must be an array in inquiry.stopwatch).

Specifies one or more clock types to be used as the default clocks when the clock argu-

ment is omitted. Initial default (/’cpu V^iserVsys V^^V)- Unavailable clocks will be

automatically dropped from the list.

• io-unitjprint-'miegei. Specifies an 1/0 unit for printed output from routine print.watch.

Initial default is 6. The specified unit must be open for writing sequential formatted

output.

• io.unit.error - integer. Specifies an I/O unit for printed error messages. Initial default is

6. The specified unit must be open for writing sequential formatted output.

• print.errors - logical. Flag to specify whether or not error messages should be printed.

Initial default is .true.

• abort.errors - logical. Flag to specify whether or not the program should abort on an

error. If the program does not abort, then the requested operation is ignored and execution

continues. Initial default is .false.

• print.form - character(len=*). Specifies the form for printing time in print.watch.

Currently all the forms print the time to .01 seconds. The valid values are:

— ’sec’. Print seconds as a real number. This is the default.

— ’hh:mm:ss’. Print time as hours, minutes and seconds separated by colons.

— ’[[hh:]mm:]ss’. The same as ’hh:mm:ss’ except hours and minutes are printed only if

they are nonzero.

In addition, inquiry.stopwatch takes the following optional arguments:

• cpu.avail - logical. True if the cpu clock is available in the implementation.

• user.avail - logical. True if the user clock is available in the implementation.

• sys.avail - logical. True if the sys clock is available in the implementation.

• wall.avail - logical. True if the wall clock is available in the implementation.

• cpu.prec - real. The cpu clock precision in seconds, i.e., the smallest amount of time that

the cpu, user and sys clocks can measure.

• wall.prec - real. The wall clock precision in seconds.

• version - character(len=16). The version number of StopWatch.

11

Chapter 5

Examples

The StopWatch distribution contains several example programs to demonstrate how to use

StopWatch, and to test the installation. These programs are located in the src directory.

Once you select or create the correct makefile you should be able to compile these examples

with “make pro^^ where prog is the name of the source file without the .f90 extension.

• simple.f90 - This is a short example showing the simplest use of StopWatch.

• advanced.fQO - This example illustrates the use of some of the advanced features of Stop-

Watch, including array arguments and watchgroups.

• overhead.fQO - This program prints the clock precisions, and measures the amount of time

used by calls to StopWatch subroutines. As long as the clock precision is much larger

than the overhead of a StopWatch subroutine, StopWatch should not increase the

time being measured.

• testsw.fPO - This is a program that tests most of the functionality of StopWatch.

• errors.fQO - This is a program that tests many of the error conditions detected by Stop-

Watch.

• bomb.fQO - This program attempts to make StopWatch crash by using a watch that'

has not been created. Running this program should indicate how your system handles

this error condition, but there is no guarantee that your compiler will handle the Fortran

error consistently.

12

Chapter 6

Trouble Shooting

All StopWatch subroutines take an optional argument err as the last dummy argument. This

is an INTENT(OUT) integer argument in which a status code is returned. The code is the sum
of the values hsted below.

Errors can also be determined through printed error messages. An error message will be printed

to a specified I/O unit (6 by default) \i print-errors is TRUE (default is TRUE; see Section 4.4).

The error message contains more detail about the cause of the error than can be obtained from

just the status code, so you should set print-errors to TRUE if you have trouble determining

the cause of the error.

All errors are non-fatal. If abort-errors is FALSE (default is FALSE, see Section 4.4) the

requested operation is ignored and execution will continue.

The relevant status codes and messages are:

0 - operation successful; no errors.

1 - Watch needs to be created. This occurs when you attempt to use a watch that has

been destroyed. Some compilers might also generate this error when you attempt to use

a watch that has never been created.

2 - Watch is in the wrong state for this operation. This occurs when you attempt to start

a watch that is already running, stop a watch that is not running, etc.

4 - Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.

8 - Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry.stopwatch (Section 4.4) to determine

what clocks are available.

16 - Too many clocks specified. This occurs when the argument clock is an array longer than

four.

13

32 - Number of names is not equal to number of watches. This occurs in create_watch if

the array of watch names is not of the same length as the array of watches.

64 - Character string too long. This occurs when a watch name with more than 132 charac-

ters is passed into create_watch.

128 - Watch not found in given group. This occurs when you attempt to remove a watch

from a group that it does not belong to.

256 - I/O unit is not open for writing. This can occur from print.watch or when printing

an error message.

512 - Failed to allocate required memory. When a STOPWatch routine is called with an array

or group of watches, temporary memory is allocated. This error occurs if the allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, destroying

local variable watches and groups before returning from a subroutine, and deallocating

array results from read_watch.

1024 - Error occurred while deallocating memory. This error occurs if the deallocate statement

returns a nonzero status while deallocating temporary memory used for an array or group

of watches. The operation is performed, but be aware that other problems could develop

as a result of the deallocate error.

2048 - Illegal output form. This error occurs in option_stopwatch or print_watch if the

given print format is not one of the valid strings listed in section 4.4.

14

Chapter 7

Subroutine cpu_second

Although Fortran 90 standardized an intrinsic function for wall clock time, it does not include

a function for CPU time. At the time of this writing, it is anticipated that a CPU time intrinsic

function will be added to the language in Fortran 95. If this happens, then StopWatch
can become fuUy system independent once Fortran 95 compilers are widespread. Meanwhile,

StopWatch requires that a system dependent CPU time subroutine be provided by the user.

Several versions of this subroutine are included with the StopWatch package. One of these

may work on your system. The current versions, systems they have been tested on, and clock

precisions are shown in Table 7.1. The computers and version numbers of the operating systems

and compilers can be found in Table 3.1. Those based on the Cray routine second and the

Fortran 95 routine cpu_second do not provide the user and sys clocks. The version cpusec.nil.f

contains no CPU clock information, and can be used on systems where there is no routine to

measure CPU time. If this routine is used, only the waU clock will be available.

If none of the cpu_second versions work on your system, you wiU have to write your own. The

interface is

subroutine cpu_second(cpu,user , sys)

real, intent(OUT) :: cpu, user, sys

The first argument is for CPU time in seconds. Where available, the second and third arguments

should break down the CPU time into “user” and “system” CPU time. If the underlying system

does not provide for a way of accessing the breakdown (i.e., has only CPU time), then return

a negative constant in user and sys (for example, user=-l. ; sys=-l.). The value returned

in cpu (and iLser and sys where available) should be a nonnegative real number such that the

difference between two successive calls is the amount of elapsed CPU time in seconds.

If you write a new version of cpu_second because none of the supplied versions worked on

your system, please send this information to the author so that it can be included in the next

release.

15

file basis OS compiler cpu

precision

wall

precision

cpusec.cl.c times Linux NAGWare F90 l.E-2 l.E-hO

cpusec.c2.c times Linux Imagine 1 F l.E-2 l.E+0

cpusec.cray.f90 second UNICOS CF90 4.E-6 4.E-9

cpusec.etime.f etime HP-UX NAGWare F90 l.E-2 l.E+0

cpusec.etiine.f90 etime Digital UNIX Digital Fortran 90 l.E-3 l.E-4

HP-UX HP Fortran 90 l.E-2 l.E-3

Solaris Fujitsu Fortran 90 l.E-2 l.E-3

Solaris SunSoft F90 9.E-5 l.E-6

SunOS EPC Fortran 90 l.E-2 l.E-3

SunOS NAGWare F90 l.E-2 2.E-2

cpusec.etime_.f90 etime AIX XLF l.E-2 l.E-2

cpusec.f95.f90 cpu-time Digital UNIX Digital Fortran 90 4.E-3 l.E-4

cpusec.nil.f90 none Windows NT Lahey Elf90 N/A l.E-2

Windows NT Salford FTN90 N/A l.E-3

MacOS Absoft F90 N/A l.E-6

Table 7.1: Available versions of cpu_second with clock precisions.

16

Chapter 8

Acknowledgments

I would like to thank:

Ron Boisvert, Roldan Pozo, and Eite Tiesinga for many helpful suggestions.

Karin Remington, Walt Brainard, Neil Campbell, Neil Carlson, Jeroen Groenenboom, Alan

Hoffman, Steve Lionel, Christian de Polignac, Mitsu Sakamoto, David Vallance, and Mike Ver-

meulen for beta testing or otherwise providing assistance.

17

Chapter 9

Reference Manual

This section contains an alphabetical hsting of all StopWatch routines. Each routine is

described in detail, along with diagnostics and examples. The information in this section can

also be obtained online through the man pages.

18

CREATE-WATCH

creates and initializes a StopWatch watch.

SYNOPSIS

subroutine create_watch(^ti;aic^, clock, name, err)

type (watchtype), intent(OUT) :: watch

OR type (watchtype), intent(OUT) :: watch(:)

character(len=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent(IN) :: clock(:)

character(len=*), optional, intent(IN) :: name

OR character(len=*), optional, intent(IN) :: name(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Creates and initializes the specified clocks of the specified watches. Upon return from cre-

ate_watch, aU clocks are not running and have the value 0. All watches must be created

before they are used or added to a watch group. In Fortran 90 it is impossible to test whether

or not a watch has been created, and using a watch that has not been created may cause the

program to crash. It is not an error to create a watch that has already been created, however

the prior information and memory locations will be lost. Watches should be destroyed (see

destroy_watch(3)) before they are recreated. Also, local variable watches should be destroyed

before returning from a subroutine, to avoid memory leaks.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to create one watch, or an array of type watchtype to create

several watches.

The optional argument clock specifies which clocks to create on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are created. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

The optional argument name allows you to attach a name to the watch. The name is used when
printing error messages, or when printing clock values using print_watch. K omitted, the name
of the watch is ’unnamed watch’. If present, it must be of the same rank and dimension as

watch. Watch names are limited to 132 characters.

19

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values Hsted below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print.errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be created.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

32 Number of names is not equal to number of watches. This occurs if the array of watch

names, name, is not of the same length as the array of watches, watch.

64 Character string too long. This occurs when a watch name has more than 132 characters.

The watch is created, but the name is truncated to the first 132 characters.

512 Failed to allocate required memory. Creating a watch involves allocating memory for it.

Also, when create.watch is called with an array or group of watches, temporary memory
is allocated. This error occurs if the Fortran allocate statement returns a nonzero status

indicating that memory could not be allocated. Avoid memory leaks by always destroying

watches and groups before recreating them, and destroying local variable watches and

groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are created, but be aware that other problems

could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problems may
arise:

• Since watch has intent OUT, you cannot use an array constructor as an actual argument

to construct an array of watches. Some compilers will recognize this as a compile time

error, but will generate an obscure error message, such as “no specific match for generic

name”

.

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’, and pad watch names so they all have the same length (within aji

array constructor).

20

EXAMPLES

type (watchtype) wl, w2(3), w3

integer errcode

call create_watcli(wl)

call create_watcli(w2, nai]ie=(/ ’part 1’, ’part 2’, ’total ’/), err=errcode)

call create_watch(w3, (/’cpu ’, ’wall’/), err=errcode)

The first call creates the default clocks on a single watch with name ’unnamed watch’. The

second call creates the default clocks on three watches given as an array and with names ’part

1’, ’part 2’, and ’total’, and returns a status code. The third call creates one watch with the

cpu and wall clocks, the name ’unnamed watch’, and returns a status code.

BUGS

None known.

21

CREATE-WATCHGROUP

creates a StopWatch watcli group

SYNOPSIS

subroutine create_watchgroup^iyatc/i, handle, err)

type (watchtype), intent(IN) watch

OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(OUT) :: handle

integer, optional, intent(OUT) :: err

DESCRIPTION

Creates a new watch group and returns a handle for it. A watch group must be created by this

routine before it is passed to any other StopWatch routines. In Fortran 90 it is impossible to

test whether or not a watch group has been created, and using a watch group that has not been

created may cause the program to crash. It is not an error to create a watch group that has

already been created, however the prior information and memory locations wiU be lost. Watch
groups should be destroyed (see destroy_watchgroup(3)) before they are recreated. Also,

local variable watch groups should be destroyed before returning from a subroutine, to avoid

memory leaks.

One or more watches may be optionally specified. If watch is present, the watch group will

initially contain the specified watch(es). If watch is omitted, the watch group will initially

be empty. Watches can be added and removed from the group with join_watchgroup and

leave_watchgroup. The argument watch can be a single variable of type watchtype (see

stopwatch(3)) to start the group with one watch, or an array of type watchtype to start the

group with several watches.

The argument handle is a variable of type watchgroup that wiU subsequently be used to access

the watch group.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values Usted below.

An error message wiU be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

22

have trouble determining the cause of the error.

If abort.errors is TRUE (default is FALSE), the program wiU terminate on an error condition.

Otherwise, the program will continue execution but the watch group wiU not be created.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to put a watch that has been

destroyed in the group. The watch must first be created again. See also the comment

about watches that have never been created in the BUGS section.

512 Failed to allocate required memory. When a group is created, memory is allocated for

the group. Also, when create.watchgroup is called with an array of watches, tempo-

rary memory is allocated. This error occurs if the Fortran allocate statement returns

a nonzero status indicating that memory could not be allocated. Avoid memory leaks

by always destroying watches and groups before recreating them, and destroying local

variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array of watches. The group is created, but be aware that other problems could develop

as a result of the deallocate error.

EXAMPLES

t 3rpe (watchtype) w(3)

type (watchgroup) gl, g2

integer errcode

call create_watchgroup(handle=gl)

call create_watchgroup(w, g2, err=errcode)

The first call creates an empty group gl. The second call creates the group g2 with three

watches, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable has been created (passed as an

argument to create_watch). If a watch that has never been created is passed into cre-

ate_watchgroup, it might generate a Fortran error due to passing a pointer with undefined

association status to the Fortran intrinsic function associated. Some compilers will allow this

as an extension to the Fortran 90 standard and recognize that the pointer is not associated, in

which case the “Watch needs to be created” error message is generated.

23

DESTROY-WATCH

destroys a StopWatch watch

SYNOPSIS

subroutine destroy-watch (watch, clock, err)

type (watchtype), intent(INOUT) :: watch

OR type (watchtype), intent(INOUT) :: watch(:)

character(len=*), optional, intent(IN) :: clock

OR character(len=:*), optional, intent(IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Destroys the specified clocks of the specified watches. If the watch has no remaining clocks

after the specified clocks are destroyed, then the watch is destroyed and associated memory
freed. To avoid memory leaks, watches should be destroyed when no longer useful, before being

recreated, and before returning from a subroutine in which the watch is a local variable.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to destroy one watch, or an array of type watchtype to destroy

several watches.

The optional argument clock specifies which clocks to destroy on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are destroyed. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print.errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

24

Otherwise, the program will continue execution but the watch(es) will not be destroyed.

See option_stopwatch(3) for further information on print.errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to destroy a watch that has

already been destroyed. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When destroy_watch is called with an array or

group of watches, temporary memory is allocated. This error occurs if the Fortran allo-

cate statement returns a nonzero status indicating that memory could not be allocated.

Avoid memory leaks by always destroying watches and groups before recreating them,

and destroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating the memory for the watch or tem-

porary memory used for an array or group of watches. The watches are destroyed, but

be aware that other problems could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problems may
arise:

• Since watch has intent OUT, you cannot use an array constructor as an actual argument

to construct an array of watches. Some compilers will recognize this as a compile time

error, but will generate an obscure error message, such as “no specific match for generic

name”

.

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

type (watchtype) wl, w2(3)

integer errcode

call destroy_watch(wl)

call destroy_watch(w2, (/’sys \ ’user’/), err=errcode)

The first call destroys the default clocks on a single watch. Assuming the default clocks have

not changed since the watch was created, the watch will be destroyed. The second call destroys

the sys and user clocks on three watches given as an array and returns a status code. Assuming

the watch also had the cpu or wall clock, the watches are not destroyed.

25

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create.watch or create_watchgroup). If a watch or watch group

that has never been created is passed into destroy_watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers wiU allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

26

DESTROY-WATCHGROUP

destroys a StopWatch watch group

SYNOPSIS

subroutine destroy_watchgroup(^handZe, err)

type (watchgroup), intent(INOUT) :: handle

integer, optional, intent(OUT) :: err

DESCRIPTION

Destroys a watch group. Only the group is destroyed, not the watches in the group. To avoid

memory leaks, watch groups should be destroyed when no longer useful, before being recreated,

and before returning from a subroutine in which the watch group is a local variable.

The argument handle is a variable of type watchgroup that is the handle for the group to be

destroyed.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program wiU continue execution but the watch group wiU not be created.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating memory used for the group. The

group is destroyed, but be aware that other problems could develop as a result of the

deallocate error.

27

EXAMPLES

t 3rpe (watchgroup) gl, g2

integer errcode

call destroy_watchgroup(gl)

call destroy_watchgroup(g2, errcode)

The first call destroys the group gl. The second call destroys the group g2 and returns a status

code.

BUGS

None known.

28

END_PAUSE_WATCH

resumes a paused StopWatch watch

SYNOPSIS

subroutine end_pause_watch clock, err)

type (watchtype), intent (IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent(IN) :: watch

character(len=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent (IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Resumes the running status of the specified clocks of the specified watches that have previously

been paused (see pause_watch(3)). Pausing is useful when you want to temporarily stop

the clocks to avoid timing a small segment of code, for example printed output or graphics,

but do not know which watches or clocks are running. When pause.watch is called, the

information about which of the clocks were running is maintained, so that a subsequent call to

end_pause_watch will restart only those clocks that were running.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to resume one watch, an array of type watchtype to resume

several watches, or a variable of type watchgroup (see stopwatch(3)) to resume the watches in

a group.

The optional argument clock specifies which clocks to resume on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are resumed. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

DIAGNOSTICS

K present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

29

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be resumed.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to resume a watch that

has been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

2 Watch is in the wrong state for this operation. This occurs when you attempt to resume

a watch that is currently running.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When end_pause_watch is called with an array or

group of watches, temporary memory is allocated. This error occurs if the Fortran allo-

cate statement returns a nonzero status indicating that memory could not be allocated.

Avoid memory leaks by always destroying watches and groups before recreating them,

and destroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are resumed, but be aware that other problems

could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

t 3rpe (watchtype) wl, w2(3)

type (watchgroup) gl

integer errcode

call end_pause_watch(wl)

30

call end_pause_watch(w2 , err=errcode)

call end_pause_watch(gl , (/’cpu ’wall’/), errcode)

Tlie first call resumes the default clocks on a single watch. The second call resumes the default

clocks on three watches given as an array and returns a status code. The third call resumes the

cpu and wall clocks on the watches in the group gl, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create.watchgroup). If a watch or watch group

that has never been created is passed into end_pause_watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

31

INQUIRY_STOPWATCH

returns STOPWATCH options and system dependent values

SYNOPSIS

subroutine inquiry.stopwatch ('de/ait/i.c/ocA:, io-unit.print, io-unit.error, print.errors, abort.errors,

print-form, cpu.avail, user-avail, sys-avail, walLavail, cpu-prec, walLprec, version, err)

character(len=*), optional, intent(OUT) :: default_clock(4)

integer, optional, intent(OUT) :: io.unit .print, io.unit.error

logical, optional, intent(OUT) :: print.errors, abort.errors

character(len=*), optional, intent(OUT) :: printJ’orm

logical, optional, intent(OUT) :: cpu.avail, user.avail, sys.avail, wall.avail

real, optional, intent(OUT) :: cpu.prec, wall.prec

character(len=16), optional, intent(OUT) :: version

integer, optional, intent(OUT) :: err

DESCRIPTION

Returns the value of StopWatch options and other system and implementation dependent

values. AU arguments are optional and have intent OUT.

The following arguments can be set by option.stopwatch. See option_stopwatch(3) for

further details on their meaning, default-dock is the set of clocks that are used when the clock

argument is omitted in a call to a StopWatch routine, io-unit-print returns the unit for output

from subroutine print.watch. zo.wmi.error returns the unit for any error messages printed by

StopWatch. If print-errors is TRUE, then an error message will be printed to io-unit-error

whenever an error condition occurs. If abort-errors is TRUE, then the program wiU terminate

when an error condition occurs, print-form is the format used by print.watch(3) when the

form argument is omitted.

The remaining arguments return system information that can not be changed.

Since an interface to the CPU clock is not part of the Fortran 90 standard, the availability of

clocks and clock precisions are implementation dependent. Not aU clocks are available in aU

implementations. The logical arguments cpu-avail, user-avail, sys.avail and walLavail return

TRUE if the respective clock is available in this implementation.

The precision (the shortest time interval that can be measured) of the clocks also varies between

implementations. The real variables cpu.prec and wall.prec return the precision of the CPU
and wall clocks, in seconds. It is assumed that the user and sys clocks have the same precision

as the CPU clock. If the CPU clock is not available, then cpu.prec will return 0., and similar

32

for the wall clock.

The character string version returns the version number of StopWatch.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condi-

tion. Otherwise, the program will continue execution but the requested value(s) might not be

returned.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

512 Failed to allocate required memory. This error occurs if the Fortran allocate statement

returns a nonzero status indicating that memory could not be allocated. Avoid memory
leaks by always destroying watches and groups before recreating them, and destroying

local variable watches and groups before returning from a subroutine.

EXAMPLES

logical user.isjthere

real cpu.prec

call inquiry_stopwatch(user_avail=user_is_there)

call inquiry_stopwatch(cpu4>rec=cpu-prec)

The first call determines if the user clock is available in this implementation. The second call

determines the shortest time that can be measured by the CPU clock.

BUGS

None known.

33

JOIN-WATCHGROUP

adds a StopWatch watch to a watch group

SYNOPSIS

subroutine join_watchgroup(iuatc/i, handle, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent (INOUT) :: handle

integer, optional, intent(OUT) :: err

DESCRIPTION

Adds the specified watch(es) to the specified watch group. The watch(es) and group must have

been previously created with create_watch and create.watchgroup.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to add one watch, an array of type watchtype to add several

watches.

The watch group is specified by handle, a variable of type watchgroup.

DIAGNOSTICS

K present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be added to the

group.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

34

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to add a watch that has

been destroyed to a group. The watch must first be created again. See also the comment

about watches that have never been created in the BUGS section.

512 Failed to allocate required memory. Memory is allocated in the group when a watch

is added. Also, when join_watchgroup is called with an array or group of watches,

temporary memory is allocated. This error occurs if the Fortran allocate statement

returns a nonzero status indicating that memory could not be allocated. Avoid memory
leaks by always destroying watches and groups before recreating them, and destroying

local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are added to the group, but be aware that other

problems could develop as a result of the deallocate error.

EXAMPLES

t 3rpe (watcht3rpe) wl, w2(3)

type (watchgroup) gl

integer errcode

call join_watchgroup(wl, gl)

call join_watchgroup(w2, gl, errcode)

The first call adds the watch wl to watch group gl. The second call adds three watch to gl

and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into join.watchgroup, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

35

LEAVE_WATCHGROUP

removes a StopWatch watch from a watch group

SYNOPSIS

subroutine leave_watchgroup(^iyatc^, handle, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(INOUT) :: handle

integer, optional, intent(OUT) :: err

DESCRIPTION

Removes the specified watch(es) from the specified watch group.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to remove one watch, or an array of type watchtype to remove

several watches.

The watch group is specified by handle, a variable of type watchgroup.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program wiU terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be removed from the

group.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

36

128 Watch not found in given group. This occurs when you attempt to remove a watch from

a group that it does not belong to. One cause of this is if you destroy a watch and later

try to remove it from a group.

512 Failed to allocate required memory. When leave_watchgroup is called with an array or

group of watches, temporary memory is allocated. This error occurs if the Fortran allo-

cate statement returns a nonzero status indicating that memory could not be allocated.

Avoid memory leaks by always destroying watches and groups before recreating them,

and destroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches or the memory used for an entry in the group. The watches

are removed from the group, but be aware that other problems could develop as a result

of the deallocate error.

EXAMPLES

type (watchtype) wl, w2(3)

t 3rpe (watchgroup) gl

integer errcode

call leave_watchgroup(wl
,
gl)

call leave_watchgroup(w2, gl, errcode)

The first caU removes the watch wl from watch group gl. The second call removes three watch

from gl and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into leave_watchgroup, it might generate a Fortran

error due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers wiU allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

37

OPTION-STOPWATCH

sets StopWatch options

SYNOPSIS

subiout'me optionstop'wa.tch. (default-dock, io-unit-print, io-unit-error, print-errors, abort-errors,

print-form, err)

character(len=*)j optional, intent(IN) :: default _clock(:)

OR cliaracter(len=*), optional, intent(IN) :: default-dock

integer, optional, intent(IN) :: io-unit -print, io-unit -error

logical, optional, intent(IN) :: print-errors, abort-errors

character(len=*), optional, intent (IN) :: print jform

integer, optional, intent(OUT) :: err

DESCRIPTION

Sets options that control the behavior of StopWatch. AU arguments are optional and have

intent IN, with the exception of the status code err which has intent OUT. These options are

global in nature, and remain in effect until another call to option_stopwatch changes them.

The argument default-dock determines what clocks wiU be used for all subsequent operations in

which the clock argument is omitted. This allows you to specify what clocks you are interested

in once and for aU, and not have to specify those clocks with every subroutine call. The initial

default value is (/’cpu ’, ’user’, ’sys ’, ’wall’/), i.e., all clocks. However, if any clocks are not

available in the implementation, they will be automatically removed from the Hst of default

clocks.

Printed output can be redirected to any valid I/O unit number, io-unit-print determines the

unit for output from subroutine print_watch. io-unit-error determines the unit for any error

messages printed by StopWatch. When an I/O unit is reset by one of these variables, the unit

must already be open for writing. The initial default is 6 for both I/O units, which is standard

output on many systems.

What to do when an error occurs is controlled by the two logical variables print-errors and

abort-errors. If print-errors is TRUE, then an error message wiU be printed to io-unit-error

whenever an error condition occurs. In all cases where an error can be detected, the program

can continue to execute, although the behavior of StopWatch might not be as expected. If

abort-errors is TRUE, then the program will terminate when an error condition occurs. The

initial defaults are TRUE for print-errors and FALSE for abort-errors.

38

The argument print.form determines the form for printing time when form is omitted in

print-watch. Currently all the forms print the time to .01 seconds. The valid values for

print-form are:

’sec’, seconds

’hh:mm:ss’, colon separated hours, minutes and seconds

’[[hh:]mm:]ss’, same as ’hh:mm:ss’ except hours and minutes are printed only if nonzero

The default value is ’sec’.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

The relevant status codes and messages are:

0 No errors; execution successful.

8 Invalid clock type. This occurs if default-dock is present and one of the specified clocks

is not supported by the implementation. See inquiry_stopwatch(3) to determine what

clocks are available.

16 Too many clocks specified. This occurs when the argument default-dock is an array longer

than four.

256 I/O unit is not open for writing. The I/O unit requested for io-unit-print oi io-unit-error

is not open for writing.

512 Failed to allocate required memory. This error occurs if the Fortran allocate statement

returns a nonzero status indicating that memory could not be allocated. Avoid memory
leaks by always destroying watches and groups before recreating them, and destroying

local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating memory. Be aware that other

problems could develop as a result of the deallocate error.

2048 Illegal output form. This error occurs if print-form is not one of the strings hsted above.

In addition to the run time diagnostics generated by STOPWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

call option_stopwatch(default_clock=’ cpu’ , abort_error= .true .

)

call option_stopwatch(iojunit_print=ll , io_unit_error=12)

The first call sets the default clock to be the cpu clock and says to terminate the program if an

39

error occurs. The second call reassigns the I/O units.

BUGS

None known.

40

PAUSE.WATCH

pauses a StopWatch watch

SYNOPSIS

subroutine pause-waich (watch, clock, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent (IN) :: watch

character(len=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent(IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Pauses the specified clocks of the specified watches. This is useful when you want to tem-

porarily stop the clocks to avoid timing a small segment of code, for example printed output

or graphics, but do not know which watches or clocks are running. When pause.watch is

called, the information about which of the clocks were running is maintained, so that a sub-

sequent call to end_pause_watch wOl restart only those clocks that were running. Watches

that are paused can not be started, stopped, reset, or paused again until they are resumed by

end_pause_watch. However, they can be read and printed.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to pause one watch, an array of type watchtype to pause several

watches, or a variable of type watchgroup (see stopwatch(3)) to pause the watches in a group.

The optional argument clock specifies which clocks to pause on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are paused. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print.errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

41

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

K abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be paused.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to pause a watch that has

been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

2 Watch is in the wrong state for this operation. This occurs when you attempt to pause a

watch that is currently paused.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When pause_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are paused, but be aware that other problems

could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

type (watchtype) wl, w2(3)

t3rpe (watchgroup) gl

integer errcode

call pause_watch(wl)

42

call pause_watch(w2, err=errcode)

call pause_watch(gl, (/’cpu ’wall’/), errcode)

The first call pauses the default clocks on a single watch. The second call pauses the default

clocks on three watches given as an array and returns a status code. The third call pauses the

cpu and waU clocks on the watches in the group gl, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into pause_watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers wiU allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

43

PRINT-WATCH

prints tlie current value of a StopWATCH watch

SYNOPSIS

subroutine print _watch(^it;atc/i, clock, title, form, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent(IN) :: watch

character(len=*)j optional, intent(IN) :: clock

OR character(len=*), optional, intent(IN) :: clock(:)

character(len=*), optional, intent (IN) :: title, form

integer, optional, intent(OUT) :: err

DESCRIPTION

Prints the specified clocks of the specified watches. A title line is printed followed by two lines

for each watch. The first contains the name of the watch, which was defined in create_watch(3)

and maintained internally, and the second contains the values of the specified clocks. Output is

written to a user specified I/O unit (see option_stopwatch(3)) which is 6 by default. Clocks

can be printed regardless of whether they are running, stopped or paused.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to print one watch, an array of type watchtype to print several

watches, or a variable of type watchgroup (see stopwatch(3)) to print the watches in a group.

The optional argument clock specifies which clocks to print from the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are printed. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

The optional argument title is a character string to be printed before printing the watch values.

If omitted, the string “Times printed by StopWatch:” is printed.

The optional argument form determines the form for printing time. Currently aU the forms

print the time to .01 seconds. The valid values are:

’sec’, seconds

’hh:mm:ss’, colon separated hours, minutes and seconds

44

’[[hli:]niin:]ss’, same as ’hhimmiss’ except hours and minutes are printed only if nonzero

If omitted, the current default form is used. The default form is initially ’sec’ and can be reset

by option_stopwatch(3).

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be printed.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to print a watch that has

been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.

8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

256 I/O unit is not open for writing. The I/O unit to which print.watch expects to write is

not open for writing. The I/O unit number is set by io-unit-print in option_stopwatch

and is 6 by default.

512 Failed to allocate required memory. When print_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are printed, but be aware that other problems

could develop as a result of the deallocate error.

2048 Illegal output form. This error occurs if form is not one of the strings listed above.

In addition to the run time diagnostics generated by StopWatch, the following problem may

45

arise:

• In Fortran 90, the character strings in an array constructor must aU have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu

EXAMPLES

type (watcht3rpe) wl, w2(3)

type (watchgroup) gl

integer errcode

caill print_watch(wl)

call print_watch(w2, title=^Array of 3 watches’, err=errcode)

call print_watch(gl, (/’cpu ’, ’wall’/), errcode)

The first call prints the default clocks from a single watch, and the default title. The second caU

prints the default clocks on three watches given as an array and the title “Array of 3 watches”,

and returns a status code. The third caU prints the cpu and waU clocks on the watches in the

group gl, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create.watch or create.watchgroup). K a watch or watch group

that has never been created is passed into print.watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers wiU aUow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

46

READ_WATCH

reads the valiies from a StopWatch watch

SYNOPSIS

subroutine TGadjwa.tch. (readjresult, watch, clock, err)

real, intent(OUT) :: read_result

OR real, pointer :: read_result(:)

OR real, pointer read_result(:,:)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

character(len=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent(IN) clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Returns the value of the specified clocks from the specified watches. The result is returned in

read-result. Clocks can be read regardless of whether they are running, stopped or paused.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to read one watch, or an array of type watchtype to read several

watches, watch can not be a watchgroup because there is no natural order of the watches in the

group to use in constructing an array for the result.

The optional argument clock specifies which clocks to read from the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are read. If present, clock nmst

be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

The type of read-result must agree with the form of the arguments watch and clock:

• If watch is a scalar and clock is a scalar, then read-result must be a real scalar.

• If watch is an array and clock is a scalar, then read-result must be a pointer to a rank 1

real array. The entry of the result is the specified clock value on watch(i).

• If watch is a scalar and clock is either an array or omitted, then read-result must be

a pointer to a rank 1 real array. The entry of the result is the value in clock(i)

on the specified watch. In the case that clock is omitted, note that the default clocks

47

specify the contents of the result, and the default clocks can be determined using in-

quiry_stopwatch(3).

• If watch is an array and clock is either an array or omitted, then readjresult must be a

pointer to a rank 2 real array. The entry of the result is the value in clock(j) on

watch(i).

If read-result is a pointer to an array, it will be allocated by read.watch, and should be

deallocated after use to avoid memory leakage.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program wiU continue execution but the watch(es) wiU not be read.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to read a watch that has

been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When read_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are read, but be aware that other problems could

develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may

48

arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu

EXAMPLES

t 3rpe (watcht 3rpe) wl, w2(3)

real x

real, pointer :: y(:), zC:,:)

integer errcode

call read_watch(x, wl, ’user’)

call read_watch(y , wl, err=errcode)

call read_watch(z, w2, (/’cpu ’, ’wall’/), errcode)

deallocate (y, z)

The first caU reads the user clock on a single watch. The second call reads the default clocks

on a single watch and returns a status code, y is allocated with dimension equal to the number

of default clocks. The third call reads the cpu and wall clocks from three watches given as

an array and returns a status code. The deallocate statement frees the memory allocated in

read.watch.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create.watchgroup). If a watch or watch group

that has never been created is passed into read_watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

49

RESET_WATCH

resets a StopWatch watch to 0.0

SYNOPSIS

subroutine reset.watch ('watch, clock, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent(IN) :: watch

character(len=*), optional, intent (IN) :: clock

OR character(len=*), optional, intent(IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Resets the specified, clocks of the specified watches to 0. Clocks can be reset regardless of

whether they are running or not.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to reset one watch, an array of type watchtype to reset several

watches, or a variable of type watchgroup (see stopwatch(3)) to reset the watches in a group.

The optional argument clock specifies which clocks to reset on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are reset. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print.errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be reset.

50

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to reset a watch that has

been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

2 Watch is in the wrong state for this operation. This occurs when you attempt to reset a

watch that is currently paused.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When reset_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are reset, but be aware that other problems could

develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must aU have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

type (watcht 3rpe) wl, w2(3)

tjrpe (watchgroup) gl

integer errcode

call reset_watch(wl)

call reset_watch(w2, err=errcode)

call reset_watch(gl, (/’cpu ’wall’/), errcode)

The first call resets the default clocks on a single watch. The second call resets the default

clocks on three watches given as an array and returns a status code. The third call resets the

cpu and waU clocks on the watches in the group gl, and returns a status code.

51

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into reset_watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

52

START-WATCH

starts a StopWatch watch

SYNOPSIS

subroutine staTt-wa.tch (watch, clock, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent(IN) :: watch

character(leii=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent(IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Starts the specified clocks of the specified watches. Any time previously accumulated in the

clock is NOT cleared before starting. (Use reset.watch to clear accumulated time.)

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to start one watch, an array of type watchtype to start several

watches, or a variable of type watchgroup (see stopwatch(3)) to start the watches in a group.

The optional argument clock specifies which clocks to start on the specified watch(es). If

omitted, the current default clocks (see option_stopwatch(3)) are started. If present, clock

must be a character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character

strings.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values hsted below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print.errors to TRUE if you

have trouble determining the cause of the error.

If abort.errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be started.

53

See option_stopwatch(3) for further information on print.errors, abort.errors and I/O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to start a watch that has

been destroyed. The watch must first be created again. See also the comment about

watches that have never been created in the BUGS section.

2 Watch is in the wrong state for this operation. This occurs when you attempt to start a

watch that is currently running or paused.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When start_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are started, but be aware that other problems

could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

type (watcht 3rpe) wl, w2(3)

t 3rpe (watchgroup) gl

integer errcode

call start_watch(wl)

call stELrt_watch(w2, err=errcode)

call start_watch(gl, (/’cpu ’wall’/), errcode)

The first call starts the default clocks on a single watch. The second call starts the default

clocks on three watches given as an array and returns an status code. The third call starts the

cpu and wall clocks on the watches in the group gl, and returns a status code.

54

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into start.watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

55

STOP-WATCH

stops a StopWatch watch

SYNOPSIS

subroutine stop-waich (watch, clock, err)

type (watchtype), intent(IN) :: watch

OR type (watchtype), intent(IN) :: watch(:)

OR type (watchgroup), intent(IN) :: watch

character(len=*), optional, intent(IN) :: clock

OR character(len=*), optional, intent (IN) :: clock(:)

integer, optional, intent(OUT) :: err

DESCRIPTION

Stops the specified clocks of the specified watches.

One or more watches must be specified. The argument watch can be a single variable of type

watchtype (see stopwatch(3)) to stop one watch, an array of type watchtype to stop several

watches, or a variable of type watchgroup (see stopwatch(3)) to stop the watches in a group.

The optional argument cZocfc specifies which clocks to stop on the specified watch(es). If omitted,

the current default clocks (see option_stopwatch(3)) are stopped. If present, clock must be a

character string containing ’cpu’, ’user’, ’sys’, or ’wall’, or an array of such character strings.

DIAGNOSTICS

K present, the optional intent OUT integer argument err returns a status code. The code is

the sum of the values listed below.

An error message will be printed to a specified I/O unit (unit 6 by default) if print-errors is

TRUE (default is TRUE). The error message contains more detail about the cause of the error

than can be obtained from just the status code, so you should set print-errors to TRUE if you

have trouble determining the cause of the error.

If abort-errors is TRUE (default is FALSE), the program will terminate on an error condition.

Otherwise, the program will continue execution but the watch(es) will not be stopped.

See option_stopwatch(3) for further information on print-errors, abort-errors and I/O units.

56

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to stop a watch that has been

destroyed. The watch must first be created again. See also the comment about watches

that have never been created in the BUGS section.

2 Watch is in the wrong state for this operation. This occurs when you attempt to stop a

watch that is currently paused or not running.

4 Watch is in an unknown state. This occurs if StopWatch does not recognize the state

(running, stopped, etc.) that the watch is in. This error should not occur, and indicates

an internal bug in StopWatch.
8 Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inquiry_stopwatch(3) to determine what clocks

are available.

512 Failed to allocate required memory. When stop_watch is called with an array or group

of watches, temporary memory is allocated. This error occurs if the Fortran allocate

statement returns a nonzero status indicating that memory could not be allocated. Avoid

memory leaks by always destroying watches and groups before recreating them, and de-

stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are stopped, but be aware that other problems

could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by StopWatch, the following problem may
arise:

• In Fortran 90, the character strings in an array constructor must all have the same length.

Pad three letter clock names with a blank on the right to make a four character string,

for example, ’cpu ’.

EXAMPLES

type (watchtype) wl, w2(3)

type (watchgroup) gl

integer errcode

call stop_watch(wl)

call stop_watch(w2, err=errcode)

call stop_watch(gl , (/’cpu ’wall’/), errcode)

The first call stops the default clocks on a single watch. The second call stops the default clocks

on three watches given as an array and returns a status code. The third call stops the cpu and

wall clocks on the watches in the group gl, and returns a status code.

57

BUGS

It cannot be determined whether or not a watch variable or watch group has been created

(passed as an argument to create_watch or create_watchgroup). If a watch or watch group

that has never been created is passed into stop.watch, it might generate a Fortran error

due to passing a pointer with undefined association status to the Fortran intrinsic function

associated. Some compilers will allow this as an extension to the Fortran 90 standard and

recognize that the pointer is not associated, in which case the “Watch needs to be created”

error message is generated.

58

ttfiifciitfililif'''

