
MGGHAT USER'S GUIDE,
VERSION 1.1

NISTIR 5948

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory and

Mathematical and Computational Science Division

Gaithersburg, MD 20899-0001

January 1997

QC

100

.056

NO. 59^18

1997

NIST

MGGHAT USER'S GUIDE,
VERSION 1.1

NISTIR 5948

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technoiogy

Information Technology Laboratory and

Mathematical and Computational Science Division

Gaithersburg, MD 20899-0001

January 1997

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

MGGHAT User’s Guide Version 1.1

William F. Mitchell

Applied and Computational Mathematics Division

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA

Abstract

MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a FORTRAN

program for the solution of general second order hnear self-adjoint eUiptic partial

differential equations with Dirichlet, natural or mixed boundary conditions on 2D
polygonal domains (possibly with holes). MGGHAT uses a finite element method

with Unear, quadratic or cubic elements (user selectable) over triangles. The adap-

tive refinement via newest vertex bisection and the multigrid iteration are both

based on a hierarchical basis formulation. Run time and a posteriori graphical

displays are made with gnuplot. This document is a user’s guide for MGGH.A.T. It

explains how to obtain, instaU and use the software.

Contents

1 Introduction 3

2 Obtaining the Software 4

2.1 MGGHAT 4

2.1.1 netlib 4

2.1.2 mgnet 4

2.2 Other Software 4

2.2.1 LINPACK/BLAS 4

2.2.2 gnuplot 5

2.2.3 Tcl/Tk 5

3 Installation 6

3.1 System Dependent Routines 6

1

2 W. F. Mitchell

3.2 Makefile 7

3.3 Compiling 9

4 MAIN program 9

5 Problem Definition 9

5.1 Equation 9

5.2 Boundary Conditions 10

5.3 Domain and Initial Triangulation 11

6 User Parameters 12

6.1 Parameters in ‘commons’ 12

6.2 Termination Criteria 13

6.3 Output Control 14

6.4 Problem Definition 15

6.5 Method Definition 15

7 Other User Routines 15

7.1 true, truex and truey 15

7.2 solut 16

7.3 save/restor 16

8 Graphics 17

8.1 Run-time Graphics 17

8.1.1 Available Displays 17

8.1.2 User Parameters 21

8.1.3 Text Prompt 21

8.1.4 Widget-based Menu 22

8.2 Post-processing Graphics 22

9 Portability 23

MGGHAT User’s Guide Version 1.1 3

10 Upward Compatibility 24

11 Examples 25

11.1 Poisson Equation 25

11.2 System of Equations 25

11.3 Time Dependent Problem 25

1 Introduction

MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the so-

lution of second order linear elliptic partial differential equations (PDEs) of the form

dx
(P-) -(,_) + ™ = / mn

(
1)

with boundary conditions of the form

u = g on dQi

du dy du dx

where p > 0, g > 0, r, /, c and g are functions of x and y, Q is a. polygonal domain

in 9?^ (possibly with holes), dQi U 80,2 is the boundary of 0, and d/ds is differentiation

with respect to a counterclockwise parameterization of the boundary [x[s),y{s)). The

first form of the boundary condition is called Dirichlet, and the second form is called

mixed. When c = 0, the second form is called natural. When p — q = the natural

boundary condition reduces to the Neumann boundary condition du/dn = g where

d !dn is differentiation in the direction of the outward normal. For more information on

specifying Neumann boundary conditions, see section 5.2.

MGGHAT is callable as a FORTRAN subroutine, making it useful for user applications in

which a major operation is the solution of an elliptic PDE. This includes systems of PDEs,

time dependent PDEs and nonlinear PDEs where the user’s main program contains an

iteration loop in which the major operation is the solution of one or more elliptic PDEs.

MGGHAT solves the elliptic PDE by the finite element method. The elements are continu-

ous, but not differentiable, piecewise linear, quadratic or cubic (degree is user selectable)

functions over a triangulation of the 2D domain. Given an initial (coarse) triangulation,

an adaptive refinement procedure (based on the newest vertex bisection method) provides

the properly graded final nonuniform triangulation. The full multigrid (FMG) method

is used to solve the linear system of equations. Details of the methods used can be found

m [1|, [2|, [3],

4 W. F. Mitchell

Send any questions, gripes, or praises concerning MGGHAT to mitchell@cam.nist.gov or

na.wmitchell@na-net.ornl.gov.

2 Obtaining the Software

2.1 MGGHAT

MGGHAT can be obtained through netlib, mgnet, and anonymous ftp sites that mirror

these sources.

2.1.1 netlib

netlib is a repository of public domain mathematical software. Source code programs can

be obtained from netlib by email, anonymous ftp, or a WWW browser.

For email, send a message to the netlib server netlibQornl.gov. The software will be

sent by return email. To learn how to obtain MGGHAT from netlib, send the message

send index from pdes/mgghat. You do not need a subject line. To learn more about

netlib, send the message send index.

The anonymous ftp address is ftp.netlib.org . MGGHAT is located in pdes/mgghat

The URL for access through WWW is http://www.netlib.org/

2.1.2 mgnet

mgnet is the MultGrid Network. MGGHAT can be obtained through mgnet by anonymous

ftp to casper.cs.yale.edu in the directory mgnet /Codes/mgghat .

2.2 Other Software

2.2.1 LINPACK/BLAS

-MGGHAT uses a few routines from the UNPACK and BIAS packages. You may already

have these packages installed on your system; consult with your system administrator.

If they are available on your system, you should use the installed version since it is likely

to be optimized for your particular computer. If they are not already installed, you can

obtain the required routines from netlib (see section 2.1.1 for information on obtaining

software from netlib). MGGHAT uses the following routines from UNPACK and BLAS:

MGGHAT User’s Guide Version 1.1 5

LINPACK sgbco.f sgbsl.f ssifa.f ssisl.f

BLAS scopy.f rlmach.f isamax.f saxpy.f sdot.f sscal.f sswap.f

To obtain them by email, send netlib the message

send sgbco sgbsl ssifa ssisl from Unpack

send scopy from bias

rlmach is included with the MGGHAT distribution, since this version covers more com-

puter types than the version distributed by netlib. The other routines from BLAS are

used by the LINPACK routines, and will be automatically sent with the LINPACK request.

If you follow the email instructions, you will receive two return mailings, one for the

LINPACK request and one for the BLAS request. Each of these should be saved to a

file, for example Unpack, sh and bias . sh. Edit the files to remove the mail header, and

unpack them with the commands sh Unpack, sh (or whatever filename you used) and sh

blas.sh. At this point scopy.f will be in the current directory, and two subdirectories

(Unpack and bias) will be created with the other routines. Concatenate all the routines

into one file called Unpack. f. For example, use the command cat Unpack/* bias/*

scopy.f > Unpack. f.

2.2.2 gnuplot

Graphical support, both run-time and post-processing, for MGGHAT is provided through

gnuplot. gnuplot is a copyrighted but freely distributable no-cost program for 2D and 3D

plots of functions and data points. If you do not already have gnuplot installed, it can

be obtained by anonymous ftp. The official distribution site is ftp.dartmouth.edu .

Look in the directory pub/gnuplot. Official mirrors are monul.cc.monash.edu.au and

irisa . irisa . f r.

If you choose to use run-time graphics with MGGHAT, you must have gnuplot in your

executable path. If you do not use graphics at all, you do not need to have gnuplot

installed.

2.2.3 Tcl/Tk

Graphical displays in MGGHAT can be manipulated with a widget-based menu (but there

are alternate ways to select graphical displays; see section 8.1). The widget-based menu

is written in Tcl/Tk. Tcl is a “tool command language”. Tk is an extension to Tcl that

provides an interface to X Windows, wish is a simple windowing shell through which the

Tcl/Tk program is run.

6 W. F. Mitchell

If you choose to use the widget-based menu for manipulating the graphical displays of

MGGHAT, then you must have Tcl/Tk installed and wish in your executable path. If you

do not use the widget-based menu, you do not need to have Tcl/Tk installed.

On some Linux systems, wish is called wishx. In this case, you should create a symbolic

link from wish to wishx in a directory that is in your executable path.

If Tcl/Tk is not already installed on your system, the source codes for Tcl and Tk can be

obtained by anonymous ftp from ftp.smli.cora in the directory pub/tcl. You should

get Tcl version 7.3 and Tk version 3.6.

3 Installation

For a large number of computer systems, installation of MGGHAT should be fairly painless.

You will only need to:

1. copy the makefile for your system (for example makefile . sunos) to makefile

2. edit makefile to indicate where the LINPACK and BLAS routines can be found, as

described in section 3.2

3. type make to compile a single precision version. On some systems, you can type

make double to compile an “auto-double” precision version.

On systems for which a makefile is not provided, you will need to modify one of the

existing makefiles for your system. This section describes the main system dependencies

and parts of the makefile you may need to modify. If you are porting MGGHAT to a new

system or have problems with installation, you should also read section 9 on portability.

3.1 System Dependent Routines

MGGHAT was written to be as portable as possible, however there are three routines that

are necessarily system dependent: second, system, and rlmach.

real function second is used for measuring elapsed CPU time. Since FORTRAN does

not have a standard function for measuring elapsed time, this routine is system depen-

dent. The function should return a value such that the difference between two evaluations

will provide the intervening user CPU time in seconds. Typically, second returns the

amount of CPU time since the beginning of the program execution. Three versions are

provided with MGGHAT, one of which might work on your system, second. f uses the

function etime, which is available on many UNIX systems, second. c interfaces with the

C sys include files and function times, and should work if you can interface to C properly.

MGGHAT User’s Guide Version 1.1 7

Note, however, that I have encountered systems on which the macro HZ (Hertz) is not

defined. Finally, second. aix.f is a version that works on the AIX system to which I have

access.

subroutine system is used to invoke an operating system command. There are two

possible problems with this routine. First, the routine itself is not a FORTRAN intrinsic,

although it exists on many UNIX versions of FORTRAN. You may need to find an equivalent

subroutine on your system, and write a version of system that calls that routine. For

example, Cray uses subroutine ishell for this purpose, so I have provided the file

system. Cray .f with a version of system that calls ishell. Also, makefile . cray is

modified to reflect the need to link in this version of system.

The second problem is that the operating system commands may differ between systems.

MGGHAT assumes the operating system is some variant of UNIX. There are 5 instances of

call system. They will be invoked only if the widget based menu for graphics is active.

(In other words, if you do not use the widget based menu, you can provide a dummy
routine for system.) Four of them issue a rm (remove) command; the fifth starts up the

Tcl/Tk program wish. If your system is not UNIX, you may need to modify the source

code to correct these system calls. You can find them by searching for the string call

system in the file mgghat .f.

real function rlmach is used for defining constants relevant to the machine dependent

arithmetic. Although rlmach is actually a BIAS routine, and hence can be obtained

from netlib, I have included a copy of rlmach with MGGHAT. This copy contains the

constants for a larger set of machines than the standard versions, including the “auto-

double” version for some machines. As with the other BIAS routines, if you have the

routine in your system library, you should use that version (see section 3.2). Otherwise,

edit rlmach. f to select the constants for your machine, and rlmachS.f to select the

constants for the auto-double version. As provided, these routines are configured for

machines with IEEE arithmetic. It is not certain that rlmachS.f is correct for all such

machines, but for the purposes of MGGHAT the constants are probably close enough.

3.2 Makefile

Several versions of the makefile are provided. The systems they were tested on are:

makefile. aix: xlf 2.3 under AIX 3.2.5 on RS6000

makefile.convex: fc 7.0 under ConvexOS 10.2 on Convex C3820

makefile. Cray: cf77 6.0 under UNICOS 7.0.5. 1 on Cray Y-MP4E/232

makefile.hpux: f77 09.16 under HP-UX 10.0 on HP 9000 Series 700

makefile. irix: f77 3.5 under IRIX 4.0.5C on SGI R4000-50 VGX

8 W. F. Mitchell

makefile. linux: f2c “tenth edition” and gcc 2.4.5 under SLS 1.03 kernel 0.99pl2 on

486DX50

makefile. sunos: f77 1.4 Patch 8 under SunOS 4.1.3 on Sun Sparc 10

For all installations, you need to provide the location of the LINPACK and BLAS routines.

This is done through the LINPACK and DLINPACK variables set near the top of the makefile.

If your system has LINPACK and BLAS installed, you should provide the name of the

library containing them, in the format used for linking in a library on your system. On
most L’NIX systems, if LINPACK is in the library liblinpack.a and BLAS is in the library

libblas.a (ask your system administrator for the actual names of the libraries), you

would set

LINPACK = -Ilinpack -Iblas

in the makefile.

If your system does not have LINPACK and BLAS installed, then get the source code as

described in section 2.2.1, and set

LINPACK = rlmach.o Unpack.

o

to link in your own compiled version. Note that rlmach (see section 3.1) is a BLAS

routine.

It is also possible to mix the library and source code modes. For example, if you have

BL.AS in the library libblas . a but do not have LINPACK in a library, you can use

LINPACK = Unpack. 0 -Iblas

to use the library BLAS and source code LINPACK. In this case you should not include

the BLAS source code in Unpack. f.

The variable DLINPACK is used the same way as LINPACK, except it provides the LINPACK

and BLAS for the auto-double version of MGGHAT, on compilers that have an auto-double

flag. NOTE: This is not the double precision version of LINPACK and BLAS. It is the

single precision version compiled with the auto-double flag. If you use the LINPACK and

BLAS source code for the auto-double version of MGGHAT, refer to the object files as

rlmachS.o and Unpacks. o.

You might have the LINPACK library installed on your system, but not have an auto-

double version of it installed. You can mix the forms used in the makefile, i.e.,

LINPACK = -Ilinpack -Iblas

DLINPACK = rlmachS.o linpackS.o

The other variables in the makefile that you may need to modify are:

FFLAGS: flags for the FORTRAN compiler

CFLAGS: flags for the C compiler

MGGHAT User’s Guide Version 1.1 9

F77: the FORTRAN compiler

CC: the C compiler

DOUBLE: the flag to invoke auto-double on the FORTRAN compiler

3.3 Compiling

To compile the single precision version of the MGGHAT, simply type make or make mgghat.

On systems that support automatic promotion to double precision, type make double

to create a double precision version. Any of these commands will create an executable

called mgghat; to run the program, type mgghat. To remove files created by running

make and mgghat, type make clean.

4 MAIN program

.MGGHAT is callable as a FORTRAN subroutine, so the user must provide a FORTRAN main

program that calls mgghat. (Actually, mgghat can be called from a subroutine, but for

simplicity, in this section the calling entity will be referred to as the user’s main program.)

The main program should be in the file user.f. It can be very simple (as short as two

lines: call mgghat and end) or a complex program that advances through time, loops

through systems, and/or iterates on nonlinear equations and changes user parameters

between calls. The only important point is that any program or routine that changes

the value of any of the user parameters must contain the statement include ' commons G

All the parameters are passed through common blocks in the file commons, so there is no

parameter list attached to the call mgghat statement.

5 Problem Definition

The elliptic problem to be solved is defined by the user through three subroutines: pde,

bcond, and inittr. These subroutines should be in a file called user.f. See the files

user.f . * for examples of these routines, and section 11 for a description of the examples.

5.1 Equation

The elliptic partial differential equation, i.e. Eq. 1, is defined in subroutine pde (x ,y , p ,q

The point {x,y) is passed in through the real variables x and y. The user defines the

functions p{x,y), q[x,y), r(x,y), and f(^x,y) from Eq. 1 and returns them through the

,r,f).

10 W. F. Mitchell

real variables p, q, r and f. Notice that the form of the differential operator in Eq. 1

has a minus sign in front of the second order terms. You should be very careful to get

the signs correct in the expressions for p, q, r and f.

5.2 Boundary Conditions

The boundary conditions, i.e. Eqs. 2, are defined in subroutine bcond(x ,y ,
ipiece

,
c ,g

,

itype)

.

The point (x,y) is passed in through the real variables x and y, and the boundary seg-

ment number (see section 5.3) is passed in through the integer variable ipiece. The user

defines the functions c{x,y) and g{x,y) from Eq. 2 and returns them through the real

variables c and g, and sets the integer variable itype to be 1, 2 or 3 to indicate whether

the boundary condition is Dirichlet, natural (Neumann), or mixed (Robin), respectively.

With c[x,y) = 0, the second form of the boundary condition is the ‘natural’ boundary

condition for the differential operator in Eq. 1. Often, the desired boundary condition

is the Neumann condition dujdn — g. In many cases it is possible to represent the

Neumann condition in the form of the natural condition.

If the outward normal to the boundary of the domain makes an angle a with the x-axis,

then cos
(
q!)

= dyjds and sin(Q:) = —dxlds. The operator for Neumann boundary

conditions is

d dy d dx d

dn ds dx ds dy

Contrast this to the operator for the natural boundary conditions

dy d dx d

^ ds dx ^ ds dy

1. If p(x,y) = q[x,y) — 1 (Laplace, Poisson or Helmholtz equation), then the natural

boundary condition is Neumann.

2. If p[x,y) = q[x^y) but they are not identically 1, multiply the boundary condition

by p to get the correct form. For example, with the mixed condition

du— ^ cu
dn

g

the correct form for the mixed natural boundary condition is

du ^

+ pcu = pg
dn

So the coefficient of u is pc and the right hand side is pg and in subroutine bcond

you set c = pc and g = pg.

MGGHAT User’s Guide Version 1.1 11

3. If p ^ g and the sides of the domain are parallel to the x and y axes, then from the

definition of d/ds in terms of a, the mixed boundary condition can be expressed

as

—pg on the left sides c

qc = —qg on the bottoms =>

-\- pc — pg on the right sides

c

c

g— + gc = gg on the tops ^ c
dy

= - pc and g = -pg

- gc and g == - qg

= pc and g = pg

qc and g = qg

4. If p 7^ g and the sides are not parallel to the axes, it is not, in general, possible to

express Neumann conditions. However, in some special cases it might be possible.

5.3 Domain and Initial Triangulation

The domain is defined by the initial triangulation, and hence can be any polygonal

shape. The initial triangulation is defined in subroutine inittr which you should place

in file user . f

.

Each side of the polygon is assigned a boundary segment number. This positive integer

is sent to the subroutine bcond to help identify which form of the boundary condition

should be used.

If your domain is rectangular, then you can use the sample inittr provided in the files

user.f The sample routine triangulates the rectangular domain [ax,bx) x [ay, by)

with a uniform grid consisting of ngridx x ngridy rectangles cut into triangles along

one of the diagonals. You need only edit subroutine inittr to define ax, bx, ay, by,

ngridx and ngridy near the beginning, ngridx and ngridy must be even.

For nonrectangular domains, definition is a little more difficult. The file inittr. L con-

tains an example for an L shaped domain. The domain is defined by the initial trian-

gulation. The domain is restricted to be polygonal and all corners of the polygon must

be vertices of the initial triangulation. The initial triangulation is specified by providing

the coordinates of the vertices and the three vertices of each triangle. This is given by

six variables:

integer nvert number of vertices

integer ntri number of triangles

real xvert(i) x coordinate of the vertex

12 W. F. Mitchell

real yvert(i) y coordinate of the vertex

integer vertex(i,j) vertex of the triangle. Vertex 3 is called the peak.

integer neigh (i,j) negative of boundary segment number for the side opposite the

vertex of triangle j. Does not need to be set for non-boundary sides.

The following restrictions are imposed on the initial triangulation:

1. Each vertex is always in the same position of every triangle in which it occurs. For

example, if vertex z is the first vertex of triangle j (vert ex (1
,
j)=i) then it cannot

be the second vertex of triangle k (vertex(2 ,k)=i), it would have to be the first

vertex (vertex(l ,k)=i).

2. A vertex which is not a peak (first and second vertices) can be in at most 8 triangles.

3. A vertex which is a peak (third vertices) can be in at most 4 triangles.

6 User Parameters

There are several parameters the user can set to effect the operation of the program.

Except for those in ‘commons’ (section 6.1), these are set by assignment statements in

the user’s program that calls mgghat and passed through common blocks. Note the user

must have the statement include ‘commons' in the program where these parameters

are set. All the parameters have default values that are set in block data.

6.1 Parameters in ‘commons’

The parameters in the file commons are parameters in the sense of the FORTRAN parameter

statement. Most of them are used for setting array dimensions. These all appear near

the top of commons, and are changed by editing the file commons. The total number of

words of memory used is approximately

(16r^ — 48r^ + 66r^ — 47r + 47)z;

where r is ndord and v is ndvert.

integer ndvert is the maximum number of vertices in the grid. This is the most

important parameter concerning the amount of memory required. Default: 1000

integer ndlev is the maximum number of levels for the adaptive refinement procedure.

Default: 40

MGGHAT User’s Guide Version 1.1 13

integer ndord is the maximum polynomial order allowed. In the current version of .VIG-

GHAT there is no reason to have this larger than 4. If you know you will only be us-

ing, for example, the second order method (linear elements, specified by iorder=2),

then setting ndord=2 will substantially reduce the memory requirements. Default:

4

integer ndsave is the maximum number of refinement steps that will be saved for

gnuplot convergence files. It has very little effect on memory usage, and the current

setting of 100 should be sufficient. Default: 100

integer ndrowO and ndband are memory allocations for the band matrix storage form

of the matrix from the initial grid. ndrowO should be as large as the number of nodes

in the initial grid, which is bounded by (r — l)^Uo where r is the polynomial order

(specified by iorder) and Vq is the number of vertices in the initial grid, ndband is

difficult to estimate for an arbitrary initial triangulation. It depends on the way the

vertices are ordered and the polynomial order. For the sample rectangular domain

in the example user.f files, it is bounded by (iorder — l)^(ngridy + 2), where

ngridy is defined in the sample subroutine inittr. If the values you supply are

not large enough, you will get an error message at run time informing you how

large they should be. Default: ndrowO=100, ndband=48

character tmpdir is the only parameter not used for dimensioning. This is the name of

a directory in which to write temporary files with messages passed between mgghat

and the widget-based menu for graphics. It is recommended that this directory be

on a local disk, not on a remote disk served by the network file server, to avoid

overloading the network. If you change it, make sure you also change the declaration

character's to have enough characters for the directory name. Default: /tinp/

6.2 Termination Criteria

integer mxvert Stop before there are this many vertices. Default: ndvert

integer mxtri Stop before there are this many triangles. Default: ndtri (=2*ndvert)

integer mxlev Stop when there are this many levels. Default: ndlev

integer mxnode Stop before there are this many nodes. Default: ndnode

(=ndvert*(ndord-l)**2)

real mxtime Stop before this many seconds of CPU time. Default: 43200. (12 hours)

real tol Stop when the error estimate (an estimate of the energy norm of the error,

relative to the norm of the solution) is below this tolerance. Default: 0.

14 W. F. Mitchell

6.3 Output Control

integer ioutpt I/O unit for printed output. Default; 6

integer gpfile I/O unit for gnuplot files. Default: 4

integer outlev Output level, i.e., the amount of printed output. The usable values

are:

0 No output, except error messages

1 Header plus summary at end of execution

2 Information after each phase of execution

3 low level of debug information

4 medium level of debug information

5 high level of debug information

Values of 3, 4 and 5 are probably not useful to normal users. Default: 2

integer gptri Controls whether or not a data file is written with the triangulation

information for post processing with gnuplot. If 0, do not write the file; if nonzero

write the file.

Default; 0

integer gpsol Controls whether or not a data file is written with the solution on a

rectangular grid for post processing with gnuplot. If 0, do not write the file; if

fV > 0, write a file with the solution on an iV x TV grid. Default: 0

integer gpconv Controls whether or not a data file is written with convergence infor-

mation for post processing with gnuplot. If 0, do not write the file; if nonzero write

the file.

Default; 0

logical gquiet Make the graphics be quiet. If true, you will not be prompted for the

selection of graphics during initialization. Default: false

logical menuon If true, use the widget-based menu for graphics selection. If gquiet

is false, you also have the opportunity to activate the widget-based menu during

initialization.

Default; false

logical pltsel(lOO) This is the plot selections. It determines which graphics choices

will be displayed. If pltsel(i) is true where i is one of the values listed in section

8.1.1, the corresponding plot will be among those displayed. Default: all false

MGGHAT User’s Guide Version 1.1 15

6.4 Problem Definition

logical nuniq If true, the user is indicating that the solution of the problem is nonunique,

which occurs, for example, when r(^x,y) = 0 and the boundary conditions are Neu-

mann everywhere. In this case, the parameters nuniqx, nuniqy, and nuniqv
must also be set. Default: false

real nuniqx and nuniqy The x and y coordinates of a point at which the solution is

provided to tie down a nonunique solution. The point must be a vertex in the

initial triangulation. Default: 0. for both

real nuniqv The value of the solution at the point (nuniqx
,
nuniqy) . Default: 0.

6.5 Method Definition

Except possibly for unifrm, the parameters in this section are probably not useful to

most users.

logical unifrm If true, use a uniform refinement of the grid instead of the adaptive

refinement. Default: false

real mgfreq Determines how often to switch from the refinement phase to the solution

phase. Refinement continues until the number of vertices has been increased by a

factor of mgfreq. Must be greater than 1. Default: 2.

integer nul and nu2 The number of (half) red-black Gauss-Seidel iterations to perform

before (nul) and after (nu2) coarse grid correction. Default: nul= l and nu2=2

integer ncyc The number of multigrid cycles in each solution phase. Default: 1

7 Other User Routines

This section describes three more routines that the user must provide (true, truex and

truey) and four routines that are useful to the user (solut
,
ssolut

,
save and restor).

7.1 true, truex and truey

If the true solution to Eq. 1 is known, you can supply it in function true(x,y) and the

X and y derivatives in function truex(x,y) and function truey (x,y), respectively.

These function subroutines should be in the file user.f. With these functions defined,

you can measure the error between the true and computed solutions. If you do not know

16 W. F. Mitchell

the true solution, you should use true = 0.0, in which case the printed and graphical

values of the “error” are the norm of the computed solution.

7.2 solut

function solut (x,y,iderv,t) is provided to evaluate the computed solution or its

derivatives at any point in the domain. The parameters are:

real x,y (input) The point at which to evaluate the solution,

integer iderv (input) Which derivative of the solution to evaluate:

1 - d^Uldx^

2 - d'^U!dxdy

3- d^Uldy^

4- dUldx

5 - dUldy

6 - U

integer t (input and output) On input, t should be a guess of which triangle the point

{x,y) is in. If you do not know, then set it equal to 1 for the first call, and use the

returned value for subsequent calls. On output, t is the triangle the point is in.

A second version of solut is provided for evaluating solutions that have been saved using

the save/restore procedures (see section 7.3). The saved-solution evaluation is performed

by function ssolut (x
, y, iderv ,t

,
rwrk

,
iwrk) where x

, y, iderv and t are as above,

and rwrk and iwrk contain the saved state, as in section 7.3.

7.3 save/restor

The subroutines save and rest or can be used to save the state of common blocks imme-

diately after a return from subroutine mgghat, and restore a saved state, respectively.

In Version 1.1, save is useful for programs where more than one elliptic PDE is solved,

and the solution of one is used in defining the other (see the ‘system of equations’ and

‘time dependent’ examples in section 11). The solution contained in the saved state can

be evaluated with the function ssolut (see section 7.2).

In Version 1.1 of MGGHAT, restor is not very useful since MGGHAT reinitializes the

data structures on every call. It is intended to be used in a later version that will have

additional capability.

MGGHAT User’s Guide Version 1.1 17

subroutine save(rwrk,iwrk,lwrk) copies all data structures in the common blocks

into the three arrays real rwrk, integer iwrk, and logical Iwrk. These arrays should

be dimensioned with the parameters ndrwrk, ndiwrk, and ndlwrk, respectively. These
parameters are in ' commons U

8 Graphics

Graphical displays are provided through gnuplot, so it should be possible to use them on
any system that has gnuplot installed. If you do not currently have gnuplot, see section

2.2.2 for instructions on how to obtain it. MGGHAT interfaces with gnuplot through a set

of C routines written by Przemek Klosowski of NIST that allow FORTR.A.N programs to

send commands to gnuplot. (See the file gnuplt .c.)

8.1 Run-time Graphics

There are 29 displays supported as graphics during the execution of MGGHAT. Each

display is contained in its own gnuplot window. The selection of which displays to produce

is made either through the setting of user parameters, terminal input during initialization,

or a widget based menu. See section 6.3 for more detail on user parameters that effect

graphical displays.

8.1.1 Available Displays

The available displays are of three types: functions, triangulations, and convergence plots.

Functions can be plotted as a surface plot (shows the function on a uniform rectangular

grid, with hidden lines, see Fig. 1), a contour plot, facets (shows the function surface

constructed of triangles from the adaptive grid, see Fig. 2), surface plot with the

triangulation in the plane below it (see Fig. 3), and facets with the triangulation in

the plane below it. The functions that can be plotted are the computed solution, the

true solution, the computed and true solutions on the same graph, and the error. The

last four can only be plotted if the true solution is provided by the user (see section

7.1). The triangulation can be displayed by itself (see Fig. 4). Convergence plots are

log-log graphs of the number of nodes or cpu time vs. the estimate of the energy norm

of the error (relative to the norm of the solution), the true energy norm of the error, the

maximum norm (Too norm) of the error, or the error estimate and energy norm together

(see Fig. 5). If the true solution is not provided, only the error estimate makes sense.

The actual graphical displays, with their identification number, are:

1 — Computed Solution; Surface

18 W. F. Mitchell

Figure 1: Surface plot.

Computed Solution: Facets

Figure 2: Facet plot.

MGGHAT User’s Guide Version 1.1 19

Gnuiiiot

Computed Solution; Surface 8. Triangulation

Figure 3: Surface plot with triangulation.

Figure 4: Triangulation.

20 W. F. Mitchell

Jll Gnuptot

Relative Energy Error Convergence Graph

.J

Figure 5: Convergence plot.

2 - Computed Solution; Contour

3 — Computed Solution; Facets

4 — Computed Solution; Surface and Triangulation

6 - Computed Solution; Facets and Triangulation

11 — True Solution; Surface

12 — True Solution; Contour

13 — True Solution; Facets

14 — True Solution; Surface and Triangulation

16 — True Solution; Facets and Triangulation

21 — Computed & True Solutions; Surface

22 — Computed & True Solutions; Contour

23 — Computed & True Solutions; Facets

24 — Computed & True Solutions; Surface and Triangulation

MGGHAT User’s Guide Version 1.1 21

26 — Computed & True Solutions; Facets and Triangulation

31 — Error; Surface

32 - Error; Contour

33 — Error; Facets

34 — Error; Surface and Triangulation

35 — Error; Facets and Triangulation

41 — Triangulation

51 — Convergence; Nodes vs. Energy Error

52 - Convergence; Nodes vs. Maximum Error

53 — Convergence; Nodes vs. Error Estimate

54 - Convergence; Nodes vs. Energy Error and Error Estimate

61 — Convergence; Time vs. Energy Error

62 — Convergence; Time vs. Maximum Error

63 — Convergence; Time vs. Error Estimate

64 — Convergence; Time vs. Energy Error and Error Estimate

8.1.2 User Parameters

The selection of displays can be made directly through the user parameter pltsel. This

is a logical array for which if the entry is .true, then display number i of section

8.1.1 will be displayed.

8.1.3 Text Prompt

By default, you will be prompted with yes/no questions to determine if you want any

graphics, and if you want to use the widget-based menu. (This prompt can be disabled

by setting gquiet (‘graphics quiet’) to .true.) If you choose to have graphics but not

use the widget, then a command line menu, equal to the one in section 8.1.1, will be

displayed. You can enter any number of displays as a list of integers on one input line.

The integers can be separated by any non-digit characters.

22 W. F. Mitchell

^MGGHAT Graphics

Add/Deiete Modify Quit!

Computed Solution =

True Solution=>

Computed & True =>

Error =>

Thangulation =>

Convergence =>

F Surface

V Contour

F Facets

Surface & Thangulation

F Facets & Thangulation

Figure 6; Add/delete widget.

8.1.4 Widget-based Menu

If you have Tcl/Tk installed, you can activate a widget-based menu for control of the

graphical displays. This is the only approach that allows you to change the selection

of the displays (add more or remove some) while the program is executing. Fig. 6

illustrates the add/delete widgets. The menu also allows you to rotate the view of 3D
plots and change the density of isolines in the surface plots

(
Fig. 7). If gquiet is

.false, (default), you can activate the widget by responding yes to both text prompts.

If you have set gquiet to be .true., you can activate the menu by setting menuon to

.true, and starting the menu manually with the command wish < grmenu &.

8.2 Post-processing Graphics

gnuTplot can also be used for graphical displays long after execution has terminated. The

user parameters gptri, gpsol, and gpconv can be used to request that data files be

produced with information about the triangulation (gptri.dat), solution (gpsol.dat),

and convergence history (gpconv.dat), respectively. These files are suitable for input to

gnuplot. The directory mgghat /graphics contains examples of how to input these files

into gnuplot to produce post-processing graphics. The files of the form whatever.gps

are gnuplot scripts, or command files. They can be invoked by entering the command
load 'whatever.gps^ at the gnuplot prompt. The following scripts are provided:

contour.gps Contour plot of the solution,

facets.gps The solution as facets.

MGGHAT User’s Guide Version 1.1 23

Sotatian

'
Zi M6CKAT Cra^biesS

Add/Delsta MocSfy Qiat ^
" T Kotata Visw

Hines

c'!!si-ira.«ai'!

.
•. 5-

CofT9HJted Solution: Surface & Triangulatiofi

4 ?'38

ypt'iliSh, '' f<

C0^xi';'A^ }fi 4'«'iXyf >{

iii'iif ii'iCH'^--

Error; Facets

Bm",
iBrsy:

IseMiios

Enter desired

manber of

isoSnes and click

on “OK’

Done

SO 120 150 180 210 240 270 300 330 360

Figure 7: 3D plot view control.

solution.gps Surface plot of the solution,

triangle.gps The triangulation.

soLand_tri.gps The solution and triangulation on one plot.

converge.gps Gonvergence graph of nodes vs. energy error and error estimate.

These scripts are intended to be illustrative examples of how to use gnuplot for post-

processing, and are not all inclusive. They are not necessarily compatible with each

other, i.e., you might have to exit gnuplot and restart it before loading a second script.

The sample data in this directory is what you should get by running the Poisson example

with iorder = 2, gptri = 1, gpconv = 1, and gpsol = 20.

9 Portability

MGGHAT is written in (almost) standard conforming FORTRAN 77. The programs flint

and ftnchek were both used to check for compliance with the ANSI FORTRAN 77 standard,

and for potential portability problems. There is only one feature of the program that

is flagged as not standard conforming - the use of the include statement. However,

this extension is supported by all compilers that MGGHAT has been tested under. All

of the include statements are of the form include ‘commons'. If your compiler does

not support the include statement, you will need to replace all the include statements

with the text of the file commons.

24 W. F. Mitchell

There are a few other features that may cause portability problems:

1. double backslash. In one place a character*! variable is assigned the string

consisting of two backslashes. The second backslash is required because many
systems interpret the backslash to mean the next character is special, and two

backslashes designate the backslash character. It is not expected that this will

cause a problem on systems without this interpretation, because the string of two

characters should be truncated to one character when assigned to the character*!

variable, and however the truncation is done it should give a single backslash.

2. interface to C. Interfacing between FORTRAN and C is system dependent. There

are 3 subroutines in gnuplt.c that are written in C and called from FORTRAN.

Also, there is one in second. c, which you may or may not use (see the discussion

about function second in section 3.!). There are three versions of gnuplt . c; the

second one, gnuplt . no_. c, differs from the first by not appending an underscore

character to the function names. The third version is for Grays. You should use the

one that matches the rules of your system. If you are unable to interface between

FORTRAN and C on your system, note that these routines are called only if run-time

graphics are invoked. If you do not use run-time graphics, you can replace them

with a FORTRAN file with ‘dummy’ subroutines gpopen, gnuplt, and gpclos.

3. system dependent subprograms, subroutine system, function second, and

function rlmach are not intrinsic functions, and are system dependent. See sec-

tion 3.! for configuration of these three routines.

4. makefile. The makefile is, of course, system dependent. See section 3.2.

10 upward Compatibility

If you are using MGGHAT Version !.0, it should be simple to move to Version !.!.

!. Concatenate the three files main.f, prob.f, and inittr.f into a single file called

user . f

.

2. If you have your own version of second. f, use it.

3. If you assign graphics selections in the main program, change the assignment to

match the new graphics manipulation (see section 8.!).

4. The assignment of parameter values in the main program is no longer necessary (if

default values are used), and they can be removed. On the other hand, it doesn’t

hurt to leave them there.

MGGHAT User’s Guide Version 1.1 25

11 Examples

MGGHAT comes with three example user files: a Poisson solver, a system of equations,

and a time dependent problem. The first is a simple example, and the latter two are more
complicated. To run a particular example, copy the file user . f . whichever to user.f
before compiling.11.1

Poisson Equation

The file user . f
.
poisson contains the user-supplied subprograms for the solution of

Poisson’s equation on a rectangle. All the default parameters are used. It illustrates the

use of different types of boundary conditions on different sides. It is also a good example

to become acquainted with controlling the graphical displays.

11.2

System of Equations

The file user . f . system contains an example of solving a system of equations. The

system of two elliptic equations is solved by iteratively solving each equation, using the

most recently computed solution of the other equation in the coefficients and right hand

side. This illustrates the use of subroutines save and ssolut to save the state and

evaluate the saved solution.

11.3

Time Dependent Problem

The file user . f . t imedep contains an example of solving a (parabolic) time dependent

problem. The Crank Nicolson method is used for discretizing the first order time deriva-

tive. Each iteration advances the solution one time step. This also illustrates the use of

subroutines save and ssolut to save the state and evaluate the saved solution. Addi-

tionally, it shows how to call gnuplot directly to create graphics.

References

[1] W. F. Mitchell. Unified multilevel adaptive finite element methods for elliptic prob-

lems. Ph.D. thesis, Technical report UIUCDCS-R-88-1436, Department of Computer

Science, University of Illinois, Urbana, IL, 1988. Available by anonymous ftp from

casper.cs.yale.edu in mgnet/papers/Mitchell/thesis.ps

[2] W. F. Mitchell. Adaptive refinement for arbitrary finite element spaces with hierar-

chical bases. J. Comp. Appl. Math., Vol. 36, pp. 65-78, 1991.

26 W. F. Mitchell

[3] W. F. Mitchell. Optimal multilevel iterative methods for adaptive grids. SIAM J.

Sci. Statist. Comput., Vol. 13, pp. 146-167, 1992.

