
NIST Form-Based Handprint
Recognition System
(Release 2.0)

Micheal D. Garris

James L. Blue
Gerald T. Candela
Patrick J. Grother
Stanley A. Janet
Charles L. Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Information Technology Laboratory

Information Access and User Interfaces Division

Gaithersburg, MD 20899-0001

QC
100

.U56

N0.5959

1997

NIST

^1

•'y

'3

'-

..^uka

NISTIR 5959

NIST Form-Based Handprint
Recognition System
(Release 2.0)

Micheal D. Garris

James L. Blue
Gerald T. Candela
Patrick J. Grother
Stanley A. Janet

Charles L. Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Information Access and User Interfaces Division

Gaithersburg, MD 20899-0001

January 1997

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

mass-

j' :v v^s"; \ ;

fa ’ .' •
tw ...

^ ^

*-• -I

^ -t

’Hi 'llV'v^
f'’» 'V-

- *•

%

'

M' .,'
-

';4
i"

*

r '.i

!»**
|! £

",

»• •• ir*.
'

5/
'- '.

’I;,
.4 ,

•'>"}*
' '

‘Z

, ,y>.. ,

'.ii'fr'*'

' ''

'

.ji.

,!^
•

: » -i'

i'

1
';s> V-

'
'

!

^-' A. , vrtf-
' ^
.liifL^

7ltt.

!^#' 1', v#,;

rfr'V.*:*!.',

r'*'

,
0

:
r

‘^’
/ '-J v«^'Y«eiA:r

|
.y- r mi I

.•'*.'
.

. J *'-i* *

•:j.c*^'

.'. ' f.-iMiycW:;®

.

'

‘^1
,-k

,
'

V

'rwsJiUS^^ '.^M ..

>: .\: «
.-

v‘-

NIST Form-Based Handprint Recognition System

(Release 2.0)

NISTIR 5959

Michael D. Garris, James L. Blue, Gerald T. Candela,

Patrick J. Grother, Stanley A. Janet, and Charles L. Wilson

National Institute of Standards and Technology,

Building 225, Room A216
Gaithersburg, Maryland 20899

ACKNOWLEDGEMENTS

We would like to acknowledge the Internal Revenue Service and the Bureau of the

Census who provided funding and resources in conjunction withNIST to support the

development of this standard reference optical character recognition system.

TABLE OF CONTENTS
1. INTRODUCTION 1

1 . 1 First System Release 2

1 .2 Second System Release 3

1.3 Document Oiganization 3

2. INSTALLATION INSTRUCTIONS 5

2.1 Installing from CD-ROM 5

2.2 Organization of Software Distribution 7

2.3 Source Code Subdirectory 9

2.4 Automated Compilation Utility 10

3. INVOKING TEST-BED PROGRAMS 13

3 . 1 mis2evt - computing eigenvector basis functions 1

3

3.2 mis2patl - generating patterns for the PNN classifier 15

3.3 hsfsysl - running the updated version of the origmal NIST system 17

3.4 mis2pat2 - generating patterns for training the MLP classifier 19

3.5 trainreg - training to register a new form 21

3.6 hsfsys2 - rurming the new NIST recogniticm system 22

4. ALGORITHMIC OVERVIEW OF NEW SYSTEM HSFSYS2 24

4.1 The Application 24

4.2 System Components 24

4.2.1 Batch Initialization; src/lib/hsf/run.c; init_run0 25

4.2.2 Load Form Image; src/libAmage/readrast.c; ReadBinaryRasterO 26

4.2.3 Register Form Image; src/lib/hsf/regform.c; genregformSO 26

4.2.4 Remove Form Box; src/lib/rmlineA'emove.c; rm_long_hori_lineO 27

4.2.5 Isolate Line(s) of Handprint; src/lib/phrase/phrasm^.c; phrases_from_mapO 28

4.2.6 Segment Text Line(s); src/lib/adseg/segchars.c; blobs2chars80 29

4.2.7 Normalize Characters; src/lib/hsf/norm8.c; norm_2nd_gen_blobls80 3

1

4.2.8 Extract Feature Vectors; src/lib/im/ld.c; kl_transformO 32

4.2.9 Classify Characters; src/lib/mlp/runmlp.c; mlphypsconsO 32

4.2. 10 Spell-Correct Text Line(s); src/lib/phrase/spellphr.c; spell_phrases_Rel20 32

4.2.11 Store Results; src/lib/fet/writefet.c; writefetfileQ 34

5. PERFORMANCE EVALUATION AND COMPARISONS 35

5.1 Accuracies and Error Rates 35

5.2 Error versus Rejection Rate 40

5.3 Timing and Memory Statistics 41

6. IMPROVEMENTS TO THE TEST-BED 44

6.1

Processing New Forms with the HSFSYS2 44

7. FINAL COMMENTS 45

8. REFERENCES 46

A. TRAINING THE MULTI-LAYER PERCEPTRON (MLP) CLASSIFIER OFF-LINE 48

A.1 Training and Testing Runs 48

A.2 Specification (Spec) File 49

A.2.1 String (Filename) Farms 49

A.2.2 Integer Farms 50

A.2.3 Floating-Foint Farms 5

1

A.2.4 Switch Farms 52

A.3 Training the MLF in hsfsys2 55

A.4 Explanation of the ou^ut produced dming MLF training 56

A.4.1 Fattem-Weights 56

A.4.2 Explanation of Output 56

A.4.2.1 Header 56

A.4.2.2 Training Frogress 57

A.4.2.2.1 Second progress lines 58

A.4.2.2.2 First progress lines 59

A.4.2.2.3 Fruning lines (optional) 60
A.4.2.3 Confusion Matrices and Miscellaneous Infonnatim (Optiraial) 61

A.4.2.4 Final Frogress Lines 63

A.4.2.5 Correct-vs.-Rejected Table (Optional) 64
A.4.2.6 Final Information 65

ii

NIST Form-Based Handprint Recognition System

(Release 2.0)

Michael D. Garris (mgarris@nist.gov)

James L. Bliie, Gerald T. Candela, Patrick J. (jirother,

Stanley A. Janet, and Charles L. Wilson

National hostitute of Standards and Technology,

Building 225, Room A216
Gaithersburg, Maryland 20899

FAX: (301)840-1357

ABSTRACT

The National Institute of Standards and Technology (NIST) has developed a new release of a standard refer-

ence form-based handprint recognition system for evaluating optical character recognition. As with the first release,

NIST is making the new recognition system fireely available to the general public on CD-ROM. This source code test-

bed, written entirely in C, contains both the original and the new recognition systems. New utilities are provided for

conducting generalized form registration, intelligent form removal with character stroke preservation, robust text-line

isolation in handprinted paragraphs, adaptive character segmentation based on writing style, and sophisticated Multi-

Layer Perceptron (MLP) neural network classification. A software implementation of the machine learning algorithm

used to train the new MLP is included in the test-bed, enabling recipients to train the neural network for pattern rec-

ognition applications other than character classification. A host of data structures and low-level utilities are also pro-

vided. These include the application of spatial histograms, affine image transformations, simple image morphology,

skew crxrection, cormected components, Karhimen Lo^ve feature extraction, dictionary matching, and many more.

The software test-bed has been successfully compiled and tested on a host ofUNIX workstations including computers

manufactured by Digital Equipment Corporation, Hewlett Packard, IBM, Sihcon (jraphics Incorporated, and Sim

Microsystems.^ Approximately 25 person-years have been invested in this software test-bed, and it can be obtained

free of charge on CD-ROM by sending a letter of request via postal mail or FAX to NIST. This report documents the

new recognition software test-bed in terms of its installation, organization, and functionality.

1. INTRODUCTION

In August of 1994, the National Institute of Standards and Technology (NIST) released to the public a stan-

dard reference form-based handprint recognition system for evaluating optical character recognition (OCR) [1]. The

system served as a vehicle for transferring recognition and performance assessment technology from our government

laboratory to system developers and researchers in the private sector. As of August 1996, over 700 copies of the tech-

nology had been distributed to more than 40 countries around the world. This was NIST’s first large-scale public

domain OCR technology transfer, and by all accounts it has been a tremendous success.

Since 1994, NIST has continued to conduct research in form-based handprint recognition. This research is

critical to the continued advancement of the technology. This is especially true with regards to system integration.

Form-based OCR has the potential of solving many economically important problems using state-of-the-art technol-

ogy, but currently there is no universal c^-the-shelf solution available for large-scale, centralized forms processing

applications. These applications are comprised ofmany tasks or functional components, and the literature contains a

plethora of algorithms and techniques for accomplishing these various tasks [2]. Even so. one cannot expect to be able

to arbitrarily pick and choose techniques available as off-the-shelf products, organize them into a standard work flow,

and proceed to universally solve applications. The fact is, interactions between components are often nonlinear and

1 . Specific hardware and software products identified in this pap)er were used in order to adequately support the development of the tech-

nology described in this document In no case does such identification imply recommendation or endwsement by the National Institute

of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.

1

non-additive [2], The economically useful systems being deployed today are successfiil because they are constructed

from components that have been customized to capitalize on all the constraints afforded by a particular application.

The more constraints available and incOTporated, the higher the probability of success. Therefore, these systems are

defined more by their intended ^plication than by available general purpose tK^hnolpgy.

The interactions between recognition system components are complex and difficult to model, therefOTe it is

not possible with conventional knowledge to measure the perfonnance of a componentm isolation and to predict a

component’s impact ou overall system performance. The only meaningful way to compare alternative components for

use in an application is by integrating each alternative into an end-to-end system and cranparing their impact on overall

system performance. This has been the focus ofmuch of our research, as effective perframance assessment facilitates

the comparison of technical alternatives and more importantly helps insure successful deployment rf technology to

specific applications. To support this research, NIST has developednumerous algorithms mid techniques, and to study

their impact chi recognition performance, these components have been integrated into a prototype (or test-bed) system.

This software test-bed is what comprises fltis new release of the NIST fram-based handprint recognition system.

Using the software test-bed, a component of the system may be easily replaced by an alternative algorithm.

The same set of input data can be run through the augmented system, and performanres between the ori^nal and aug-

mented system canbe compared. Also, by retraining and toting the reco^timi system in a confrolled fashion, framing

sets can be collected and evaluated that improve system robustness. Developers may find ftat the techniques provided

in the standard reference test-bed provide ccwnplementary results to theirown systems. If this is the case, then ccmbin-

ing their recognition results with those from NIST may improve overall recognitiOTi performance.

A CD-ROM distribution of this software can be obtained free of charge by smding a letter erf request via

postal mail orFAX to Michael D. Garris at the address above. Requests made by electronic mail will not be accepted,

however electronic mail is encouraged for handling technical questions. The letter, preferably on company letterhead,

should identify the requesting organfration or individuals. Any portion of this softwm'e test-bed may be used without

restrictions because it was oreated with U.S. government funding. This software test-bed was produced by NIST, an

agency of the U.S. government, and by statute is not subject to copyright in the United States. Redistribution rf tins

standard reference software is strongly discouraged as any subsequent COTrections or updates will be sent to re^stered

recipients only. Recipients of this software assume all responsibilities associated with its op^ation, modMcaticm, and

maintenance.

1.1 First System Release

This new software release contains the latest technology from our labOTatory. Due to the factors desoibed

above, there is no best algorithm for a specific system component, and there is no best suite ofcomponents to comprise

a universal system. The questiem should not be which componmt algorithm is best, but rather which combination of

algorithms performs best for a particnilar application. What worics best for one applicatim may not wcffk as well for

another. Therefore, this new technolcigy does not necessarily replace or make the technology distributed in the first

release obsolete. As a result, the new software distributiem cxjntains both the new and tiie origmal recognition systems.

The new system is an embellishment to the old one.

The software provided with the first release remmns mostly intact We are happy to say that, among the more

than 700 recipients over that last two years, there were only a handful of bugs reported from the 19,000 lines of code

distributed. These included a couple erf syntax errexs and a few memory inefficiencies and leaks. None of these prob-

lems were reported to cause fatal errors at run-time. By correcting one memory inefficiency, the time required by the

dictionary matching process was cut by more than 25%. Other inefficiencies removed include changing system calls

from callocQ to mallocQ wherever possible, thus avoiding die overhead ofunnecessarily za-oing outmernwy. By mak-
ing implementation changes to the existing algorithms, the first system’s execution time was reduced by more than

40%, and memory allocation requirements were reduced by 35%. The file doclchanges.txt lists the changes made to

the source code between its first and second release.

2

12 Second System Release

As already mentioned, the new release contains the latest improved technology from our laboratory. Alterna-

tives to system components are provided that are more general, more robust, and statistically more adaptive. >\^th the

new recognition system, the application remains the same. Both the new and the old systems are designed to read hand-

written responses on Handwriting Sample Fonns (HSF) like those distributed in NIST Special Database 19 (SD19)

[3]. An example of one of these completed forms is shown in Figure 1. The new system incorporates new methods for

form registration [4], form removal [5], text line isolation in handprinted paragraphs [6], character segmentation [7],

and new pattern classification [8]. The only component remaining virtually the same from the original system is the

dictionary-based spelling correction [9].

U Document Organization

This document provides installation instructions, describes the organization of the software test-bed including

its compilation and invocation, and presents a high-level description of each of the major algorithms utilized in the

new recognition systan. Section 2 contains instructions for installing the test-bed from CD-ROM. This includes a

description of the test-bed’s organization, the size of various parts of the distribution, and instructions on compiling

the provided software. Section 3 documents how each of the provided programs (excluding classifier training) were

used to generate the supporting files provided in the distribution and how these programs can be invoked on new sets

of data. Section 4 describes the major algorithms designed and integrated into the new NIST recognition system. Sec-

tion 5 contains comprehensive performance evaluation results. This section compares three recognition systems: the

original system as it was distributed in the first release, an updated version of the original system as it is distributed in

this release, and the new NIST recognition system containing the latest technology developed in our labOTatory. Results

are reported from running these systems across all ofSD 19. Statistics and comparisons are reported on character, word,

and field-level accuracies, error versus reject performances, system timings, and memory usages. To conduct this eval-

uation, a total of 3669 writers, 109,200 words, and 667,758 characters were used in the tests. Improvements to the soft-

ware test-bed are discussed in Section 6 along with a short description ofhow the new recognition system can be set

up to process new and different types of forms. A few final comments and concluding remarks are provided in Section

7, and references are listed in Section 8. Note that all NIST publications referenced in this document are provided in

PostScript format on the CD-ROM.

The NIST recognition software test-bed not only contains pre-trained classifiers, but it provides extensive

training data along with the machine learning algorithms implemented in software for retraining the classifiers. In fact

it is possible for recipients of this test-bed to train the provided classifiers on other pattern recognition apphcations, in

addition to character classification. The new NIST recognition system utilizes a sophisticated Multi-Layer Perception

(MLP) neural network-based classifier, the training program for which is documented in Appendix A.

3

HANDWRITING SAMPLE FORM

DAJE CITY STATE ZIP

Thin saiiq>Ie of haadwriting is being collected use in testing computer recognition of band printed numbers

and letters. Please print the following characters in the bmccs that appear below.

0123456789 0

/:>/»-iiHs-u~7 19 \G~i

1 a il6789 0123456789

3
07 420 5290 15860 932784

/s'S^g’a
459 6104 53943 420501 69^ S3i'/5 ¥q^s^o/ u ^
3291 60118 047763 56 607

35424 183567 52 067 1258

3tg%?V /^sr
193828 83 768 7146 79293

7JV& 79^93
ixnvlksjbuhtpwoygqefmdri: % 1

^K) V/ /Cs^ L^ h't fU (?y
EDOSMZLTUHGRXWKAFNVJYQIPCB

\-wp^Af:z.-rrvMG y/^A/^/i/i/'^y(^m
Pleaae print the following text in the box below:

Wb, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic

'KanquOity, provide for the camunon Defense, prmnote the general Welfare, and secure the Bksongs of Liberty to

oursdves and our posterity, do ordain and establish this CONSTITUTION f« the United States of America.

oftis. ,
_ ^ccT o h dVi

lolly "Me ^eo^Jc.

Figure 1. An example of a completed HSF form from SD19.

4

2. INSTALLATION INSTRUCTIONS

The public domain recognition system software is designed to run on UNIX workstations and has been suc-

cessfully compiled and tested on a Digital Equipment Corporation (DEQ Alpha, Hewlett Packard (HP) 9000, IBM
RS6000, Silicon Grraphics Incorporated (SGI) Indy and Challenge, and Sim Microsystems (Sim) SPARCstation 10 and

SPARCstaticm 2. Porting the software to smaller Personal Computer (PQ platforms is left entirely to the recipient as

NIST does not have resources allocated to support such efforts at this time.

As mentioned in the introduction, this distribution contains two different recognition systems. An updated

version of the original system, hsfsysl, is provided along with a new and improved system, hsfsys2. Unlike the first

release which contained some isolated FORTRAN, the new software release is written completely in C (traditional

Kemighan& Ritchie, not ANSI) and is organized into 15 libraries. In all, there are approximately 39,000 lines ofcode

supporting more than 725 subroutines. Source code is provided for tasks such as form registration, form removal, field

isolation, field segmentation, character normalization, feature extraction, character classification, and dictionary-based

posQjrocessing. A host of data stractures and low-level utilities are also provided. These utilities include the applica-

tion ofCCnr Group 4 decompression [10][11], IHead file manipulation [1], spatial histograms, Least-Squares fitting

[12], affine image transformations, skew correction, simple morphology [13], connected components, Karhunenixteve

(KL) feature extraction [14], Probabilistic Neural Network (PNN) classification [15], Multi-Layer Perceptron (MLP)

classification [16], and Levenstein distance dynamic string alignment [17].

Several other programs are provided that generate data files used by the two recognition systems. The first

program, mis2evt, computes a covariance matrix and generates eigenvectors from a sample of segmented character

images. The next prc)gram, mis2patl , produces prototype feature vectors for use with the PNN classifier in hsfsysl ,

while mis2pat2 produces prototype feature vectors for use with the new MLP classifier in hsfsys2. The program mlp

trains anMLP neural network on the feature vectors produced by mis2pat2 and stores the resulting weight matrices to

file for latCT use in classification. These feature vectors are computed using segmented character images and the eigen-

vectors produced by mis2evt. To support these programs, a training set of 1499 writers contributing 252, 124 segmented

and labeled character images is provided in the distribution. These writers correspond to partitions h^_4, hsf_6, &
hsfj in SD19.

2.1 Installing ffom CD-ROM

The NIST recognition software is distributed on CD-ROM in the ISO-9660 data format [18]. This format is

widely supported on UNIX workstations, DOS or Windows-based personal computers, and VMS computers. There-

fore, the distribution can be read and downloaded onto these various platforms. Keep in mind that the source code has

been developed to compile and run cm UNIX workstations. If necessary, it is the responsibility of the recipient to mod-

ify the distribution source ccxie so that it will execute on their particular computer architectures and operating systems.

Upon receiving the CD-ROM, load it onto your computer using a CD-ROM drive equipped with a device

driver that supports the ISO-9660 data format You may need to be assisted by your system administrator as mounting

a file system usually requires root permission. Then, recursively copy its contents into a read-writable file system.

Table 1 lists the size (in kilobytes) of the directories on the CD-ROM before and after compilation. The entire distri-

bution requires ^proximately 360 Megabytes (Mb) to copy. The top-level distribution directory doc contains just over

105Mb of PostScript reference documents, and the directory train about 27.5Mb of training data. These files are not

necessary to compile and run the recognition systems, so they do not have to be copied from the CD-ROM ifdisk space

is limi ted on your computer. However, the segmented characters within train are required if you wish to retrain any of

the neural network classifiers. The entire distribution requires approximately 365Mb upon compilation.

5

Directory Pre-Comp Post-Comp

./bin 1 1146

./data 637 637

./diet 1 1

./doc 105276 105276

.finclude 99 99

./lib 0 796

./man 54 54

./src 2232 5310

./tmplt 97 97

./train 27493 27493

./weights 224110 224110

./weights/pnn 55145 55145

./weights/mlp 168964 168964

Total 360000 365019

Table 1. Sizes (in 1024 byte blocks) of distributiom directories before and after compilation.

The CD-ROM can be mounted and the entire distribution copied with flie following UNIX commands on a

Sun SPARCstation:

mount -V -t hsfs -o ro /dev/srO /cdrom

mkdir Aisr/local/hsfsys2

cp -r /cdrom /usr/local/hsfsys2

umount -V /cdrom

where IdevIsrO is the device file associated with the CD-ROM drive, !cdrom represents the directory to which the CD-
ROM is mounted, and lusrilocal!hsfsysl is the directory into which the distribution is copied. If the distribution is

installed by the root user, it may be desirable to change ownership of the install aticm directory using the chown com-

mand. CD-ROM is a read-only medium, so copied directories and files are likely to retain read-only permissions. The

file permissions should be changed iising the chmod command so that directories and scripts within the copied distri-

bution are readable, writable, and executable. All catalog files should be changed to be read-writable. In general, source

code files can remain read-only. Section 2.2 identifies the location of these various file types within the distribution.

Specifically, the file bin!catalog,csh must be assigned executable permission, and files with the name catalog, txt under

the top-level src directory must be assigned read-writable permission.

By default, the distribution assumes the installation directory to be iusrilocalihsfsysl. If this directory is used,

the software can be compiled directly without any path name modifications. To minimize installation complexity, the

directory iusrilocalihsfsysl should be used if at aU possible. If insufficient space exists in your lusrilocal file system,

the installation can be copied elsewhere and referenced through a symbolic link.

Ifyou decide to install this distribution in some other directory, then editing a number of source code files will

be necessary prior to compiling the programs Edit the line “PROJDIR = /usr/local/hsfsys2” in the file makefile.mak in

the top-level installation directory, replacing lusrilocal!hsfsysl with the full path name of the installation directory you

have chosen. Likewise replace all references to !usr!local!hsfsysl in the files hsfsys.h and hsfsysl.h found in the top-

level directory include. Remember, to make these file modifications, the permission of these files will have to be

changed first. Once these edits are made, follow the instructions in Section 2.4 for compilation.

6

22 Organization of Software Distribution

<instaUation directory>

bin data diet doc include lib man sre tinplt train weights

Figure 2. The top-level directory structure in the software distribution.

The top-level directories in this distribution are shown inRgure 2. The first directesy, bin, holds all distributed

shell scripts and locally compiled programs that suppeat the recognition system. The full path name to this directory

should be added to your environment’s search path pricff to compilation. Upon successful compilation, the programs

mis2evt, mislpatl , hsfsysl , mislpatl, trainreg, mlp, and hsfsys2 are installed in the top-level bin directory. Instructions

on running these programs are provided in Section 3 with the exception ofmlp which is discussed in Appendix A. The

directory bin also contains the file catalog.esh that must be assigned executable permission. This file is a C-shell script

that is used to automatically catalog programs and library routines.

The directory data contains 10 subdirectories,^(?(90_i4 throughf0009_06, containing completed HSF forms

from SD19. Each subdirectory holds a form image in an IHead femnat file with extension pet, a reference file with

extension re/(listing the values the writo’ was instructed to enter in each field), three system output files generated by

hsfsysl, and two system output files generated by h^sys2. The hypothesis file with extension hyl lists aU the field val-

ues recognized on the form by hsfsysl

,

while the file with extension hy2 lists all those recognized by hsfsys2. The con-

fidence file with extensiem col lists the corresponding confidence values for each character classification reported by

hsfsysl

,

while the file with extension co2 lists confidence values for hsfsys2. A timing file with extension til

,

generated

by hsfsysl, is also provided in each form directory. A single timing report, hsfsys2.ti2, generated by hsfsys2 running

across all 10 forms, is stored in the top-level directory data. AU of these system output files were generated at NIST
on a Sun SPARCstation 2 with a Weitek CPU upgrade.

The directory diet contains the dictionary file const.mfs listing in alphabetical order aU the words present in

the Preamble to the U.S. Constitution. The directory include holds aU the header files that contain constants and data

structure definitions required by the recognition system source code. The directory lib holds aU locaUy compiled object

code libraries used in compiling the distribution programs. The directory sre contains aU the source code files (exclud-

ing header files in the top-level directory include) provided with the recognition system distribution. The organization

of sre subdirectories is discussed in Section 2.3.

Documentation on this software test-bed is provided in the top-level directory doc. The file changes.txt lists

aU the source code modificaticais made to the software between the first and second releases. A significant number of

PostScript reference documents are also contained in this directory. The PostScript file for this specific document is

hsfsys2.ps. The remaining files in this directory form a bibliography of papers and reports published by NIST that are

relevant to this software release. For example, the user’s guide for the first release of the software, NISTIR 5469 [1],

is contained in the file bib_15.ps. NISTIR 5469 should be referenced for its algorithmic description of the original rec-

ognition system which in the new release is renamed hsfsysl and contains only minor modifications. The installation

and oiganizaticHial notes included in bib_15.ps are made obsolete by the notes provided in this (the new release) user’s

guide. The bibUography files are assigned file names according to the order of their publication date. The text file bib_-

lis.txt cross-references aU the bibUography file names to their associated pubUcation titles and fuU references. AU but

three of the bibUography files are PostScript documents ending with the extension ps. The files bibj)5.tar and

bib_13.tar were created with the UNIX tar command, and they contain multiple PostScript files. For example, the

PostScript files contained in the file bib_05. tar can be extracted into the current working directory using the foUowing

command:

% tar xvf bib_05.tar

7

The files bibJ4.ps and bibJ4.z contain the Second Census Optical Character Recognition Systems Conference report

[19]. The first part is a PostScript file, whereas the second part is aUNIX compressed tar file. To extract the PostScript

files archived m bib_14.z, use the following command. Warning, extracting these files requires a large amount of disk

space.

% zcat < bib_14.z I tar xvf -

On-line documentation is also provided in the top-level directory man in the form of UNIX-style manual

pages. These Tnannal entries give instructions on running each of the programs provided in the test-bed. For example,

assuming the installation directory is /usr/local/hsfsys2, one can bring up a manual page on the screen for the program

mislevt by typing the following command on a Sun workstation. Command options may vary on your particular sys-

tem.

% man -M /usr/local/hsfsys2Anan mis2evt

The directory tmplt contains files pertaining to the processing of HSF forms. A blank HSF form is provided

in both Latex and PostScript formats. The Latex file hsf_0.tex or the PostScript file hsf_0.ps can be printed, filled in,

scanned at 12 pixels per millimeter (300 dpi), and then recognized by both recognition systems. The points used to

register an HSF form in hsfsysl are stored in the file hsfreg.pts. The coordinates used to register forms in hsfsysl are

stored in the file hsfgregpts. Hsfsys2 uses a generalized method of form registration that is automatically trained with

the program trainreg. Points defining the location ofeachHSF entry field are stored in the file hsftmplt.pts. A registered

blank HSF form image is stored in the file hsftmplt.pct, and a dilated version of this form used for form removal in

hsfsysl is stored in the file hsftmplt.dA.

A large sample of training data is provided in the top-level directory train. As mentioned earlier, there are

252,124 segmented and labeled handprint characters contained in this directory. In all there are 179,829 images of

handprint digits, 35,783 lowercase letters, and 36,5 12 uj)percase letters. The handprint from 1499 different writers are

represented in this set <rfcharacter images, which is divided among three subdirectories hsf_4, hsf_6, and hsf_7. These

subdirectories correspond directly to those distributed in SD19. The images of segmented characters are stored in the

Multiple Image Set (MIS) file format [1]. Each MIS file ends with the extension mis. Those files beginning with d con-

tain data related to handprint digits, files beginning with / correspond to lowercase letters, and files beginmng with u

correspond to uppercase lettCTS. The four digit number embedded in each file name is an index identifying the writer.

For each MIS file in the training set, th^e is an associated classification file containing the identity of each character

contained in the MIS file. These classification files end with the extension els. The first line in a classification file con-

tains the number of character images contained in the corresponding MIS file. All subsequent lines store the identity

(in hexadecimal ASCH representation) of each successive character image. MIS files containing images of lowercase

letters have a second classification file associated with them that ends with the extension cus. These files stcffe the iden-

tity of each lowercase letter as their corresponding uppercase equivalent. For example, an image of the lowercase char-

acter ‘k’ is stored in a els file as 6b, whereas it is stored in a cm file as 4b (the hexadecimal ASCII representation for

the uppercase character K). The labelling of lowercase letters as uppercase is used when classifying characters in the

Preamble box.

The last top-level directory weights holds the files associated with feature extraction and character classifica-

tion. This directory is divided into two subdirectories. Subdirectory pnn contains files that support the PNN classifier

used in hsfsysl, whereas the subdirectory mlp contains files tiiat support the MLP classifier tised in hsfsys2. The files

under each of these two subdirectories are organized according to the types of fields found on an HSF form. Digit con-

tains files for numeric recognition, lower for lowercase recogrution, upper for uppercase recognition, and const for Pre-

amble recognition. Within the weightsipnn subdirectories, files with the extension evt were generated by the program

mis2evt and contam eigenvector basis functions used to compute Karhunen Lo^ve (KL) coefficients. The pattern (or

prototype) files with the extension pat contain training sets ofKL prototype vectors and a search tree [20] used by the

PNN classifier. Files with extension medm this subdirectory contain class-based median vectors computed from the

prototypes stored in the corresponding pat file. Pattern and median vector files stored underpnn were computed by the

program mis2patl.

8

The files in weightsipnnidigit. h6_d.evt, h6_d.pat, and k6_d.med were computedfrom 61 ,094 images of digits

in trainlhsf_6 and are usedby hsfsysl to compute features and classify segmented images of digits. The files in weights/

pnnJlower: h46_l.evt, h46_lpat, and h46J.med were computed from 24,205 lowercase images in both train/hsf_4 and

train/hsf_6 and are used by hsfsysl to compute features and classify lowercase characters. The files in weights/pnn/

upper: h46_u.evt, h46_u.pat, and h46j4.med were computed from 24,420 uppercase images in both train/hsf_4 and

train/hsf_6 and are used by hrfsysl to compute features and classify uppercase characters. The files in weights/pnn/

const. h46_ul.evt, h46_ul.pat, and h46_ul.med were computed from 48,625 images of both lower and uppercase in

train/hsf_4 and train/hsf_6 and are used by hsfsysl to compute features and classify characters for lower and uppercase

combined. Two additional pairs of evt, pat, and med files are provided so that computers with limited memory of at

least 8 Megabytes are able to execute aU options of h^sysl. The files in weights/pnn/const. h6_ul_s.evt, h6_ul_spat,

and h6_ul_s.med were computed from 24,684 images of both lower and uppercase only in train/hsf_6, whereas in

weights/pnnJdigit. h6_d_s.evt, h6_d_s.pat, and h6_d_s.med were computed from 21,293 images of digits in train/

hsf_6. In general, the recognition accuracy of the PNN classifio’ decreases as the number of prototypes is decreased.

Therefore, the larger pattern files should be used when possible.

Unlike thePNN classifier, the MLP classifier requires extensive off-line training, and this is performed by the

program mlp. The MLP classifier also uses KL feature vectors, but in a different file format than is used by PNN. The

program mis2evt is used to compute eigenvector basis functions, and mis2pat2 is used to generate pattern files for use

with the program mlp. Wfithin the weights/mlp subdirectories, eigenvectors are stwed in files with extension evt, pattern

files with extension pat, and output weights files from the program mlp are stored with extension wts. The same set of

writers and characters was used to train the MLP classifier (on digits, lowercase, uppercase, and mixed case for the

Preamble box) that were used to generate the patterns files for the PNN. An additional set of 500 writers contained in

train/hsf_7 was used as an evaluation set during the off-line training of the MLP. Appendix A describes how the pro-

gram mlp was used to generate the provided weights files.

23 Source Code Subdirectory

The organization of subdirectories under the top-level directory src is illustrated in Figure 3. The subdirectory

src/bin contains aU program main routines. Included in this directory is a catalog, ttt file providing a short description

of each program provided in the test-bed. In this distribution there are seven programs and therefore seven subdirec-

tories in src/bin: mis2evt, mis2patl , hsfsysl ,
mis2pat2, mlp, trainreg, and hsfsys2. The program mis2evt takes MIS files

of segmented character images and computes eigenvectors from the collection; mis2patl generates a patterns file and

median vector file for use with the PNN classifier; hsfsysl is an r^xiated version of the recognition system distributed

in the first software release; mis2pat2 generates patterns files to be used in training the MLP classifier; mlp is the off-

line training program that computes weights for the new MLP classifier; trainreg trains the generalized form registra-

tion module (used in the new recognition system) on new types of forms; and the last program, hsfsys2, is the new

recognition system that contains the latest technology frcan our laboratory and performs significantly better than its

older counterpart Each of these program directories contains a C source code file containing the program’s main rou-

tine (designated with the extension c) and a number of different architecture-dependent compilation scripts used by the

UNIX make utility (designated with the root file name makefile). The use of the make utility is discussed in Section

2.4. Upon successful compilation, the directories under src/bin will contain compiled object files and a development

copy ofeach program’s executable file. Production copies of these programs are automatically installed in the top-level

directory bin.

9

src

Figure 3. Directory hierarchy under the top-level directory src.

The subdirectory src/lib contains the source code for all the recognition system’s supporting libraries. This

distribution has 15 libraries each represented as a subdirectory under src/lib. Each library contains a suite of C source

code files designated with the extension c and a set of different architecture-dependent compilaticHi scripts designated

with the root file name makefile. Also included in each library subdirectory is a catalog.txt file providing a short

description of each routine contained in that specific library. Upon successful compilation, each hbrary subdirectory

under src/lib will contain compiled object files (with file extension o) and a development copy of each library’s archive

file (with file extension a). Production copies of the hbrary archive files are automatically installed in the top-level

directory lib.

The adseg subdirectory contains routines that support the adaptive segmentation method [7] used by hsfsys2;

diet contains routines responsible for dictionary manipulation and matching [17],/et is responsible for manipulating

Feature (FET) structures and files; and hblas contains several basic linear algebra subroutines (bias). If the user’s com-

puter system already has a “real” bias hbrary instahed, it may be more efficient to compile the test-bed programs by

linking the system’s hbrary in place of the one provided. The h^hbrary is responsible for form processing with respect

to HSF frams, ihead contains routines for manipulating IHead structures and files, image contains general image

manipulation and processing routines; the mfs hbrary is responsible for manipulating Multiple Feature Set (MFS)

structures and files; mis hbrary is responsible for manipulating Multiple Image Set (MIS) structures and files; the mlp

hbrary holds ah the supporting routines for thenewMLP classifier [8]; nn contains general feature extraction [14] and

neural network routines including the PNN classifier [1]; phrase holds routines responsible for processing the seg-

mented text firom paragraph fields like the Preamble box on HSF forms [6]; rmline holds routines that conduct intelh-

gent line removal firom forms whhe preserving character stroke information [5]; the stats subdirectory contains general

statistics routines; and lastly, util contains a coUection of miscellaneous routines.

2.4 Automated Compilation Utility

Before compiling the standard reference software test-bed, the fiih path name to the top-level directory bin in

the installation directory must be added to your sheU’s executable search path. For example, if the distribution is

installed in lusr/local/hsfsys2, your search path should be augmented to include lusr/locallhsfsys2/bin. It may also be

necessary to edit the path names contained in a number of files as discussed in Section 2.1.

Compilation of the software in the test-bed is controlled through a system of hierarchical compilation scripts

used by the UNIX make utility. Each one of these scripts is contained in a file with the root name makefile. This auto-

10

mated compilation system is responsible for installing all architecture-dependent source code files and compilation

scripts, removing aU compiled object files and develc5)ment copies of libraries and programs, automatically generating

source code dependency lists, and installing production versions of libraries and programs. One makefile.mak file

exists in the top-level installation directory, and one makefile.mak file exists in each of the src, src/bin, and srcilib sub-

directories. These compilation scripts are architecture independent and contain Bourne shell commands.

This standard reference software test-bed has been successfully ported and tested on the various UNIX com-

puters listed in Table 2. There are numerous differences between these different computers and their operating systems.

Common discrepancies include differences in the syntax of compilation scripts and their built-in macro definitions;

some operating systems require manually building the symbol table in archived library files, while other systems

update these symbol tables automatically; every one of these operating systems has an install command, but each

requires its own special set of aigtnnents; each manufacturer’s compilers has different options and switches for con-

trolling language syntax and optimization; and so on. To account for these variations, there are architecture-dependent

compilation scripts provided for e^h program and library in the distribution. These compilation scripts have the root

file name makefile and end with an extension identifying their corresponding architecture. The right column in Table

2 lists the set of extensions used to identity architecture groups for the computers and operating systems tested.

Man. Model O.S. Ext.

DEC Alpha 3000/400 OSF/1 V1.3 osf

SGI Indy & Challenge IRIX 5.3 sgi

IBM RS6000 Model 370 AIX4.1 aix

HP 9000/735 HP-UX A.09.05 hp

Sun SPARCstation 10 SunOS 5.4 (Solaris) sol

Sun SPARCstation 2 StmOS 4.1.3 sun

Table 2. Machines tested and their identifying file extensions.

There are also a number of architecture-dependent source code files provided in the distribution. These files

share the same root file name and end with an architecture-identifying extension consistent with those used fw com-

pilatiai scripts. There are architecture-dependent source code files provided to support DEC-like machines that use an

Intel-based byte order to represent unformatted binary data. All unformatted binary data files provided in this distribu-

tion were created on machines using the Motorola-based byte order. When these files are read by a machine using a

different byte order, the bytes must be swapped before the data can be used. The overhead of swapping the bytes in

these data files can be avoided by regenerating them with locally compiled versions ofmislevt, mislpatl , and mis2pat2

on your computer. The libraries in src/lib contain the following architecture-dependent source code files; imagelbyte2-

bit.fosf, sun}, nnlbasisjo.fosf,sun}, nn/pat_io.{orf,sun} , nnlkd_io.{osf,sun}, util!ticks.fosf,sun}, mlplgetpat.{osf,sun},

and mlplrd_words.{osf,sun}.

It was stated earlier that the automated compilation system is responsible for installing aU architecture-depen-

dent source code files and compilation scripts, removing all compiled object files and development copies of hbraries

and programs, automatically generating source code dependency lists, and installing production versions of libraries

and programs. These tasks are initiated by invoking the make command at the top-level installation directory. AU sub-

sequent lower-level makefile.mak scripts are invoked automaticaUy in a prescribed order, and the 39,000 lines ofsomce

code are automaticaUy maintained and object files and executables are kept up to date. The make command can be

invoked from the location of any lower-level makefile.mak file to isolate specific portions of the source code for recom-

pUation. However, the detaUs of doing this are sUghtly involved and left to the installer to pursue on his own.

The NIST recognition software test-bed is entirely coded in C. Assuming the instaUation directory is lusri

locallhsfsys2, the foUowing steps are required to compUe the distribution for the first time on your UNIX computer;

11

% cd /usr/lcx:al/hsfsys2

% make -fm akefile mak instarch E'fSTARCH=<arc/i>

% make -f makefilejnak bare

% make -f makefilejnak depend

% make -f makefilejnak install

The first make invocation uses the instarch option to install architecture-dependent files required to support

the compilation and execution of the distribution’s programs and hbraries. The actual architecture is defined by replac-

ing the aigmnent <arch> with one of the extensions listed in Table 2. For example, “INSTARCH=sun” must be used

to compile the distribution on computers running SunOS 4.I.X. If you are installing this software on a machine not

listed in Table 2, you first need to determine which set of architecture-dependent files is most similar to those required

by your particular computer. Livoke make using the instarch option with INSTARCH set to the closest known archi-

tecture. Then, edit the resulting makefile.mak files in the subdirectories under srcibin and src/lib according to the

requirements of your machine. One other hint, if you are compiling on a Solaris (SunOS 5.X) machine using the par-

allel make utility, you may have to add a “-R” option prior to the “-f ’ option for each of the make invocations.

The bare optitm causes the compilation scripts to remove all temporary, backiq), core, and object files from

the program directories in src/bin and the library directories in src/lib. The depend option causes the compilation

scripts to automatically generate source code dependency lists and modify the makefile.mak files within the program

and hbrary directories. Your C compiler may not have this capability, in which case you may want to generate flie

dependency lists by hand. The install option builds source code dependency lists as needed, compiles aU program and

library source code files, and installs compiled libraries and programs into their corresponding production directories.

Compiled libraries are installed in the top-level directory lib, while compiled programs are installed in the top-level

directory bin.

One other capability, the automatic generation of catalog files, has been incorporated into the hierarchical

compilation scripts. A formatted comment header is included at the top of every program and library source code file

in the software test-bed. When the install option is used, the low-level makefile.mak files invoke the C-sheU script bird

catalog.csh. The script catalog.csh extracts aU source code headers associated with all the programs or a specific

library in the distribution and compiles a catalog.txt file. A catalog.txt file exists in the subdirectory src/bin, and one

catalog.txt file exists in each of the hbrary directories in src/lib. This provides a convenient and qiuck reference to the

source code provided in the distribution.

12

3. INVOKING TEST-BED PROGRAMS

This section describes how the programs distributed with this software release (with the exception ofmlp) are

invoked and how they were used to generate the supporting data files provided in the test-bed The invocation of the

off-line neural network training program mlp is much more involved, and it can be used for pattern recognition prob-

lems oflier than character classification. Therefore, its description is provided separately in Appendix A. On-line doc-

umentation is provided for each of these programs in the form of UNlX-style manual pages under the top-level

directory man.

3.1 mis2evt - computing eigenvector basis functions

Both of the NIST standard reference recognition systems, hsfsysl and hsfsys2, use the Karhunen Lo^ve (KL)

transform to extract features for classifying segmented character images. This transform is obtained by projecting a

character image onto eigenvectors of the covariance computed fi'om a set of training images. The mathematical details

of the KL transform are provided m Reference [14].

The eigenvectors are computed off-line and stored in a basis function file because computing them from a

large covariance matrix is very expensive. The recognition systems read the basis function file during their initializa-

tion, and then reuse the eigenvectors across all the character images segmented from fields of a specified type (digit,

lowercase, uppercase, or Preamble box). The program mislevt compiles a covariance matrix and then computes its

eigenvectors from a set of segmented character images and generates a basis function file. The program’s main routine

is located in the distributicHi directory src/binJmis2evt. The command line usage of mislevt is as follows;

% mis2evt

Usage: mis2evt:

-n for 128x128 input, write nonned-t-sheared 32x32 intermediate MIS files

-V be verbose - notify completion of each misfile

<nrequiredevts> <evtfile> <mfs_of_misfiles>

Arguments;

• The first argument nrequiredevts specifies the number of eigenvectors to be written to the output file. It is

also the number ofKL features that will ultimately be extracted from each binary image using the associated

utilities mis2patl and mis2pat2. This integer determines the dimensionality of the feature vectors that are

produced for classification. Its upper bound is the image dimensionality (which is 32x32 = 1024). Typically,

this argument is specified to be much smaller than 1024 because the KL transform optimally compacts the

representation of the image data into its first few coefficients (features). Hsfsysl uses a value of 64, while

hsfsys2 uses 128. Reference [22] documents an investigation of the dependency of classification error on

feature vector dimensionality.

• The second argument ev^le specifies the name of the output basis function file. The format of this file is

documented by the routine writeJjasisOioand in srcllibinnibasis_io.c.

• The third argument mfsjofjnisfiles specifies a text file that lists the names of all the MIS files containing

images that wiU be used to calculate the covariance matrix. This argument is an MFS file with the first line

containing an integer indicating the number of MIS files that foUow. The remaining lines in the MFS file

contain MIS file names, one name, per line. The format of an MFS file is documented by the routine write-

mfsfileO found in srcilibimfsiwritemfs.c.

Options:

• The option “-/z” specifies the storing of intermediate normalized character images. Mis2evt can process

binary image/; that are either (128x128) or (32x32). In the case of the former, the program invokes a size

normalization utility to produce 32x32 images and then applies a shear transformation to reduce slant vari-

ations. If the input images are already 32x32, this flag has no effect. If normalization does occur, the result-

ing normalized images are stored to MIS files having the same name as those listed in the MFS file, with the

13

additional extension 32 appended. These iotermediate files offer computational gains because usually the

same images are used with mislpatl and mis2pat2.

• The option “-v” produces messages to standard output signifying the completion of each MIS file and other

computation steps.

This program is computationally expensive and may require as long as 60 minutes to compute the eigenvec-

tors for a large set (50,000 characters) of images. The program mis2evt was used to generate the basis function files

provided with this distribution in the top-level directory weights and ending with the extension evt. These files contain

eigenvectors computed from the images provided in the top-level directory train. The MFS files used as arguments to

mis2evt are also provided in weights and end with the extension ml. For example, the basis function file weights/pnni

lower/h46_l.evt was generated with the following command:

% mis2evt -v 64 h46_l.evt h46_lml

The basis function file weightslmlpldigitlh6_d.evt was generated with the following command:

% mis2evt -v 128 h6_d.evt h6_d.ml

14

32 mis2patl - generating patterns for the PNN classifier

Misipatl is algorithmically equivalent to the program mislpat distributed with the first software release. It

takes a set of training images along with the eigenvectors generated by misZevt and computes feature vectOTS using the

KL transform that can be used as prototypes for training thePNN classifier used in hsfsysl

.

Typically, the same images

used to compute the eigenvectors are used here to generate prototype vectors. The program mislpatl also builds a kd-

tree as described in Reference [20]. The prototypes along with their class assignments and kd-tree are stored in one

patterns file, while median vectors computed from the prototype vectors are stored in a separate median vector file.

Note that all FORTRAN dependencies have been removed from this release. In doing so, the format of the patterns file

generated by mislpatl has changed from that generated by the original program mislpat. The main routine for misl-

patl is located in srdbinlmislpatl

.

The command line usage of mislpatl is as follows:

% mis2patl

Usage: mis2patl:

-h accept hexadecimal class files

-n with 128x128 images, write normed+sheared 32x32 intermediate MIS files

-V be verbose - notify completion of each misfile

<classset> <evtfile> <outroot> <mfs_of_clsfiles> <mfs_of_misfiles>

Arguments:

• The first argument classset specifies the name of a text file (MFS fide) containing the labels assigned to each

class. The integer on the first line of the file indicates the niunber of classes following, and the rem aining
lines contains one class label per line. For example, a digit classifier uses ten classes labeled 0 through 9.

The format of an MFS fide is documented by the routine writemfsfile(

)

found in srcilibimfs/writemfs.c.

• The second argument evtfile specifies the basis function file containing eigenvectors computed by mislevt.

The number of features in each output vector is determined by the number of eigenvectors in this file. The
format of this file is documented by the routine write_basis(

)

foimd in srcilibinnibasisjo.c.

• The third argument outroot specifies the root file name of the output pattern and median vector files. The

name of the output pattern file has extensionpat while the median vector file has extension med. The format

of the pattems/kd_ttee file is documented by the routine kdtreewrite(

)

in srcIliblnnJkdjo.c whereas the

median vector file format is documented by the routine writemedianfile() in srcilibinnimedjo.c.

• The fihal arguments are the names of text files (MFS files) that contain listings of file names. The argument

mfs_of_cl^les lists file names containing class assignments corresponding to the images in the MIS files

listed in the argument mfs_of_misfiles. Each class assignment file must have the same number of class

assignments as there are images in its corresponding MIS file, and the classes assigned must be consistent

with those listed in the argument classset.

Options:

• The option “-h” specifies that the class labels listed in the classset file are to be converted to ASCII charac-

ters values represented in hexadecimal. AU the class assignments in the files listed in the argument mfs_of_-

clsfiles use the convention where [30-39] represent digits, [41 -5a] represent uppercase, and [61 -7a]

represent lowercase. If the classset file contains alphabetic representations such as [0-9], [A-Z], and [a-z],

then this flag must be used to effect conversion of these labels to their hexadecimal equivalents.

• The option “-n” specifies the storing of intermediate normalized character images. Mislpatl can process

binary images that are either (128x128) or (32x32). In the case of the former, the program invokes size and

slant normalization utilities to produce 32x32 images. If the input images are already 32x32, this flag has

no effect. If normalization does occur, the resulting normalized images are stored to MIS files having the

same name as those listed in mfs_of_misfiles, with the extension 31 appended.

• The option “-v” produces messages to standard output signifying the completion of each MIS file.

15

This program was used to generate the patterns files provided with this distribution in the directory weights/

pnn and ending with the extension pat and median vector files ending with extension med. The patterns files contain

KL feature vectors, their associated classes, and a kd-tree in its new format as documented by the routine kdtreewrite(

)

found in srcilibinnikdjo.c. The feature vectors were computed using the eigenvectors foimd in the same directory and

from the images provided in the top-level directory train. The MFS files used as arguments to mislpatl are also pro-

vided in the weights!pnn subdirectories, as are the classset files which end with the extensicm set. The class assignment

files are listed in files ending with the extension cl, whereas the MIS files are listed in files ending with the extension

ml. For example, the patterns file weights!pnnllowerlh46_l.pat and median vector file weights!pnn!lowerIh46_l.med

were generated with the following commani

% mis2patl -vh l.set h46_l.evt h46_l h46_l.cl h46_l.ml

16

33 hsfsysl - running the updated version of the original NIST system

Hsfsysl is an updated version of the NIST recognition system distributed in the first release of the software.

This system is designed to read the handwriting entered on HSF forms like those included in the top-level directory

data. The most significant changes to this system include more efficient memory usage (improving recognition speed),

and all dependencies on FORTRAN-coded subroutines have been removed. A detailed description of the algorithms

used in this system is provided in the original user’s guide (NISTIR 5469) [1].

The recognition system is run in batchmode with image file inputs andASQI text file outputs, and the system

contains no Graphical User Interface. The command line usage of h^sysl is as follows:

% hsfsysl

Usage:

hsfsysl [options] <hsf file> <output root>

-d process digit fields

-1 process lowercase fields

-u process uppercase fields

-c nodict process Constitution field without dictionary

-edict process Constitution field using dictionary

-m small memory mode
-s silent mode
-V verbose mode
-t compute and report timings

The command line arguments for hsfsysl are organized into option specifications, followed by an input file

name specificaticm, and an output (root) file name specification. The q)tions can be subgrouped into three categories

(field type options, memory control optirais, and message control options).

Field type options:

-d designates the processing of the digit fields on an HSF form.

-I designates the processing of the lowercase field on an HSF form.

-u designates the processing of the uppercase field on an HSF form.

-c designates the processing of the Constitution field on an HSF form. This option requires an argument

If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw

character classifications and associated confidence values are reported. If the argument diet is speci-

fied, then dictiemary-based postprocessing is performed and matched words from the dictionary are

reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -1 option to process the lower-

case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-

case fields, then specify both options -1 and -u (or an equivalent syntax -lu). The system processes all of the

fields on the form if no field type options are specified, and dictionary-based posqrrocessing is performed on

the Constitution field by default

Memory control options:

-m specifies the use of alternative prototype files for classification that have fewer training patterns, so that

machines with limi ted main memory may be able to completely process all the fields on an HSF form.

In general, decreasing the number of training prototypes reduces the accuracy of the recognition sys-

tem’s classifier. It is recommended that this option be used only if necessary.

Message control options:

17

-s specifies that the silent mode is to be used and all messages sent to standard output and standard error

are suppressed except upon the detection of a fatal internal error. Silent mode facilitates silent batch

processing and overrides the verbose mode option. By default, the system posts its recognition results

to standard output as each field is processed.

-V specifies that the verbose mode is to be used so that messages providing a functional trace through the

system are printed to standard error.

-t specifies that timing data is to be collected on system functions and reported to a riming file upon sys-

tem completion.

File name specifications:

<hsf file> specifies the binary HSF image in IHead format that is to be read by the system. The IHead

file format is documented by the routine ReadBimryRaster() found in srcllib/image/rea-

drast.c.

<output root> the root file name, that is to be appended to the front of each output file generated by the

system. Upon completion, the system will create a hypothesis file with the extension hyp

and a confidence file with the extension con. If the -t option is specified, a riming file with

the extension tim will also be created. These text files can be manipulated as FET files, the

format of which is documented by the routine writefetfile() in src/lib/fet/writefet.c.

Fot example, to run the system in verbose mode on aU the HSF fields on the form in data/f0000_l4 and store

the system results in the same location with the same root name as the form, the following commands are equivalent

(assuming the installation directory is /usr/local/hrfsys2). In each case, the filesf0000_14.hyp andfl)000Jl4.con will

be created by the system in the directory /usr/local/hsfsys2/data/f0000_14.

% hsfeysl -V /usrAocal/hsfsys2/data/f(XXX)_14/f(XX)0_14.pct/usr/local/hsfsys2/data/f(XXX)_14/f0(XX)_14

% hsfsysl -V /usr/loca]/hsfsys2/data/f(K)00_14/f0(X)0_14{.pct,}

% (cd/usrAocal/hsfsys2/data/fO()(X)_14; hsfsysl -v fO(XX)_14.pct f00(X)_14)

To run the system in silent mode on only the digit and uppercase fields on the same form with results including

riming data all stored in /imp with the root name/oo, the following command can be used.

% hsfsysl -stdu /usr/local/hsfsys2/data/f(XXX)_14/f(XXX)_14.pct /tmp/foo

In this example, the files created by the system will be /tmp/foo.hyp, /tmp/foo.con, and /tmp/foo.tim.

The program hsfsysl was used to generate the files with extension hyl, col, and til located within the form

subdirectories under the top-level directory data.

18

3.4 mis2pat2 - generating patterns for training the MLP classifier

Mis2pat2 takes a set of training images along with the eigenvectors generated by mislevt and computes fea-

ture vectors using theKL transform that can be used as prototypes for training the MLP classifier used in hsfsys2. Typ-

ically, the same images used to compute the eigenvectors are used here to generate prototype vectors. The prototypes

along with their class assignments are stored in a patterns file that is of a different format than those generated by mis2-

patl

.

The format of the patterns file created by mis2pat2 is documented in the routine write_bm_patterns(

)

found in

srcilibinnipatjo.c. The program’s main routine is located in srclbinlmis2pat2. The command line usage of mis2pat2

is as follows:

% mis2pat2

Usage: mis2pat2:

-h accept hexadecimal class files

-n with 128x128 images write normed+sheared 32x32 intermediate MIS files

-V be verbose - notify completion of each misfile

<classset> <evtfile> <outfile> <mfs_of_clsfiles> <mfs_of_misfiles>

Arguments:

• The first argument classset specifies the name of a text file (MFS file) containing the labels assigned to each

class. The integer ai the first line of the file indicates the number of classes following, and the rem aining

lines contains one class label per line. For example, a digit classifier uses ten classes labeled 0 through 9.

The format of an MFS file is documented by the routine writemfsfile(

)

found in srcilib/mfsiwritemfs.c.

• The second argmnent ev0le specifies the basis functitm file containing eigenvectors computed by mis2evt.

The number of features in each output vector is determined by the number of eigenvectors in this file. The

format of this file is documented by the routine write_basis() found in srdlib!nn!basisjo. c.

• The third argument ou^e specifies the file name of the ou^ut patterns file. The format of this patterns file

is documented by the routine writeJoin_patterns() in srcilibinnipatjo.c.

• The final arguments are the names of text files (MFS files) that contain listings of file names. The argument

mfs_ofjellies lists file names containing class assignments corresponding to the images in the MIS files

listed in the argmnent mfs_ofjnisfiles. Each class assignment file must have the same number of class

assignments as there are images in its corresponding MIS file, and the classes assigned must be consistent

with those listed in the argument classset.

Options:

• The option “-h” specifies that the class labels listed in the classset file are to be converted to ASCH charac-

ters values represented in hexadecimal. All the class assignments in the files listed in the argument mfs_of_-

clsfiles use the convention where [30-39] represent digits, [41-5a] represent uppercase, and [61-7a]

represent lowercase. If the classset file contains alphabetic representations sudi as [0-9], [A-Z], and [a-z],

then this flag must be used to effect conversion of these labels to their hexadecimal equivalents.

• The option “-n” specifies the sttsing of intermediate normalized character images. Mis2pat2 can process

binary images that are either (128x128) or (32x32). In the case of the former, the program invokes size and

slant normalization utilities to produce 32x32 images. If the input images are already 32x32, this flag has

no effect. If normalization does occur, the resulting normalized images are stored to MIS files haviug the

same name as those fisted in mfs_ofjnisfiles, with the extension 32 appended.

• The option “-v” produces messages to standard output signifying the completion of each MIS file.

This program was used to generate the patterns files provided with this distribution in the directory weightsi

mlp and ending with the extension pat. These patterns files contain KL feature vectors along with their associated

classes. The feature vectors were computed using the eigenvectors found in the same directory and from the images

provided in the top-level directory train. The MFS files used as arguments tomis2pat2 are also provided in the weightsi

19

mlp subdirectories, as are the classset files which end with the extension set. The class assignment files are listed in

files ending with the extension cl, whereas the MIS files are listed in files ending with the extension ml. For example,

the patterns file weightslmlpllowerlh46_l.pat was generated with the following command:

% mis2pat2 -vh l.set h46_l.evt h46_l.pat h46_l.cl h46_ljnl

20

3^ trainreg - training to register a new form

The new recognition system, hsfsys2, uses a generalized method of form registration described in Reference

[4] . The technique locates the most dominant left and right, top and bottom lines on the form image and then transforms

the image so that these form structures are positioned at registered coordinates. To accomplish this, dominant lines on

a new form must be determined and the coordinates of their registered position must be measured and stored. The pro-

gram trainreg does this automatically, storing the resulting x-coordinates of the left and right-most dominant lines on

the form and the y-coordinates of the top and bottom-most dominant lines on the form. The program’s main routine is

located in the distribution directory srcibinitrainreg, and its main supporting subroutine is found in srclliblhsflreg-

form.c. The command line usage of trainreg is as follows:

% trainreg <form_image> <out_points>

• The first argumentformjmage specifies the name of the input file containing the image of the new form.

This image must be in the binary (black and white) IHead file format which is documented in Reference [1]

and by the routine ReadBinaryRaster() found in srciliblimagelreadrast.c.

• The second argument outjroints specifies the name of the output file to hold the coordinate positions of the

detected dominant lines in the image. This is an MFS file, the format of which is documented by the routine

\vritemf^le(

)

fotmd in srcilibimfsiwritemfs.c.

This program was used to generate the file tmpltlhsfgreg.pts, which is used by hsfsys2 to register input HSF
forms. This file was created with the following command:

% trainreg hsftmplt.pct hsfgreg.pts

21

3.6 hsfsys2 - running the new NIST recognition system

The new recognition system, hsfsysl, contains significant technical improvements over its predecessor, hsf-

sysl. It uses new methods of generalized form registration [4], intelligent form removal [5], line isolation within hand-

printed paragraphs [6], adaptive character segmentation [7], a new robust MLP-based classifier [8], among other

improved techniques which are described in Section 4. Hsfsys2 is designed to read the handwriting entered on HSF

forms like those included in the top-level installation directory data, and it is capable of reading every HSF form

included in SD19.

The recognition system is run in batchmode with image file inputs and ASCII text file outputs, and the system

contains no Graphical User Interface. The command line usage of hrfsysl is as follows:

% hsfsys2

Usage:

hsfsys2 [options] <list file>

-d process digit fields

-1 process lowercase fields

-u process uppercase fields

-c nodict process Constitution field without dictionary

-c diet process Constitution field using dictionary

-s silent mode
-V verbose mode

-t <time file> compute and report timings

The command line arguments for hsfsys2 are organized into option specifications and a file containing multi-

ple pairs of input file name and output (root) file name specifications. The options can be subgrouped into two general

types (field type options and message control options).

Field type options:

-d designates the processing of the digit fields on an HSF form.

-1 designates the processing of the lowercase field on an HSF form.

-u designates the processing of the uppercase field on an HSF form.

-c designates the processing of the (Constitution field (m an HSF form. This option requires an argument

If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw

character classifications and associated confidence values are reported. If the argument diet is speci-

fied, then dictionary-based postprocessing is performed and matched words from the dictionary are

reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -1 option to process the lower-

case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-

case fields, then specify both options -1 and -u (or an equivalent syntax -lu). The system processes all of the

fields on the form ifno field type options are specified, and dictionary-based postprocessing is performed on

the Constitution field by default

Message control options:

s specifies that the silent mode is to be used and all messages sent to standard ouq)ut and standard error

are suppressed except upon the detection of a fatal internal eiror. Silent mode facilitates silent batch

processing and overrides the verbose mode option. By default the system posts its recognition results

to standard output as each field is processed.

22

-V specifies that the verbose mode is to be used so that messages providing a functional trace through the

system are printed to standard errcH:.

-t <time file> specifies that timing data is to be collected on system functions and reported to the specified

timing file upcm system completion.

File name specification:

<list file> is a twocolumn ASCII file. The first column lists all the binary HSF images in Head format

that are to be read by the system in the current batch. The Head file format is documented

by the routine ReadBimryRaster() foimd in srciliblimagelreadrast.c. Along with each

input image file is a second argument that specifies the root file name to be appended to the

front of each ou^ut file generated by the system when processing the corresponding form

image. An example of a list file is found in datalhsfsysl.lis. Upon completion ofeach form,

the system will create a hypothesis file with extension hyp and a confidence file with exten-

sion con. These output text files can be manipulated as FET files, the format of which is

documented by the routine writefetfile() in src/lib/fet/writefet.c.

Assuming the installation directory is !usr!local!hsfsysl, the following commands can be used to run the new

system in verbose mode on all the fields on all the HSF forms in data.

% cd /usrAocal/hsfsys2/data

% hsfsys2 -V -t hsfsys2.tim hsfsys2.1is

The program hsfsys2 was used to generate the timing file hsfsys2.ti2 and the output files with extension hy2

and co2 located under the top-level directory data.

23

4. ALGORITHMIC OVERVIEW OF NEW SYSTEM HSFSYS2

Reference [2] describes the complexities of integrating various technology components into a successful

OCR system. Very little can be found in the literature pubhshed on the internal workings ofcomplete systems. Granted,

many of the technologies required for successfulOCR have been researched and results have been published, but these

components are typically tested in isolation and their impact on overall recogmtion is not measured. Also, many of the

algorithms implemented in an end-to-end system are proprietary. Companies disclose research results on pieces of their

recognition systems, but no current publications can be foimd that disclose the details of a completely operational sys-

tem.

In contrast, NIST has developed a completely open recognition software test-bed for which the components

are fully disclosed, and in fact, the source code is publicly available. This software provides a baseline of performance

with which new and promising technologies can be compared and evaluated. This section describes the ^plication for

which the new system, hsfsysl, was designed and provides a high-level description of the algorithms used in each of

the system’s majcH' components. An algorithmic overview of the updated original recognition system, hsfsysl , can be

found in Reference [1].

4.1 The Application

It was already noted that the successful application of OCR technology requires more than off-the-shelf sys-

tem integration. State-of-the-art solutions require customization and timing to the problem at hand. This being true, an

operational system is largely defined by the details of the ^plication it is to solve.

The NIST system is designed to read the handprinted characters written on Handwriting Sample Forms

(HSF). An example image of a completed HSF form is displayed in Figure 1 on page 4. This form was designed to

collect a large sample of handwriting to siqjport handprint recognition research. A CD-ROM named NIST Special

Database 19 (SD19), containing 3669 completed forms, each filled in by a unique writer, and scanned binary at 11.8

pixels per millimeter (300 pixels per inch), is publicly available [3]. This data set also contains over 800,000 segmented

and labeled characters images from these forms. There are 10 completed HSF forms provided with this software test-

bed. In addition, there is one blank form provided both in Latex and PostScript formats that can be printed, filled in,

scanned, and then recognized. For additional HSF forms, SD19 may be purchased by contacting:

Standard Reference Data Program

National Institute of Standards and Technology

NIST North (820), Room 113

Gaithersburg, MD 20899

voice: (301) 975-2208

FAX: (301) 926-0416

email: srdata@enhnistgov

The new NIST system is designed to read all but the top line of fields on the form. The system processes the

28 digit fields and the randomly ordered lowercase and iqrpercase alphabet fields along with the handprinted paragraph

of the Preamble to the U.S. Constitution at the bottom of the form.

A2 System Components

Figure 4 contains a diagram that illustrates the organization of the functional compments within the new sys-

tem hsfsysl. Generally speaking, each one of these components has many possible algorithmic solutions. Therefore,

the new system is designed in a modular fashion so that different methods can be evaluated and compared within the

context of an end-to-end system. This section provides a brief description of the most recent techniques developed by
NIST for each of these tasks. Listed with each component subheading is a path name followed by a subroutine

name.These listings are provided to guide the reader to specific areas of the software test-bed for further study and

investigatiaa.

24

NIST Form-Based Recognition System Hsfsys2

Batch Initialization

Next Form in Batch

Load Form Image

Register Form Image

Next Field on Form

Remove Form Box

Isolate Line(s) of Handprint

Segment Text Line(s)

Normalize Characters

Extract Feature Vectors

Classify Characters

Spell-Correct Text Line(s)

(if dictionary available)

Store Results

Figure 4. Oiganization of the functional components within the new recognition system.

4.2.1 Batch Initialization; src/Iib/hsf/run.c; init_runO

The new system is a non-interactive batch processing system designed to process one or more images ofcom-

pleted HSF forms with each invocation. The first step loads all the precomputed items required to process a particular

type of form (in this case HSF forms). These items include a list of the image files to be processed in a batch, proto-

typical coordinate locations of dominant form structures used for form registration, a spatial template containing the

prototypical coordinate location of each field on the form, basis functions used for feature extraction, neural network

weights for classification, and dictionaries for spelling correction. There are four types of fields on the HSF form:

numeric, lowercase, uppercase, and the Preamble paragraph. Each type of field requires a separate set of basis func-

tions and neural network weights. Only the Preamble paragraph has a dictionary available. The use of these items will

be explained in more detail later.

25

Because the new system only processes HSF forms, form identification is not utilized. Form identification can

be avoided for any application when it is economically feasible to sort forms (whether automatically or manually) into

homogeneous batches. Unfortunately, this is not practical for all applications.

^22 Load Form Image; src/lib/image/readrast.c; ReadBinaryRasterO

The new systan is strictly an off-line recognition system, meaning that the time at which images are scanned

is independent from when recognition takes place. This is typical of large-scale OCR applications where operators

work in shifts rurming high-speed scarmers that archive images of forms to mass-storage devices for later batch con-

version. For each form in the batch, the new system reads a CCllT Group 4 compressed binary raster image from a

file on disk, decompresses the image in software, and passes the bitmap along with its attributes on to subsequent com-

ponents.

4,23 Register Form Image; src/lib/hsf/regfoim.c; genregformSO

A considerable amount of image processing must take place in order to reliably isolate the handprint on a

form. The form must be registered or aligned so that fields in the image correspond with the prototypical template of

fields (or zones). The new system uses a generalized method of form registration that automatically estimates the

amount of rotation and translation in the image without any detailed knowledge of the form [4].

To measure rotational distortion, a technique similar to the one invented by Postl is used [21]. This technique

traces parallel rays across the image accumulating the number of black pixels along each ray using a non-linear func-

tion. A range of ray angles are sampled, and the angle producing the maximum response is used to estimate the rota-

tional skew. The image is rotated based on this estimate, and it is then analyzed to detect any translational distortion.

This step capitalizes on the fact that most frams contain a fixed configuration of vertical and horizontal lines. Once the

rotational skew is removed, these lines correspond well with the raster grid of the image. A run-based histogram is

computed to detect the top and bottom, left and right, dominant fines in the image.

For example, to locate the tq) and bottom-most dominant fines, the horizontal runs in theimage are computed.

The n-longest runs (in thenew system, n=3) on each scanfine of the image are accumulated into a histogram bin. These

bins are then analyzed for relative maxima as described in Reference [4] . The accumulation of the n-longest runs effec-

tively suppresses regions of the form containing handwriting and noise, and accentuates the fines on the form. The
same analysis is conducted on vertically-oriented runs to locate the left and ri^t-most dominant fines. Given the loca-

tions of these lines, translation estimates in x and y are computed with respect to the coordinates of prototypical fines,

and the image is translated accordingly. At this point, fields in the image correspond to the co^dinates of the proto-

typical spatial template.

By using this general registration technique, new form types can be trained automatically. A prototypicalform

is scanned, its rotational distortion is automatically measmed and removed, and the position of the detected dominant

fines are stored for future registrations. The results of registering 500 HSF forms is shown in Figure 5. The image dis-

played is the result of logically ORing corresponding pixels across a set of 500 registered images. Notice the ti^t cor-

respondence of the boxes and the printed instructions.

26

Figure 5. Composite image of 500 registered HSF forms logically ORed together.

42.4 Remove Form Box; src/lib/rmIine/remove.c; rm_loiig_hori_IineO

Upon registration, a spatial template is used to extract a subimage of each field on the form. Fields are

extracted and processed one at a time. Griven a field subimage, black pixels corresponding to the handwriting must be

separated from the black pixels corresponding to the form. This is a difficult task because a black pixel can represent

handwriting, the form, or an overlap of both. As all the fields on the HSF form are represented by boxes, the new sys-

tem uses a general algorithm that locates the box within the field subimage, and intelligently removes the sides so as

to preserve overlapping characters [5]. The sides of the box are detected using a run-based technique that tracks the

longest runs across the subimage. Then, by carefully analyzing the width of the sides of the box, overlapping character

stokes are identified using spatial cues, and only pixels that are distinctly part of the form’s box are removed. This way,

descenders of lowercase characters, for example, are not urmecessarily truncated. Figure 6 shows two fields before and

after form removal.

27

Field Subimage (A)

/ f / 1 u u/-y-y. c? /i i ^

Isolated Handprint

Field Subimage (B)

\/qgo't C-kp :z-

Isolated Handprint

p eJViY ^ mkufw vqsoi c-1^

Figure 6. Results of form box removal.

4.2.5 Isolate Lme(s) of Handprint; src/lib/phrase/phrasmap.c; phrases_from_mapO

The numeric and alphabetic fields on an HSF form are written as single-Hne responses. After the box is

removed, the handprint contained in a field is isolated (or lifted out) by simply extracting all the connectedcomponents

that overlap the interior region of the detected box. A connected component is defined as the largest set of black pixels

where each pixel is a direct neighbor of at least one other black pixel in the component Single isolated black pixels

are also considered components.

Line isolation is much more difficult for multiple-line responses such as the handprinted paragraph of the Pre-

amble at the bottom of the HSF form. There are no lines provided within this paragraph box to guide a writer, nor are

there any instructions ofhow many words should be written on a line. The handwriting is relatively unconstrained, and

as a result the baselines of the writing at times significantly fluctuate. This, along with the fact that the paragraph con-

tains handprinted punctuation marks, makes tracking the lines of handprint difficult Histogram projections (used

extensively for isolating lines of machine printed characters) are rendered unreliable in this case.

The new system uses a bottom-iq) approach to isolate the lines of handprint within a paragraph. This tech-

nique starts by decomposing a paragraph into a set of cormected components. Each component is represented by its

geometric center. To reconstruct the handprinted lines of text, a nearest neighbor search is performed left-to-right and

top-to-bottom through the system of 2-dimensional points [9]. The search is horizontally biased and links sequences

of points into piecewise-liuear segments. Simple statistics are used to sort components into categories of too small, too

tall, problematic, and normal. Only those components determined to be nonnal are linked together by the search.

Given these piecewise-linear trajectories, the tops and bottoms of linked components are interpolated and

smoothed forming line bands. An example of these bands is shown in Figure 7. These bands form a spatial map, and

28

all the components in the image are sorted into their respective lines in correct reading order according to their overlap

and/or proximity to these bands [6]. At this point, the handwriting in the paragraph is isolated into individual text lines.

Yy\

/n O'r

A

ct

-

ip fo A

mim o O
d

/Cini ort, hsU ±«.s+ic^^ »

J "T^o.naM.i li’+V/ p'rovide. Tov' "The. C?o"

l/<f5

I c

Figure 7. Line-bands computed from the paragraph image above.

4,2.6 Segment Text Line(s); src/lib/adseg/segchars.c; blobs2chars80

Cormected components are used as first-order approximations to single and complete characters. Connected

components frequendy represent single characters and are computed very quickly. On the other hand, their direct use

as character segments is prone to error. Errors occur when characters touch one another and when characters are written

with disconnected strokes (naturally occurring with dotted letters). The new system was initially designed to process

the numeric fields on HSF forms. Numeric fields typically do not have any linguistic context; therefore, the utility of

oversegmentation schemes is severely compromised in this case.

Building upon the utility of connected components, the new system utilizes a method of handprint character

segmentation that uses a simple adaptive model of writing style [7]. Using this model, fragmented characters are recon-

structed, mrtitiple characters are split, and noise components are identified and discarded. \^sual features are measured

(the width of the pen stroke and the height of the characters) and used by fuzzy rules, making the method robust. Exam-

ples of segmentation results are illustrated in Figure 8 and Figure 9. The segmentor performs best when applied to sin-

gle-line responses, and then even better when the fields are niuneric.

29

With minor modification, the same method is used to segment the isolated lines extracted firom paragraphs of

handprinted text as described in Reference [6].

Broken Characters

:::±

I ^
Detached Strokes

MV 0 iCLintiO Vxop(2,b^iuD^Tpv/Oc,lS>^^

/

tr t i

Dotted Characters

\ f'.,.

a

;

2 V C e y Q^S Cuofphhx^^f^j^-

\

/

Figure 8. Segn

i:

u
lentor results of merging components together.

IJ

30

Two Characters Touching

Jr &r

HO 23^56
Uppercase Characters Touching

M V Q iCLirttro VxD^2.b^iuE>7pv/:3t-:^^^

^ mi
Figure 9. Segmentor results of splitting components apart.

4.2.7 Normalize Characters; src/lib/hsf/norm8.c; norm_2nd_gen_blobls80

The recognition technique used by the new system falls under the category of feature-based pattern classifi-

cation. The segmented character images vary greatly in size, slant, and shape. Image normalization is performed to

deal with the size and slant of writing, leaving the recognition process primarily the task of differentiating characters

by variation in shape.

31

The segmented character images are size-normalized by scaling the image either up or down so that the char-

acter tightly fits within a 20x32 pixel region. The strdce width is alsonormalized using simple morphology: if the pixel

content of the character image is too high, it is eroded (strokes are thinned), and if too low, it is dilated (strokes are

widened).

Slant is removed by interpolating a line between the top left-most black pixel in the scaled unage and the bot-

tpm left-most black pixel. The line (centered on the image) is used as a horizontal shear function. The slant of the char-

acter is removed as horizontal rows of pixels in the image are increasingly shifted (left or right) outwards firom the

center of the image. Upon normalization, each character is centered in a 32x32 pixel image. Size and slant normaliza-

tion are discussed in greater detail in Reference [1].

4,2.8 Extract Feature Vectors; src/lib/nn/kLc; kl_transformO

At this point, characters are represented by 1024 binary pixel values. The Karhunen Lobve (KL) transform is

applied to these binary pixel vectors in order to reduce dimensionality, suppress noise, and produce optimally compact

features (in terms of variance) for classification [14].

A training set of normalized character images is used to compute a covariance matrix which is diagonalized

using standard linear algebra routines, producing eigenvalues and corresponding eigenvectors. This computation is rel-

atively expensive, but is done once off-line, and the top-n ranked eigenvectors are stored as basis functions and used

subsequently for feature extraction. Feature vectors of length 128 are used in the new system, and each coefficient in

the vector is the dot product of a subsequent eigenvector with the 1024 pixel vector of the character being classified.

4,2.9 Classify Characters; src/lib/mlp/niiunlp.c; mlphypsconsQ

Once segmented characters are represented as feature vectors, a whole host of different pattern classification

techniques can be applied. NIST has conducted extensive research on classification methods that utilize machine learn-

ing, and most of these have been various types ofneural networks. In previous work, the Probabilistic Neural Network

(PNN) was shown to provide better zero-reject error performance on characto classification problems than Radial

Basis Function (RBF) and Multi-Layer Perceptron (MLP) neural network methods [22]. Later work demonstrated that

various combmed neural networks could provide performance equal to PNN and substantially better error-reject per-

formance. However, these systems were very expensive to train and were much slower and less memory efficient than

MLP-based systems [23].

NIST has developed a robust training method that produces MLP networks with performance equal to or bet-

ter than PNN for character recognition [8]. This is achieved with a single three-layer network by integrating funda-

mental changes in the network optimization strategy. These changes are: 1) Sinusoidal neuron activation functions are

used which reduce the probability of singular Jacobians; 2) Successive regularization is used to constrain the volume

of the weight space; 3) Boltzmann pruning is used to constrain the dimension of the weight space [24]. All three of

these changes are made in the timer loop of a conjugate gradient optimization iteration [25] and are intended to simplify

the training dynamics of the optimization. On handprinted digit classification problems, these modifications improve

error-reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

To classify a character, the appropriate eigenvectors (or basis functions) and MLP weight matrices must be

loaded into memory. As mentioned earlier, this is accomplished during batch initialization. Using the eigenvectors, the

normalized image is transformed into a feature vector. The feature vector is then presented to the MLP network. The

result is an assigned classification along with a confidence value.

4J2.10 Spell-Correct Text Line(s); src/lib/phrase/spellphr.c; spell_phrases_ReI20

The only field on the HSF form that has any linguistic information that can be apphed is the Preamble field.

The Preamble is comprised of 38 unique words which are used to form a field-specific dictionary.

32

I

The dictionary-based processing conducted by the new system is somewhat different than other correction

techniques [26] [27]. Up to this point, segmented character images have been extracted from the handprinted para-

gr^h, sorted into reading wder line by line, and classified. This results in one long contiguous character stream for

each line in the paragraph. The MLP weights used to process the Preamble paragraph were trained to map lowercase

and uppercase instances of the same letter into the same class, making the output of the classifier case-invariant There

are also no interword gaps identified by the system at this point Figure 10 shows an example of these raw classifica-

tions.

Words are parsed from each line of raw classifications by applying the preloaded dictionary as described in

reference [9]. This process identifies wcffds within the character stream while simultaneously compensating for errors

due to wrong segmentations and classifications. The limited size of the dictionary helps offset the burden placed on

this process.

I
Oro\Je.S Sj irvi

\(X rf\Ore ©sro-^l i^ru icj&j srvisore^

ioTOd oor poa-V<a.r‘i-VY. dO or<^lt\i

I+VtvS CX>?OfeT\TUTlbr^-?'or 4-V^e.

!c£ A.rnc^V<^<^

Raw Classifications

WEJTHEPEOPIEOPTHEUNITEASTATFSJLNORDERTO
AMOREPQRFKTUNIONJEBTAEIBHJUSTICEJINSURE
DOMDLCITRONGUIIJTYIPROVIDEFPRTHFCOMMQN
DEFENBELPROMOTETHEGENEMIWELNRELAND
SECURETHEBLCSSINPOFLIBBHYTOOURSELUES
ANDOURPOSTERLTYIDCXDRBINANDQDADLISH
THISCONETITUTIBNFORTHEUNIFEDSBTES
OFAMERICA

Spell-Corrected Words

WE THE PEOPLE THE UNITED A STATES ORDER TO
A MORE UNION THE JUSTICE INSURE
DO TRANQUILITY PROVIDE FOR THE COMMON
DEFENSE PROMOTE THE GENERAL WELFARE AND
SECURE THE BLESSINGS OF LIBERTYTO OURSELVES
AND OUR POSTERITY DO FOR IN AND A
THIS CONSTITUTION FOR THE UNITED STATES
OF AMERICA

Figure 10. Results from processing the top paragraph image.

Hypothesized words are constructed from sequences of the classifier output and then matched to the dictio-

nary. When there is a sufficiently good match, the dictionary word is output, the process resynchronizes itself in the

33

character stream, and parsing restunes. The matching aiterion takes into account the munber of errors in the word rel-

ative to the length of the word. This way longer words are permitted to tolerate more errors.

4,2.11 Store Results; src/lib/fet/writefetc; writefetfileO

When processing the Preamble paragraph, the system produces a sequence of spell-corrected words as out-

put Results of spell-correcting the paragraph image in Figure 10 are listed at the bottom of the figure. Shorter words

such as articles and prepositions tend to be frequently deleted and in other places inserted, while the system does a

reasonable job of recognizing longer words. This type of dictionary processing is better suited to word-spotting than

to full OCR transcription.

Fcff the numeric and randomly ordered alphabet fields, the new system outputs for each segmented character

an assigned class and its associated confidence as determined by the MLP classifier. Example output files from the rec-

ognition system can be found under the top-level directory data.

5. PERFORMANCE EVALUATION AND COMPARISONS

This section evaluates and compares the performances of three recognition systems.The first release of the

recognition system (based on thePNN classifier) is named HSFSYS, the updated version of the original system distrib-

uted with this (the second) release is namedHSFSYS1

,

and the new system (based on the MLP classifier) is HSFSYS2

.

Each of these systems was designed to process the HSF forms distributed in NIST Special Database 1

9

(SD19) [3].

HSFSYS and HSFSYSl are capable of processing the forms in SD19 partitions hsf_0, 1, 2. & 3, whereas the new sys-

tem, HSFSYS2, is cqjable of processing every one of the 3669 forms in the database. This section presents compre-

hensive results primarily for HSFSYSl and HSFSYS2 across SD19. Statistics are provided on accuracy, error versus

reject performance, timings, and memory usage.

5.1 Accuracies and Error Rates

In order to compile statistics on accuracy and error rates, each system was run across the forms in SD19 and

recognition results were stored to file. Recognition system classifications were stored to hypothesis files, and their asso-

ciated confidence values were stored to confidence files. Once generated, these files were processed using the NIST
Scoring Package [28], and performance statistics were compiled at the character, word, and field levels.

Table 3 lists the digit rect^nition results of running HSFSYSl on the first 2,100 forms (partitions hsf_0 to

hsf_3) in SD19. The forms in the remaining partitions differ enough that the method ofform registration used in HSF-

SYSl fads. The tq) portion of the table reports character-level statistics, and the bottom reports field-level accuracies.

33 of the 2,100 forms were rejected due to form registration failures and their characters are not mcluded in the table.

It was determined that a majority of these failures occurred due to writing outside the provided boxes with continued

responses or aimotations. A small number (about 5) failed registration due to spurious noise in critical areas on the

form. HSFSYSl is an implementation improvement over the originally released system, HSFSYS. The same methods

are applied in both, only HSFSYSl has been improved in terms of its memory usage, more efficient execution, and

there is no longer any dependence onFORTRAN subroutines. Both systems use the PNN classifier. As was expected,

the results in Table 3 are very similar to those reported for the original system in Reference [1].

The performance statistics in Table 3 can be compared to those listed in Table 4. The second table reports the

digit recognition results from the new MIP-based system, HSFSYS2. These two systems use significantly different

algorithms for more than just classification, and as can be seen, HSFSYS2 performs significantly better than HSF-
SYSl. In terms of digit accuracy, HSFSYS2 is 3.2% more accurate at 96.3% and it recognizes 86% of the digit fields

entirely correctly (6% more than HSFSYSl). This difference in accuracy is primarily attributed to the different seg-

mentation methods used in the systems, not to the different classifiers. Studies have shown that at zero-rejection, PNN
and the new MLP classifier have simil ar accuracy [8]. Looking at deletion errors, HSFSYS2 cuts them by 80% which

confirms the improved performance of the system’s statistically adaptive segmentor [7]. In addition, HSFSYS2 is capa-

ble of registering every form in SD19, with only 10 fields (6 digit fields, 1 lowercase field, and 3 Preamble fields)

rejected due to poor image quality. The characters from these 10 fields have been tallied into the reported statistics as

deletions.

35

HSFSYSl DIGIT RECOGNITION

hsf_0 hsLl lisf_2 hsf_3 Total

Correct 92.9%
59288

93.0%
59868

92.6%
58258

93.9%
72872

93.1%
250286

12

Substituted 3.9%
2481

3.9%
2531

4.1%
2578

3.6%
2782

3.9%
10372

Ci^

cc
u Inserted 0.6%

398

0.7%
475

0.6%
385

0.7%
539

0.7%
1797

u
Deleted 3.2%

2061

3.0%
1951

3.3%
2084

2.5%
1956

3.0%
8052

Total 63830 64350 62920 77610 268710

2
"S

Correct 79.0%
10865

195%
11012

79.1%
10717

81.7%
13662

79.9%
46256

Total 13748 13860 13552 16716 57876

Table 3. HSFSYSl accuracies and error rates for digit fields across the first part of SD19.

HSFSYS2 DIGITRECOGNmON

hsf_0 hsf_l hsf_2 hsf_3 lisf_4 hsf_6* hsf_7 hsf_8 Total

Characters

Correct 96.6%
62772

96.5%
62731

96.1%
62486

97.2%
75804

93.7%
60933

97.3%
63144

96.3%
62615

96.9%
8817

96.3%
459302

Substituted 2.8%
1816

2.9%
1871

3.0%
1972

2.4%
1891

55%
3575

2.1%
1367

3.0%
1920

2.5%
229

3.1%
14641

Inserted 0.7%
454

0.7%
487

0.7%
425

0.7%
571

0.8%
489

0.5%
318

0.6%
422

0.3%
25

0.7%
3191

Deleted 0.6%
412

0.6%
398

0.8%
542

0.4%
305

0.8%
492

0.6%
359

0.7%
465

0.6%
54

0.6%
3027

Total 65000 65000 65000 78000 65000 64870 65000 9100 476970

Fields

Correct 86.3%
12084

86.7%
12139

86.2%
12068

88.6%
14881

115%
10855

89.6%
12517

86.5%
12105

88.2%
1728

86.0%
88377

Total 14000 14000 14000 16800 14000 13972 14000 1960 102732

Table 4. HSFSYS2 accuracies and error rates for digit fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)

36

The results of uppercase recognition can be compared between Table 5 and Table 6. HSFSYS2 recognizes

uppercase characters at nearly 90% (4.6% higher than HSFSYSl). Again, the difference in performance can be prima-

rily attributed to the segmentation methods used. With HSFSYS2, insertion errors are reduced by 46% and deletion

errors by 58%.

HSFSYSl UPPERCASERECOGNmON

hsf_0 hsf_l hsf_2 hsf_3 Total

Characters

Correct 84.7%
10808

85.5%
11004

84.7%
10661

86.2%
13377

85.3%
45850

Substituted 12.8%
1636

11.8%
1524

12.8%
1609

12.0%
1858

12.3%
6627

Inserted 4.7%
599

4.3%
556

5.5%
687

4.6%
717

4.8%
2559

Deleted 2.5%
322

2.7%
342

2.5%
314

1.8%
287

2.4%
1265

Total 12766 12870 12584 15522 53742

Table 5. HSFSYSl accuracy and error rates for uppercase fields across the first part of SD19.

HSFSYS2 UPPERCASE RECOGNmON

hsf_0 hsf_l hsf_2 hsf_3 hsf_4* hsf_6* hsf_7 hsf_8 Total

Characters

Correct 89.1%
11587

89.3%
11603

89.2%
11591

89.9%
14029

90.3%
11740

93.0%
12062

88.9%
11563

89.5%
1629

89.9%
85804

Substituted 9.7%
1256

9.3%
1210

9.4%
1223

9.1%
1425

9.1%
1187

6.5%
847

10.4%
1347

8.8%
161

9.1%
8656

Inserted 2.3%
294

2.3%
300

2.5%
320

2.7%
426

3.4%
436

2.4%
315

2.6%
336

1.4%
25

2.6%
2452

Deleted 12%
157

1.4%
187

1.4%
186

0.9%
146

0.6%
73

0.5%
65

0.7%
90

1.6%
30

1.0%
934

Total 13000 13000 13000 15600 13000 12974 13000 1820 95394

Table 6. HSFSYS2 accuracy and error rates for uppercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural networit classifiers.)

37

Lowercase statistics are listed in Table 7 and Table 8. HSFSYS2 correctly recognizes not quite 80% of the

lowercase characters in SD19. Not only does the new system employ a new segmentor, it also conducts intelligent line

removal that preserves character stroke data that overlaps with the form and extends beyond the immediate limi ts of

the field An independent study [5] shown that one can expect up to a 3% improvement in lowercase accuracy when

iicino fhis: method of linp. removal. The difference between HSFSYS 1 and HSFSYS2 is 2.8%, some of which can be

directly attributed to the line removal. Adaptive character segmentation is also contributing, as insertion errors are

reduced by 70%. This demonstrates the segmentor’s ability to compose characters from multiple connected compo-

nents, as unattached fragments contribute to insertion errors. On the other hand, the number of deletion errors increases

with HSFSYS2. This leads one to conclude that the adaptive segmentor may be over-aggressive in merging compo-

nents, and not aggressive enough when it comes to splitting touching characters. An independent study has shown that

the general segmentation method used in HSFSYS2 can benefit from further refinement for lowercase characters [6].

HSFSYS 1 LOWERCASERECOGNITION

hsf_0 hsf_l hsf_2 hsf_3 Total

Characters

Correct 75.1%
9593

76.8%
9890

76.5%
9625

78.7%
12217

76.9%
41325

Substituted 22.9%
2927

21.4%
2748

22.3%
2804

19.9%
3092

21.5%
11571

Inserted 3.2%
405

2.6%
336

3.0%
381

3.2%
500

3.0%
1622

Deleted 1.9%
246

1.8%
232

1.2%
155

1.4%
213

1.6%
846

Total 12766 12870 12584 15522 53742

Table 7. HSFSYSl accuracy and error rates for lowercase fields across the first part of SD19.

HSFSYS2 LOWERCASERECOGNinON

hsf_0 hsf_l hsf_2 hsf_3 hsf_4* hsf_6* hsf_7 hsf_8 Total

Characters

Correct 77.2%
10042

78.6%
10218

77.8%
10109

80.4%
12541

82.6%
10739

82.9%
10756

79.1%
10280

155%
1374

79.7%
76059

Substituted 20.4%
2654

19.2%
2495

20.3%
2645

17.8%
2781

15.1%
1967

15.2%
1966

18.4%
2397

20.5%
312,

18.1%
17278

Inserted 0.9%
119

0.8%
102

0.8%
110

1.1%
168

0.8%
no

0.6%
75

0.9%
114

1.0%
18

0.9%
816

Deleted 2.3%
304

2.2%
287

1.9%
246

1.8%
278

2.3%
294

1.9%
252

2.5%
323

4.0%
73

22%
2057

Total 13000 13000 13000 15600 13000 12974 13000 1820 95394

Table 8. HSFSYS2 accuracy and error rates for lowercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)

38

The last pair of tables (Table 9 and Table 10) lists the results of recognizing words across SD19’s Preamble

fields. SD19 has completed Preamble paragraphs only in its first 4 partiticHis. These word-level statistics were com-

puted by tokenizing each word in the system output. The NIST Scoring Package [28] was used to align the word tokens

with the known Preamble text, and statistics were accumulated. Much effort was spent in improving the line isolation

algorithm used in HSFSYS2 [6]. Even so, overall word accuracy cmly improved 2.3% (61.6% to 63.9%). Considerable

work still remains in improving the segmentation of vertically and horizontally touching characters, the detection of

punctuation marks, and dictionary-based spelling correction.

HSFSYSl PREAMBLERECOGNmON

hsf_0 hsf_l hsf_2 hsf_3 Total

Words

Correct 60.3%
15403

59.8%
15387

60.5%
15237

65.0%
20166

61.6%
66193

Substituted 15.2%
3871

14.3%
3676

14.0%
3525

12.7%
3943

14.0%
15015

luserted 1.1%
283

0.9%
224

1.1%
270

1.1%
335

1.0%
1112

Deleted 24.5%
6258

25.9%
6677

155%
6406

22.3%
6935

24.4%
26276

Total 25532 25740 25168 31044 107484

Table 9. HSFSYSl accuracy and error rates for Preamble fields across SD19.

HSFSYS2 PREAMBLE RECCKjNinON

hsf_0 hsf_l hsf_2 hsf_3 Total

Words

Correct 62.6%
16276

62.4%
16231

62.7%
16304

67.2%
20961

63.9%
69772

Substituted 15.4%
4012

152%
3958

14.7%
3833

12.6%
3940

14.4%
15743

Inserted 1.6%
405

1.0%
260

1.1%
287

1.3%
418

1.3%
1370

Deleted 22.0%
5712

22.4%
5811

22.6%
5863

20.2%
6299

21.7%
23685

Total 26000 26000 26000 31200 109200

Table 10. HSFSYS2 accuracy and eiTOT rates for Preamble fields across SD19.

As a final note on these accmacy statistics, realize that results are reported with HSFSYS2 having processed

the entire set of forms in SD19. This is one of the largest published erqjeriments of its kind, and it is reproducible by

purchasing the SD19 database from NIST. In all, sample handwriting from 3669 writers was tested and a total of

109,200 words and 667,758 characters were recognized and scored. As SD19 is our only handprint database, training

samples were extracted firom specific writer partitions and used to train thePNN and MLP character classifiers off-line.

From the 667,758 characters, 109,719 were used in training, hr the case of digits, the writers in hsf_6 (61,094 charac-

ters) were used in the training set, and in the case of upper and lowercase, writers in both hsf_4 and hsf_6 (totalling

24,420 uppercase characters and 24,205 lowercase characters) were used. It is worth pointing out that the machine pro-

cesses used to isolate the character training samples were different, as they predate the technology used in HSFSYS2.

39

Comparing the HSFSYS2 results on hsf_6 to other partitions, it is interesting to see that the inclusion ofhsf_6

in the classifier training does have some influence, however the influence is small. \^fith digits, HSFSYS2 is 97.3%

correct on hsf_6 whereas the results <hi hsf_3 are almost as good at 97.2%, and the other partitions (with the exception

of hsf_4) range between 96% and 97%. The writers in hsf_4 are firom a different population and are known to be sta-

tistically more difficult to recognize [29]. The influence of training is a bit more pronounced with the results on upper

and lowercase fields. On uppercase, HSFSYS2 is 93% correct on hsf_6, and the other partitions range between 89%

to 90%. For lowercase, HSFSYS2 is 83% correct on hsf_6, and other partiticms range between 77% to 80%. These

small differences (particularly for the digits) demonstrate that the MLP character classifier is doing a reasonably good

job at generalizing on writers it hasn’t seen during its off-line training. The MLP-based system doesn’t g^eralize as

weU on upper and lowercase recognition in part because fewer training samples were used than for digits.

5,2 Error versus Rejection Rate

The advantages of using a machine for OCR in many ways complement the performance of humans [2].

Machines are very efficient in doing tasks that are primarily repetitive and reflexive, whereas humans quickly fatigue

under these conditions. Humans, on the other hand, are very adept at performing tasks requiring higher-level reasoning,

and as a result, provide more robust butmuch slower solutions to complex problems. Accounting for these differences,

successful recognition systems allow a machine to perform the bulk of the work, and on an exception basis, humans

can be used to resolve ambiguities and potential errors. This is accomplished through rejection mechanisms that auto-

matically route low-confidence machine decisions to humans for verification. This section compares the ability of the

NIST recognition systems to effectively reject low-confidence character classifications.

The graph in Figtrre 1 1 plots error versus rejection rates with error plotted on a logarithmic scale. The results

plotted were computed from the first 500 writers (partition h^_0) in SD19. Results are shown for both HSFSYS 1 and

the new system HSFSYS2, and they are broken out by digit, upper, and lowercase recognition. In general, as the num-

ber of rejected character classifications increases, the error rate on the remaining accepted (or non-rejected) classifica-

tions decreases, and accuracy improves. Also, the impact of rejection on accuracy tapers off as more and more

characters are rejected. In the figure, the bottom two curves represent the performance of the new and old systems on

recognizing characters in the numeric fields on the HSF forms. With no rejection, HSFSYS2 has an error rate near 4%,

and HSFSYS 1 has an errOT rate over 7.5%. As the number of rejected digit classifications is increased, the error rate

proceeds to drq), only HSFSYS2 falls at a significantly faster rate than does HSFSYS 1. The difference in the slope of

the two digit curves confirms the robustness of the MLP classifier used in HSFYS2 over the PNN classifier used in

HSFSYSl. The digit error rate ofHSFSYS2 continues to drop to nearly 1.2% at 15% rejection. One ccmcludes from

these results, that in terms of recognizing numeric fields, the new NIST recognition system is more than twice as good

as the original system.

The differences between the two systems are less dramatic with upper and lowercase recognition. The middle

two curves in Figure 11 correspond to the results of recognizing the uppercase alphabet fields on the HSF forms. Hie

HSFSYS2 curve does fall off slightly faster than does HSFSYS I’s, but the distance between the curves is not as large

as that of the digit curves. With no rejection, HSFSYS2 has an error rate of almost 13% and HSFSYSl is just over

19%. The two lowercase curves are even closer to each other, and their distance only slightly increases across the range

of rejections plotted. This emphasizes that lowercase recognition is still the most difficult for the NIST systems. The
minimal increase in separation between these two curves can be attributed to a combination of two factors. First, the

decision surfaces trained within the MLP classifier for lowercase are much more complex than those ofuppercase, and

the decision surfaces for uppercase are more complex than those of digits [8]. Second, the challenges remaining in the

system that are impacting accuracy lie primarily in components other than the classifier. Otherwise, the relative slopes

m the upper and lowercase curves would more closely resemble those of the digit classifications.

40

Figure 1 1. Error versus rejectioa rates for digit, upper, and lowercase recognition between HSFSYSl and HSFSYS2.

53 Timing and Memory Statistics

Over the two years following the first system’s release, a munber of significant improvements were made to

the existing source code so that a modified version of the old system now runs faster and uses memory more efficiently.

As new methods were developed to improve the NIST system, the focus was primarily on improving system accuracy,

although considerable effort was made to ensure that the resulting implementations were time-efficient This section

first compares the timing results between the original system (HSFSYS) as it was distributed in the first release, the

augmented original system (HSFSYSl) as it is distributed in this release, and the new system (HSFSYS2).

Table 11 lists timing statistics (in seconds) for each of the major components in the original and augmented

versions of the old recognition system. The timings reported in Table 11 and Table 12 were generated on a Sim Micro-

systems SPARCstation 2 with a Weitek CPU upgrade, and the reported user times are an average over the 10 HSF
forms included in the test-bed. The first pair of data columns in Table 1 1 lists results from the implementation distrib-

uted in the first release, and the second pair of columns lists results firran the augmented version distributed with this

release. Virtually the same algorithms are used throughout, only memory usage has been made more efficient, and in

several places, the source code was modified to execute more quickly. The most significant change is in spelling cor-

rection, where in the development of the new release, it was discovered that memory was being allocated and then

deallocated every time a word was being matched to the dictionary. By simply allocating a matrix only once, the aver-

age time required to spell-correct a handprinted Preamble paragraph dropped by almost a factor of 9. Another time

improvement to note is that thePNN character classifier was modified to use new internal data structures and now runs

24% faster. This is slightly offset by field initialization taking 2 seconds longer due to a new PNN-supporting file for-

mat Also note that the time required to compute the KL transform (within character feature extraction) has been cut

in half. As a result of implementation changes, the component taking the most time in HSFSYSl is now the PNN clas-

41

sifier, requiring nearly a quarter of the time. Form registration, field initialization, then segmuritation also require sig-

nificant amounts of time.

Task HSFSYS HSFSYSl

form init 1.1 1.4% 0.9 2.0%

form register 9.8 12.3% 9.4 20.6%

form remove 1.0 1.3% 0.8 1.8%

field init 5.5 7.0% 7.7 16.8%

field isolate 1.0 1.3% 1.0 2.3%

field segment 7.0 8.8% 6.8 14.9%

chr normalize 0.9 1.2% 0.9 1.9%

chr shear 0.3 0.4% 0.3 0.6%

chr feature 5.6 7.0% 2.7 6.0%

chr classify 13.8 17.4% 10.5 23.1%

chr sort 0.2 0.3% 0.2 0.5%

field spell 33.2 41.7% 3.8 8.3%

total 79.6 100.0% 45.6 100.0%

Table 11. Timing statistics in seconds between original and augmented versions of old system.

Task HSFSYS2

batch init 1.7 5.1%

form load 1.5 4.6%

form register 5.6 17.1%

field isolate 8.9 27.2%

field segment 1.1 3.2%

chr normalize 0.9 2.7%

chr feature 5.4 16.4%

chr classify 4.0 12.2%

field spell 3.8 11.4%

total 32.9 100.0%

Table 12. Tuning statistics in seconds for new version of recognitiaa system.

Table 12 reports the average user times required to run the new system, HSFSYS2, across the same set of 10

HSF forms. First, notice that flie overall time required has decreased by nearly 28% when compared to HSFSYS 1 . The

speed increase can be explained in part by using the new MLP classifier in place of the PNN. The MLP character clas-

sifier is a factor of 2.6 faster, and using the MLP does not require field initialization. All the MLP weights for all the

types of fields on the HSF form can be held in memory simultaneously, so they are read from file once during batch

initialization. The time for this initialization is factored across the number of forms processed within the batch. As the

number of forms increases, the percentage of time required for the reading of the weights becomes negligible. The
PNN classifier requires much more memory, and it becomes infeasible to hold all of its weights (training prototypes)

in memory at (mce. Every time the PNN-based system begins processing a new type of field, a large number of new
field-specific prototypes must be read from file.

In order to analyze memory usage, the SunOS/UNIX routine mallinfo() was used to measure the maximum
arena size of the various NIST recognition systems. During the execution of the original system, HSFSYS grew to

42

require a total arena size of 33.7Mb; the more efficient implementation (HSFSYS 1) required only 21 .9Mb; and the new
MLP-based HSFSYS2 required 25.1 Mb. The number of floating point values required by the PNN in HSFSYSl to

classify digits is over4 million (61,094 prototypes x 64KL coefficients), whereas the MLP digit weights in HSFSYS2
contain about 18,000 floating point values (a 128x128x10 network). One would expect this dramatic difference in the

required weight size to be reflectedm the overall arena sizes between the two systems, but instead, HSFSYS2 actually

uses more memOTy than HSFSYSl.

This is primarily due to the internal representation of image used in the two systems. While HSFSYS 1

attempts to maintain a general binary image representation with eight pixels packed in one byte, HSFSYS2 expands

images to be one pixel per byte. This makes arbitrary pixel addressing less expensive, but it does utilize 8 times more

memory. A full page 1 1 .8 pixel/millnneter (300 pixelstinch) binary image requires about 1Mb ofmemory when pixels

are packed 8 per byte. Expanded, the same image with one pixel per byte requires over 8 Mb. In general, an unage

transformation on the expanded image will result in two imagesm memory (the source image and the resulting image).

These two images now require a total of 16Mb, whereas the 8 pixels per byte representation would require only 2Mb.

In effect, the 16Mb ofPNN weights (4 million floats x 4 bytes/float) replaced by the 18,000 MLP weights is offset (and

then some) by the 16Mb of additional image representation. Thus the new MLP-based system uses sUghtly more mem-
ory than the PNN-based one.

As part of the testing of the second release, the software was installed and executed, and results were analyzed

on a number of different UNIX platforms. These systems included computers manufactured by Digital Equipment Cor-

poration, Hewlett Packard, IBM, Silicon Ciraphics Incorporated, and Sun Microsystems. Times are hsted in Table 13

for both the augmented original system (HSFSYSl) and for the new system (HSFSYS2). The times reported are the

average user times required to process an HSF form, and the statistics were computed across the 10 HSF forms pro-

vided witii this distributiOTi. On all the machines, HSFSYS2 processed the 10 forms faster than did HSFSYSl. Two
computers, the SGI Challenge and the Sun SPARCstation 10, have multiple processors. However, the recognition sys-

tems were compiled serially on these machines and run on single processors, so no parallel processing was employed.

The range of user times varies by a factor of 3 to 4 over the set of machines tested. On the faster machines, HSF forms

are processed 10 to 15 seconds a page.

Man. Model O.S. RAM HSFSYSl HSFSYS2

DEC Alpha 3000/400 OSF/1 VI.

3

32 Mb 10.4 10.0

SGI Indy (IP22) IRIX 5.3 128 Mb 13.2 10.3

IBM RS6000 Model 370 AIX4.1 128 Mb 17.1 15.4

SGI Challenge (8-IP19’s)* IRIX 5.3 512 Mb 17.5 14.3

HP 9000/735 HP-UX A.09.05 32 Mb 18.2 14.1

Sun SPARCstation 10

(2-CPU’s)*

SunOS 5.4 (Solaris) 128 Mb 34.3 24.4

Sun SPARCstation 2
(Weitek 80MHz CPU)

SunOS 4.1.3 64 Mb 45.6 32.9

Table 13. Table of timings in seconds from the different UNIX computers tested.

(*Those computers with multiple processors were compiled and tested serially.)

43

6. IMPROVEMENTS TO THE TEST-BED

With the new technologies released in this distribution, the NIST recognition software test-bed is much closer

to being a usable product thari its first release. There should be significantly less effort commercializing the new tech-

nology within the firamewOTk provided. Nonetheless, the new system is a technology transfer rather than a shrink-

wrapped product One item missing firom the test-bed, which may be required for its commercialization, is a forms

identification component so that the system can process more than one type ofform within a batch. Also missing is an

integrated work flow for routing and correcting rejected classifications with human key operators. The modular system

architecture does however provide handles to support this work flow. Finally, a formalized form definition utility is

needed, supported by an interactive interface that sets up the recognition system to process new types of forms.

6.1 Processing New Forms with the HSFSYS2

To set up the new recognition system, hsfsysZ, to process a new type of form, trainreg must be run on a pro-

totypical form and the output coordinates stored, hi addition, the fields or zones on a registered version of thenew ftarn

must be measured manually with an interactive image display tool (not provided with this distribution), and the coor-

dinates of each field must be stored to an MFS file. The file tmplt/hsfsmplt.pts crmtains the field coordinates for a reg-

istered HSF form. The source code must be modified to load these two new files (the registration coordinate file and

the field coordinate file).

If a new form contains fields different than those on an HSF form, then the MLP classifier will need to be

retrained and the resulting weights files will need to be loaded into the system. For example, if a new form contains

money fields that include dollar signs, commas, and decimal points, then it will be desirable to train the network

to classify these three new characters in addition to the ten numeric characters. A future improvement to hsfsys2 would

be to develop and incorporate a forms definition tool that locates the zones on a new form (preferably automatically)

and then systematically prompts an operator to identify the types of each field on the form so that the appropriate clas-

sifier weights, form removal, syntax checking, and field-specific dictionaries can be automatically applied by the sys-

tem. Currently, this must aU be done manually through the coding of a new application-specific main program.

44

7. FINAL COMMENTS

A number ofNIST Internal Reports (NIS l lK’s) have been referenced in this document. These reports are pro-

vided in PostScript format in the top-level directOTy doc. The file doclhsfsys2.ps contains this specific document. These

reports along with many other NIST Visual Image Processing Group publications are available in PostScript format

over the Internet via anonymous FTP on sequoyah.nist.gov or via the World Wide Web at http.ilwww.nist.govlitU

div894/894.03. To request a paper copy of any of these NISTIRs, please contact

TTL Publications

National Institute of Standards and Technology

Building 225, Room B216

Gaithersburg, MD 20899

voice: (301) 975-2832

This report documents the second release of the NIST standard reference recognition software test-bed in

terms of its installation, (Hganization, and functionality. The software has been successfully compiled and tested on a

number of different vendors’ UNIX workstations. If necessary, it is the responsibility of the distribution recipient to

port the software to their specific computer architecture. The source code is written entirely in C and is organized into

15 libraries. In all, there are approximately 39,000 lines of code supporting more than 725 subroutines. Source code is

provided for a wide variety of utilities that have apphcation to many other types of problems.

Approximately 25 person-years have been invested by NIST in the development of this software test-bed, and

it can be obtained free of charge on dD-ROM by sending a letter of request via postal mail or FAX to the primary

author. Requests for distribution made by electronic mail will not be accepted; however, electronic mail is encouraged

for technical questions once the distribution has been received. Any portiOTi of this test-bed may be used without

restrictions because it was created with U.S. government funding. Redistribution of this standard reference software is

strcHigly discouraged as any subsequent corrections or updates will be sent to registered recipients only. This software

was produced by NIST, an agency of the U.S. government, and by statute is not subject to copyright in the United

States. Recipients of this software test-bed assume all responsibilities associated with its operation, modification, and

maintenance.

45

8. REFERENCES

[1] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, “NIST

Form-Based Handprint Recognition System,” NIST Internal Report 5469 and CD-ROM, July 1994.

[2] C. L. Wilson, J. Geist, M. D. Garris, and R. Chell^pa, “Design, Integration, and Evaluation ofForm-Based Hand-

print and OCR Systems,” NIST Internal Report 5932, December 1996.

[3] P. J. Grother, “Handprinted Forms and Characters Database, NIST Special Database 19," NIST Technical Report

and CD-ROM, March 1995.

[4] M. D. Garris and P. J. Grother, “Generalized Form Registration Using Structure-Based Techniques,” NIST Internal

Report 5726 and in Proceedings of the Fifth AnnualSymposium on DocumentAnalysis andInformation Retrieval,

pp. 321-334, UNLV, AprU 1996.

[5] M. D. Garris, “Method and Evaluation of Character Stroke Preservation ofHandprint Recognition,” NIST Internal

Report 5687, July 1995, and in Proceedings ofDocumentRecognition HI, Vol. 2660, pp. 321-332, SPIE, San Jose,

February 1996.

[6] M. D. Garris, ‘Teaching Computers to Read Handprinted Paragraphs,” NIST Internal Report 5894, September

1996.

[7] M. D. Garris, “Component-Based Handprint Segmentation Using Adaptive Writing Style Model,” NIST Internal

Report 5843, June 1996.

[8] C. L. Wilson, J. L. Blue, O. M. Omidvar, “The Effect of Training Dynmnics on Neural Network Performance,”

NIST Internal Report 5696, August 1995.

[9] M. D. Garris, “Unconstrained Handprint Recognition Using a Limited Lexicon,” NIST Internal Report 5310,

December 1993, and in Proceedings of Document Recognition, Vol. 2181, pp. 36-46, SPIE, San Jose, February

1994.

[10] Department ofDefense, “Military Specification - Raster Graphics Representation in Binary Format, Requirements

for, MIL-R-28002,” 20 Dec 1988.

[11] CCli l, “Facsimile Coding Schemes and Coding Control Fimctions for Group 4 Facsimile Apparatus, Fascicle

Vn.3 - Rec. T.6,” 1984.

[12] C. R. Wyle, Advanced Engineering Mathematics, Second Edition, pp. 175-179, McGraw-HiU, New York, 1960.

[13] A. K. Jain, Fundamentals ofDigital Image Processing, pp. 384-389, Pientice-HaU, New Jersey, 1989.

[14] P. J. Grother, “KarhunenLobve Feature Extraction for Neural Handwritten Character Recognition,” NIST Internal

Report 4824, April 1992, and in Proceedings ofApplications ofArtificial NeuralNetworks HI, Vol. 1709, pp. 155-

166. SPIE, Orlando, April 1992.

[15] D. F. Specht, “Probabilistic Neural NoPnoiIss." Neural Networks, Vol. 3(1), pp 109-119, 1990.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing, Volume 1 : Foundations,

edited by D. E. Rumelhart, J. L. McQelland, eL al., MIT Press, Cambridge, pp. 318-362, 1986.

[17] H. G. Zwakenbeig, “Inexact Alphanumeric Comparison,” The C Users Journal, pp. 127-131, May 1991.

[18] ISO-9660, “Information Processing - Volume and File Structure of CD-ROM for InformaticHi Interchange,” Stan-

dard by the International Organization for Standardization, 1998.

[19] J. Geist, R. A. Wilkinson, S. Janet, P. J. Grother, B. Hammond, N. W. Larsen, R. M. Klear, M. J. Matsko, C. J. C.

Burges, R. Geecy, J. J. Hull, T. P. Vogl, C. L. Wilson, “The Second Census Optical Character Recognition Sys-

tems Conference,” NIST Internal Report 5452, May 1994.

[20] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the

ACM, Vol. 18, pp. 509-517, 1975.

[21] W. Postl, “Method for Automatic Correction of Character Skew in the Acquisition of a Text Original in the Form
of Digital Scan Results,” Urtited States Patent Number 4,723,297, February 1988.

[22] J. L. Blue, G. T. Candela, P. J. Grother, R. CheUappa, and C. L. Vfilson, “Evaluation of Pattern Qassifiers for Fin-

gerprint and OCR Applications,” Pattern Recognition, Vol. 27, No. 4, pp. 485-501, 1994.

[23] C. L. Wilson, P. J. Grother, and C. S. Barnes, “Binary Decision Qustering for Neural Network Based Optical

Character Recognition,” NIST Internal Report 5542, December 1994, and in Pattern Recognition, Vol. 29, No. 3,

pp. 425-437, 1996.

46

[24] O. M. Omidvar and C. L. Wilson, “Information Content in Neural Net Optimization,”NIST Internal Report 4766,

February 1992, zodm Journal ofConnection Science, 6:91-103, 1993.

[25] J. L. Blue and P. J. Grother, ‘Training Feed Forward Networks Using Conjugate Gradients,” NIST Internal Report

4776, February 1992, and in Conference on Character Recognition and Digitizer Technologies, Vol. 1661, pp.

179-190, SPm, San Jose, February 1992.

[26] M. J. Ganzbeiger, R. Rovner, A. M. Gillies, D. J. Hepp, and P. D. Gader, “Matching Database Records to Hand-

written Text,” in Proceedings on Document Recognition, Vol. 2181, pp. 66-75, SPIE, San Jose, February 1994.

[27] G. L. Martin and J. A. Pittman, “Recognizing Hand-Printed Letters and Digits,” Neural Networks, Vol. 3, pp. 258-

267, 1991.

[28] S. A. Janet, “NIST Scoring Package User’s Guide, Release 2.0,” NIST Technical Report and Software, to be pub-

lished.

[29] P. J. Grother, “Cross Validation Comparison ofNISTOCRDatabases,” NIST Internal Report 5 123, January 1993,

and in Proceedings of Character Recognition Technologies, Vol. 1906, pp. 296-307, SPIE, San Jose, February

1993.

[30] D. Liu and J. Nocedal, “On the Limited Memory BFGS Method for Large Scale Optimization.” Mathematical

Programming B, Vol. 45, 503-528, 1989.

Appendix A. TRAINING THE MULTI-LAYER PERCEPTRON (MLP) CLASSIFIER OFF-LINE

The program mlp trains a 3-layer feed-forward linear perceptron [16] using novel methods of machine learn-

ing that help control the learning dynamics of the network. As a result, the derived minima are superior, the decision

surfaces of the trained network are well-formed, the information content of confidence values is increased, and gener-

alization is enhanced. TrainedMLP networks are used in the new recognition system, hsfsys2. As a classifier, this new

MLP is superior to the PNN classifier used in hsfsysl in terms of its memory requirements, classification speed, and

superior confidence values for rejecting confusims. The theory behind the machine learning techniques used in this

program is discussed in Reference [8] . The main routine for this program is found in srclbin/mlplmlp.c and the majority

of its supporting subroutines is located in the library srclliblmlp.

Machine learning is controlled through a batch-oriented iterative process of training the MLP on a set of pro-

totype feature vectors, and then evaluating the progress made by running the MLP (in its current state) on a separate

set of feature vectors. Training oti the first set of patterns then resumes for a predetermined number of passes through

the training data, and then the MLP is tested again on the evaluation set. This process of training and then testing con-

tinues until the MLP has been determined to have satisfactorily converged. The command line invocation ofmlp is as

follows:

% mlp [-c] [specfile]

• The first optional argument -c performs checking of the specfile only: scan it; write any applicable warnings

or error messages to the standard otot output; then exit.

• The second optional argument specfile is the name of the specification file to be processed by mlp. If this

argument is omitted, the specfile is assumed to be the file spec in the current working directory. The format

of the specfile is documented in the routine scanspecQ found in srclliblmlplscanspec.c.

This command trains ch: tests an MLP neural network suitable fw use as a classifier or as a function-approx-

imator. The network has an input layer, a hidden layer, and an output layer, each layer cmnprising a set of nodes. The

irqjut nodes are feed-forwardly connected to the hidden nodes, and the hidden nodes to the output nodes, by connec-

tions whose weights (strengths) are trainable. The activation function used for the hidden nodes can be chosen to be

sinusoid, sigmoid (logistic), or linear, as can the activation function for the output nodes. Training (optimization) of

the weights is done using either a Scaled Conjugate Gradient (SCG) algorithm [25], or by starting out with SCG and

then switching to a Limited Memory Broyden Fletcher Goldfarb Sharmo (LBFGS) algorithm [30]. Boltzmarm pruning

[24], i.e. dynamic removal of cormections, can be performed during training if desired. Prior weights can be attached

to the patterns (feature vectors) in various ways.

A.l IVaining and Testing Runs

When mlp is invdced, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of the network. Each pattern consists

of afeature vector, along with either a class or a target vector. A feature vector is a tuple of floating-point numbers,

which typically has been extracted from some natural object such as a handwritten character. A class denotes the actual

class to which the object belongs, for example the character which a handwritten mark is an instance of. The network

can be trained to become a classifier: it trains using a set of feature vectors extracted from objects ofknown classes.

Or, more generally, the network can be trained to learn, again from example input-output pairs, a function whose output

is a vector of floating-point numbers, rather than a class; if this is done, the network is a sort of interpolator or function-

fitter. A training run finishes by writing the final values of the network weights as a file. It also produces a summary
file showing various information about the run, and optionally produces a longer file that shows the results the final

(trained) network produced for each individual pattern.

testing run: A set of patterns is sent through a network, after the network weights are read firom a file. The
output values, i.e. the hypothetical classes (for a classifier network) or the produced output vectors (for a fitter net-

work), are compared with target classes or vectors, and the resulting error rate is computed. The program can produce
a table showing the correct classification rate as a function of the rejection rate.

48

A2 Specification (Spec) File

This is a file produced by the user, which sets the parameters (henceforth “parms”) of the run(s) that mlp is to

perform. It consists of one or more blocks, each of which sets the parms for one run. Each block is separated from the

next one by the word “newrun” or “NEWRUN”. Parms are set using name-value pairs, with the name and value sep-

arated by non-newline white space characters (blanks or tabs). Each name-value pair is separated from the next pair

by newline(s) or semicolon(s). Since each parm value is labeled by its parm name the name-value pairs can occur in

any wder. Comments are allowed; they are delimited the same way as in C language programs
, with /* and */. Extra-

neous white space characters are ignored. The specfiles used to train the MLP in hsfsysl are provided in the weightsi

mlp subdirectories and end with the extension spc.

When mlp is run, it first scans the entire specfile, to find and report any (fatal) errors (e.g. omitting to set a

necessary parm, or using an illegal parm name or value) and also any conditions in the specfile which, although not

fatally erroneous, are worthy of warnings (e.g. setting a superfluous parm). Mlp writes any applicable warning or error

messages; then, if there are no eixOTS in the specfile, it starts to perform the first run. Warnings do not prevent mlp from

starting to run. (The motivation for having mlp check the entire specfile before it starts to perform even the first run, is

that this will prevent an mlp instance that runs a multi-run specfile from failing
,
perhaps many hours, or days, after it

was started, because of an error in a block far into the specfile: such errors will be detected up front and presumably

fixed by the user, because that is the only way to cause mlp to get past its checking phase.) To cause mlp only to check

the specfile without running it, use the -c option.

The following listing describes all the parms that can be set in a specfile. There are four types of parms: string

(value is a filename), integer, floating-point, and switch (value must be one of a set of defined names, or may be spec-

ified as a code number). A block of the specfile, which sets the parms for one run, often can omit to set the values of

several of the parms, either because the parm is urmeeded (e.g., a training “stopping condition” when the run is a test

run; (x, temperature when boltzmarm is no_prune), or because it is an architecture parm (purpose, ninps, nhids,

nouts, acfunc_hids, or acfunc_outs), whose value will be read from wts_infile. The descriptions below indicate

which of the parms are needed only for training runs (in particular, those described as stopping conditions). Architec-

ture parms should be set in a specfile block only if its run is to be a training run that generates random initial network

weights; a training run that reads initial weights from a file (typically, final weights produced by a previous training

session), or a test run (must read the network weights from a file), does not need to set any of the architecture parms

in its specfile block, because their values are stored in the weights file that it will read. (Architecture parms are ones

whose values it would not make sense to change between training runs of a single network that together comprise a

training “meta-run”, nor between a training run for a network and a test run of the finished network.) Setting urmeeded

parms in a specfile block will result in warning messages when mlp is run, but not fatal errors; the urmeeded values

win be ignored.

If a parm-name^arm-value pair occurring in a specfile has just its value deleted, i.e. leavingjust a parm name,

then the name is ignored by m/p; this is a way to temporarily unset a parm while leaving its name visible for possible

future use.

A,2.1 String (Filename) Farms

short_outfiIe: This file will contain summary information about the run, including a history of the training process if

a training run. The set of information to be written is controlled, to some extent, by the switch parms do_con-

fuse and dojcvr. See Section A.4.

long_outfiIe: This optionally produced file will have two lines of header information followed by a line for each pat-

tern. The line will show: the sequence number of the pattern; the correct class of the pattern (as a number in

the range 1 through nouts); whether the hypothetical class the network produced for this pattern was right (R)

or wrong (W); the hypothetical class (number); and the nouts output-node activations the network produced

for the pattern. (See the switch parm show_acs_times_1000 below, which controls the formatting of the acti-

vations.) In a testing run. mlp produces this file for the result of running the patterns through the network

49

whose weights are read from wts_infile; in a training run, tnlp produces this file only for the final network

weights resulting from the training session. This is often a large file; to save disk space by not producing it,

just leave the parm unset

pattems_mfile: This file contains patterns upon which mlp is to train or test a network. A pattern is either a feature-

vector and an associated class, or a feature-vector and an associated target-vector. The file must be in one of

the two supported pattems-file formats, i.e. ASCII and (FORTRAN-style) binary; the switch parm pats-

file_ascu_or_binary must be set to teU mlp which of these formats is being used.

wts_infile: This optional file contains a set of network weights. Mlp can read such a file at the start of a training run -

- e.g., final weights from a preceding training run, if rare is training a network using a sequence of runs with

different parameter settings (e.g., decreasing values of regfac) - or, in a testing run, it can read the final

weights resulting from a training run. This parm should be left unset if random initial weights are to be gen-

erated for a training run (see the integer parm seed).

wts_outfile: This file is produced only for a training run; it contains the final network weights resulting from the run.

Icn_scn_mfile; Each line of this optional file should consist of a long class-name (as shown at the top of patterns„in-

file) and a corresponding short class-name (1 or 2 characters), with the two names separated by white space;

the lines can be in any order. This file is required only for a run that requires short class-names, i.e. only if

purpose is classifier and (1) priors is class or both (these settings of priors require class-weights to be read

from class_wts_iiifile, and that type of file can be read only if the short class-names are known) or (2)

do_confuse is true (proper output of confusion matrices requires the short class-names, which are used as

labels).

class_wts_mfile: This optional file contains class-weights, i.e. a “prior weight” for each class. (See switchparm priors

to find out how mlp can use these weights.) Each fine should consist of a shot class-name (as shown in lcn_-

scn_infile) and the weight for the class, separated by white space; the order of the lines does not matter.

pattem_wts_infile: This optional file contains pattern-weights, i.e. a “prior weight” for each pattern. (See switch parm

priors to find outhow mlp can use these weights.) The file should bejust a sequence of floating-pointnumbers

(ascii) separated from each other by white space, with the numbers in the same order as the patterns they are

to be associated with.

A,2,2 Integer Farms

npats: Number of (first) patterns from pattems_mfile to use.

ninps, nhids, nouts; Specify the number of input, hidden, and output nodes in the network. Ifninps is smaller than the

number of components in the feature-vectOTS of the patterns, then the first ninps components of each feature-

vector are used. If the network is a classifier (see purpose), then nouts is the number of classes, since there

is one output node for each class, ff the network is a fitter, then ninps and nouts are the dimensicmalities of

the input and ouq)ut real vector spaces. These are architecture parms, so they should be left unset for a run

that is to read a network weights file.

seed: For the UNI random number generator, if initial weights for a training run are to be randomly generated. Its val-

ues must be positive. Random weights are generated only if wts_mfile is not set. (Of course, the seed value

can be reused to generate identical mitial weights in different training runs; or, it can be varied in order to do

several training runs using the same values for the other parameters. It is often advisable to try several seeds,

since any particular seed may produce atypically bad results (training may fail). However, the effect of vary-

ing the seed is minimal if Boltzmann pruning is used.)

niter_max: A stopping condition: mayimnm number of iterations a training run will be allowed to use.

50

I

nfreq: At every nfreq’th iteration during a training nm, the errdel and nokdel stopping conditions are checked and a

pair of status lines is written to the standard error output and to short_outfiIe.

nokdel: A stopping condition: stop if the number of iterations used so far is at least kmin and, for each of the most

recent NNOT (defined in srclliblmlploptchk.c) sequences of nfreq iterations, the number right and the num-

ber light minus munber wrong have both failed to increase by at least nokdel during the sequence.

lbfgs_mem: This value is used for them argument of the LBFGS optimizer (if that optimizer is used, i.e. only if there

is no Boltzmann pruning). This is the number of corrections used in the bfgs update. Values less than 3 are

not recommended; large values will result in excessive computing time, as weU as increased memory usage.

Values in the range 3 through 7 are recommended; value must be positive.

A,2.3 Floating-Point Farms

regfac: Regularization factor. The error value that a training run attempts to minimize, contains a term consisting of

regfac times half the average of the squares of the network weights. (The use of a regularization factor often

improves the generalization performance of a neural network, by keeping the size of the weights under con-

trol.) This parm must always be set, even for test runs (since they also ccanpute the error value, which always

uses regfac); however, its effect can be nullified by just setting it to 0.

alpha: A parm required by the type_l error function: see Section A.4.2.2.2.

temperature: For Boltzmarm pruning: see the switch parm boltzmann. A higher temperature causes more severe

pruning.

egoal: A stopping condition: stop when error becomes less than or equal to egoal.

gwgoal: A stopping condition: stop when I g I / 1 w I becomes less than or equal to gwgoal, where w is the vector of

network weights and g is the gradient vector of the error with respect to w.

errdel: A stopping condition: stop if the number ofiterations used so far is at least kmin and the error has not decreased

by at least a factor of errdel over the most recent block of nfreq iterations.

oklvl: The value of the highest network ouqjut activation produced when the network is run on a pattern (the position

of this highest activation among the output nodes is the hypothetical class) can be thought of as a measure of

confidence. This confidence value is compared with the threshold oklvl, in order to decide whether to classify

the pattern as belonging to the hypothetical class, or to reject it, i.e. to consider its class to be unknown

because of insufficient confidence that the hypothetical class is the correct class. The numbers and percent-

ages of the patterns that mlp reports as correct, wrong, and unknown, are affected by oklvl: a high value of

oklvl generally increases the number of unknowns (a bad thing) but also increases the percentage of the

accepted patterns that are classified correctly (a good thing). Ifno rejection is desired, set oklvl to 0. (Af/p uses

the single oklvl value specified for a run; but if the switch parm do_cvr is set to true, then mlp also makes a

full correct vs. rejected table for the network (for the finished network if a training run). This table shows the

(number correct) / (number accepted) and (number unknown) / (total number) percentages for each of several

standard oklvl values.)

trgoff: This number sets how mildly the target values fw network output activations vary between their “low” and

“high” values. If trgoff is 0 (least nuld, i.e. most extreme, effect), then the low target value is 0 and the high,

1 ; if trgoff is 1 (most mild effect), then low and high targets are both (1 / nouts); if trgoff has an intermediate

value between 0 and 1, then the low and high targets have intermediately mild values accordingly.

scg_earlystop_pct: This is a percentage that controls how soon a hybrid SCG/LBFGS training run (hybrid training

can be used only if there is to be no Boltzmarm pruning) switches from SCG to LBFGS. The switch is done

51

the first time a check (checkmg every nfreq’th iteration) of the network results finds that every class-subset

of the patterns has at least scg_earlystop_pct percent of its patterns classified correctly. A suggested value for

this parm is 60.0.

Ibfgs_gtoI: This value is used for the gtol argument of theLBFGS optimizer. It controls the accuracy of the line search

routine mcsrch. If the function and gradient evaluations are inexpensive with respect to the cost of the itera-

tion (which is sometimes the case when solving very large problems) itmay be advantageous to set lbfgs_gtol

to a small value. A typical small value is 0.1. Lbfgs_gtol must be greater than l.e-04.

A^.4 Switch Farms

Each of these parms has a small set of allowed values; the value is specified as a string, or less verbosely, as

a code number (shown in parentheses after string form):

train_or_test

train (0): Train a network, i.e. optimize its weights in the sense ofminimizing an error function, using a train-

ing set of patterns.

test (1): Test a network, i.e. read in its weights and other parms firom a file, run it on a test set of patterns, and

measure the quality of the resulting performance.

purpose:

Which of two possible kinds of engine the network is to be. This is an architecture parm, so it should be left

unset for a run that is to read a network weights file. The allowed values are:

classifier (0): The network is to be trained to map any feature vector to one of a small number of classes. It

is to be trained using a set of feature vectors and their associated correct classes.

fitter (1): The network is to be trained to approximate an unknown function that maps any input real vector

to an output real vector. It is to be trained using a set of input-vector/output-vector pairs of the function.

NOTE: this is not currently supported.

errfunc:

Type of error function to use (always with the addition of a regularization term, consisting of regfac times

half the average of the squares of the network weights). See the formulas under “Err, Ep, Ew” in Section

A.4.22.2 for the definitions of these error functions.

mse (0): Mean-squared-error between output activations and target values, or its equivalent computed using

classes instead of target vectors. This is the recotomended error function.

type_l (1): Type 1 error function; requires floating-point parm alpha be set. (Not recommended.)

pos_sum (2): Positive sum error function. (Not recommended.)

boltzmann:

Controls whether Boltzmarm pruning of network weights is to be done and, if so, the type of threshold to use:

no_prune (0): Do no Boltzmann priming

abs_prune (2): Do Boltzmarm pruning using threshold exp(- Iwl / T), where w is a network weight being con-

sidered for possible pruning and T is the Boltzmann temperature.

square_prune (3): Do Boltzmarm pruning using threshold exp(- w^ / T), where w and T are as above.

52

acfunc.hids, acfunc.outs:

The types of activationfunctions to be used on the hidden nodes and on the output nodes (separately settable

for each layer). These are architecture parms, so they should be left unset for a run that is to read a network

weights file. The allowed values are:

sinusoid (0): f(x) = .5 * (1 + sin(.5 * x))

sigmoid (1): f(x) = 1 / (1 + exp(-x)) (Also called logistic function.)

linear (2): f(x) = .25 * x

priors:

What kind of prior weighting to use to set the final pattern-weights, which control the relative amounts of

impact the various patterns have when doing the computations. These final pattern-weights remain fixed for

the duration of a training run, but of course they can be changed between training runs.

allsame (0): Set each final pattern-weight to (1 / npats). (The simplest thing to do; appropriate if the set of

patterns has a natural distribution.)

class (1): Set each final pattern-weight to the class-weight of the class of the pattern concerned divided by

npats; read the class-weights frcan class_wts_mfile. (Appropriate if the firequencies of the several classes, in

the set of pattens, are not approximately equal to the natural frequencies (priw probabilities), so as to com-

pensate for that situation.)

pattern (2): Set the final pattern-weights to values read from pattem_wts_infile divided by npats. (Appro-

priate if none of the other settings of priors does satisfactory calculations (one can do whatever calculations

one desires), or if one wants to dynamically change these weights between sessions of training.)

both (3): Set each final pattern-weight to the class-weight of the class of the pattern concerned, times the pro-

vided pattern-weight, and divided by npats; read the class-weights and pattern-weights from files class_-

wts_infile and pattem_wts_mfile. (Appropriate if one wants to both adjust for unnatural frequencies, and

dynamically change the pattern weights.)

patsfile_ascu_or_binary;

TeUs mlp which of two supported formats to expect for the patterns file that it will read at the start of a run.

(Ifmuch compute time is being spent reading ascii patsfiles, it may be worthwhile to convert them to binary

format; that causes faster reading, and the binary-format files are considerably smaller.)

ascii (0): patterns_infile is in ascii format.

binary (1): pattems_infile is in binary (FORTRAN-style binary) format.

do_confuse:

true (1): Compute the confusion matrices and miscellaneous information as described in Section A.4.2.3, and

include them in short_outfile.

false (0); Do not compute the confusion matrices and miscellaneous information.

show_acs_times_1000:

This parm need be set only if the run is to produce a long_outfile.

true (1): Before recording the network ouq)ut activations in long_outfile, multiply them by 1(K)0 and round

to integers.

53

false (0): Record the activations as their original floating-point values.

do_cvr: (See the notes on oklvl.)

true (1): Produce a correct-vs.-rejected table and include it in short_outfile.

false (0): Do not produce a correct-vs.-rejected table.

54

A3 TVaining the MLP in hsfsys2

Output files generated from mlp are provided in 4 subdirectories rmder weightsimlp: digit (containing ouQ)ut

files from training on segmented numeric character images), lower (output files from training on lowercase characters),

upper (output files from training on uppercase characters), and const (output files from training on both lower and

uppercase characters). For example, the digit directory contains the input file ih6_d.ml) and ou^ut file {h6_d.evt) from

running mislevt, the input files (d.set, hdjd.evt, h6_d.cl, and k6_d.mF) and the ou^ut file (h6_dpat) from mis2pat2, a

second set of input files {d.set, h6_d.evt, hJji.cl, and h7_d.ml) and the output file {h7_d.pat) from mis2pat2, and input

and output files firom running the program mlp.

The specfile used by mlp to train the classifier on digit images is d.spc. This specfile requires the input files

d.scn, the training set h6_d.pat, and the testing set h7_d.pat, and it invokes 7 sequential pairs of mlp training/testing

sessions. Three files are generated from each training/testing session. The following files are created from the first ses-

sion: trn_0.err (a report of the progressive error rates achieved on the training set), trn_0.wts (the resulting weights

trained in the session), and tst_0.err (a report of the error rate achieved on the testing set using the most recent set of

weights from training). For the next training/testing session, training resumes with the MLP network initialized to the

weights contained in trn_0.wts. The output files from this session are trnj.err, trnj.wts, and tstj.err. The weights

file tm_l .wts is then used as input to the next session and so on until the final session is complete. The files trn_6.err

and trnjS.wts contain the final results of training and tst_6.err contains the error rate achieved by using the final set of

weights to classify the testing set contained in h7_d.pat.

As can be seen from the lists above, there are numerous parameters to be specified in the specfile for running

the program mlp. A good strategy for training the MLP on a new classification problem is to first work with a single

trainingAesting session, surveying different combinations of parameter settings until a reasonable amount of training

is achieved within the first 50 iterations, for example. This typically involves using a relatively high value for regular-

ization (such as 2.0 with handprint character recognition); varying the number of hidden nodes in the network; and

trying different levels of temperature, typically incrementing or decrementing by powers of 10. For handprint character

classification, the number of hidden neurodes should be set to equal or greater than the number of input KL features,

and a temperature of l.Oe-4 works well.

Once reasonable training is achieved, these parameters should remain fixed, and successive sessions of train-

ing/testing are performed according to a schedule of decreasing regularization. For handprint character classification

it works well to specify about 50 iterations for each training session, and to use a regularization factor schedule starting

at 2.0 and decreasing to 1.0, 0.5, 03, 0.1 , 0.01, and 0.001 for each successive training session. This process ofmultiple

training/testing sessions initiatesMLP training within a reasonable solution space, and then enables the machine learn-

ing to refine its solution so that convergence is achieved while maintaining a high level of generalization by controlling

the dynamics of constructing well behaved decision surfaces. The intermediate testing sessions allow one to evaluate

the progress madem an independent testing set, so that a judgment can be made as to whether incremental gains in

training have reached diminishing returns. The theory behind the control ofdynamical changes within the MLP learn-

ing process is discussed in R^erence [8].

Training the MLP in this fashion generates superior decision surfaces thus providing more robust activations

for use as ccmfidence values when rejecting confusing classification. This improvement in accuracy does however

come with a cost The program mlp is computationally intense. For example, the training of the weights in weightsi

mlp!digits required approximately 5.5 days of continuous CPU time on a Sun SPARCstation 2 with a Weitek CPU
upgrade. This process is of course done once off-line, and then the resulting weight files are reused over and over by

the actual recognition system.

55

A.4 Explanation of the ontput produced during MLP training

When the program mlp does a training run, it writes output to the standard error and writes the same output

to the short_outfiIe specified in the specfile. The purpose of this section is to explain the meaning of this output. {Mlp

produces similar output for a testing run except that the “training progress” part is missing.)

A.4.1 Pattern-Weights

As a preliminary, it wiU be helpful to discuss the “pattern-weights” which mlp uses, since they are used in the

calculations ofmany of the values shown in the ou^ut. The pattern-weights are “prior” weights, one for each pattern;^

they remain constant during a training (or testing) run, although it is possible to do a training “meta-run” that is a

sequence of training runs and to change the pattern-weights between the runs. The setting of the pattern-weights is

controlled by the priors value set in the specfile and may be affected by provided data files, as follows (in all cases,

the division byN is merely a normalization that slightly reduces the amount of calculation needed later):

allsame: if priors is allsame then each pattern-weight is set to (Wj, where is the number of patterns.

class: if this is the priors value, then a file of class-weights must be supplied; each pattern-weight is set to the class-

weight of the class of the corresponding pattern, divided by N.

pattern: a file of (original) pattern-weights must be supplied; each of them is divided by Af to produce the correspond-

ing pattern-weight.

both: files of class-weights and (original) pattern-weights must both be supplied; each pattern-weight is (hen set to the

class-weight of the class of the corresponding pattern, times the corresponding (original) pattern-weight,

divided by N.

The pattern-weights are used in the calculation of the error value that mlp attempts to minimize during train-

irjg: when the training patterns are sent through the network, each pattern produces an error contribution, which gets

multiplied by the pattern-weight for that pattern before being added to an error accumulator (Section A.4.2.2.2). The
pattern-weights are also involved in the calculations of several other quantities besides the error value; all these uses

are described below. Reference [8] discusses the use of class-based prior weights (Section 5.4, pages 10-11), which

correspond to the class setting of priors.

A.4,2 Explanation of Output

A.4,2.1 Header

The first part of the ou4)ut is a “header” showing the specfile parameter values. Here is the header of the short

outfile weightslmlpldigitltrn_0.err produced by the first training run of a sequence of runs used to train the digits clas-

sifier:

2. A pattern is a feature-vector/class or feature-vectorAarget-vector pair.

56

Classifier MLP
Training run
Patterns file: h6_d.pat; using all 61094 patterns
Final pattern-wts: set all equal,

no files read
Error function: sum of squares
Reg. factor: 2.000e+00
Activation fns. on hidden, output nodes: sinusoid, sinusoid
Nos. of input, hidden, output nodes: 128, 128, 10

Boltzmann pruning, thresh. exp(-w^2/T), T l.OOOe-04
Will use SCG

Initial network weights: random, seed 12347

Final network weights will be written as file trn.wts.O
Stopping criteria (max. no. of iterations 50)

:

(RMS err) <= O.OOOe+00 OR
(RMS g) <= O.OOOe+00 * (RMS w) OR
(RMS err) > 9.900e-01 * (RMS err 10 iters ago) OR
(OK - NG count) < (count 10 iters ago) + 1. (OK level: 0.000)

Long out file not made

SCG: doing <= 50 iterations; 17802 variables.

A.4,2J2 Training Progress

The next part of the output lists a running update on the training progress. The first few lines of training

progress reported are:

pruned 282 28 310 C 1.46372e+05 H 2.33407e+04 R 84.05 M 0.00 T 0.0851

Iter Err (Ep Ew) OK UNK NG OK UNK NG

0 0.691 (0. 557 0. 289) 5999 0 55095 = 9.8 0.0 90 .2 %

Oo 0 5 19 0 0 66 11 0 0 1

pruned 363 25 388 C 1.51345e+05 H 2. 63755e+04 R 82.57 M -0.01 T 0.0853
pruned 419 27 446 C 1.46145e+05 H 2. 63513e+04 R 81.97 M -0.01 T 0.0853

pruned 449 28 477 C 1.64731e+05 H 2. 68884e+04 R 83.68 M -0.01 T 0.0849
pruned 472 32 504 C 1. 72004e+05 H 2. 71783e+04 R 84.20 M -0.01 T 0.0846
pruned 490 32 522 C 1.39698e+05 H 2. 70099e+04 R 80.67 M -0.01 T 0.0845

pruned 514 37 551 C 1. 88008e+05 H 2.73029e+04 R 85.48 M -0.01 T 0.0844

pruned 534 38 572 C 1.49777e+05 H 2. 70401e+04 R 81.95 M -0.01 T 0.0838

pruned 540 40 580 C 1.93717e+05 H 2.72770e+04 R 85.92 M -0.01 T 0.0814

pruned 539 38 577 C 1.66433e+05 H 2.56886e+04 R 84.57 M -0.01 T 0.0774

pruned 548 37 585 C 2.07274e+05 H 2.71835e+04 R 86.89 M -0.01 T 0.0741

10 0.488 (0. 307 0. 268) 10906 0 50188 = 17.9 0.0 82 .1 %

5.2 15 93 5 6 5 6 8 9 6 16

The line

Iter Err (Ep Ew) OK UNK NG OK UNK NG

comprises column headers that pertain to those subsequent lines that begin with an integer (“first progress lines”); each

first progress line is followed by a “second progress line”, and there are “pruning lines” ifBoltzmann pruning is used.

These three types of lines are discussed below, second progress lines first because some of the calculations used to

produce them are later used to make the first progress lines.

57

AA22.1 Second progress lines

These are the lines that begrn with fractional numbers; the first <rf them in the above example is

0.0 0 5 19 0 0 66 11 0 0 1

Ignoring for a moment the first value in such a line, the remaining values are the “percentages” right by class, which

mlp calculates as follows. It maintains three pattem-weight-accumulators for each cl^s:

= right pattem-weight-accumulator for correct class i

= wrong pattem-weight-accumulator for correct class i

= unknown (rejected) pattem-wei^t-accumulator for correct class i

When mlp sends a training pattern through the netwcrk the result is an output KtivatioE for each class; the

hypothetical class is, of course, whichever class receives the highest activation, fr he highest activation equals ot

exceeds the rejection threshold oklvl set in the specfile, then mlp accepts its result for this pattern, and adds ite pattern-

weight (Section A.4. 1) either to or to - where i is the correct class Ofhe pattern - according to whether he
network classified he pattern rightly or wrongly. Otherwise, i.e. ifhe highest activatim is less hen oklvl, mlp adds

the pattern-weight to . These accumulators reach heir final values as a result ofhe sending of all he framing pat-

terns through he network. Mlp hen defines the right “percentage” of correct class i to be

100

It shows these values, rounded to integers, in he seccmd progress lines, as he values after he first me. Fot example,

the secmd progress line above shows that he right “percentages” erf corrmt classes 0 and 1 are 0 and 5.^

If priors is aUsame hen he pattern-weights are aU equal and so , etc. are he numbers classified ri^tly,

etc. times this single pattern-weight; he pattern-weight cancels out between he numerator and denominator of he
above formula, so hat the resulting value really is he percentage of the patterns class i hat he network classified

rightly. If priors has a value other flian allsame - i.e. class, pattern, or both -hm he right “percentages” erfhe classes

are not he simple percentages but raher are weighted quantities, which may make mwe sense tiim he simple per-

centages if some patterns should have more impact than others, as indicated by heir larger wei^ts.^

As for the first value of a second progress line, this is merely he minimum of die right “percentages” of he
classes, but shown roimded to the nearest tmh raher han to he nearest integer. Ihis minimum value shows how he
network is doing on its “worst” class.^

3. In this case the classes whose “index numbers” are 0 through 9 happen to be the digits 0 through 9, but that is entirely coincidental.

The classes could be lettas, fingerprint classes, phonemes, or who knows whaL In this discussion, “class i" merely means the class whese

index number, numbering starting at 0, is i. Note also that although the software uses class index numbers that start at 0, the class index

numbers it writes to long_outfile start at 1.

4. In particular, if the training patterns set is such that the proportions of the patterns belonging to the various classes are not approxi-

mately equal to the natural frequencies of the classes, then it may be a good idea to use class-weights (priors set to class, and class-

weights provided in a file) to compensate for the erroneous distribution. See [8].

5. When m/p uses hybrid SCG/LBFGS training rather than only SCG- it does this only ifpruning is not specified - it switches from SCG
to LBFGS when the minimum readies or exceeds a sfiecified threshold, scg_earlystop_pct

58

KA2.22 First progress lines

These are the lines that begin with an integer. The column headings -- which pertain to these lines -- and the

first of these lines in the example, are:

Iter Err (Ep Ew) OK DNK NG OK ONK NG

0 0.691 (0.557 0 . 289) 5999 0 55095 = 9.8 0.0 90.2 %

The values in a first progress line have the following meanings:

Iter: Training iteration number, numbering starting at 0. A first progress line (and second progress line) are produced

every nfreq’th iteration (set in the specfile).

Err, Ep, Ew: The calculations leading to these values are as follows.

N - number of patterns

n = number of classes

= activation produced by pattern i at output node j (i.e. class j)

= target value for a -

.

^0-

E

.(pat) _

(pat,mse) _

,(mse) _

’(pat,typel) _

E.

El

Ep

^(wsq)

Ew

E

Err

pattern-weight of pattern i (Section A.4.1)

7 = 0

error contribution for pattern i if errftinc is mse

N-l
^ „,(pat) r-Cpat.mse)

i = 0

1

, where k is correct class of pattern i

-(typei) _
'1 “

(pat, possum) _

.(possum) _

error contribution for pattern i if errfiinc is type_l (a is alpha)

N-l

n ‘ ‘

; = 0

n-l

7 = 0

error contribution for pattern / if errfiinc is pos_siun

iV-l

n ' ‘

1 = 0

= E (mse) _ (typei) (possum)
, according to errfiinc

El if errfiinc is pos_siim, otherwise

half ofmean squared network weight

=

= Ej + regfacx s

=

(wsq)

59

Mlp prints the Err, Ep and Ew values as defined above. Note that the value mlp attempts to minimize is E,

but presumably the same effect would be had by attempting to minimize Err, since it is an increasing function

of£.

OK, UNK, NG, OK, UNK, NG: “Numbers” of patterns OK (classified correctly), UNKnown (rejected), and wroNG
or No Good (classified incorrectly), then the corresponding ‘^rcentages”. Mlp calculates these values as fol-

lows. It adds up the by-class accumulators , and defined earher to make overall accumulators,

where n is the number of classes:

.w

,(n)

n— 1

i = 0

n-1

i = 0

n-l

i = 0

It computes “numbers” right, wrong, and unknown — the first OK, NG, and UNK values of a first progress

line — as follows, whereN is the number of patterns and square brackets denote rounding to an integer:

(rwn) _

=

=

= XT (r) (w)

“number” right

“number” wrong

“number” unknown

From these “numbers”, mlp computes corresponding “percentages” — the second OK, NG, and UNK values

- as follows:

[IOOx/j^^VaO

[100x/j^"'VAr|

[100xn^"ViV]

If priors is allsame then since the pattern-weights are aU equal, cancellation of the single pattern-weight

occurs between the numerators and denominators of the formulas above for n and n^'^\so that they really

are the numbers of patterns classified rightly and wrongly, and then it is obvious that n really is the number

unknown and that , etc. really are the percentages classified rightly, etc.

P^A223 Pruning lines (optional)

These lines, which begin with “pruned”, appear if Boltzmann pruning is specified (boltzmann set to abs_-

prune or square_prune in specfile, and a temperature set). The first pruning line of the example is

pruned 282 28 310 C 1.46372e+05 H 2.33407e+04 R 84.05 M 0.00 T 0.0851

Regardless of nfreq, mlp writes a pruning line every time it performs priming . The first three values of a pruning line

are the numbers of network weights that mlp pruned (temporarily set to zero) in the first weights layer, in the second

60

layer, and in both layers together. The remaining values announced by the letters C, H, R, and M, are calculated as

follows (the value announced by T actually is not calculated correctly, and should be ignored):

(wts)
n

^
(pruned)

(unpruned)

(max) (min)W ,W

c
^(logabs)

^(wl2)

H

R

M

number of network weights (both layers)

number of weights pruned

^(wts) (pruned)

maximum & minimum absolute values of unpruned weights

^(unpruned)
^

^^^^^(max) _ ^^^^(mm)
^ ^ (log2) +1) = Capacity

smn of logarithms of absolute values of unpruned weights

^(k,gabs)/(iog2)

^.^(-pruned)
(1 _) / (log2))

C_^(wi2
) = entropy

= redundancy

mean of unpruned weights

A.4,23 Confusion Matrices and Miscellaneous Information (Optional)

If do_confuse is set to true in the specfile, the next part of the ouQjut consists of two “confusion matrices”

and some miscellaneous infoimatim:

oklvl 0.00

Highest two outputs (mean) 0.856 0.126; mean diff 0.730

key name
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

key: 0 1 2 3 4 5 6 7 8 9

row: correct , column : actual
0 5754 43 6 11 65 6 33 3 10 8

1 0 6547 36 20 14 31 31 12 17 2

2 28 26 5826 66 23 7 26 29 47 8

3 9 10 76 5827 8 50 1 44 39 21

4 14 14 22 2 5828 0 23 4 35 68

5 34 15 5 125 21 5502 55 4 52 25

6 18 23 14 0 7 18 5970 0 1 0

7 3 12 11 6 30 1 0 6186 18 67

8 17 129 56 136 65 81 14 17 5393 58

9 10 11 1 16 58 7 0 79 37 5856

unknown
* 0 0 0 0 0 0 0 0 0 0

percent of true IDs correctly identified (rows)

97 98 96 96 97 94 99 98 90 96

percent of predicted IDs correctly identified (cols)

98 96 96 94 95 96 97 97 95 96

61

mean highest activation level

row: correct. column actual

key

:

0 1 2 3 4 5 6 7 8 9

0 91 51 39 44 45 35 43 30 36 33

1 0 90 40 43 48 42 37 41 47 29

2 44 41 86 46 37 42 47 46 43 25

3 53 45 45 88 32 52 27 50 48 43

4 35 45 52 41 82 0 44 38 44 56

5 46 37 47 53 38 85 49 32 44 51

6 35 50 35 0 42 48 91 0 14 0

7 39 39 47 32 45 22 0 89 36 49

8 40 56 36 44 41 47 38 35 81 40

9 40 36 16 50 50 46 0 66 50 87

unknown
* 0 0 0 0 0 0 0 0 0 0

Histogram of errors. from 2 ''(-10) to 1

82893 33517 46509 62676 80193 94688 90535 64963 34608 14910 5448

13.6 5.5 7.6 10.3 13.1 15.5 14.8 10.6 5.7 2.4 0.9%

The first line of this optional section of the ouQ)ut shows the value of the rejection threshold oklvl set in the

specfile (this was already shown in the header). The next line shows the mean values, over the training patterns as sent

through the network at the end of training, of the highest and second-highest output node values, and the mean diSer-

mice of these values. Next is a table showing die short classname (“key”) and long classname (“name”) of each class.

In this example the keys and names are the same, but in general the names can be quite long whereas the keys must be

no longer than two characters in length: the short keys are used to label the confusion matrices.

Next ate the confusion matrices of“numbers” and of “mean highest activation level”. Mlp has the following

accumulators:

pattern-weight accumulator for correct class i and hypothetical classj

high-activaticm accumulator for correct class i and hj^thetical classj

high-activation unknown accumulator for correct class i

If a pattern sent through the network produces a highest activation that meets or exceeds oklvl -- so that mlp accepts

its result for this pattern ~ then mlp adds its pattern-weight to and adds the highest activation to q (***8‘'*®^

where i andj are the correct class and hypothetical class of the pattern. Otherwise, i.e. if mlp finds the pattern to be

unimown (rejects the result), it adds its pattern-weight to (Section A.4.2.2.1) and adds the highest activatiai to

^
(highac, n)

^ j jjjg cotrect class of the pattern. After it has processed all the patterns, mlp calculates the confu-

sion matrix of “mnnbers” and its “unknown” fine; some additional information concerning the rows and columns of

that matrix; and the confusion matrix of “mean highest activation level” and its “unknown” fine, as follows.

First define some notation;

(patwts)

(highac)

ij

(highac, d)

n

^(pat)

(confuse)
'7

(confuse, u)

n

P^
(r, row)

(r,col)

^
(confuse)

, (confuse, u)

number of patterns of correct class i

value in row i and columnj of first confusion matrix (of “numbers”)

i* value of “unknown” fine at bottom of first confusion matrix

i* value of “percent of true IDs correctly identified (rows)” fine

j* value of “percent of predicted IDs correctly identified (cols)” fine

value in row i and columnj of second confusion matrix (of “mean highest privation level”)

value of “unknown” fine at bottom of second confusion matrix

62

Mlp calculates the values as follows, where , and are as defined in Section A.4.2.2. 1 and square brackets

again denote rounding to an integer:^

(confuse)

"i

(confuse, u)

xrCpats) (patwts)

‘ >J

(n)
. v-> n - 1 (patwts)

^2^j = 0°ij J

^(pats)^(u) -1

I- I I

P,
(r, row) _

^(pats) (confuse, u)

(r, col) _
(confuse)

L
n — 1 (<

, = 0%

^
(confuse) _

n
(confuse)

/j'
(confuse, u) _

100 xa.^****^*"'"^

n-
(confuse, u)

If priors is allsame, then since the pattern-weights are all equal, cancellation of the single pattern-weight

between numerator and denominator causes n f above to be really the number of patterns of correct class i and

hypothetical class j; similarly, „ really is the number of patterns of correct class i that were unknown;

pj^’ and pj^’ really are the percentages that the on-diagonal — correctly classified - numbers in the matrix com-

prise of their rows and columns respectively; /j really is the mean highest activation level (multiplied by 1(X)

and roimded to an integer) of the patterns of correct class i and hypothetical class y; and /j really is the mean
highest activation level of the patterns of correct class i that were unknown. If priors has one of its other valiies, the

printed values are weighted versions of these quantities.

The final part of this optional section of the output is a histogram of errors. This pertains to the absolute errors

between output activations and target activatitsis, across all ouq)ut nodes (10 nodes in this example) and all training

patterns (61,094 patterns in this example), when the patterns are sent through the trained network. Of the resulting set

of absolute error values (610,940 values in this example), this histogram shows the number (first line) and percentage

(second line) of these values that fall into each of the 11 intervals (-«», 2'^®], (2'^®, 2'\
. . ., (2‘^ 1].

A.4,2.4 Final Progress Lines

The next part of the output consists of a repeat of the colunm-headers line, final first-progress-line, and final

second-progress-line (rf the training progress part of the output, but with an F prepended to the final first-progress-line:

Iter Err (Ep Ew) OK UNK NG OK UNK NG

F 50 0.156 (0.101 0.084) 58689 0 2405 = 96.1 0.0 3.9 %

90.4 97 98 96 96 97 94 99 98 90 96

6. The denominators of the expressions shown here for n
(confose)

and n-
(confuse, u)

are equal, but these expressions show what the

software actually calculates, rather than what it would have calculated if it had been more efficient

63

AA2S Correct-vs.-Rejected Table (Optional)

If dojcvr is set to true in the specfile, the next part of the output is a correct-vs.-rejected table; the first and

last few lines of this table, from the example output, are:

thresh right unknown wrong correct rejected

Itr 0.000000 58690 0 2404 96.07 0.00

2tr 0.050000 58690 0 2404 96.07 0.00

3tr 0.100000 58690 2 2402 96.07 0.00

4tr 0.150000 58689 12 2393 96.08 0.02

5tr 0.200000 58672 73 2349 96.15 0.12

48tr 0.975000 15760 45333 1 99.99 74.20

49tr 0.980000 13687 47406 1 99.99 77.60

50tr 0.985000 11519 49574 1 99.99 81.14

51tr 0.990000 8969 52124 1 99.99 85.32

52tr 0.995000 5971 55122 1 99.98 90.22

Mlp produces this table values as follows. It has a fixed array of rejection-threshold values, which have been set in an

unequally-spaced pattern that works well, and it rises three pattem-weight-accumulators for each threshold:

threshold

a
(cvr, r)

(cvr, w)
4
a
(cvr, u)

k

right pattem-weight-accumulator for^ threshold

wrong pattem-weight-accumulator for threshold

unknown pattem-weight-accumulator for^ threshold

As mlp sends each pattern through the finished network,^ it loops over the thresholds for each k, it com-

pares the highest network activation produced for the pattern with to decide whether the pattern would be accepted

or rejected if were used. If accepted, it adds the pattern-weight of that pattern either to or to accord-

ing to whether it classified the pattern rightly or wrongly; if rejected, it adds the pattern-weight to . After all

the patterns have been through the network, mlp finishes the table as follows. For each threshold it calculates the

following values:

^
(cvr, rwu) = (cvr, r) (cvr, w) (cvr, n)

(cvr, r)
n = = “number right”

(cvr, w)
n = = “number wrong”

(cvr, u)
n' = XT (cvr, r) (cvr, w)N-n -n' = “number unknown” (rejected)

^(cvr, corr) = = “percentage correct”

^(cvr,rej) = 100xn^"''^’“VjV = “percentage rejected”

Mlp then writes a line of the table. The values of the line are the threshold index k plus 1 with “tr”* appended,

t, (“thresh”), (“right”), (“unknown”), (“wrong”), (“conect”), and

(“rejected”). If priors is allsame then, since all pattern-weights are the same, cancellation of the single pattern-weight

occurs between numerator and denominator in the above expressions for n and n , so they really are the

number of patterns classified rightly and wrongly if threshold is used; and then it is obvious that « really is

the number of patterns unknown for this threshold, p really is the percentage of the patterns accepted at this

7. If do_cvr is true then mlp calculates a correct-vs.-rejected table, but only for the final state of the network in the training run, of course:

if it produced such a table fw each training iteration, its output would be extremely verbose.

8. for “training”’; the coirect-vsrejected table for a test run uses “ts”

64

threshold that were classified correctly, and p really is the percentage of the patterns that were rejected at

this threshold. If priors has one of its other values, then the tabulated values are weighted versions of these quantities.

A.4,2.6 Final Information

The final part of the output shows miscellaneous information:

Iter 50; lerr 1 : iteration limit

Used 51 Iterations; 155 function calls; Err 0.156; |g|/lwl 2.444e-04
Rms change in weights 0.241

User+system time used: 71087.7 (s) 19:44:47.7 (h:m:s)

Wrote weights as file trn.wts.O

The first line here shows what iteration the training run ended on, and the value and meaning of the return

code ierr, which indicates why mlp stopped its training run: in the example, the specified maximum number of itera-

tions (niter_max), 50, had been used. (This training run was actually the first run of a sequence that were used; its

initial network weights were random, but each subsequent run used the final weights of the preceding run as its initial

weights. The only parameter varied from one run to the next was the regularization factor regfac, which was decreased

at each step: successive regularization. Each run was limited to 50 iterations, and it was assumed that this small itera-

tion limi t would be reached before any of the other stopping conditions were satisfied. When sinusoid activation func-

tions are used, as in this case, best training requires that successive regularization be used. If sigmoid functions are

used, it is just as well to do only one training run, and in that case one should probably set the iteration limit to a large

number so that training will be stopped by one of the other conditions, such as an error goal (egoal).)

The next line shows: how many iterations mlp used (cormting the O’th iteration; yes, this is stupid after it

already said what iteration it stopped on); how many calls of the error function it made; the final error value; and the

final size of the error gradient vector (square root of sum of squares), normalized by dividing it by the final size of the

weights. The next line shows the root-mean-square of the change in weights, between their initial values and their final

values. The next line shows the combined user and system time used by the training run.^ The final line merely reports

the name of the file to which mlp wrote the final weights.

9. Setting the initial network weights, reading the patterns file, and other (minor) setup work, are not timed.

Ittil’. WOlfeaBSft
;

-> i’^r ! U airfJ

'
'

,; ,:
:

y>:.

L •' r « I i

r. L-
• "tS

'-..v

r. i
‘

1 .. ‘ . li'

.'ifiiJ yr'
’.

'>!o
’

’ '
*:'ii"'' '‘ly/i ;;^bJ^l.^ t.l;'<e'‘’>v 'i '‘>ho0

,
: .01 /-M ri ;v5»3i«) .-‘.rKte?

; c :i, t#«j.'.U'

V,' !>’.y''t;'‘‘-:.i. yi •
.'. .'"ifil raciijl

,- ^: -4 risl:- y - i’ ••Jit'- vis. satrft

'

’;v.',.'.'.^\
;'.' > •

• vR ijwaiJ

"
; ;V.,^;

;
,

' y

'‘t""'' -vs ’.4 s''’--*
'

'''Jfe-!.'* 5^;,^,

...

,
•. .sv, ’:

,

- 'ts,»€^iigihr

. i< '-;
, -yy -4; -tee tbs'-.

'".. v.
,, ..'--vyiLi; .iv''

j-
' /1^'dy is

-S. '/.yv ' y#^,fius

