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Abstract

This paper presents results on direct optical matching of inked and real-time fingerprint

images. Direct optical correlations and hybrid optical neural network correlation are used

in the matching system for inked fingerprints. Prehminary results on optical matching of

real- time fingerprints use optical correlation. The test samples used in the inked image

experiments are the fingerprint taken from NIST database SD-9. These images, in both

binary and gray level forms, are stored in a VanderLugt correlator [1]. Tests of typical

cross correlations and auto correlation sensitivity for both binary and 8 bit gray images

are presented. When global correlations are tested on a second inked image results are

found to be strongly influenced by plastic distortion of the Anger. When the correlations

are used to generate features that are localized to parts of each fingerprint and combined

using a neural network classification network and separate class-by-class matching networks,

84.3% matching accuracy is obtained on a test set of 100,000 image pairs. Initial results

with real-time images suggest that the difficulties resulting from finger deformation can be

avoided by combining many different distorted images when the hologram is constructed in

the correlator. Testing this process wiU require analysis of 10-20 second sequences of digital

video.

1 Introduction

This paper presents data on two types of fingerprint images and two types of correlators.

The two types of fingerprint images are roUed inked prints scanned at 20 pixels/mm scan

rate on a 4 cm by 4 cm area of a fingerprint card and real-time fingerprint images acquired

using NTSC video from an real-time optical five scan device. We study matching of the inked

fingerprints using global optical correlations [1] and partial optical correlation features and

a system of neural classification and matching networks [2].

Initial results for five scan prints (real-time data) and static roUed inked fingerprints for

optical matching show that, with proper selection of the input of the stored hologram, direct

optical matching of five scanned fingerprints is refiable. This rehability is maintained so

long as the sample of live scan prints contains small variations in rotations and variations in
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pressure during the 10-second hologram exposure. When a single static Uve scan image is

used, optical matching has lower rehability in that the user must move their finger until a

position and level of ridge distortion which matches the hologram is found. This is because

the match in the static image case only occurs when the finger position and distortion closely

match the image used to expose the hologram.

In the inked roUed fingerprint case, even after core alignment and correction for rotation,

optical matching of most prints is sucessful for matching the original image and rejecting

other fingerprints but fails on second copies of rolled images because plastic pressure distor-

tions and image size variation are too large to allow global matching. Detailed computer

simulations show that global optical matching uses the fine grained phase plane structure

of the Fourier transform of the fingerprints to produce strong optical correlations. This

fine grained structure is sensitive to pressure and image size effects which then dominant in

correlations of static fingerprints.

The fine grained local variations in fingerprints can be partially compensated for by

calculating optical correlations on smaller zones of the fingerprints. A training set was derived

from volume two of SD-9 and the training set from volume one of SD-9 [3]. In our experiments,

two four by four matrices of correlations on zones of the fingerprint are used to produce a

total of 32 features. One set of correlations is computed with the local zone grid centered on

the core and one set is computed with the core in the center of the grid just above and to

the left of grid center.

These features are combined using two types of neural networks. The first network is

used to classify the fingerprints [4, 5, 6]. After each fingerprint is classified, class-by-class

matching networks are trained for each class. These two networks function in a way similar

to the binary decision networks discussed in [7]. For this particular problem, the network

training is strongly dependent of regularization and pruning for accurate generalization [2].

In section 2 we describe the direct optical correlation experiment. In section 3 we discuss

combining optical and neural network methods. In section 4 we present the results of the

hybrid system and in section 5 we draw some conclusions about the difference in correlations

of real time and roUed inked fingerprints.

2 Global Optical Correlations

In the global optical matching experiment images from NIST special data base 9 (SD-9)

[3] are core aligned using the method discussed in [4] and cropped to fit the 640 by 480

pixel field of the pattern recognition system. Two hundred reference fingerprints and second

roUings (inked images taken at a different time) are available for auto correlation and cross

correlation experiments. When binary finger prints are used the method of used is based on

that presented in [5].

Figure 1 shows a schematic diagram of the optical pattern recognition system. It is based

on the conventional VanderLugt correlator [1]. The target fingerprint image is loaded on

an SLM and is Fourier transformed by a lens. The resulting Fourier spectrum is interfered

with a reference beam to record a Fourier transform hologram. After recording is finished, if

an arbitrary input fingerprint is presented on the SLM, the correlation of the input and the

target appears in the correlation output plane.

Although the spatial heterodyning technique, often called joint transform correlator [8],

has many advantages for real-time applications [9, 10] and was used in most of recent finger-

print recognition experiments [11, 12, 13, 14, 15, 16], the VanderLugt correlator was adopted
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Figure 1: Diagram of the optical pattern recognition system

in this experiment. This is because the VanderLugt correlator does not require a fast SLM
with high resolution and the large SBP (space bandwidth product) available from holographic

recording materiaJs provide high degree of freedom to accommodate various distorted ver-

sions of a target that are simultaneously compared with an input. Also, since the information

is recorded in the form of a diffraction pattern (hologram) instead of a direct image, it can be

used on a cridit card or an ID card for security purposes without need for further encoding.

Finally, the VanderLugt correlator is better suited for spatial filtering to increase signal to

noise ratio (SNR). The critical positioning tolerance problem of the VanderLugt correlator

can be greatly relaxed by using in-situ recording materials such as thermoplastic plates as

were used in this experiment. In this case, once the system is aligned, new holographic filters

can be generated with no fear of misalignment.

In the global correlation experiment, fingerprint images are generated from the NIST

fingerprint database [3]. In the real time correlation experiment images are generated by a

live-scan fingerprint scanner (Identicator Technology, Gatekey Plus ver. 4.1) b An electri-

cally addressable liquid crystal spatial light modulator (Kopin, LVGA kit, 14 mm diagonal)^

is used as an input device. The SLM is mounted on a rotational stage to facihtate precise

rotational tolerance measurements.

^Certain commercial equipment may be identified in order to adequately specify or describe the subject matter

of this work. In no case does such identification imply recommendation or endorsement by the National Institute

of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for

the purpose.
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Figure 2: Histograms of peak correlations for gray (a) and binary (b) fingerprint images.

Holographic filters are recorded on a thermoplastic plate (Newport Corp. HC-300)^ that

allows a fast non-chemical processing, high diffraction efficiency and high responsibihty. Al-

though the recording process cannot be achieved in real-time (close to 1 minute), the time-

consuming comparison of an input with many other images in a large database can be done

very fast, once a hologram is made.

A 10 mW HeNe laser with a ND 2 filter was used as a hght source, and so only 0.1 mW
is used to see correlation output due to the high hght efficiency of the system.

The system is also equipped with the real-time in-situ monitoring of an input image, its

Fourier transform, and the correlation output. These monitoring parts, combined with a

frame grabber and other analytic tools, permit real-time quantitative analyses and accurate

characterization of every stage of the system operation.

The correlator system is capable of shift-invariant pattern recognition over a broad range

of input positions and has high SNR due to accurate ahgnment using an interferometer and

a microscope.

Figure 2 shows a histogram of peak correlations for gray (a) and binary inputs (b). For

each of 20 randomly chosen fingerprints, a holographic filter was fabricated and tested against

the 200 fingerprints in the NIST database. Therefore each plot involves 4,000 correlations.

Each peak correlation value was obtained by taking the mcLximum value in the correlation

plane. In case of gray inputs shown in (a), all 20 autocorrelations peak at the maximum
value (152). Cross-correlations distribute in a Gaussian shape with a peak at 0, FWHM of

around 15, and the maximum at 60.

For binary inputs shown in (b), all autocorrelations peak at the maximum value, as in

gray inputs. However, in this case, cross-correlations are significantly reduced to zero except

for the few cases which were found to be from the correct fingerprints obtained at different
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Figure 3: Correlation of two rollings of the same print. (Dark gray indicates correlated ridges,

white and light gray indicate uncorrelated ridges.)

times.

For both gray and binary inputs, autocorrelations are well separated from cross-correlations

to permit perfect 100% recognition for correct fingerprints (without considering distortions).

The exact mechanism for the significant increase in SNR for binary inputs is not com-

pletely understood. However, several previous works [17, 18] support the experimental re-

sults. Such a high SNR of binary inputs can be efficiently used to make a composite filter to

permit tolerance against distortion.

3 Combined Optical and Neural System

Direct global correlation of fingerprints for matching has a significant failure rate caused by

the elasticity of fingerprints. Two rollings of the same print can vary significantly, as seen by

computing their Fourier transforms, because of the stretching variations which occur when

rolhng a fingerprint. Figure 3 shows the correlation of two rollings of the same print that

have been rotation and translation aligned based on the ridge structure around the core. It

is clearly seen that the fingerprints correlate (indicated by the dark gray pixels) around the

core but away from the core the patterns have different amounts of elastic distortion.

Since the elastic distortion problem is local, a method of local correlation can be used to

lower the average distortion in small subregions of the fingerprint.
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Figure 4: Shows image partitioning and the corresponding feature number.

3.1 Optical Features

A solution to the elastic distortion that occurs in different rollings of the same fingerprint

is to partition the images into tiles and compare the data within each of the tiles using

transform based methods. For this work, the image was partitioned into 4 by 4 tiles twice.

One partition with the core located in the center of the image, as defined by the fingerprint

core, and the second time with the core shifted away from the center to be at the center of

one of the subimages. This double partitioning allowed for overlap of data (specifically data

on the edge of the tiles). Since the neural network is allowed to prune any data that is not

needed, excess overlap in the features can be removed during network training. Figures 4a-b

show the core location for each 4x4 partition.

After partitioning, the maximum correlation of each tile pair was computed and normal-

ized to use as neural network input features for each f(n) and s(m) image pair. When n = m
the images are a matched pair; otherwise the fingerprints are different.

The correlation is computed in the Fourier domain by taking the Fourier Transform of the

partitions and computing the inverse Fourier Transform of their product, using the complex

conjugate of the first (eq. 1).

f(n) o s{m) = x J^[s{m)]] (1)

Each f(n) and s(m) input vector has 32 features (n = 1,2, ... 900 and m = 1,2, ... 900):

Tnaxval[f{n)i o s(m)i]

maxval[f{n )2 o 3
(
171

) 2 ]

maxval[f(71)31 ° 'S(?^)3i]

maxval[f(n)32 0 5
(
771

)32 ]

The automated feature detection procedures were apphed to NIST Special Database 9

Vol 1, where disk2 was used as training data and diskl was used as testing data.
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For this partitioning technique to be effective, the images need to be rotationally and
translationally aligned about the cores of the two fingerprints being compared. This ahgn-

ment was accomphsh over a large set of data using an automated technique. There are three

steps in the automated ahgnment, filter/binarize image, detect core location, and determine

alignment.

Filtering, binarization, and core detection are done using methods previously developed

and discussed in detail in [6]. The only addition is that the binarized fingerprint is median
filtered using a 3 by 3 window to help smooth noise in the ridge data and improve correlation

performance.

The final step uses 128 by 128 segments that are centered about the core of the fingerprints

being aligned. The correlation (see eq. 1) of the segments is computed while rotating the

second segment over a range of angles. The angle which produces the largest correlation is

used for rotation ahgnment. Since two prints can have significant angular displacements the

ahgnment is actuahy done in two stages. Stage one uses an angular step size of 1 degree

over a range of +/- 15 degrees and stage two a step size of 0.2 degrees over a range of +/- 1

degree from the angle determined in the first stage.

Since the correlation computed by equation 1 is translation independent, translation

ahgnment is accomphshed by using the peak correlation location from the second stage of

the angular ahgnment. The amount that the peak correlation is off center of the 128x128

segment determines how much the second print needs to be shifted to achieve translational

ahgnment with the first.

This procedure results in 32 features for each pair of fingerprints that is compared. In

SD-9, each finger print has one print in the test set that matches and several thousand which

do not match. Only those prints which do not match but are of the same class are included

in the training set. The previously developed neural network classifier [6] is used for this

screening process.

3.2 Neural Network Matching

The matching networks discussed in this section were trained using a dynamically modified

scaled conjugate gradient method presented in [2]. In [2], we demonstrated that performance

equal to or better than Probabilistic Neural Network (PNN) [19] can be achieved with a single

three-layer Mult-Layer Perceptron (MLP) by making fundamental changes in the network

optimization strategy. These changes are: 1) Neuron activation functions are used which

reduce the probability of singular Jacobians; 2) Successive regularization is used to constrain

volume of the weight space being minimized; 3) Boltzmann pruning is used [20] to constrain

the dimension of the weight space; and 4) Prior class probabihties are used to normalize aU

error calculations so that statistically significant samples of rare but important classes can

be included without distortion of the error surface. AU four of these changes are made in the

inner loop of a conjugate gradient optimization iteration [21] and are intended to simpUfy

the training dynamics of the optimization.

In this work we found that the effect of sinusoidal activation, 1 above, was not useful

but that pruning, 3 above, and regularization, 2 above, were essential to good generalization.

Since the distribution of match and do not match classes was highly unequal, the effect of

prior weights, 4 above, was also very important.

The 32 local features discussed section in 3.1 were separated into testing and training

samples both by class and as a global (aU class) set. The training sets were used to cal-

7



culate global and by class covariance matrices and eigenvectors and to calculate 13 K-L

transform [22] features for all of the testing and training sets. When the eigenvectors of

the K-L transform were examined, the primary source of variation was found to be in 12

zones near the center of the two feature grids. The first eigenvector of each of the transforms

was approximately 40 times larger than the 13th eigenvector indicating that only about 13

statistically independent features were computed from the training sets. No large difference

in K-L transform characteristics were seem between global and class-by-class data sets.

The 13 component K-L transformed features were used to train neural networks for both

global and class by class matching. The networks were trained using regularization to bound

weight size and pruning to restrict the number of active weights in the network to a size.

Network size, pruning, and regularization were adjusted empirically to provide reasonable

generalization. The criterion used to test generalization accuracy was the comparison of the

test and training matching errors.

3.3 Hybrid Results

The optimal regularization factor for all runs was found to be 0.001 and the optimum pruning

temperature was found to be 0.005. The basic network size was 13-24-2 network with 386

weights including bias weights. A sigmoidal activation function was used for the hidden

nodes. With this network size and these training parameter a typical functioning network

has approximately 150 weights and has a accuracy of 62%-71%.

The results of this process are given in the table below.

Class train test wts. pruned Test set size

AU 70.2 65.2 285 258444

Arch 71.8 64.9 229 1681

Left Loop 72.1 62.6 240 73984

Right Loop 72.5 71.1 209 68121

Tented Arch 75.4 67.3 247 1089

Whorl 72.0 68.5 275 113569

Table 1; Results of testing and training for global and class-by-class neural network matching

using 13 K-L features.

These results can be significantly improved by using PCASYS or some other classification

method to test ordy prints of the same class for matching. Assuming the PCASYS accuracy

of 99% correct classification at 20% rejects and a natural distribution of classes would allow

the results given above to be improved to 84.3% matching accuracy. If a perfect classifier were

available, then the combined accuracy would be 90.3%. This model assumes that each print

is classified or rejected by PCASYS. The rejected prints are matched with the All network

given in the top hne of the table. All other prints are matched by the network selected by

its PCASYS class. AU prints misclassified by PCASYS are assumed to be mismatched.

The process of calculating the results shown in table 1 involved training runs in which

both the regularization and pruning were systematically varied to determine the correct

network size and the appropriate dynamics for training. As discussed in [20], network size
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in an indication of the amount of information that can be transferred between the training

sample and the network without learning random noise patterns. In table 1, all of the final

networks had a potential weight space size of 386 weights. Larger networks were found to

have poorer testing error than networks of this size. The pruning temperature was varied

to produce similar testing and training errors for each class and for the global class. As the

table shows this produced weight reductions of from 209 to 285 weights. The small network

size and large pruning ratio for acceptable generalization with training set of up to 100,000

samples shows that the noise in the features used in the training is at a level where larger

network sizes are not useful because aU of the information need for generalization is learned

by these small networks.

AU of the pruning experiments require that some smaU amount of regularization be used

to constrain the volume of weight space [2]. This aUows the discriminant surfaces to remain

in the part of the training space which is heavily populated by the data. AU of these run

were done in the 13 feature K-L space but numerous test pruning and regularization run

were made in the original 32 feature space. SimUar effective weight spaces were found in the

fuU 32 feature space, about 150 weights. The 13 feature data set was selected for additional

testing to save on computation time during training.

4 Conclusions

We have compared optical and combined optical-neural network methods for roUed inked fin-

gerprint image matching and optical correlation for matching of real-time fingerprint images.

For static inked images direct global optical correlation of inked images made at different

times has very low reUability although cross correlations and auto correlations of the original

inked images are good. This difficulty can be accounted for by the plastic deformation of the

fingerprint during roUing.

Combining zonal optical features with neural networks for classification and matching

can yield reUable matching with an accuracy of 84.3%. The information content analysis of

the features, both from the dimension of the K-L transform features and the generahzation

error analysis, show that the information transfer from the training data to the classification

network is as high as the noise level of the features wiU allow. Under the conditions, further

improvement in the matching accuracy can only be achieved if the feature set information

content is increased and the noise level is decreased.

Preliminary results on the real time data show that with proper hologram construction

the problem of plastic fingerprint distortion can be solved. Future studies in this area wiU

be required to specify the details of proper hologram construction. Testing the composite

hologram formation process wiU require analysis of 10-20 second sequences of digital video.
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