
On the Translation of Kif/Frame
Ontologies to EXPRESS

Peter R. Wilson
Catholic Univeristy of America

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

Gc
wo

l^Op

iMisr

On the Translation of Kif/Frame
Ontologies to EXPRESS

Peter R. Wilson
Catholic Univeristy of America

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

August 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

On the Translation of Kif/Frame Ontologies to EXPRESS

Peter R. Wilson

Catholic University of America*

pwilsonQcme . nist
.
gov

August 1996

Abstract

This report describes the translation of three groups of ontologies specified using

the Frame variant of the Knowledge Intercheinge Format (KIF) language into informa-

tion models specified using the EXPRESS information modeling lainguage, as defined

in International Standard ISO 10303-11:1994. This work was undertaken to better vm-

derstand the relationship between KIF/Frame and EXPRESS. From the work done to

date the capabilities of KIF/Frame and EXPRESS appear to be broadly similar but

they differ in detail.

Contents

1 Introduction 1

2 An overview of the translation process 1

2.1 Stage 1 2

2.2 Stage 2 4

2.3 Stage 3 6

3 Observations 9

3.1 Theory vs. Schema 9

3.2 Classes, Relations, Entities and such 10

3.3 Instances 12

4 Basic elements of Frame and EXPRESS 13

‘This work was performed as a Guest Researcher at the NationeJ Institute of Standards and Technology.

1

5 Conclusions and further work 14

A EXPRESS example model 16

A.l Scope 16

A.2 Model overview 16

A.3 Authority schema 17

A.3.1 Entity definitions 17

A.3.2 Function and procedure definitions 20

A.3.3 Entity classification structure 23

A.4 Support schema 23

A.4.1 Type definitions 23

A.4.2 Entity definitions 24

A.4.3 Function and procedure definitions 32

A.4.4 Entity classification structure 34

A.5 Calendar schema 34

A.5.1 Type definitions 35

A.5.2 Entity definitions 35

A.5.3 Function and procedure definitions 36

A.5.4 Entity classification structure 38

ii

1 Introduction

The Knowledge Interchange Format (KEF [Gin91], [GF92]) is being proposed as an ANSI
Standard [X395]. There is another language, namely EXPRESS, which has recently become

an ISO International Standard [SW94], [IS094]. Both these languages are intended to

enable the precise and formal modeling of information. An exercise was undertaken to

translate some of the KIF-defined ontologies into EXPRESS in order to try and determine

whether this was possible. In particular, several ontologies were translated from versions

described using the automatically generated generic frame representations.

This document reports on the general results from this exercise. The Ontologies used

were specified in a generic Frame language that had been generated automatically from the

original KIF specification. The ontologies were obtciined in December 1995 from:

http : //www-ksl . Stanford . edu/knowledge-sharing/ontologies.

The EXPRESS renditions of the selected ontologies are given elsewhere [Wil96a], [Wil96b],

[Wil96d]. It is assumed that the reader has some knowledge of both KIF (and the corre-

sponding frame language) and the EXPRESS language.

Section 2 provides an overview of the processes used to translate from the KIF/Frame

ontologies into EXPRESS models. Some observations resulting from this are given in Sec-

tion 3. The next section (4) discusses the basic elements of Frame and EXPRESS and notes

their similarities and differences. Conclusions are given in Section 5. Finally, an EXPRESS
model is given in Appendix A as a challenge for KIF/Frame experts to translate into an

ontology.

2 An overview of the translation process

No Icinguage exactly maps one-for-one into another language. This, though, does not nec-

essarily imply the languages are not equally expressive. There are two forms of translation,

one that I call transliteration and the other called idiomatic. In the transliteration case

the result looks or sounds strange to a native speaker. Let us take the French sentence

n pleut comme une vache! as an example. A transliteration of this into English is: Tt is

raining like a cow!’. On the other hand, an idiomatic translation will probably result in ‘It

is raining cats and dogs!’. In turn, a transliteration of this back into French would puzzle

most French speakers.

Essentially, the goal of a good translation is to end with an idiomatic rather than a

transliterated result.

Briefiy, the translation from the frame language to EXPRESS was done in the following

manner.

C01JT7.I?.TJTTGrT OF TnS J.'\TIOI'TAL mSTITUTE
01' Ali'D TAOilNOLOGY.
NOT aJBJNCT TO COFYEIGHT

2.1 Stage 1

This was a fairly mechanical process.

1. For each frame theory, create a similarly named EXPRESS Schema.

2. For each frame construct of the form define-frame NAME, create an EXPRESS Entity

called Name. The name translation scheme used was:

• Change NAME to Name.

• Change FIRST-SECOND to FirstSecond.

• Change FIRST. SECOND to FirstAndSEcond.

Where the frame has an own-slot of kind SUBCLASS-OF NAME, or similar, make the

EXPRESS entity a SUBTYPE OF (Name). That is, map the frame SUBCLASS-OF into

an EXPRESS subtype.

Where the frame has an own-slot of kind SUBCLASS-PARTITION (setof NAMEl NAME2),

or similar, make the EXPRESS entity corresponding to the frame a SUPERTYPE OF

(ONEOFCNamel, Name2)).

Where a frame has a ten5>late-slot, make this cin attribute of the EXPRESS entity.

Incorporate the simpler frame axioms into the EXPRESS model.

Some examples of these rules are:

(define-frame DOCUMENT

: theory bibliographic-data

: own-slots (

(INSTANCE-OF class)

(SUBCLASS-OF biblio-thing)

(SUBCLASS-PARTITION

(setof book proceedings))

(DOCUMENTATION

"A document is — "))

: template-slots (

(DOC. TITLE

(Slot-Cardinality 1))))

ENTITY Document

SUBTYPE OF (BiblioThing)

SUPERTYPE OF (0NE0F(Book,

Proceedings

,

...));

END.ENTITY;

(define-frame DOC. TITLE

: theory bibliographic-data

: own-slots (

(ARITY 2)

(RANGE title)

(DOMAIN document)

(INSTANCE-OF function)

ENTITY DocAndTitle;

TheDoc : Document

;

TheTitle : Title;

END.ENTITY;

2

(SUBCLASS-OF biblio-thing)

(SUBCLASS-PARTITION

(setof book proceedings .))

(DOCUMENTATION

"The title of a document ...")))

(define-frame DOCTORAL-THESIS ENTITY DoctoralThesis

: theory bibliographic-data SUBTYPE OF (Thesis);

: own-slots (END.ENTITY;

(INSTANCE-OF class)

(SUBCLASS-OF thesis)

(DOCUMENTATION

"PhD thesis document.")))

3. Remove the DOCUMENTATION from each frame and place it as an EXPRESS descriptive

comment.

4. For each EXPRESS entity that effectively corresponds to an EXPRESS primitive type

(such as Integer), replace it by am EXPRESS Type instesid.

For example:

(def ine-frame DAY-NUMBER

: theory bibliographic-data

: own-slots (

(INSTANCE-OF class)

TYPE DayNumber = INTEGER;

WHERE

limited : {0 < SELF <= 31};

END.TYPE;

(SUBCLASS-OF integer)

(DOCUMENTATION

"integer representing day of month."))

:8Lxioms (

(<=> (day-number ?day-of-month)

(and (integer ?day-of-month)

(=< 0 ?day-of-month)

(=< ?day-of-month 31)))

(inherited-slot-Veilue day-number =< 31)))

5.

If possible, convert zmy frame classes that are exhaustively enumerated into an EXP-

RESS Enumeration Type.

For example

(def ine-frame MONTH-NAME

: theory bibliographic-data

: own-slots (

(INSTANCE-OF class)

TYPE MonthName = ENUMERATION OF

(January,

February,

...);

3

END.TYPE;(ALL-INSTANCES

(setof January february ...))

(DOCUMENTATION

"The months of the year ...")))

(define-frame JANUARY

: theory bibliographic-data

: own-slots (

(INSTANCE-OF month-name)))

This process resulted in transliterated EXPRESS models that captured most of the in-

tent of the ontologies translated. However, the models were not complete at this point

and requires further work; principally formulating the frame axioms in terms of EXPRESS
constructs and constraint language.

2.2 Stage 2

This stage is intended to complete the Stage 1 EXPRESS model.

1. Some axioms are of the form shown in the frame definition below, which has been
taken from a bibliographic ontology:

(define-frame DOC. SERIES-TITLE

: theory bibliographic-data

; own-slots (

(ARITY 2)

(RANGE title)

(INSTANCE OF function)

(DOCUMENTATION))

: axioms (

(=> (doc. series-title ?doc ?title)

(or (book ?doc) (proceedings ?doc)))))

This specification is basically saying that only a Book or a Proceedings (which are two
among several kinds (subtypes) of Docmnent) can have a Series-Title. These kinds of

axioms were translated into WHERE rules specifying the required type restrictions.

For example, the above frame could be translated into:

ENTITY DocAndSeriesTitle;

SeriesTitle : Title;

Doc : Document

;

WHERE

4

wrl : (’BIBLIO.BOOK’ IN TYPEOF(Doc)) OR

(’BIBLIO. PROCEEDINGS’ IN TYPEOF(Doc))

;

END.ENTITY;

2. Change binary relations to (optional and/or list) attributes.

The model resulting from Stage 1 has many entities that look like binary relationships.

That is, there are entities Entl, Ent2 and BinRel where BinRel is hke:

ENTITY BinRel;

atl : Entl;

at2 : Ent2;

END.ENTITY;

For a more idiomatic translation these BinRel are candidates for replacement by
attributes of appropriate cardinality in either Entl or Ent2 like:

ENTITY Entl;

— previous attributes

RelatedTo : Ent2;

END.ENTITY;

Taking the specification above of DocAndSeriesTitle as a concrete example, this

could be reconfigured as:

ENTITY Document
— other stuff

DocSeriesTitle : OPTIONAL Title;

WHERE

wrl : NOT EXISTS (DocSeriesTitle) XOR

(EXISTS (DocSeriesTitle) AND

((’BIBLIO.BOOK’ IN TYPEOF(SELF)) XOR
(’ BIBLIO . PROCEEDINGS ’ IN TYPEOF (SELF))))

;

END.ENTITY;

3. In many cases value-related axioms in the frame model could be translated into derived

attributes in the EXPRESS model.

For example:

(define-frame INHERITS-TITLE-FROM-DOCUMENT

: theory bibliographic-data

: own-slots (

(INSTANCE-OF class)

5

(SUBCLASS-OF publication-reference)

)

: axioms (

(<=> (inherits-title-from-document ?ref)

(and (publication-reference ?ref)

(same-values ?ref ref .title (compose doc. title ref .document))))

(same-slot-values inherits-title-from-document ref .title

(compose doc. title ref .document))))

can be translated into

ENTITY InheritsTitleFRomDocument

SUBTYPE OF (PublicationReference)

;

DERIVE

SELF\BibReference. RefTitle : Title := Ref .Document. DocTitle;

END.ENTITY;

2.3 Stage 3

This stage is basically tidying up the EXPRESS model and presenting it in an idiomatic

manner.

1. Add in any elements missing from the Frame model.

For example, one part of the bibliographic ontology dealt with the referencing of a

paper that had been published in a printed proceedings. Data fields were defined for

the author, title, and so on of the paper but the means of referencing the proceedings

themselves was missing. In all fairness, though, the ontologies were not claimed to be

necessarily complete.

2. In some cases bincuy relations were converted into EXPRESS functions called from
derived attributes. For instance, consider the following:

ENTITY a;

— a stuff

END.ENTITY;

ENTITY b;

— b stuff

END.ENTITY;

ENTITY ab;

atl : a;

at2 : b;

END.ENTITY;

6

This can be written as:

ENTITY a;

— a stuff

DERIVE

bs : SET OF b := BiiiA(SELF)

;

END.ENTITY;

ENTITY b;

— b stuff

END.ENTITY;

ENTITY ab;

atl : a;

at2 : b;

END.ENTITY;

FUNCTION BinA(Arg : a) : SET OF b;

— Use the USEDIN fimction on Arg to get to the ab’s.
— RETURN (SET OF b) ;

— all those b’s associated with Arg

END.FUNCTION;

This is at first sight not a particluarly useful trzinsfonnation. However, there were

cases in the Frame ontologies that, after translation into EXPRESS appeared like:

ENTITY a;

— a stuff

END.ENTITY;

ENTITY b;

— b stuff

END.ENTITY;

with a an axiom concerning some relationship between a’s and b’s, although though
was no frame specifying the relationship — this was missing from the ontology. For

instance, such an axiom might be that no more than three instances of b could be

associated with each instance of a. This could be dealt with in the EXPRESS model
by introducing an appropriate function (call).

ENTITY a;

— a stuff

WHERE

limit : SIZEOF(BiiiA(SELF)) <= 3;

END.ENTITY;

ENTITY b;

7

— b stuff

END.ENTITY;

FUNCTION BinACArg : a) : SET OF b;

— RETURN (SET OF b) ;
— all those b’s associated with Arg

END.FUNCTION;

3. Remove synonyms from the EXPRESS model.

Again taking the bibliographic ontology as an example, in some places the publisher

was referred to as an ‘institution’, in others as an ‘organization’ and in yet other places

as a ‘publisher’. All these were collapsed in the single identifier ‘publisher’.

4. Revise the EXPRESS model to convert, as far as possible, logical (procedural) con-

straints into the model structure.

As an example, recall the constraints in the Document entity, i.e.,

ENTITY Document
— other stuff

DocSeriesTitle : OPTIONAL Title;

WHERE

wrl : NOT EXISTS (DocSeriesTitle) XOR

(EXISTS (DocSeriesTitle) AND

((’BIBLIO.BOOK’ IN TYPEOF (SELF)) XOR
(’ BIBLIO . PROCEEDINGS » IN TYPEOF (SELF))))

;

END.ENTITY;

Checking the validity of an instance of Document requires the evaluation of the logical

statement in the WHERE clause. This can instead be modeled structurally as:

ENTITY Document
— other stuff

END.ENTITY;

ENTITY Book

SUBTYPE OF (Document)

;

— other attributes

DocSeriesTitle : OPTIONAL Title;

END.ENTITY;

ENTITY Proceedings

SUBTYPE OF (Document)

;

— other attributes

DocSeriesTitle : OPTIONAL Title;

END.ENTITY;

8

3 Observations

Three groups of ontologies were firstly trEinsliterated into EXPRESS models and then mas-

saged into idiomatic EXPRESS. In some cases a group required the conversion of more than

one ontology. The grouping and ontologies were:

1. bibliographic-data— the scope is bibliographic references, such as might appear

at the end of a techniccd or scholarly docmnent [Wil96a].

2. constraints — a general ontology describing the specification of constraints in the

form of logical sentences [Wil96b].

Some other ontologies were extensions of this.

• component-assemblies— a general ontology about assemblies of things, includ-

ing sub-assemblies and connections.

• components-with-constraints— an ontology about components (firom component-assemblies

that have constraints (firom constraints).

• mechanical-components— an ontology specializing component-assemblies to

assemblies of mechanical things.

3. frame-ontology— an ontology describing the generic firame language [Wil96d].

This called on two other ontologies:

• kif-relations — an ontology describing relationships among objects.

• kif-sets — an ontology delaing with set theory.

These were all obtained in December 1995 firom

http : //www-ksl . Stanford . edu/knowledge-sharing/ontologies.

Table 1 gives a compcurison between the sizes of the different models in both the Frame

and EXPRESS renditions. The letters at the top of the columns indicate the different

ontologies.

Generally speaking, the EXPRESS models are similar or smaller in terms of the number

of definitions with respect to the Frame models.

3.1 Theory vs. Schema

The Frame concept of Theory maps into the EXPRESS concept of Schema. Syntactically,

a Theory and a Schema are treated differently. EXPRESS uses an embedded syntax so that

the contents of a Schema are syntactically embedded between the constructs BEGIN_SCHEMA

name ; and END^CHEMA ; . The Frame language uses a referential syntax so that a construct

identifies which Theory it is a member of.

/

9

Table 1: Statistical model comparisons

Frame EXPRESS
B CCA F Tot B CCA F Tot

Theories 1 4 3 8 Schemas 1 6 4 11

Misc 1 6 7 Types 6 4 3 13

Classes 66 19 40 125 Entities 69 37 117 223

Functions 40 6 27 73 Functions 3 10 1 14

Relations 19 15 41 75 Rules 1 1

Instances 12 12

TOTAL 137 45 117 299 TOTAL 79 58 125 262

bibliographic, CCA — constraints, components and assemblies, F — Frame.

Both embedded and referential syntaxes have their positive and negative sides, patic-

ularly when it comes to the means of extending a model, but this is not the place for a

discussion of that point. However, I did find significant problems with the ontologies as

presented in that there were things mentioned in one Theory that were not specified within

that Theory (but which were presiunably defined in another Theory). There was no in-

dication in the Frame representation of where or what these (presumed) Theories were.

This was particularly evident in the Constrziint related Ontologies. The Schema construct

in EXPBJESS provides a scoping mechanism and there is a matching capability of formally

specifying where specifications utilised from other Schemas are to be found.^

It thus appears that EXPRESS formally requires a model to be complete but I did not find

this to be a formal requirement of the Frame specifications. (Neither did I find anything in

any of the specific Frame Ontology documents to help in identifying missing specifications

or their possible locations. The documentation style used for EXPRESS models in ISO
10303 specifically requires that the collection of Schemas forming a model be identified in

the informal documentation as weU as the EXPRESS language requirement.)

3.2 Classes, Relations, Entities and such

EXPRESS essentially has three constructs — Schema, Entity and Rule. In this I am
including a Type as being a kind of Entity and a Function as one means of specifying a

constraint that might appear in an Entity or a Rule.

The Frame ontologies use more constructs. In the studied ontologies these are typically

Class, Function, Relation, Instance, and of comrse Theory. These constructs, except

for Theory essentially have to be mapped into the EXPRESS notion of Entity. Concep-

tually this is no problem as EXPRESS efiectively defines an Entity as ‘a representation of

something of interest’. In practice, there can be some difficulties.

^In fact this is a requirement of the language.

10

The mapping of Class to Entity is reasonably straightforward as I believe that Class

and Entity are virtually synonymous.

Relation also maps well to Entity. When EXPRESS was being developed there were

many discussions on exphcitly distinguishing between ‘entity’ and ‘relation’ as in the Entity-

Relationship modeling paradigm. However the decision was made to just have Entity as

the more one looked at ‘relationship’ the more it looked and behaved like ‘entity’. The
Frame Relation then can be transliterated to the EXPRESS Entity. In the limited trans-

lation experience to date most of the Relations were binary relations with no attributes.

Whenever one Entity references another Entity, EXPRESS automatically considers this

to be a ‘relationship’. It is rare to see imconstradned and unattributed ‘binary relations’ in

EXPRESS models — these are t)rpically modeled by a reference from one or other of the

Entities concerned to the other. Thus, in many cases a Frame Relation eventually got

translated into an attribute of an EXPRESS Entity.

A Frame Function has little in conunon with an EXPRESS Function except for the name
and the general definition of a function as a map fi:om a domain to a range. For example,

the following could be a typical EXPRESS Function used to describe the combinations of

days, months and years that denote a valid date.

FUNCTION date_is_valid(d : date): BOOLEAN;

(given a date (day, month, year) check to ensure that the

day, month and yeeu: compose a valid date, taking into

account leap years. Return TRUE if date is valid, FALSE

otherwise.)
(check year is positive i.e., AD dates only.)
IF (d.year <= 0) THEN RETURN (FALSE); END.IF;

(check day range *)

IF NOT {1 <= d.day <= 31} THEN RETURN (FALSE); END.IF;

(* check days in months of 30 days or less *)

CASE d.month OF

April

,

June,

September

,

November : RETURN (d <= 30);

(* specietL check for February *)

February : RETURN (valid_leap_month(d))

;

OTHERWISE : RETURN (TRUE);

END.CASE;

END.FUNCTION;

On the other hand, here is a typical Frame function:

(define-frame REF. YEAR

: theory bibliographic-data

: own-slots (

(ARITY 2)

11

(RANGE yeaLT-number)

(DOMAIN reference)

(INSTANCE-OF function)

(DOCUMENTATION

"The year field is a function from a reference to the yesoc in

which the publication was published.")))

Functions like this are modeled in EXPRESS as Entity attributes. For example:

ENTITY reference
— other stuff

publication_year : year;

END.ENTITY;

From studying the Frame ontology it appears as though the notions of Class and

Fimction are basically two different aspects of the notion Relation. A Relation has one

or more arguments. A Class is a imary Relation (a Relation with only one argument).

A Function is a Relation where the ‘value’ of the last argument is completely determined

by the preceeding arguments.

3.3 Instances

The Frame language has a notion of ‘instances’. As examples:

(define-frame REF. YEAR

: theory bibliographic-data

; own-slots (

(ARITY 2)

(RANGE year-number)

(DOMAIN reference)

(INSTANCE-OF function)

(DOCUMENTATION

"The year field is a function from a reference to the year in

which the publication was published.")))

or

(define-frame REF. AUTHOR

: theory bibliographic-data

: own-slots (

(ARITY 2)

(INSTANCE-OF relation)

(RANGE author-name)

12

(DOMAIN reference)

(DOCUMENTATION

"Relation between a reference and the name(s) of the
creator (s) of the publication.")))

It took me a long time to feel that I had come to am understanding of what this meant.

In faet, the translation of the Frame ontology was explicitly undertaken in order to attempt

to solve this.

EventuaJly I caime to the conclusion that the explanation lay in set theory, where a Frame

Relation effectively defines a set of that ‘name’, and similarly for Class and Function.

The INSTANCE-OF syntax is then a set membership declaration. So, for example,

INSTANCE-OF relation

can be read as ‘this is a member of the set “relation” ’.

EXPRESS also has similar notions, in that Schema, Entity and so on are sets [Wil96c].

A declaration like

ENTITY AnEntity;

specifies that AnEntity is both a set named AnEntity and is a member of the set Entity.

4 Basic elements of Frame and EXPRESS

In broad terms both Frame and EXPRESS have three basic semzmtic elements, although the

syntactical representations of these are different.

Frame

1. Theory — the collection of definitions for a particular ontology.

2. Relation — a definition (specification of real world thing of interest).

3. Axiom — a logical expression (or sentence) applied to relation(s).

EXPRESS

1. Schema— the collection of definitions for (a cohesive part of) a particulair model.

2. Entity — a definition (specification of a real world thing of interest).

3. Constraint — A logical expression (or statement) applied to entity (ies).

Thus, at a broad level. Frame and EXPRESS deal with the same semantic elements; as is

often the case, though, the devil is in the details.

Frame makes distinctions between imary relations, which are termed classes, relations

where the value one argument is completely defined by the values of the other arguments,

which are termed classes, and general n-ary relations which are called relations.

13

EXPRESS syntactically has entities and types, where a type can be thought of as a very

restricted form of an entity. Effectively a Frame class maps to (the name of) an entity or

type. A Frame function can typically be mapped to an entity with a derived attribute.

General relations map to entities.

As we have already noted, a Frame theory and an EXPRESS schema are virtually synony-

mous, and so are Frame relations and EXPRESS entities. The major difference is between

FrEime axioms and EXPRESS constraints.

In Frame, an axiom is a logical sentence involving relations. These sentences may use

the typical forms of predicate logic (e.g., ‘there exists’ or ‘for aU’ and so on). In EXPR-
ESS a constraint is also specified by a logical statement, but there is no built in language

equivalent to ‘for all’ and firiends. Instead, E^XPRESS provides a programming language

which enables the equivalent to ‘for all’, etc., to be stated. The programming language

includes looping constructs, case statements and so forth. It is therefore often much easier

to specify constraints in EXPRESS than in Frame, as in the latter case one is restricted to

only using a series of logical sentences, whereas in the forming both general programming

techinques are available in addition to logical expressions. That is, often the programming
constructs provide a short, elegant and understandable means of specifying the variables

and their value ranges that are used in the final constreunt statements, whereas in general

this is much harder to do when purely restricted to logic— not impossible, but readability

is likely to suffer with no increase in either precision or formality.

5 Conclusions and further work

There was little difficulty in transliterating Frame ontologies into EXPRESS models, and

then further mapping these into idiomatic EXPRESS code. The transliteration process could

be reasonably automated, but not the idiomatic mapping.

Further investigation into the use of instEinces in the Frame language and their mapping

relationship to EXPRESS may be required. In the ontologies mapped so far, these have not

caused any problems, but it is possible that they might do so in more complex ontologies.

It is imclear to me whether it is possible to map EXPRESS models into the Frame

language without losing information. In order to shed some light on this problem I suggest

that an experienced Frame (or KIF) modeler map the EXPRESS model given in the appendix

(A) into the Frame language. The original scope statement for this model is given in ISO

TR9007 [IS087]. This ISO report describes requirements for conceptual languages and

presents the model represented in a variety of generic modeling language types.

References

[GF92] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0

14

[Gin91]

[IS087]

[IS094]

[SW94]

[Wil96a]

[Wil96b]

[Wil96c]

[Wil96d]

[X395]

Reference Manual. Report Logic-92- 1, Computer

University, June 1992.

M. L. Ginsberg^^nowledge Interchange Format:

zine, 12(3):57-63, Fall 1991.

Science Department, Stanford

The KIF of Deatnv AI Maga

ISO TR9007. Information processing systems — Concepts and terminology for

the conceptual schema and the information base, 1987.

ISO 10303-11:1994. Industrial automation systems and integration — Product data

representation and exchange — Part 11: Description methods: The EXPRESS
language reference manual, 1994.

Douglas A. Schenck and Peter R. Wilson. Information Modeling the EXPRESS
Way. Oxford University Press (ISBN 0-19-308714-3), 1994.

Peter R. Wilson. Bibliographic Ontology — An EXPRESS Rendition of a Frame

Model, Februciry 1996. (Draft).

Peter R. Wilson. Component Modeling Ontologies — An EXPRESS Rendition of

a Frame Model, March 1996. (Draft).

Peter R. Wilson. EXPRESS and Set Theory, June 1996. (Draft).

Peter R. Wilson. Frame Ontology — An EXPRESS Rendition of a Frame Model,

April 1996. (Draft).

X3T2 KIF AHG. Knowledge Interchange Format Reference Manual, March 1995.

15

A EXPRESS example model

This Appendix contains a complete and documented EXPRESS model together with an

EXPRESS-G graphical version. The model is documented in a similar manner to the STEP
models.

A.l Scope

The model has to do with the registration of cars and is limited to the scope of interest of

the Registration Authority. This Authority exists for the purpose of:

• Knowing who is or was the registered owner of a car at any time from construction

to destruction of the C6ir;

• To monitor laws regarding the transfer of ownership of cars;

• To monitor laws regarding the fuel consumption of cars;

• To monitor laws regarding manufacturers of cars.

A.2 Model overview

The model is described using both EXPRESS and EXPRESS-G. The EXPRESS definitions are

primary and the EXPRESS-G diagrams are to assist in imderstanding the primary model.

If there is any conflict between the EXPRESS and EXPRESS-G, then the EXPRESS tahes

precedence.

Figure 1: Complete schema-level model for Registration Authority example (Page 1 of 1).

16

The model consists of three schemas, as shown in figure 1. The schema authority is

the primary schema. It references items firom the two ancilliary schemas, namely support

and calendar. The support schema also references items from the calendar schema.

A.3 Authority schema

This schema is the primary one in the model and is principally concerned with the main

functions of the Registration Authority.

The schema imports definitions from two sources, namely the support and the calendar

schemas.

Figure 2 is an EXPRESS-G complete entity-level model for this schema.

EXPRESS specification:

*)

SCHEMA authority;

REFERENCE FROM support (car,

transfer,

manufacturer,

fuel_consiimption,

mnfg_average_consumption)

;

REFERENCE FROM calendar: (current.date)

;

(*

A.3.1 Entity definitions

Entity HISTORY

A history records the transfers of ownership of a car over its lifetime. A history must

be kept for a certain period after the car is destroyed, after which the ownership records

may be destroyed.

EXPRESS specification:

*)

ENTITY history;

item : car;

transfers : LIST [0:?] OF UNIQUE transfer;

DERIVE

to_be_deleted : BOOLEAN := too_old(SELF)

;

UNIQUE

\ml : item;

WHERE

one_car : single_Ceir(SELF)

;

17

Figure 2: Complete entity-level model of the Authority schema (Page 1 of 1).

18

ordering : exchange_ok(treinsfers)

;

END.ENTITY;

(

Attribute definitions :

item: The car whose ownership history is being tracked,

transfers: The ownership transfer records of the item.

to_be_deleted: A flag which indicates that this history record may be deleted because

the item has been destroyed (TRUE), or that the record shall not be deleted (FALSE).

Formal propositions :

uni: The value of item shall be imique zicross all instances of history,

one.car: Each transfer collected in a history shall be of the same car.

ordering: The list of transfer shall be in increasing historical order.

Entity AUTHORIZED MANUFACTURER

An authorized manufacturer is a manufacturer who has been given permission by the

Registration Authority to make cars.

EXPRESS speciflcation :

*)

ENTITY authorized.meinufacturer

SUBTYPE OF (manufacturer)

;

END.ENTITY;

(

Rule MAX NUMBER

No more than flve authorized manufacturers are permitted at any one time.

EXPRESS speciflcation :

*)

RULE max.number FOR (authorized.manufacturer)

;

WHERE

max_of_5 : SIZEOF(authorized_manufacturer) <= 5;

END.RULE;

(*

19

Formal propositions:

max_of_5: The rule is violated if there are more than five authorized manufacturers at

any time.

Entity SEND MESSAGE

In January each year the Registration Authority shall send a message to each manufacturer

whose cars’ average fuel consumption exceeds a certain limit, which may vary from year to

yeau:.

EXPRESS specification:

)
ENTITY send.message

;

meix.coiisumption : fuel.consumption;

year : INTEGER;

masters : SET [0:?] OF authorized.manufacturer;

DERIVE

excessives : SET [0:?] OF manufacturer := guzzlers (SELF)

;

END.ENTITY;

(*

Attribute definitions :

max-Consumption: The legal maximmn average fuel consumption,

year: The year for which the meuc consumption value applies,

makers: The authorized manufactiirers operating during the year,

excessives: The manufacturers whose cars exceed the consumption limit.

A.3.2 Function and procedure definitions

Function GUZZLERS

This function returns the set of manufacturers whose cars exceed an average fuel con-

sumption limit.

Argument definitions :

par: An instance of a send message entity.

RESULT: A set of instances of manufacturer whose cairs’ average fuel consumption is

excessive.

20

EXPRESS specification:

*)

FUNCTION guzzlers (par : send.message) : SET OF manufacturer;

LOCAL

result ; SET OF manufacturer := []

;

mnfs : SET OF manufacturer ;= peir .meOcers;

limit : fuel_cons\imption := par .m«ix_consumption;

time : INTEGER := par. year;

END.LOCAL;

REPEAT i := 1 TO SIZEOF(mnf s)

;

IF (mnfg_average_consumption(mnf s[i] ,time) > limit) THEN

result := result + mnfs[i];

END.IF;

END.REPEAT;

RETURN (result)

;

END.FUNCTION;

(

Function TOO OLD

This function calculates whether the car in a history was destroyed more than two years

ago.

Argument definitions :

par: An instance of a history.

RESULT: A Boolean value. TRUE if the car in the input history was destroyed two or

more years ago; otherwise FALSE.

EXPRESS specification :

*)

FUNCTION too.oldCpar : history) : BOOLEAN;

(* The function returns TRUE if the input history is

outdated. That is, if it is of an item that was destroyed

more than 2 years ago.)
IF (’ SUPPORT. DESTROYED.CAR’ IN par. item) THEN

IF (current.date.year-par. item. destroyed.on. year >= 2) THEN

RETURN (TRUE)

;

END.IF;

END.IF;

RETURN (FALSE) ;

END.FUNCTION;

(*

21

Function EXCHANGE OK

This function checks whether or not the transfers in a list axe ordered.

Argument definitions :

par A list of transfer instances.

RESULT A Boolean value. TRUE if the recipient in the transfer is the same as the

giver in the (AT + 1)^^ transfer.

EXPRESS specification:

*)

FUNCTION exchange.okCpar : LIST OF transfer) : BOOLEAN;

(* returns TRUE if the "to owner" in the N’th transfer of a

ceir is the "from owner" in the N+l’th transfer *)

REPEAT i := 1 TO (SIZEOF(pax) - 1);

IF (par [i]. new :<>: par [i+1] .prior) THEN

RETURN (FALSE);

END.IF;

END.REPEAT;

RETURN (TRUE);

END.FUNCTION;

(*

Function SINGLE CAR

This function checks whether or not the car in a transfer history is the same car specified

in each individual transfer.

Argument definitions :

par: A history instance.

RESULT: A Boolean value. TRUE if the history and all its transfers are of the same

car, otherwise FALSE.

EXPRESS specification:

*)

FUNCTION single_car(par : history) : BOOLEAN;

(* returns TRUE if a history is of a single car *)

REPEAT i := 1 TO SIZEOF (par .transfers)

;

IF (par. item :<>; par.transfers[i] .item) THEN

RETURN (FALSE);

22

END.IF;

END.REPEAT;

RETURN (TRUE);

END.FUNCTION;

(*

A.3.3 Entity classification structiire

The following indented listing shows the entity classification structure. Entities in upper

case characters are defined in this schema. Entities in lower case characters are defined in

other schemas.

HISTORY

manufactiirer (in schema support)

AUTHORIZED.MANUFACTURER

SEND.MESSAGE

)
END_SCHEMA; — end of authority schema

(

A.4 Support schema

This schema contains supporting definitions for the primary authority schema.

An EXPRESS-G model of the contents of this schema is given in figure 3 and in figme 4.

The schema imports definitions from the calendar schema.

EXPRESS specification :

*)

SCHEMA support;

REFERENCE FROM calendar (date, months, days.between)

;

(

A.4.1 Type definitions

Type NAME

The ‘name’ of something. A human interpretable name which may identify some object,

thing or person, etc. For example. Widget Company , Inc .

.

EXPRESS specification:

23

*)

TYPE name = STRING;

END.TYPE;

(

Type IDENTIFICATION NO

A character string which may be used as the ‘identification number’ for a particular instance

of some object. This is typically a mixture of alphanumeric characters aud other symbols.

For example, D20-736597WP23.

EXPRESS specification:

)
TYPE identif ication.no = STRING;

END.TYPE;

(*

Type FUEL CONSUMPTION

A measure of the fuel consumption of some powered device.

EXPRESS specification :

)
TYPE fuel.consumption = REAL;

WHERE

range : {4.0 <= SELF <= 25. O};

END.TYPE;

(*

Formal propositions :

range: The value is limited to lie in the range 4 to 25 inclusive.

A.4.2 Entity definitions

Entity TRANSFER

A record of a transfer of a car from one owner to a new owner.

EXPRESS specification:

*)

ENTITY transfer;

24

^item

transfer

"^new

^pnor

on

{ 2,3 car }

{2,1 owner

)

{ calendar,date)

(jy_

c

Wl

S
*called

car.model

consumption

made.by

arm

Oname—C STRING

cflueLcq^umptwn—C REAL

—(2,2 manufacture^

(1,3 (2)) d identification^o , 0 STRING _

Figure 3: Complete entity-level model of the Support schema (Page 1 of 2).

25

Figure 4; Complete entity-level model of the Support schema (Page 2 of 2).

26

item ; car;

prior : owner;

new : owner

;

on : date

;

WHERE

wrl : NOT (’SUPPORT. MANUFACTURER’ IN TYPEOF (new))

;

wr2 : (NOT (’SUPPORT. MANUFACTURER’ IN TYPEOF (prior))) XOR
((’SUPPORT.MANUFACTURER’ IN TYPEOF (prior)) AND
(’ SUPPORT . GARAGE ’ IN TYPEOF (new)))

;

wr3 : (NOT (’SUPPORT. GARAGE’ IN TYPEOF(prior))) XOR
((’SUPPORT.GARAGE’ IN TYPEOF (prior)) AND

((’SUPPORT.PERSON’ IN TYPEOF (new)) XOR
(’ SUPPORT . GROUP ’ IN TYPEOF (new))))

;

wr4 : (NOT (’SUPPORT. DESTROYED.CAR’ IN TYPEOF(item)) XOR

((’SUPPORT.DESTROYED.CAR’ IN TYPEOF (item)) AND

(days_between(on, item\destroyed_car .destroyed_on) > 0)));

END.ENTITY;

(*

Attribute definitions:

item: The car being trajisferred.

prior: The prior owner of the item,

new: The new owner of the item,

on: The date of the transfer.

Formal propositions :

wrl: A car cannot be transferred to a manufacturer.

wr2: A manufacturer can only transfer a car to a garage.

wr3: A garage can only transfer a car to either a person of a group of people.

wr4: A car which has been destroyed cannot be transferred.

Entity CAR

A car.

EXPRESS specification:

)
ENTITY car;

27

model_type :

mnfg.no :

registration.no :

production.date :

production.year :

DERIVE

car_model;

identification_no

;

ident ification_no

;

date;

INTEGER;

made_by : manufacturer := model.type.made_by;

UNIQUE

joint : made.by, mnfg_no;

single : registration.no;

WHERE

jan.prod : (production.year = production.date.yeeor) XOR
((production.date.month = months . January) AND

(production.yeaor = production.date.year - 1));

END.ENTITY;

(

Attribute definitions :

model-type: The car model.

mnfgjio; An identification number of the car assigned by the car’s manufacturer.

registrationjio: An identification number for the car assigned by the Registration Au-

thority.

production-date: The date on which the car was produced.

production-year: The registered year of production of the car.

made_by: The manufacturer of the car.

Formal propositions :

joint: The mnfg no given to a car is unique for the given car manufacturer.

single: Each car is given a unique registration no by the Registration Authority.

jan.prod: The registered production year is the same as the year in which the car was

produced, except that cars produced in January may be registered as having been

produced in the previous year.

Entity DESTROYED CAR

A car may be destroyed, in which case its date of destruction is recorded.

EXPRESS specification:

28

*)

ENTITY destroyed.car

SUBTYPE OF (car)

;

destroyed.on : date;

WHERE

dates.ok ; days.between(production.date, destroyed.on) >= 0;

END.ENTITY;

(*

Attribute definitions :

destroyed.on: The date on which the car was destroyed.

Formal propositions :

dates-ok: A car cannot be destroyed before it has been made.

Entity CAR MODEL

A particular type of car.

EXPRESS specification:

*)

ENTITY car.model;

called : ncime

;

made.by : manufacturer;

consumption : fuel.consumption;

UNIQUE

uni : called;

END.ENTITY;

(

Attribute definitions :

called: The name of the model.

made_by: The manufacturer of the model.

consumption: The average fuel consumption of all cars of this model type.

Formal propositions:

uni: Each car model has a distinct name.

29

Entity OWNER

An owner of a car. Owners are categorized into named owner and group.

EXPRESS specification:

)
ENTITY owner

ABSTRACT SUPERTYPE OF (ONEOFCnamed.owner,

group))

;

END.ENTITY;

(

Entity NAMED OWNER

An owner who has a name. These are categorized into manufacturer, garage and person.

EXPRESS specification:

)
ENTITY named.owner

ABSTRACT SUPERTYPE OF (ONEOF (manufacturer,

garage,

person)

)

SUBTYPE OF (owner)

;

called : name;

UNIQUE

uni : called;

END.ENTITY;

(*

Attribute definitions:

called: The name of the owner.

Formal propositions :

uni; Owner’s names axe imique.

Entity MANUFACTURER

A type of named car owner. Manufacturers may also manufacture cars.

EXPRESS specification:

)
ENTITY manufacturer

30

SUBTYPE OF (named_owner)

;

END.ENTITY;

(*

Entity GARAGE

A t)Tpe of named car owner.

EXPRESS specification:

*)

ENTITY garage

SUBTYPE OF (named_owner)

;

DERIVE

no_of_nm.fs : INTEGER := dealer_for_mnfs(SELF)

;

WHERE

wrl : {1 <= no_of_innf8 <= 3)-;

END.ENTITY;

(

Attribute definitions :

no_of_mnfs: The number of different manufacturers of the cars owned by the garage.

Formal propositions :

wrl; At any particular time, a garage shall not own cars made by more than three man-

ufacturers.

Entity PERSON

A type of named car owner.

EXPRESS specification:

*)

ENTITY person

SUBTYPE OF (named.owner)

;

END.ENTITY;

(

Entity GROUP

A type of car owner consisting of a group of people.

EXPRESS specification:

31

*)

ENTITY group

SUBTYPE OF (owner);

members : SET [1:?] OF person;

END.ENTITY;

(

Attribute definitions :

members: The people who form the group.

A.4.3 Function and procedure definitions

Function DEALER FOR MNFS

This function calculates the total number of distinct manufacturers of cars owned by a

garage.

Argument definitions :

dealer: An instance of a garage.

RESULT; The number of distinct manufacturers of the cars owned by the garage.

EXPRESS specification:

FUNCTION dealer_for_mnfs(deeiler : garage) : INTEGER;

LOCAL

cars : SET OF car := [] ;

transfers : SET OF transfer := []

;

makers : SET OF manufacturer := ;
END.LOCAL;

transfers := USEDIN (dealer, ’TRANSFER.NEW’)

;

REPEAT i := 1 TO SIZEOF (transfers)

;

cars := cars + trauisfers [i] . item;

END.REPEAT;

transfers := USEDIN (dealer, ’TRANSFER.PRIOR’)

;

REPEAT i := 1 TO SIZEOF (transfers)

;

cars := cars - transfers [i] .item;

END_REPEAT;

REPEAT i := 1 TO SIZEOF(cars)

;

meikers := makers + cars [i] .model_type.made_by;

END.REPEAT;

RETURN (SIZEOF (makers));

END.FUNCTION;

(

32

Function MNFG AVERAGE CONSUMPTION

This function calculates the average fuel consumption in a given year of all the cars made
by a particular manufacturer.

Argument definitions :

mnfg: A manufacturer.

when: An INTEGER representing a particular year.

RESULT: A REAL giving the average fuel consumption of the manufacturer’s cars during

a particular year.

EXPRESS specification:

*)

FUNCTION mnfg_average_consumption(mnfg : manufacturer;

when : INTEGER) : REAL;

(* returns the average fuel consumption of the given

manufacturer’s caurs produced in the given year)
LOCAL

models : SET OF car.model := []

;

cars : SET OF car := [] ;

num : INTEGER := 0;

tot : INTEGER := 0;

fuel : REAL := 0;

result : REAL := 0.0;

END.LOCAL;
— set of mnfg’s models

models := USEDIN(mnfg, ’MODEL.MADE.BY’)

;

REPEAT i := 1 TO SIZEOF(models)

;

— cars of particuleir model year

cars := QUERY (temp <* USEDIN (models [i] , ’CAR.MODEL.TYPE’)

I temp. production.year = when);

num := SIZEOF(cars)

;

fuel := fuel + num*models[i] .consumption;

tot := tot + num;

END.REPEAT;

IF tot > 0.0 THEN

result := fuel/tot;

END.IF;

RETURN (result)

;

END.FUNCTION;

(*

33

*date

*day

-0 INTEGER
’^year

month
“Q months I

•

Figme 5: Complete entity-level model of Calendar schema (Page 1 of 1).

A.4.4 Entity classification structure

The following indented listing shows the entity classification structure. Entities in upper

case characters are defined in this schema. Entities in lower case characters are defined in

other schemas.

CAR

DESTROYED.CAR

CAR.MODEL

OWNER

GROUP

NAMED.OWNER

GARAGE

MANUFACTURER

PERSON

TRANSFER

*)

END.SCHEMA; — end of support schema

(*

A.5 Calendar schema

This schema contains definitions related to dates and other calendrical items.

Figure 5 is an EXPRESS-G model showing the contents of this schema.

EXPRESS specification:

)
SCHEMA cailendea:;

(

34

A.5.1 Type definitions

Type MONTHS

An enumeration of the months of the year. January is the first month in a year and

December is the last month in a year.

EXPRESS specification:

)
TYPE months = ENUMERATION OF

(January, Februatry, March,

April , May , June

,

July, August, September,

October, November, December);

END.TYPE;

(

A.5.2 Entity definitions

Entity DATE

A date AD in the Gregorian calendar.

EXPRESS specification:

*)

ENTITY date;

day : INTEGER;

month : months;

year ; INTEGER;

WHERE

days.ok : {1 <= day <= 31};

year_ok : year > 0;

date_ok : vaJ.id_date(SELF)

;

END.ENTITY;

(

Attribute definitions :

day; The day of the month,

month: The month of the year

year; The year.

Formal propositions:

35

days_ok: The day shall be numbered between 1 and 31 inclusive.

year_ok: The year shall be greater than zero.

date.ok: The combination of day, month and year shall form a valid date, taking into

account the differing numbers of days in particular months, and also the effect of leap

years.

A.5.3 Function and procediu'e definitions

Function VALID DATE

This function checks a date for valid day, month, year combinations.

Argument definitions:

par: A date.

RESULT: A Boolean. TRUE if the date has a valid day, month, year combination, FALSE
otherwise.

EXPRESS specification:

)
FUNCTION valid.date (par :

(returns FALSE if its

CASE pair.month OF

date) : BOOLEAN;

input is not a valid date *)

April

June

September

November

February

RETURN (paor.day <= 30)

RETURN (par. day <= 30)

RETURN (par. day <= 30)

RETURN (par. day <= 30)

IF (leap_year(par .yeau:)) THEN

RETURN (par. day <= 29);

ELSE

RETURN (par. day <= 28);

END.IF;

OTHERWISE : RETURN (TRUE);

END_CASE;

END.FUNCTION;

(*

Function LEAP YEAR

This fimction checks whether a given integer could represent a leap year.

Argmnent definitions:

36

year: An INTEGER.

RESULT: A Boolean. TRUE if year is a leap year, otherwise FALSE.

EXPRESS specification:

*)

FUNCTION leap_year(year : INTEGER) : BOOLEAN;

(* returns TRUE if its input is a leap year *)

IF ((((year MOD 4) = 0) AND ((year MOD 100) <> 0)) OR

((year MOD 400) = 0)) THEN

RETURN (TRUE);

ELSE

RETURN (FALSE);

END.IF;

END.FUNCTION;

(*

Function CURRENT DATE

This function returns the current date.

Argument definitions:

RESULT: The current date.

EXPRESS specification:

*)

FUNCTION current.date : date;

(This function returns the date when it is called.

Typically, it will be implemented via a system provided

procedure within the information base)
END.FUNCTION;

(*

Function DAYS BETWEEN

This function returns the number of days between any two dates.

Argument definitions:

dl: A date.

d2: A date.

37

RESULT: An Integer. The number of days between the two input dates. If dl is earlier

than d2 a positive integer is returned; if dl is later than d2 a negative integer is

retmrned; otherwise zero is returned.

EXPRESS specification:

)
FUNCTION days_between(dl, d2 : date) : INTEGER;

(* returns the number of days between two input dates. If dl

is earlier them d2, a positive number is returned. *)

END.FUNCTION;

(*

A.5.4 Entity clELSsiiication structure

The following indented listing shows the entity classification structure. Entities in upper

case characters are defined in this schema. Entities in lower case characters are defined in

other schemas.

DATE

*)

END.SCHEMA; — end of calendaur schema

(

38

