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DISTRIBUTIVE LATTICES AND HYPERGRAPH COLORING

Jim Lawrence

George Mason University, Fairfax, VA 22030

and

National Institute of Standards and Technology, Gaithersburg, MD 20899

The “composition ideal” is a basic notion connected with free lattices. In this

paper the composition ideals of distributive lattices are characterized^ and the use-

fulness of this characterization with respect to computation of chromatic number

of hypergraphs is noted.

1 . Introduction.

A lattice is a triple (L,A,V), where T is a set, A and V are binary operations which are

each idempotent, commutative, associative, and jointly satisfy the absorption properties:

For a,b G T,aA(aV6) = a = aV(aA6).

The operation A is called meet, and V is called join. We will usually denote the lattice

(L, A, V) by L.

If T is a lattice then the set L is partially ordered by the relation:

For a,h £ L,a < b ii a = a A h.

With this relation, each pair of elements have a greatest lower bound, their meet, and a

least upper bound, their join.

Alternatively, a lattice can be defined as a partially ordered set in which each pair

of elements have a greatest lower bound and a least upper bound. For a proof of the

equivalence of these notions and further fundamental ideas of lattice theory consult the

book by Birkhoff [4].

We denote by FL{n) the free lattice generated by n generators, denoted g\,. ..,gn-

Given any lattice L, each element p of FL{n) determines a (lattice polynomial) function

mapping T” to L: The point (ai , . .
.
,an) G T” is mapped to the image of p under the

unique homomorphism of FL{n) to L which takes gi to ai for i G [n]. We will sometimes

denote this image by p(ai , . .
.

,

Un).
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A composition ideal in FL{n) is a set J C FL{n) which

(1) is an upper serai-ideal, so that if a: G J and y > x then y £ J

,

and

(2) has the property that if p and gi, . .

.

are in J, then p(gi, . .
. ,gn) £ J-

We may use the same definition to define the notion of a composition ideal in a free

lattice satisfying some set of lattice identities. In particular, a set J C FD{n) (where

FD{n) denotes the free distributive lattice generated by gi, . .
. ,gn) is a composition ideal

if it is an upper semi-ideal and its elements, when viewed as functions as above, map J ^

to J.

In this paper we determine the composition ideals oi FD{n). It turns out that they are

closely related to the notion of chromatic number of a hypergraph and we briefiy examine

this connection. Indeed the connection between hypergraphs and the free distributive

lattices has been noted already by Benzaken in [1] and [2].

2. Terminology.

Obviously FD{n) itself is a composition ideal. Also, the intersection of any collection of

composition ideals is a composition ideal. It follows that for any set S C FD{n) there is a

smallest composition ideal which contains 5. We denote this composition ideal by E{S).

The smallest composition ideal is

£:(0) = £ FD{n) : there is i £ [n] such that p > Qi}.

If L is any distributive lattice and I is an upper semi-idecd in L, then we denote

by J{L,I) the subset of FD{n) consisting of elements p £ FD{n) such that, whenever

xi,. .
. ,Xn £ I, p{xi , . .

.

,

Xn) £ F Clearly J{L. I) is a composition ideal.

For any positive integer k < n, let be the element of FD{n) given by

hk= A (5i Vg2 V---V5fc+i),

where the hat over gi denotes that this term is omitted. By the distributive property, it is

easily determined that

hk= V (gz^gj)-

l<i<j<k+l

The Boolean lattice of all subsets of [fc] under intersection and union is B k = {Bk, H, U).

2
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3. Characterization of the Composition Ideals in FD{n).

For = 1 , . .
.

,

n — 1
,
let Jk = E{{hk}). Let Jn = E{^).

Lemma 1 . We have the inclusions

Jn ^ Jn— 1 C ••• C J-^.

Proof. The composition ideal Jn = £'(0) is contained in all other composition ideals. That

Jk+i Q Jk for h G [^ — 2
]
follows from the inequality hk+i ^ hk- CH

Next we present four more lemmas which will be utihzed later. Lemmas 2 and 3 will

be used in the proof of Theorem 2. Lemmas 4 and 5 wiU be used in the proof of Theorem

1 .

Lemma 2. We have the inclusion

jkCj{Bk,Bk\m).

Proof. This is clear if h = n. For k < n, we need only verify that hk G J{Bk,Bk \ {0})-

Indeed let Ai,...,Afc+i be nonempty subsets of [k]. Some two of them must share a

common element, so that

U n Ai)
l<i<j<k+l

is also nonempty; this set is hk{Ai, . .
. ,Ak+i)- O

Lemma 3. For h = 2, . .
.

,

n, the element hk-i is not in the composition ideal J{Bk-,Bk \

my
Proof. For j G [k] let Aj = [k] \ {j}. Then hk-i{Ai ,. .

.

,

Ak) 7^ 0.

By repeatedly making use of the property oi FD{n) that join distributes over meet, any

element of FD{n) can be written as a meet of joins of the generators. Such a representation

is used in the next two lemmas.

Lemma 4. Suppose Ai, . .
.

,

C [n] and let

m

P= l\(y 9i)eFD(n).
]=1 i€A-

Suppose furthermore that each set of k or fewer Aj’s have nonempty intersection. Then

P € Jk-

Proof. If k = n then the assumption implies that H^jAi 7^ 0. If i is an element of

this intersection then p ^ gi so p £ £’(0) = Jn- If h < n, we proceed by induction

3
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on m. If m < fc, the Aj’s have an index in common, say z, so that p > Then

p e £'(0) ^ E{{hk}). Suppose m > k + 1 and that the result holds for fami lies of m — 1

index sets. For i — 1, . .
.

,

A; + 1 let

m

Pr= A ( V ^ A (V dt)-

— 2+1] 2 €Aj j=:m— i+3 i€:Aj

By the inductive assumption, p^ G E{{hk}) for z = l,...,fc + l. Also

hk{pi,...,pk+i) = V (Pi^Pj),
l<i<j<k+l

but each term p^ A pj coincides with p, so hk{pi, . .
. ,Pk+i) = P- It follows that p G

E{{hk}) = Jk.

Lemma 5. Suppose Ai, . .
.

,

A^ C [n] and let

m

P= !\(\l gi)eFD(n).
j=l i€Aj

Suppose further that I < k < n and Ai H . .

.

fl A/,- = 0. Then Jk-i Q £^({p})-

Proof For z = 1, . .

.

,n, choose j{i) G [k] such that z ^ Then

m k k

P{9jil)i • i9j(n)) ~ A ^ V — f\^\J — A ^V ~ ^k-1-

j=i teAj j=i ieAj j=i

Therefore hk-i G £^({p}) so Jk-i C E{{p}).

Theorem 1. The composition ideals in FD{n) are Ji, . .
.

,

Jn-

Proof Let J C FD{n) be a composition ideal. Let k be the least positive integer such

that J % Jk- Then J C Jk-\ and we need only demonstrate the reverse inclusion. Choose

p G J\Jk- Then by Lemma 4, some k or fewer of the sets Aj in the canonical representation

of p have empty intersection, and by Lemma 5, hk-i G E{{p}). It follows that Jk-i C J,

as required.
| |

Theorem 2. Fork G [n], J{Bk-,Bk \ {0}) = Jk-

Proof. By lemmas 2 and 3, the smallest / such that Ji C J[Bk-,Bk \ {0}) is I = k. By

Theorem 1, we must have J{Bk-iBk \ {0}) = Jk- CH

4
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4 . Hypergraph Coloring.

Following Berge
[
3], we define a hypergraph on a set 5 to be a collection 7i of nonempty

subsets of S. A coloring of is a function 'y : S ^ where C is a set of colors, such

that, if E ^ H. then there are ei, 62 G jF such that 7(ei) 7^ 7(62)- A k-coloring is a coloring

7 : 5 —
>

[fc], where the set of colors is [A;]. The chromatic number of H, is the smallest

integer k such that H. possesses a A;-coloring.

Theorem 3 . Let 7i = {Ai, . .
.

,

A,7^} be a hypergraph on [n]. Then x( 7Y) > k if and only

if the element
m

p = V (

A

j= l i£Aj

is in E{{hk}).

Proof. We show that x( 7Y) < A; if and only if p ^ J{BkiBk \ { 0 })-

Suppose that hi admits a A;-coloring 7 :
[n] —

» [A^]. Since 7 is a A;-coloring, for each

i G [m], {7(2;) : x G Aj} has at least two (distinct) elements. For x G [n] let Ax = {7(2?)}-

Then for each i G [m], Ax = 0
,
so

m
p(A,,...,A„)= U f] A,=0.

i=l x€Ai-

It follows that p ^ J{Bk,Bk \ {0 })-

Now suppose p ^ J{Bk-,Bk \ {0 })- Then there are nonempty sets Ai,... ,
A^ C [A;]

such that
m

0 =p(Ai,... ,An) = IJ Pi Ax-

i—1 xGA;

For each x G [n] let 7(2;) be an element of Ax- For i G [m], PlxeA. Ax = 0 ,
so there are

x,y ^ Ai such that 7(2?) 7^ 7(p); i-e., 7 is a fc-coloring of 7i. Q

Theorem 3 leads to a “construction technique” for hypergraphs of chromatic number

greater than k. Suppose fc G [n — 1
]
and consider the set Jk = E{{hk})- The composition

ideal Jk has the following properties:

(
1

)
It contains the generators gi, . .

. ,gn\

(
2

)
If pi, . .

.

,pfc+i G Jk then hfc(pi, . .
. ,Pfc+i) G Jk\ and

( 3 )
If p G Jk and q > p then q E Jk-

If one lets Jk denote the set of elements of FD{n) which can be built up starting

from gi,...,gn using and composition of functions then it is easily seen that Jk =

5
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{g G FD{n) : there exists p ^ Jk for which q > p}. Elements of Jk can be conveniently

described by utiHzing (A;+ l)-ary trees having leaves labelled with the generators pi, . .

.

Let T be a tree having a root r with the property that each node of T has either k + 1

branches or no branches. Those with no branches are called leaves of T. Assume that the

root r is not the sole node of T. Let each leaf of T be labelled with an element of [n].

We now associate with each node a; of T an element of Jk in such a way that the

following hold:

(1) If a: is a leaf then the corresponding element of Jk is the generator Qi, where x is

labelled with i;

(2) If X is not a leaf then the corresponding element of Jk is hk{pi, ,pk+i): where the

Pi , . . and pk+i are the elements of Jk corresponding to the root nodes of the branches

from X.

This correspondence can obviously be built up by starting at the leaves of T and

working toward the root, and it is uniquely determined by the properties above.

Finally, we associate T (with its labelling) with the element p{T) of Jk which is

associated with the root r of T.

It is clear that any element p of Jk corresponds in this way to some labelled (A; + l)-ary

tree T: p = p{T). By earher comments, the elements of Jk are the elements q of FD{n)

such that there exists some such tree T with q >P{T).

We state this now entirely in terms of hypergraphs.

If r is a (A: + l)-ary labelled tree as above then we say that a set S C [n] turns on a

node X of T if

(1) X is a leaf of T and it is labelled with an element of 5, or

(2) X is not a leaf, and at least two of the root nodes of the branches at x are turned on

by S. Let Tix denote the hypergraph consisting of subsets of [n] which turn on the

root of T.

Theorem 4. The chromatic number of Uj- is at least A: + 1. If Ft is any hypergraph of

[n] such that ^ then there is a labelled {k + l)-ary tree T such that each edge of

FLt contains some edge of 7i.

Proof Let FCt = {^i: • • • ? Ani}. Then

p(r) = V( A
j=l i£Aj

SO, by Theorem 3, x(^t) > k.

6
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liTi = {Fi,. .
.
jF;} is a hypergraph on [n] such that > k then by Theorem 3

the element
i

l\9i)
j=i ieTj

is in E{{hk}), so there is a labelled {k + l)-ary tree T such that p > p{T). It is easily seen

that this inequahty is equivalent to the assertion that each edge of Tix contains an edge

of
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