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Abstract

This paper addresses several key issues in the design, integration, and evaluation of end-to-end

systems for recognizing form-based handprint and cursive handwriting that arise in data entry

apphcations. The apphcations include recognition of alphanumerals from tax, census, and insurance

forms, bank checks, etc. For a system to succeed in these applications, it should be as accurate

as possible (recognition accuracies in the upper 90% ’s) and at the same time should minimize

human intervention to correct that part of the text that machines fail to recogrdze. An end-to-

end system for recognizing handprint and cursive writing is typically made up of the following key

modules: preprocessing, character segmentation, feature extraction, recognition and word or phrase

correction. These modules are hnked to each other in a simple feed-forward manner but proper

design of earher modules depends on later ones. Complex, nonHnear correlations characterize the

interdependence of the modules; for example, many of the errors in segmenting cursive writing

can be corrected by passing the results of segmentation to a lexicon-based recognizer. Such strong

interdependence between the modules argues for an end-to-end system design and evaluation.

The main themes of this paper are the integration of components to design end-to-end systems

and their evalauation in the context of human data entry operations. We first discuss design issues

such as system training, confidence measures and the role of correction mechanisms employed by

humans. Based on these considerations, we present a fairly general recipe for system integration.

The succcesses and failures of many of the existing systems designed for data entry operations can

be traced to how well the steps presented in this recipe have been followed. As the components that

make up Optical Character Recognition (OCR) systems interact in a highly non-hnear fashion, it is

very difficult to generalize component-level evaluation metrics to system-level metrics. We argue in

favor of system-level evaluation and discuss several useful performance metrics. We present several

case studies involving OCR systems that have undergone large-scale evaluations. These include the

NIST form-based recognition system, the ERIM, MCC, and KODAK systems, and an evaluation

of two commerciaUy available OCR engines.

We hope that the discussions presented here will guide OCR end-to-end system designers and

potential users in all aspects of the problem.

fC. L. Wilson and M. Garris are with the Visual Image Processing Group, Division of Information Access

and User Interfaces, National Institute of Standards and Technology, Gaithersburg, MD 20899.

J. Geist is with Sequoyah Technology LLC, Olney, MD 20832.

|R. Chellappa is with the Department of Electrical Engineering, Center for Automation Research and Insti-

tute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.
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1 Introduction

Communication with machines through voice (speech), machine or handprinted text (document

image recognition and understanding), and possibly through other means such as gestures and

facial expressions is an active research field with numerous applications. In these applications the

challenges span technical and economic issues. In this paper we consider a specific case; con-

strained form-based handprinted and cursive digit and text recognition through OCR technology.

In addressing the relevance of OCR technology as a medium of human/machine communication we

consider the following issues; the design, integration and evaluation of the capabilities of state-of-

the-art OCR technology for form-based recognition of hand printed/cursive writing, the economic

and commercial factors that sustain this technology, and the human/machine interface, particularly

as appHed to data correction operations.

OCR research using electronic and electro-mechanical methods dates back to the 1950’s. This work

was initially directed toward machine print and was restricted to fixed-format applications. In the

late 1980’s, decreasing costs for collection and transmission of electronic images and increasing

computer power generated renewed interest in OCR for the unrestricted machine print problem

and for handprint on forms. Given the forty years of active research on OCR, it is impossible even

to enumerate all the relevant OCR technologies for form-based machine, handprinted, and cur-

sive recognition. The key modules that make up an end-to-end system for form-based recognition

are preprocessing (form identification, field and line isolation), character segmentation, segment

reconstruction, character recognition, and word and phrase construction without human interven-

tion or human correction. For many of these modules, methods based on two primary approaches

have been taken; rule-based and image (pattern) recognition. The rule-based approaches have

applied existing image analysis techniques in a straightforward manner for field isolation, character

segmentation, segment reconstruction, and word and phrase construction. The image recognition

approaches originated from the application of classical pattern recognition techniques but are now
more or less dominated by neural network (NN) approaches.

Most published research results are for specific components of OCR systems. The NIST OCR
Systems Conferences [1],showed that although each component is important, the errors generated

by a component can only be corrected in later components by including additional tools designed to

work with the original components and to correct specific types of error. As an example, dictionary

correction, recognition, and segmentation can be effectively coupled if the segmentor is designed

to over-segment, the recognizer is trained to reject small character fragments, and the correction

process is capable of merging fragments to reduce errors. Therefore system integration of the

modules described above is the most critical, but the least understood topic.

In 1989 the Image Recognition Group at NIST began developing methods for testing large scale

OCR systems for handprint on forms for Census and Internal Reveue Service (IRS) applications. In

1990 NIST published Special Database 1 [2] for handprint OCR. In 1992 the University of Nevada
at Las Vegas began publishing annual reports [3] on commercial machine-print OCR systems. In

May of 1992 [1] and February of 1994 [4] NIST conducted two OCR Systems Conferences which

were designed to provide base-line information on OCR technology and specific application-related

information on Census industry and occupation data from the 1990 Census. (These Conferences will

be referred to collectively as the NIST OCR Systems Conferences, and separately as the First OCR
Systems Conference and the Second OCR Systems Conference.) AH of these efforts were designed

to provide a common framework for the evaluation of research results in machine, handprinted and
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cursive OCR that would allow application feasibility to be tested.

The First NIST OCR Systems Conference test [1] was concerned with isolated handprinted charac-

ters so that correlation with research results could be made. In the first conference more than half

the vendors reported comparable scores with less than 5% error for digit recognition and less than

20% error for lower-case letters. The errors made by most of the low error-rate systems were also

highly correlated. In the Second Conference, participants were asked to recognize data from 1990

Census forms. Both microfilm (low quality) and scanned paper (higher quality) images were used.

In this conference, the field error rates for the systems ran from 40% to 80%. At 50% rejection,

see section 2.2, the error rate for the best system was reduced to 6.3%. Many of the same organi-

zations participated in both conferences, but no correlation was found between isolated character

error rates from the First Conference and field error rates from the Second Conference.

The results of the First OCR Systems Conference [1] demonstrated the applicability of a wide

variety of pattern recognition methods for solving the isolated character recognition problem. The

most accurate of these are comparable to human recognition of isolated characters, and most

methods provide estimates of recognition confidence which, with proper rejection, allow results to

be produced which are more accurate than can be produced by humans on the part of the data

that remains after rejection. As OCR error rates fall, test sample sizes must increase so that a

statistically significant number of errors remain for further analysis. In this sense, a perfect OCR
result tells the researcher nearly nothing about the recognition process except that the test sample

is “easy” for a pajticular recognition device. The accuracy of method reported in [1] is such that

further testing is only of interest on difficult problems where large data samples are available so that

adequate error statistics can be computed and failure mechanisms analyzed. The basic machine-

printed character recognition problem has therefore been solved with sufficient accuracy so that

only large tests, involving 10,000 to 1,000,000 characters, are informative in either basic research

or commercial applications.

In the test cited above, strictly rule-based methods were uniformly less accurate than methods

based on machine learning or Bayesian statistical models. The general procedure used in the most

successful recognition systems was to develop large, rich feature sets and use a large number of

examples to train a recognition device. If the training and test sets used are sufficiently similar,

these methods produce results comparable to the best previously published recognition rates. The

remaining research challenge in this area is dealing with the last few percentage points of error.

These cases are hard for humans and usually include both ambiguous and rare forms of characters.

From an understanding of the relative strengths and weaknesses of machines and humans described

later in this section, the logical way of proceeding with document research is to increase the con-

textual information available to solve the hard problems. This means converting letters into words

and checking the words against some vocabulary using dictionaries. Once words are available, more

complex language models can be apphed to provide additional context.

An end-to-end system such as a form-based handprint recognition system has correlated modules.

The results presented at the two Census Systems Conferences demonstrate the difficulty of deducing

end-to-end system performance from component characteristics even when the same organization

designed and constructed the components, when interactions between components are complex,

highly nonhneax, non-local, non-commutative, and non-additive.

This paper addresses a specific type of handprint recognition problem which meets three constraints.

First, the data is on forms, which implies that the data of interest is found in predetermined.
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predictable locations. Second, the image quality is sufi&cient to provide legible images, which

implies that the forms have adequate space to enter the required information and that scanning

resolution is sufficient to resolve the text. Third, the material to be read from the form has specific,

known content, which restricts the lexicon of expected answers. The success or failure of form-based

OCR is strongly influenced by the degree to which the application adheres to these constraints.

Good form design is essential to economical OCR-based data input but is very application-specific.

High-quality scanning and good image quality are necessary to lower processing cost and allow the

use of electronic images without extensive cleanup processing. Prior knowledge of field content

is important both for recognition correction and for the detection of human errors in placing

information on forms. On the otherhand the visual and linguistic content of forms, as well as

scanning and input image quality, are outside the scope of this paper.

1.1 Human/OCR Interface

Commercial form-based OCR applications axe usually designed to replace data entry operations.

This considerably simplifies both the application and the cost of evaluation since OCR is not usually

expected to replace all human data entry, but is only required to replace the initial input pass, with

human correction taking place in later steps. This allows the application to be designed so that

machine and human capabilities complement each other.

It is important to understand that human and machine recognition have complementary strengths

and weaknesses. This means that great care must be exercised when comparing their performance,

but it also allows them to be combined into a system in such a way that the strengths of one

compensate for the weaknesses of the other. When properly designed, such hybrid systems can often

outperform purely human or purely machine systems in commercial applications while reducing

costs. Based on the published results in connection with the NIST OCR Systems Conferences some

of the major conclusions that can be drawn regarding the relative strengths and weaknesses of

machines versus human recognition of character can be summarized as follows.

The most important strengths of machine recognition are 1) the ability to perform routine tasks

without fatigue, and 2) the ability to produce a result quickly and at the same time to produce a

number that characterizes the reliability of that result. A typical reliability number is the confi-

dence, which attempts to approximate the probability that a recognition result is actually correct.

The major strength of human recognition is the ability to utilize a hierarchy of ever more powerful

skills to recognize a character or word. At the bottom of the hierarchy these skills tend to be

relatively fast and quite reflexive. At the other end of the hierarchy, the skills tend to be relatively

slow and cognitive.

The major weakness of machine recognition is that it does not work well on the most difficult

samples in any given application. On the other hand, the major weaknesses of human recognition

axe that 1) it quickly fatigues when utilized at its maximum rate, 2) there is a certain time overhead

associated with moving up and down the hierarchy of recognition skfils, 3) the higher skfils in the

hierarchy are much slower than the lower sldUs, and 4) it takes a very long time relative to the

average recognition time for a human to assign a useful measure of reliability to his or her recognition

results.

Based on these observations, a general set of guidelines is presented in Section 2.4 for building

on the complementary strengths of human and machine recognition to produce a hybrid system
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that produces low error rates at lower costs than either type of pure system. This model is based

on a careful analysis of machine and human recognition results on a large sample, relevant to the

application at hand. H this model is followed, it is possible, as demonstrated in systems that are

currently functioning in many commercial applications such as remittance processing, to obtain

both lower cost and higher accuracy than with a system based only on human entry. However, not

every system that has been implemented has been successful. Failures can be traced to the fact

that one or more guidelines were not even approximately satisfied, as weU as to the failure of one

or more of the OCR component modules.

1.2 Economic Factors

1.2.1 The Computer Museum Problem

For many years the decline of paper as the dominant document storage medium has been predicted

but has not tahen place. In most organizations, computers have been used to automate the creation

of paper rather than to replace paper. This seems to be related to both the low initial cost and

the anarchical properties of paper storage and to the rapid technological evolution of computer

technology. It seems likely that the cost factors will shift to favor computer storage over paper even

in areas where this is not now the case. The obsolescence created by rapid technological change of

computer technology poses a much less tractable problem.

The problem of maintaining electronic archives through many generations of computer systems is

sometimes referred to as the Computer Museum Problem. Simply stated, unless data is kept on

paper or microfilm, a computer museum must be maintained to read old data. Try to read a paper

tape or an old 107K eight inch hard-sectored floppy disk today! This means that unless a user is

prepared to migrate all data forward to the latest “standard” media, aU archives must be paper-

based or a computer museum must be set up. The Computer Museum is charged with maintaining

one or more working copies of each computer system, both hardware and software, required to read

each kind of data in the archive. The only other alternative to maintaining the museum is to stay

in the document conversion business for an indefinite period!

More rapid improvement in storage and processor technology increases the problem by lowering

the expected life of each generation of system. The only present plan of attack is to try to make

conversion so low-cost (and automatic) that this problem doesn’t matter. This wiU require accuracy

such that no human intervention is needed. This does not mean that the conversion process must

be perfect but only that it must be as good as human performance. We therefore expect OCR to

remain viable for a lot longer than predicted by the oracles of the paperless office.

1.2.2 Form-Based OCR

For form-based OCR to be economically successful several requirements most be met. 1) The form

design must be compatible with both OCR and human data entry. 2) The work flow in the data

entry process must allow a gradual conversion from all-hand data entry to OCR. 3) The volume

of work must be sufficiently large to cover the substantial capital expenditure required to install

high-speed paper-handling equipment, large image databases, and high-speed OCR hardware. The
large volume requirement reduces the risk in applications where a large number of transactions are
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processed by a single set of common or centralized system, because setup cost can be amortized

over a laxger volume of work.

Typical applications which meet these requirements are credit card forms, tax forms, census forms,

insurance forms, and some types of checks. In the credit card application, the form is relatively

simple, redesign to improve segmentation is not too costly, and volume is high. The volume of

forms in both tbe Census and IRS applications is high, form redesign is possible, and the periodic

nature of the data collection process makes running a prototype test between the peaks of the flow

practical. For insurance applications, the forms are often complex and the data flow is continuous

rather than periodic. This makes inserting new technology into the work-flow much more difficult

and increases the economic risk involved in the introduction of the technology. Checks have a more

complex profile. Commercial checks are usually machine-printed with standard backgrounds but

do not adhere to any standard field locations. Personal checks are usually in a standard field format

but have complex backgrounds. The data volume exceeds 10^ items per year but maximum clearing

time is regulated by Federal Reserve regulations. This makes the apphcation of form processing

technology to checks much more complex than to more centralized applications.

In large-scale commercial applications of OCR, the goal is to provide lower-cost data entry with a

minimum of change iu existing work-flow. An analysis of the cost of data entry shows that the cost

of using OCR for data entry is critically dependent on the cost of correcting the part of the text

that machines fail to recognize. When dealing with hand-written or poor-quality machine-printed

material, there is always some level of illegibility in the sample which is too difficult for humans to

read in isolated form. Machine failures on this material are expected in the data entry process as

they have been with human data entry. Since some failures are expected in the OCR, the material

must be checked by humans. The cost of achieving a specified level of accuracy depends on how
efficiently the material that has errors can be separated from all of the material processed. An
OCR system that requires 100% human checking and correction is economically valueless. This

means that commercial use of contextual material must be directed toward increasing accuracy and

reducing the amount of material that needs to be checked.

1.2.3 Character Versus Phrase-Based Recognition

When considering form-based OCR, it is important to distinguish between forms that contain a

separate box for each character in a word or phrase answer and forms that contain only one box
for an entire answer. The former will be called character-based forms and the latter will be called

phrase-based forms.

The distinction between character-based and phrase-based forms is important because current

OCR systems are much less accurate on phrase-based forms than on character-based forms. The
reason is that segmenting handprinted words or phrases into isolated letters is very difficult at the

current state of the art. Instead of producing a string of handprinted letters, current segmentation

algorithms often produce letter fragments, combinations consisting of a letter and a fragment of

another letter, and combinations of two or more letters.

OCR systems designed for phrase-based forms use dictionaries of expected words or phrases to

compensate for segmentation errors. A continuum of different dictionary-based approaches can be

distinguished ranging from what could be called Optical Word Correction (OWC) through what
could be called Optical Word Recognition (OWR).
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A pure owe system is characterized by 1) a segmentation algorithm that is optimized to maximize

the fraction of isolated letters occuring among the segments, 2) a recognition algorithm that outputs

a string of letters, and 3) a powerful speU-check algorithm that attempts to correct misspellings

caused by the contamination of the string with both letter fragments and combinations of letters

that were recognized as single letters.

A pure OWR system is characterized by 1) a segmentation algorithm that is optimized to produce

no combinations of letters, but only isolated letters and letter fragments, 2) a fragment merging

algorithm that combines letters and letter fragments into candidate letters, 3) a recognition algo-

rithm that attempts to select a subset of the candidate letters in such a way that all fragments

occur in at least one letter, but no fragment occurs in more than one letter.

It is uncommon to distinguish explicitly between OCR of character-based forms and either OWC
or OWR of phrase-based forms, or to distinguish exphcitly between OWC and OWR, and we will

continue this tradition by using OCR to refer to all types of systems except where the distinctions

among these systems are being discussed.

1.2.4 Dietionary-Based Correction

For both OWC and OWR, words or phrases from a dictionary of expected answers are compared

with the recognition results. The dictionary is created by selection of answers from a representative

sample of the intended application. Note that there is both an optimum size and an optimum

content for the dictionary. Ideally, the dictionary should contain all of the answers, and only

those answers, that wih occur in some given appheation. This, however, is not possible for most

applications.

Dictionary coverage describes the fraction of the answers obtained in a given application that actu-

ally occur in the dictionary of expected answers. As possible answers are added to the dictionary,

the coverage over any given appheation either increases or stays the same. If this were the only

consideration, then larger dictionaries would be better than smaller dictionaries imder all circum-

stances. Unfortunately, as possible answers are added to a dictionary, coverage is not the only

thing that increases. The probabihty that incorrect dictionary entries will be selected as answers

also increases. This is called dictionary confusion.

An efficient way to build a dictionary is to start with the most commonly occuring answers from

a sample of the intended appheation and to use it to construct words for another representative

sample of the same appheation. As the size of the dictionary is increased, the error rate will initially

decrease because the dictionary coverage wih grow rapidly while the dictionary confusion wih grow

at a more moderate rate. As the dictionary grows larger through the addition of fewer and fewer

common answers, the coverage wih grow more and more slowly, but confusion wih grow. Eventuahy,

the rate of growth of coverage will no longer compensate for the rate of growth of confusion, and

the error rate whl stop decreasing and start increasing. This yields an estimate of the optimum
dictionary size for the particular appheation.
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1.2.5 Systems Configurations

The most common large-scale application of form-based OCR technology is data entry from forms

such as IRS tax forms, Census forms, or insurance forms. These applications are usually custom-

designed systems. Document input is usually through high-speed scanners which are fed by high-

speed paper-handling equipment. The scanners are part of a network environment which includes

large-scale storage for images and special high-speed servers to perform OCR. Imaging workstations

axe used for data correction. The general structure of these systems is similar whether tax forms.

Census forms, or bank checks are being processed. It is expected that data throughput will be in

the page per second range for each input scanner and total page throughputs of 25,000 pages per

operating shift are possible. A relatively small system of this type can process 5,000,000 pages per

year and large systems can process 100,000,000 pages per year. Total system cost scales with size

and begins in the $1,000,000 range.

Commercial systems usually are directed toward a specific type of apphcation. Most systems do

either machine print or handprint and are designed to run in desktop appfications or in large-scale

batch data processing applications. The market for desktop applications has been oriented toward

providing an input device for word processing software which uses scanned images of machine-

printed documents. These systems are not assumed to be dedicated document input stations but

are assumed to be general-purpose machines where only a few pages are input each day. The

desktop system is expected to have a high-end word processor, a scanner with scanning software,

OCR software, and sufficient memory and processor power to run all three applications. This takes a

workstation or high-end personal computer. A relatively small fraction of all desktop systems meet

these requirements. Additional system costs include the price of the scanner and word processing

and OCR software.

1.3 Discussion

Although form-based OCR systems capable of solving many economically important problems can

be constructed with state-of-the-axt technology, NO general off-the-shelf solutions exist for large-

scale, centralized form processing appHcations. The economically useful systems are successful

because they are constructed from modules customized to capitalize on ALL constraints afforded

by a particular application. The more constraints available and incorporated, the higher the prob-

ability of success. The more complex an application, the fewer constraints axe available.the lower

the probability of success.

The only meaningful way to compare the performance of two different OCR modules in these

systems is by comparing the overall system performance for the system in a particular application

using one module with that of the same system using the other module in the same application.

Much literature exists at the module level, but little at the systems level. Therefore, this paper

treats OCR carried out at NIST from the systems point of view, and provides a summary of the

other hterature with references to other reviews where possible.

The organization of this paper is as follows: We begin with a detailed discussion of issues relevant

to system integration with an emphasis on data entry applications. Critical issues such as the

appropriate error measures and confidence thresholds to be used as weU as the role of human
correction mechanisms in post processing OCR results are addressed in detail. Based on these
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discussions a general recipe is presented for integrating the different modules that make up an

OCR system. The implications of not following some of the steps in the recipe are unexpectedly

large error or rejection rates when the poorly integrated OCR system is applied to real data. As

mentioned earlier, the components that make up the OCR system interact in complex, non-hnear

ways. Therefore it is nearly impossible to generate system-level performance characterization from

component-level performances. Section 3 presents several system-level accuracy measures at the

character and field levels. Important considerations for evaluation of the test sample and the role

of context in OCR system performance are discussed.

A paper that emphasizes system integration and evaluation would not be complete if supporting

evidence were not presented based on OCR systems that have gone through large-scale evaluations.

We present brief descriptions of several end-to-end systems designed by NIST, ERIM, MCC, and

KODAK. This is followed by an analysis of the evaluations conducted as part of the OCR Con-

ferences and a more detailed evaluation of two commercially available OCR engines. Finally, a

summary and conclusions are presented in Section 6.

The designers of commercially available OCR systems have benefitted from over thirty years of

basic and applied research done in Universities. Aside from the CEDAR group at SUNY, Buffalo,

most of the research performed in academia has focused on a subset of the modules of the OCR
system. For the sake of completeness, we present a brief survey of relevant work, largely performed

at United States Universities in the Appendix. Due to space Hmitations we could not cover all the

published work.

2 System Integration

Depending on the application, system integration can play a crucial role in determining failure

or success. Nevertheless, at the current state of the art, it would probably be a serious mistake

to think of an OCR apphcation as nothing more than stringing a set of modules together. This

section will explore some of the system integration issues, especially the role of human correction

of machine recognition results in difficult applications.

The major system integration issues include the following:

1. What is the optimum system configuration?

2. What error measures should be used?

3. What type of system training should be used?

4. What type of confidence threshold selection should be used?

5. Should human correction be used?

6. How should human correction mechanisms be exploited for system integration?

AU of these issues, except for 2) which is addressed in section 4, are addressed here.
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2.1 Optimum System Configuration

Since the authors know of no successful commercial systems based on OWC or OWR, it is not clear

that forms with a single box for each multiple-character answer are a viable option at the current

state of the art. Nevertheless, since this situation may soon change, the trade-off between using

forms with a box for each character and forms with a box for each multi-character answer is the

first topic that will be discussed here.

Many potential users of commercial OCR systems reject OCR once they discover that they will

have to redesign their forms to provide a box for every character in a response. Usually, they

assume that their potential users will not agree to fill out a form with these constraints or will fill

it out less carefully or less accurately. This is probably more true for forms that request a great

deal of information, particularly if they are currently filled out with cursive rather than handprint.

However, before rejecting OCR, a potential user might want to attempt to redesign the form, and

run a small test on potential users of the form to determine whether or not the desired information

can be obtained from a form siutable for OCR.

Even with OWC or OWR, assuming that it becomes commercially viable in the near future, some

form design will probably be needed in order to obtain sufficiently accurate performance. There is

no question that form design can have a major impact on accuracy for all of these types of systems.

Also, OWC and OWR systems optimized for any given application wiU probably cost more and

run more slowly than an OCR system optimized for the same application but including isolated

character boxes.

The type of data to be extracted from the forms wiU also have a bearing on the trade-offs among

OCR, OWC, and OWR. OCR wiU probably retain a cost advantage wherever a simple transcription

of the strings of characters on a form is the desired end product. On the other hand, if further

human effort is needed to convert the transcriptions into a smaU number of numeric codes, OWC or

OWR may have the edge. This wUl depend on the complexity of the rules that map the transcribed

answers into the numeric codes, and on how many codes there are. SmaU numbers of codes and

complex rules favor OWC and OWR. For instance, the US Bureau of the Census converts the three

industry and occupation answers on the long Census form into two codes, an industry code and an

occupation code. For each industry or occupation code, a large number of possible multi-character

answers are entered on the Census forms. It is possible, but to the authors knowledge has not yet

been demonstrated, that OWC or OWR can provide a significant advantage in a case Uke this.

After deciding among OCR, OWC, and OWR, there remain other optimization trade-off issues.

For any given subsystem, there wUl be a trade-off between speed and accuracy. If a subsystem

does not Umit overaU system accuracy, it should be possible to replace it with a faster but less

accurate subsystem without reducing overall system accuracy. This is true of any system, but it

is particularly important for OCR systems because the difficulty of practical applications covers a

very large range, from typed characters having a fixed and known inter-character distance, to a full

word or phrase of handprinted or handwritten characters in a single answer box. Unfortunately,

it is often difficult to determine appropriate accuracy measures to study these trade-offs. Even
though the question of what accuracy measures should be used is the next systems issue that needs

to be addressed, its discussion will be postponed until Section 4.
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2.2 System Training

Most OCR systems have variable parameters that can be adjusted to produce better or worse

performance in any given apphcation. In the simplest systems, only a few values of a small number

of parameters are allowed, and the adjustments can usually be made by hand. In the most complex

systems, a very large number of parameters that must be adjusted by some sort of automated or

machine-learning algorithm are involved.

The adjustment of system parameters to optimize the performance of an OCR system for any given

application, or for some expected mix of apphcations, is called system training. It can done by the

vendor before dehvering the system, or by the user during installation, or apphcation-independent

generic settings may be used.

The simplest systems provide useful results only for the simplest apphcations, but are generally

not very sensitive to the details of these apphcations. Consequently, there is very httle variation

in performance from one of these apphcations to another. Thus training can be carried out on a

single generic data set for almost any of these simple apphcations. However, as already mentioned,

these systems are generally not accurate enough for the more difficult recognition tasks.

At the other end of the complexity spectrum are neural networks and other complex systems. In

order to provide peak performance, these often require a significant amount of automated train-

ing on data that is very similar to the intended apphcation—that is, a small, but statistically

representative sample of the actual apphcation data.

In cases where apphcation-specific training is needed, failure to use a truly representative sample

can cause unexpectedly large error rates or unexpectedly large rejection rates when the system is

apphed to real data. The net result can be failure to achieve the desired accuracy or cost goals on

the apphcation data.

2.3 Confidence Threshold

Most OCR systems assign a confidence value to each character, number, word, or phrase produced

by the system. Confidence values, which are defined to be real numbers in the range from 0 to 1, are

used by OCR systems to combine machine recognition with human keying of unrehable recognition

results.

The confidence should correlate strongly with the probabhity that the system output is correct

according to the error measure being used. The more strongly the confidence correlates with the

probabhity, the more useful it whl be. If the confidence does correlate with the probability, then it

is always possible to transform the former into the latter with some residual error. Some OWC and

OWR systems make use of this property to calculate system-level confidences from module-level

confidences. Other systems use heuristic rules instead.

The confidences associated with the recognition results from an OCR system are used to order the

results from least rehable to most rehable. This allows some fraction of the less rehable results to

be rejected for human keying. The confidence threshold is the confidence value that is used as a

rehability cut-off for rejection. Any recognition result with a system-level confidence less than the

confidence threshold is rejected, and the corresponding image is sent to a human for keying before
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being included in the system output. Any recognition result with a system-level confidence greater

than the confidence threshold is accepted and included in the system output.

The same trade-offs associated with system training are associated with selection of the confidence

threshold. Simple systems can often use a generic value of the confidence threshold just as they

can be trained on generic data. On the other hand, complex systems and highly optimized systems

will require selection of application-specific confidence thresholds just as they require application-

specific training.

Ideally, the selection process is carried out on a small but statistically representative sample of

the actual application data. However, the same sample cannot be used for confidence selection

cLS for system training without risk. With insufficient training sample size, the error rate and the

confidence threshold for the training sample wiU be much lower than the error rate and confidence

threshold for the threshold selection sample. As the size of the training sample is increased, the

error rate for the training sample increases towards an asymptotic value, and the error rate for the

threshold selection sample decreases toward the same asymptotic value, again assuming that both

samples are statistically representative of the same application.

Thus, if the training sample is not large enough to produce asymptotic behavior, a confidence

threshold that gives a higher than expected error rate on the real application data wiU be obtained

from the selection process. It is generally easier to use one sample for training and another for

confidence selection rather than to study the asymptotic behavior of the confidence threshold as

the size of the training sample is increased.

2.4 Human Correction

In some applications, OCR systems are accurate enough that their output can be used without

rejecting any recognition results. More often than not, the error rate measured over the entire

application is too large to be acceptable. In these cases, it is often possible to obtain a satisfactory

error rate by replacing a small but unreliable fraction of the total machine recognitions with key

entry. In fact, this spells the difference between failure and success in many applications.

If key entry is required to obtain the desired level of accuracy, the cost of human keying of the

rejected fraction of the application must be added to the cost of running the entire apphcation

through the OCR system in order to determine the overall cost. If this total cost exceeds the cost

of key entry for the entire application, there is no cost advantage to be gained from OCR. However,

there stiU may be accuracy advantages. OCR combined with key entry is usually cost-effective

when the obtainable rejection rate is small.

A fairly general recipe for system integration of an OCR application is given below based on the

points raised above:

1. Obtain access to a prototype of a candidate OCR system for the application of interest.

2. Have humans key two different, small, and statistically representative samples of the appli-

cation. One is called the training sample, the other the threshold-selection sample.

3. Select or develop an answer-matching algorithm that properly distinguishes correct from

incorrect answers from the point of view of the application of interest.
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4. Train the system on the training sample: Machine recognition is applied to all of the characters

or phrases in the training sample, the results are compared with the human-keyed results

using the answer-matching algorithm, and the system parameters are adjusted to minimize

the recognition errors.

5. Order the recognition results for the threshold-selection sample according to their associated

confidence values.

6. Calculate the error rate versus rejection rate for the threshold-selection sample: Machine

recognition is applied to all of the characters or phrases in the threshold-selection sample, the

results are compared with the human-keyed results using the answer matching algorithm, any

differences considered significant by the algorithm are flagged, the flagged answers produced

by the OCR system are compared with the answers entered on the original forms by the

respondent, and scored as either correct or incorrect, and a table of error rate versus rejection

rate and confidence value is prepared.

7. Select acceptable, application-dependent error and rejection rates for the machine-produced

answers in the original data set. Assuming that a Hne in the table of error rates and rejection

rates versus confidence values has an error rate that is less than or equal to the chosen error

rate combined with a rejection rate that is less than or equal to the chosen rejection rate,

then the confidence value on that same hne may be selected as the confidence threshold, and

step 8) below may be carried out.

8. Use the run times and costs for machine recognition of the training and threshold selection

samples to estimate the run time and cost for the entire apphcation. If these are favorable in

comparison with key entry, then proceed with step 9) below.

9. Run the entire apphcations through the OCR system.

10. Accept all of the recognition results that have a confidence greater than the confidence thresh-

old.

11. Reject all of the recognition results that have a confidence less than the confidence threshold.

12. Have humans key the rejected results.

13. Combine the accepted recognition results and the answers keyed by humans to form the final

answer set for the application.

14. During normal operation periodically recalibrate the system usin steps 6 and 7 to insure the

best match between system parameters and current work.

If everything can be done as described above, it is possible, as demonstrated in systems that are

currently functioning in many commercial apphcations such as remittance processing, to simulta-

neously obtain lower costs and higher accuracy than with a system based only on human entry.

However, not every system that has been implemented has been successful.

Many failures have been caused by a failure to assure that each step in the above model is approx-

imately satisfied. Failures have also been caused by use of rather different models as the basis for

implementation. The major stumbhng blocks in this model are Steps 1), 2), 3) and 7).
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As fax as step 1) is concerned, some potential users of OCR think that they can reduce the im-

plementation cost by avoiding prototyping the system. Of course, it may not cost much more to

implement a very small system than to prototype it, but this is definitely not the case for large

systems. At the current state of the art, it is probably a major mistake to put a lot of money into

a system that has not been proven with a prototype.

As far as step 2) is concerned, it is not really necessary to draw the training and threshold-

selection samples from the actual application. Any representative samples will do, but they must

be representative of the apphcation from the point of view of both the OCR system and the

answer-matching algorithm.

As mentioned above, failure to use truly representative and different samples can cause unexpectedly

large error rates or unexpectedly large rejection rates when the OCR system is applied to real data.

The net result can be failure to achieve the desired accuracy or cost goals when running the system

on the real apphcation data, althiughr predicting success in the threshold-selection run.

As far as step 3) is concerned, much of Section 4 of this paper is concerned with the selection of

the answer-matching algorithm, so it will not be considered further here. This leaves step 7) as the

last major problem area. If acceptable error and rejection rates cannot be found on the same hne

in the table of error rates versus rejections rates and confidences values, then there are only a few

alternatives:

1. Use a more accurate or sophisticated OCR system.

2. Improve the training of the existing system to produce more accurate results. A larger training

sample may be needed, or a training sample with more carefully checked and corrected human-

keyed results may be needed, depending on the particular system being used.

3. Relax the requirements on the error rate or the rejection rate, ff an overly conservative

answer-matching algorithm is being used, it may be possible to modify the algorithm in a

less conservative way to obtain satisfactory error rates.

4. Reject OCR as a viable option at this time for the application of interest.

Of course, none of these things can be done until suitable accuracy measures have been chosen for

the apphcation of interest. This and related topics are the subject of the next section.

3 Evaluation of System Performance

It is useful to distinguish between system-level and module-level evaluation of OCR systems.

System-level evaluation can be used to choose among candidate systems for some particular apph-

cation or to determine whether or not a particular system can produce the required combination
of cost and accuracy for some particular apphcation. System-level evaluation can also be used to

observe the effect of module-level changes on overall system performance.

Module-level evaluation is sometimes used during attempts to improve the performances of indi-

vidual modules. However, this requires a module-level accuracy measure that is strongly correlated
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with the system-level accuracy measure appropriate to the intended application. Except at the

earhst stages of system development (when the system-level error measures may not be available),

it is often more difficult to develop suitable module-level error measures than to run the whole

system and observe the changes in a system-level accuracy measure when changes are made in the

individual modules.

When suitable module-level accuracy measures are available, it is possible in principle to calculate

the system-level accuracy measure from the module-level accuracy measures, but in practice this

is very difficult. The problem is that the interactions among the modules are non-linear, non-local,

and non-additive. This effect is more apparent with OWC and OWR systems than with OCR
systems.

For instance, it has already been mentioned in the introduction that no correlation was apparent

between the performance of the OCR systems in the First Census OCR Conference and the OWC
and OWR systems in the Second Census OCR Conference, even though the same character recog-

nition subsystems were used in both conferences by many participants. In fact, the relatively small

differences in performance among the different character recognition modules that were apparent

in the first conference were washed out by the relatively larger differences in the ability of the

integrated systems to process the full words and phrases entered in a single answer box.

As a general rule, the effect of any given type of error on the next module in the processing chain

is very non-linear. For example, small misalignments in field isolation usually cause no errors in

later modules. At some misalignment threshold, which is difficult to quantify because misalignment

is not a one-parameter phenomenon, recognition errors suddenly appear. As the misalignment is

further increased, the recognition errors rapidly multiply. The same is true for segmentation errors.

Moreover, misalignment errors and segmentation errors axe not additive. Some recognition errors

are caused by segmentation errors that arise in the segmentation module, while others are caused

by segmentation errors that result from misalignment errors. Consider a segmentation error that

was caused by an alignment error in the field-isolation module, but that would have occurred in

the segmentation module even with perfect field isolation. This error occurs only once in the final

recognition result, yet it is counted twice in any module-level algorithms that treat misalignment

and segmentation errors as additive.

In light of the above, the remainder of this section deals only with system-level error measures.

Even with this restriction, there remain important problems. The first is how to choose an accuracy

measure that is suitable for a particular application. The second is how to obtain a set of test data

for which the correct results axe known so that the OCR system results can be compared with the

correct results for scoring. These topics will now be discussed.

3.1 Error Rate Versus Rejection Rate

The measurement of error rate versus rejection rate was introduced in the preceding section. It

wfil be discussed in more detail here. This quantity can be calculated only for systems that assign

a measure of recognition reliability, such as the confidence defined in the preceding section, to each

output result, whether it be a character, a word, or a phrase.

For a system that provides confidence values, the error rate versus rejection rate for a sample of

forms is calculated as follows. The system output results for the sample are scored as correct or
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incorrect according to an appropriate accuracy measure. The scored results are then sorted into

a list according to the magnitude of the confidences, starting with the lowest confidence. Finally,

the fraction of the results that were scored correct is tabulated as a function of the size of the list

cLS the list is truncated starting from the low-confidence end of the list.

The resulting tabulation is the error rate versus rejection rate for the recognition results, starting

at a rejection rate of zero and ending at a rejection rate near 100%. Figure 1 shows a generic graph

of error rate versus rejection rate. Three error rates, HIGH, MEDIUM, and LOW, are shown on

the graph. The error rates for aU values of the rejection rate fall below the HIGH value and above

the LOW value, while the error rate curve crosses the MEDIUM value at some value between 0%

and 100% rejection rate. The confidence threshold to obtain the MEDIUM error rate is defined as

the confidence value that corresponds to the rejection rate where the error rate curve crosses the

MEDIUM value.

If the HIGH value of the error rate shown in Fig. 1 is good enough for the particular application of

which the sample is representative, then the OCR system can be used for that application without

rejecting any results for human correction. If no error rate above the LOW value in Fig. 1 is

good enough, then the system cannot be used for the application. If the MEDIUM error rate is

good enough, then the system can be used provided that only those recognition results having

confidences greater than the confidence threshold are used as answers. The rest must be keyed by

humans.

The slope of the error rate as a function of rejection rate is a measure of the efficiency of the

rejection process. A flat error-rate versus rejection-rate curve indicates that the answers are being

rejected at random. This means that there is no correlation between the confidence assigned to a

result and the probability that the result is actually correct.

3.2 Accuracy Measures

3.2.1 Character-Error Rate

The OCR accuracy measure most commonly cited is the character-error rate. It is defined as the

ratio of the number of characters correctly recognized to the number accepted. The character-error

rate can be either a system-level error measure or a recognition-module accuracy measure. When
used at the module level, correctly isolated images of characters are the input to the module, and

character hypotheses are the output. When used at the system level, the output of the segmentation

module, which may include character fragments as well as multiple characters, is the input to the

recognition module.

From the system point of view, the character-level error rate is fairly well suited for evaluating OCR
system performance when segmentation is not an accuracy-limiting step. This is just a reflection

of the fact that OCR systems work well in these applications.

The results of the First Census Systems Conference were noteworthy in that most systems had

character-error versus rejection rate curves that could be fit to a simple model. Furthermore, the

paxameters determining the shape of the model curve varied much less about their average values

than did the error rate at zero rejection rate. Reference [5] showed that this unexpected result

was explained by the fact that most of the systems were behaving as Bayesian classifiers that

20



Figure 1: Compaxison of a typical error versus rejection curve with HIGH, MEDIUM, and LOW
error-rate requirements.
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were choosing between only two possibilities. Thus for weU-segmented characters, the recognition

of hand-printed characters (even with fairly difficult handprint samples) usually involves a choice

between no more than two plausible alternatives.

Unfortunately, even with negligible segmentation errors, the character-error rate may not ade-

quately distinguish small differences in performance among OCR systems for some particular ap-

plication. Suppose two systems have the same character-error rate, but the first system has a much

greater probability of producing errors in adjacent characters compared to the second system. In

this case, the first system would tend to concentrate its errors in a smaller number of answer hy-

potheses than the second system, but these hypotheses would be more difiB.cult to decipher because

they woxild contain a larger fraction of multiple errors.

Either of these systems might be more suitable for a given apphcation, depending on the details

of the application. Many applications can tolerate single errors in occasional words because the

meanings of the words are still easily determined. On the other hand, other applications may
require the errors to be concentrated in a small number of words, which can then be rejected on

the basis that they do not match any entry in a dictionary of expected answers very well. This

illustrates how important it is to choose an error measure that accurately reflects how the results

will be used.

In applications where segmentation is a major source of error, character deletions and insertions,

as weU as substitutions, must be accounted for at the system level, but not at the module level.

Therefore, even though the character-level error rate can stfil be useful at the recognition-module

level, it cannot be used at the system level. At the current state of the art, such applications require

owe and OWR systems, and they also require a more sophisticated accuracy measure than the

character-level error rate.

3.2.2 Field-Error Rate

The field-error rate is another common error measure. It is defined as the ratio of the number of

answer fields with at least one error (character substitution, insertion, or deletion) to the number

of answer fields accepted. The field-error rate cannot be used to determine the error rate versus the

rejection rate unless a field confidence is available. With an OCR system, the field confidence can

be calculated from the product of the individual character confidences, provided that the latter have

been transformed to an approximation to the probabilities that the individual character hypotheses

are correct. Without this transformation, the resulting confidences will correlate very poorly with

the probabilities that the field hypotheses was correct.

There are two problems with the field-error rate. First, it makes no distinction between a ten-letter

word with one error and a ten-letter word with ten errors. Second, longer answers have lower

probabilities of having zero field-error rate (being completely correct). This does not usually reflect

the usefulness of the answer. The number of errors that can be tolerated in an answer before it

becomes difficult to decipher increases with the number of characters in the answer.
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3.2.3 Other Error Measures

Commercially successful OCR is a fairly recent phenomenon. As a result, the development and

testing of more sophisticated error measures than the character-error and field-error rates is rather

immature. Nevertheless, some general conclusions can be drawn.

Over the years, the U.S. Bureau of the Census developed a very simple error measure for distin-

guishing between usable and useless key-entry results for alphabetic data hand-entered on Census

forms. A small fraction of the returns are keyed by two different keyers. For each answer field, the

characters having descenders (in lower case), the characters having ascenders, and the remainder of

the character counts are separately summed for each answer field result. The sum of the absolute

value of the differences between the sums for each category are then calculated. No differences are

allowed for words having less than six letters, and increasing numbers of differences are allowed with

increasing word size. This procedure has apparently worked well for comparing key-entry results,

but it has not been shown to be suitable for comparing OCR results with other OCR results or

with key-entry results.

The Second Census Systems Conference used an accuracy measure called the field-distance rate.

This was defined as the ratio of the sum of the numbers of insertions, deletions, and substitutions

required to convert the answer hypothesis to the correct answer after alignment by an algorithm

that minimized a particular function of three variables; the number of insertions, the number of

deletions, and the number of substitutions. In the case of no insertion or deletion errors, the

field-distance rate was identical to the character-error rate defined earlier, and it has a number of

desirable properties as an error measure for words and phrases. Nevertheless, it produces counter-

intuitive results in certain (apparently rare) cases.

A more detailed discussion of the pros and cons of the field-error rate is given in [4]. That reference

also proposes a generalized field-distance rate that can, in principle at least, be optimized for any

given application. Unfortunately, implementation of the generalized field-distance rate appears to

be very complex.

3.3 Evaluating the Test Sample

3.3.1 Absolute Versus Relative Accuracy

So far it has been assumed that there is a unique correct answer against which any given answer

hypothesis can be compared to determine correctness. This section addresses the extent to which

this is actually the case, and how the correct answers can be determined.

Assume that a small but representative sample of handprint answers has been drawn from some

particular application to be used as a training sample, a threshold-selection sample, or some other

type of test sample. First consider the case of OCR of characters printed one character per character

box, as opposed to OWC or OWR of multiple characters in a single answer box. In this case, it is

necessary only to determine the correct character to assign to each character box in the sample.

We must next decide whether it is absolute error or relative error that is of importance in the

particular application. It is almost always the latter, which is a good thing because the former is

very difficult to measure. The former requires distinguishing between printing and spelling errors
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made by the person filling out a form and recognition errors made by the OCR system reading the

form.

Consider the case where the person filling out a form interchanges the letters “o” and “e” in the

word “people”. How should a system (including human key entry) be scored that produces the

answer hypothesis “poeple” and how should a system be scored that produces the answer hypothesis

“people”? What if the “o” and “e” have been printed over as if to correct the misspelling, or to

introduce it? What if one of the two letters is completely illegible, and the other is clearly legible,

but in the wrong location? What if neither letter is legible? What if a letter in some word is cleaxly

not the letter that it is supposed to be, but it is not clear what letter it actually is supposed to

be? These can be the subject of much debate if absolute error is the goal, but they are only minor

problems if relative error is the goal.

If an absolute error measure is the goal, it is necessary to assign a correct classification to every

character. If relative error is the goal, it is necessary to assign a correct classification only to

those characters for which at least two systems provide different character hypotheses and allow

“ambiguous” to be a permissible class. If all systems assign the same incorrect classification to

some particular character, they will all be scored correct, which may be wrong in an absolute sense,

but this will not affect the relative ranking of the systems on the test sample.

References [1] and [6] describe machine-assisted techniques for assigning correct classifications to

most characters, and rejecting a few characters as too ambiguous to classify. This technique can

be used if absolute error rates are desired. Note that it requires every character to be viewed and

classified by at least one person, and every character and classification to be viewed and accepted

or rejected by at least one different person. On the other hand, 1024 or more characters can be

viewed at one time in a context that makes incorrect classifications easy to detect, so this is a fast

process.

Section 5.2 in this report describes a procedure suitable for determining relative error rates. The

character hypotheses produced by two or more different systems are compared character by charac-

ter. Those characters for which the two systems disagree (produce different character hypotheses)

are marked and presented to at least one human for resolution. There are some trade-offs to be

considered when presenting the flagged handprinted characters for human classification. Ideally,

a large number of humans would independently classify each flagged character, and the character

would be rejected from the test or assigned a correct classification based on the results of the human
classifications. In practice, this is quite complex, and classification by a single human is usually

sufficient.

3.3.2 Importance of Context

In the procedure of Section 5.2, it is important that the flagged characters be presented to the

human classifier with no clue as to the character hypotheses produced by the different systems.

It is also important that they be presented along with sufficient context to allow the human to

surmise what character was intended. Showing the entire answer field to the human is one way to

do this. An alternate technique is described in [6].

Without such context information, a human classifier will reject most of the ambiguous characters.

This may seem like a good idea at first glance, but actually it is not. It is just these characters.
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ambigTious but still readable in context, that differentiate among tbe performances of humans and

different OCR systems. Just as the characters that are so difficult that no OCR system gets them

correct do not distingmsh among competing systems, neither do the characters that are so easy

that aU systems get them correct. It is how well an OCR system performs on the characters that

are ambiguous out of context, but can be read by humans in context, that determine whether or

not the system can produce human-level error rates.

3.3.3 Extension to OWC and OWR

The above discussion can be applied to evaluating a test sample for OWC and OWR with minor

modifications, all of which are obvious with one exception. In most applications more than one

word or phrase will be as acceptable as another, and blindly accepting only one of a number of

essentially equivalent answer hypotheses as correct may prevent the acceptance of OWC or OWR
in cases where it could save a substantial amount of money. Examples include “DRIVING THE
TRUCK”, DRIVING THE TRUCKS”, and “DRWING TRUCKS” for “DRIVING A TRUCK” as

the answer to an occupation question on a census form. All of these wHl be classified with the

same occupation code during the analysis of the answers, so none is actually any more correct or

incorrect than any other.

One way to handle this problem is to use error measures that assign small or even zero error to the

three answer hypotheses listed above. The difficulty of doing this in a way that neither occasionally

penalizes answer hypotheses that are essentially correct, nor rewards answer hypotheses that are

obviously wrong, has been mentioned earlier.

A better way would be to incorporate the final use of the answers into the OWC or OWR process.

For instance, in the example given above, the output would be an occupation code rather than an

ASCII word or phrase. In this case, the assignment of correct answer codes would be much more

straightforward than the assignment of correct answer words or phrases, and the error measures

would also be very simple and straightforward.

Exploitation of this possibility for OWC and OWR, which is a natural extension of the type of

processing that is already being carried out, may be the key to the commercial viability of OWC
and OWR. Indeed, many current OCR users were sure that their application could not tolerate

individual character boxes within each answer. However, when they discovered exactly how difficult

OWC and OWR are at the current state of the art, they decided otherwise, and settled for OCR.
Unless some further advantage can be found for OWC and OWR, these users are unlikely to see

any reason to switch from OCR to something more complex.

4 System Components Systems

In describing the complexities of integrating various components into a successful OCR system,

it is useful to study one or more operational systems. Very little can be found in the published

literature on the internal workings of complete systems. Granted, many of the technologies required

for successful OCR have been researched and results have been published, (see the Appendix for

a brief survey) but these components are typically tested in isolation and their impact on overall

recognition is not measured. Also, many of the algorithms implemented in an end-to-end system
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axe proprietaxy. Compaxiies disclose research results ob pieces of their recognition systems, but

no current publications can be found that disclose the details of a completely operational system,

except for the work conducted at NIST.

In this section we first describe in detail the NIST form-based recognition system. This is followed

by brief presentations of ERIM
,
MCC, and KODAK systems. It should be noted that the descrip-

tions of the latter three systems are based on our reading of the published papers and numerous

interactions that the first three authors of the paper have had with the principals responsible for

the integration and evaluation of these systems.

4.1 The NIST Form-based Recognition System

NIST has been actively developing performaxice evaluation methods for OCR systems since 1989

[7]. In order to understand how these systems should be tested, NIST has conducted extensive

research on OCR technology itself with a focus on processing handprinted responses on forms. As

a result, a public domain haxidprint recognition system was developed whose components are fully

disclosed, and in fact, the source code is available free of charge on CD-ROM [8].

The NIST Form-Based Handprint Recognition System (referred to from here on as the NIST system)

provides a baseline of performance with which new and promising technologies can be compared

and evaluated. As a case study, this section describes the application for which the system was

designed, provides a high-level technical description of each of the components in the system, and

presents performance statistics. At the time this paper was written, a second release of the NIST

system was nearing completion. This section describes the components comprising the new release.

4.1.1 The Application

It has already been noted that the successful application of OCR technology requires more than

system integration. State-of-the-axt solutions stiU require customization and tuning to the problem

at haxid. This being true, an operational system is laxgely defined by the details of the application.

The NIST system is designed to read the handprinted chaxacters written on Handwriting Sample

Forms (HSF). An example image of a completed HSF form is shown in figure 2. This form was

designed to collect a large sample of handwriting to support handprint recognition research. A
CD-ROM named NIST Special Data,base 19 (SD19), containing 3669 completed forms scanned in

binary at 11.8 pixels per millimeter (300 pixels per inch), is pubHcly available [9]. This data set

also contains over 800,000 segmented and labeled character images from these forms.

The NIST system is designed to read all but the top line of fields on the form. The system processes

the 28-digit fields and the randomly ordered lowercase and uppercase alphabet fields along with

the handprinted paragraph of the Preamble to the U.S. Constitution at the bottom of the form.

4.1.2 System Components

Figure 3 contains a diagram that illustrates the organization of the components of the NIST system.

Generally speaking, each of these components has many possible algorithmic solutions. Therefore,
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Figure 2: Example HSF form from NIST Special Database 19.

the NIST system is designed in a modular fashion so that different methods can be evaluated and

compared within the context of an end-to-end system. This section provides a brief description of

the most recent techniques developed by NIST for each of these tasks.

Batch Initialization: The NIST system is a noninteractive batch processing system designed to

process one or more images of completed HSF forms with each invocation. This first step loads

aU the precomputed items required to process a particular type of form (in this case HSF forms).

These items include a list of the image files to be processed in the batch, prototypical coordinate

locations of dominant form structures used for form registration, a spatial template containing

the prototypical coordinate location of each field on the form, basis functions used for feature

extraction, neural network (NN) weights for classification, and dictionaries for spelling-correction.

There are four types of fields on the HSF form: numeric, lowercase, uppercase, and the Preamble

paragraph. Each type of field requires a separate set of basis functions and NN weights. Only the

Preamble paragraph has a dictionary available. The use of these items wiU be explained in more

detail later.

Because the NIST system only processes HSF forms, form identification is not utilized. Form
identification can be avoided in any application where it is economically feasible to sort forms
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NIST Form-Based Recognition System

Batch Initialization

Next Form in Batch

Load Form Image

Register Form Image

Next Field on Form

Remove Form Box

Isolate Line(s) of Handprint

Segment Text Line(s)

Normalize Characters

Extract Feature Vectors

Classify Characters

Spell-Correct Text Line(s)

(if dictionary available)

Store Results

Figure 3: Orgajiizatioii of functional components within the NIST system.
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(whetlier automatically or manually) into homogeneous batches. Unfortunately, this is not practical

for all applications.

Load Form Image: The NIST system is strictly an oif-hne recognition system, meaning that the

time at which images are scanned is independent of when recognition tahes place. This is typical

of large-scale OCR applications where operators work in shifts running high-speed scanners that

archive images of forms on mass-storage devices for later batch conversion. For each form in the

batch, the NIST system reads a CCITT Group 4 compressed binary raster image from a file on

disk, decompresses the image in software, and passes the bitmap along with its attributes on to

subsequent components.

Register Form Image: A considerable amount of image processing must take place in order to

reliably isolate the handprint on a form. The form must be registered or aligned so that the fields

in the image correspond to the prototypical template of fields. The NIST system uses a generalized

method of form registration that automatically estimates the amount of rotation and translation

in the image without any detailed knowledge of the form [10].

To measure rotational distortion, a technique similar to that invented by Postl is used [11]. The

technique traces parallel rays across the image accumulating the number of black pixels along each

ray using a non-linear function. This is done for a range of ray angles and the angle producing

the maximum response is used to estimate the rotational skew. The image is rotated based on

this estimate, and it is then analyzed to detect any translational distortion. This step capitalizes

on the fact that most forms contain a fixed configuration of vertical and horizontal lines. Once

the rotational skew is removed, these lines correspond well with the raster grid of the image. A
run-based histogram is computed to detect the top and bottom and left and right, dominant lines

in the image.

For example, to locate the top and bottom dominant lines, the horizontal runs in the image axe

computed. The n longest runs (in the NIST system, n=3) on each scanhne of the image are

accumulated into a histogram bin. These bins axe then analyzed for relative maxima as described

in [10]. The accumulation of the n longest runs effectively suppresses regions of the form containing

handwriting and noise, and accentuates the hues on the form. The same analysis is conducted

on vertically-oriented runs to locate the left-and right-most donainant hnes. Given the locations

of these lines, translation estimates in x and y are computed with respect to the coordinates of

prototypical lines, and the image is translated accordingly. At this point, the fields in the image

correspond to the coordinates of the prototypical spatial template.

By using this general registration technique, new form types are trained automatically. A pro-

totypical form is scanned, its rotational distortion is automatically measured and removed, and

the positions of the detected dominant hnes are stored for future registrations. The result of reg-

istering 500 HSF forms is shown in figure 4. The image displayed in this figure is the result of

logically ORing the corresponding pixels across the set of 500 registered images. Notice the tight

correspondence of the boxes and the printed instructions.

Remove Form Box: After registration, the spatial template is used to extract a subimage of each

field on the form. Fields axe extracted and processed one at a time. Given a field subimage, the black

pixels corresponding to the handwriting must be separated from the black pixels corresponding to

the form. This is a difficult task as a black pixel can represent handwriting, the form, or the overlap

of both. As all the fields on the HSF form axe represented by boxes, the NIST system uses a general

algorithm that locates the box within the field subimage, and intelligently removes the sides so as to
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Figure 4; The results of 500 HSF forms registered and ORed together.

preserve overlapping characters [12]. The sides of the box are detected using a run-based technique

that tracks the longest runs across the subimage. Then, by carefully analyzing the width of the

sides of the box, overlapping character stokes axe identified using spatial cues, and only pixels that

axe certainly part of the form’s box are removed. In this way, descenders of lowercase characters,

for example, are not unnecessarily truncated. Figure 5 shows several fields before and after form

removal.

Isolate Line(s) of Handprint: The numeric and alphabetic fields on an HSF form are written

as single-line responses. After the box is removed, the handprint in these fields is isolated (or lifted

out) by simply extracting all the connected components (of black pixels) that overlap the interior

region of the detected box.

Line isolation is much more difficult for multiple-line responses such as the handprinted paragraph

of the Preamble at the bottom of the HSF form. There axe no lines provided in this paragraph

box to guide the writer, nor axe there any instructions as to how many words should be written

on a line. The handwriting is relatively unconstrained, and as a result, the basehnes of the writing

significantly fluctuate at times. This, along with the fact that the paragraph contains handprinted

punctuation maxks, makes tracking the lines of handprint difficult. Histogram projections (used
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Figure 5: Results of form box removal.

exteasively for isolating lines of macbine printed characters) are useless in this case.

The NIST system uses a bottom-up approach to isolating the lines of handprint within a paragraph.

The technique starts by decomposing the paragraph into a set of connected components. Each

component is represented by a point at its geometric center. To reconstruct the handprinted hnes

of text, a nearest neighbor search is performed left-to-right and top-to-bottom through the two-

dimensional patterns points [13]. The search is horizontally biased and links sequences of points

into piecewise-linear segments. Simple statistics are used to sort components into categories of too

small, too tall, problematic, and normal. Only those components determined to be normal are

linked together by the search.

Given these piecewise-linear trajectories, the tops and bottoms of linked components are interpo-

lated and smoothed forming line bands. Examples of these bands are shown in figure 6. They

were derived from the paragraph image displayed directly above. These bands form a spatial map,

and all the components in the image axe sorted into their respective lines in correct reading order

according to their overlap and/or proximity to these bands [14]. At this point, the handwriting in

the paragraph has been decomposed into individual text lines.

Segment Text Lines: The segmentation method used in the NIST system is image-based and

does not use the oversegmentation techniques described earlier. Connected components are used

as first-order approximations to single and complete characters. Connected components frequently

31



<?f...^.^.*T_!.*.^: —
fk

Figure 6: Line-bands computed from the paragraph image above.

represent single characters and they can be computed very quickly. On the other hand, their direct

use as character segments is prone to error. Errors occur when characters touch one other and

when characters are written with disconnected strokes (naturally occurring with dotted letters).

The NIST system was initially designed to process the numeric fields on HSF forms. Numeric fields

typically do not have any linguistic context; therefore oversegmentation schemes are of little or no

use in this case.

Building on the utility of connected components, the NIST system utilizes a method of handprint

character segmentation that uses a simple adaptive model of writing style [15]. Using this model,

fragmented characters axe reconstructed, multiple characters are split, and noise components are

identified and discarded. Visual features are measured (the width of the pen stroke and the heights

of the characters) and used by fuzzy rules, making the method robust. Examples of segmentation

results are illustrated in figures 7 and 8. The segmentor performs best when applied to single-line

responses, and then even better when the fields are numeric.

With minor modification, the same method is used to segment the isolated lines extracted from

paragraphs of handprinted text as described in [14].
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Broken Characters

Detached Strokes
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Dotted Characters

Normalize Characters: The recognition technique used by the NIST system falls under the

category of feature-based pattern classification. The segmented character images vary greatly in

size, slant, and shape. Image normalization is performed to deal with the size and slant of writing,

leaving to the recognition process primarily the task of differentiating characters by variation in

shape.

The segmented character images are size-normalized by scaling the image either up or down so that

the character tightly fits within a 20x32 pixel region. The stroke width is also normalized using

simple morphology. If the pixel content of the character image is too high, it is eroded (strokes are

thinned), and if too low, it is dilated (strokes are widened).

Slant is removed by interpolating a line between the top left-most black pixel and the bottom

left-most black pixel in the scaled image. The line (centered on the image) is used as a horizontal

shear function. The slant of the character is removed as horizontal rows of pixels in the image are

33



Two Characters Touching

More Than Two Characters Touching

Uppercase Characters Touching
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Figure 8: Segmentor results of splitting components apart.
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increasingly shifted left or right from the center of the image. Upon normalization, each character

is centered in a 32x32 pixel image.

Extract Feature Vectors: At this point, each character is represented by 1024 binary pixel

values. The Kaxhunen Loeve (KL) transform is applied to these binary pixel vectors in order

to reduce dimensionality, suppress noise, and produce optimally separable features (in terms of

variance) for classification [16].

A training set of normalized character images is used to compute a covariance matrix which is di-

agonalized using standard linear algebra routines, producing eigenvalues and corresponding eigen-

vectors. This computation is expensive, but is done once off-line, and the top n ranked eigenvectors

are stored as basis functions and used subsequently for feature extraction. Feature vectors of length

128 are used in the NIST system; each coefficient in the vector is the dot product of an eigenvector

with the 1024 pixel vector of the character being classified.

Classify Characters: Once segmented characters are represented by feature vectors, a host of

pattern classification techniques can be applied. NIST has conducted extensive research on clas-

sification methods that utilize machine learning; most of these have been various types of neural

networks [17]. In previous work, the Probabilistic Neural Network (PNN) [18] was shown to pro-

vide better zero-reject error performance on character classification problems than the Radial Basis

Function (RBF) and Midti-Layer Perceptron (MLP) NN methods. Later work [19] demonstrated

that various combinations of NN’s could provide performance equal to PNN and substantially bet-

ter error-reject performance, but these systems were very expensive to train and were much slower

and less memory-efficient than MLP-based systems.

NIST has developed a training method that produces MLP networks with performance equal to or

better than PNN for character recognition [20]. This is achieved with a single three-layer network by

making fundamental changes in the network optimization strategy. These changes are: 1) Neuron

activation functions are used which reduce the probability of singular Jacobians; 2) Successive

regularization is used to constrain the volume of the weight space; 3) Boltzmann pruning [21] is

used to constrain the dimension of the weight space. All three of these changes are made in the inner

loop of a conjugate gradient optimization iteration [22] and are intended to simplify the training

dynamics of the optimization. On handprinted digit classification problems, these modifications

improve error-reject performance by factors between 2 and 4 and reduce network size by 40% to

60%.

To classify a character, the appropriate eigenvectors (or basis functions) and MLP weight matrices

must be loaded into memory. As mentioned earlier, this is accomplished during batch initialization.

Using the eigenvectors, the normalized image is transformed into a feature vector. The feature

vector is then presented to the MLP network. The result is an assigned classification along with a

confidence value.

Spell-Correct Text Line(s): The only field on the HSF form that has any linguistic context is

the Preamble field. The Preamble contains 38 distinct words all of which are used in the dictionary.

The dictionary-based processing performed by the NIST system is somewhat different from other

correction techniques described in this paper. Up to this point, segmented character images have

been extracted from the handprinted paragraph, sorted into reading order line by line, and classified.

This results in one contiguous character stream for each line in the paragraph. The MLP weights

used to process the Preamble paragraph were trained to map lowercase and uppercase instances of
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Figure 9: Results from processing the top paragraph, image.

the same letter into the same class, making the output of the classifier case-invariant. No interword

gaps are identified by the system at this point. Examples of the raw classifications are shown in

the middle of figure 9 for the paragraph image displayed directly above then.

Words are parsed from each fine of raw classifications by applying the preloaded dictionary as

described in reference [13]. This process identifies words within the character stream while simul-

taneously compensating for errors due to wrong segmentations and classifications. The limited size

of the dictionary helps offset the burden placed on this process.

Hypothesized words are constructed from sequences of the classifier outputs and then matched to

the dictionary. When there is a sufficiently good match, the dictionary word is output, the process

resynchronizes itself in the character stream, and parsing resumes. The matching criterion takes

into account the number of errors in the word relative to the length of the word. In this way longer

words are permitted to tolerate more errors.
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Store Results: When processing the Preamble paragraph, the system produces a sequence of spell-

corrected words as output. Results of speU-correcting the paragraph image in figure 9 are hsted

at the bottom of the figure. Shorter words such as articles and prepositions tend to be frequently

deleted and in other places inserted, while the system does a reasonable job of recognizing longer

words. This type of dictionary processing is better suited to word-spotting than to full OCR
transcription.

For the numeric and randomly ordered alphabet fields, the NIST system outputs for each segmented

character an assigned class and its associated confidence as determined by the MLP classifier.

4.1.3 Performance Evaluation

The NIST system has been designed to foUow the general guidelines presented in section 3. This

sections evaluates and compares the performance of the new NIST system (HSFSYS2) described

above to its older counterpart (HSFSYSl) [8]. The older recognition system uses less robust meth-

ods and a PNN-based character classifier. Both of these systems were designed to process the HSF
forms distributed in SD19. HSFSYSl is capable of processing the forms in SD19 partitions hsLO,

hsfJ.,hsf_ 2, & hsf_3, whereas HSFSYS2 is capable of processing every one of the 3669 forms in the

database.

4.1.4 Accuracies and Error Rates

In order to compile statistics on accuracy and error rates, both systems were run across the forms

in SD19 and recognition results were stored in files. Recognition system classifications were stored

in hypothesis files, and their associated confidence Vcdues were stored in confidence files. Once gen-

erated, these files were processed using the NIST Scoring Package [23], and performance statistics

were compiled at the character and field levels. Table 1 lists the digit recognition results of running

HSFSYSl on the first 2,100 forms (partitions hsf_0 to hsf_3) in SD19. The forms in the remaining

pajtitions differ enough that the method of form registration used in HSFSYSl fails. The top

portion of the table reports character-level statistics, and the bottom reports field-level accuracies.

33 of the 2,100 forms were rejected due to form registration failures and their characters are not

included in the table. It was determined that a majority of these failures occurred due to writing

outside the provided boxes with continued responses or annotations. A small number (about 5)

failed registration due to scanner noise in critical areas on the form.

The performance statistics in table 1 can be compared to those listed in table 2. The second

table reports the digit recognition results from the new MLP-based system, HSFSYS2. These two

systems use significantly different algorithms for more than just classification. A complete system

description of HSFSYSl can be found in [8] and [24].

As can be seen from the two tables, HSFSYS2 performs significantly better than HSFSYSl. In terms

of digit accuracy, HSFSYS2 is 3.2% more accurate at 96.3% and it recognizes 86% of the digit fields

entirely correct (6% more than HSFSYSl). This difference in accuracy is primarily attributed to the

different segmentation methods used in both systems, not to the different classifiers. Studies have

shown that at zero-rejection, PNN and the new MLP classifier have similar accuracy [20]. Looking

at deletion errors, HSFSYS2 cuts them by 80% which testifies to the improved performance of the

system’s statistically adaptive segmentor. In addition, HSFSYS2 is capable of registering every
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HSFSYSl DIGIT RECOGNITION
(A) Characters

hsf_0 hsfjl hsf_2 lisf_3 Total

Correct 92.9%
59288

93.0%
59868

92.6%
58258

93.9%
72872

93.1%
250286

Substituted 3.9%
2481

3.9%
2531

4.1%
2578

3.6%
2782

3.9%
10372

Inserted 0.6%
398

0.7%
475

0.6%
385

0.7%

539

0.7%
1797

Deleted 3.2%
2061

3.0%
1951

3.3%
2084

2.5%
1956

3.0%
8052

Total 63830 64350 62920 77610 268710

(B) Fields

Correct 79.0%
10865

79.5%
11012

79.1%
10717

81.7%
13662

79.9%
46256

Total 13748 13860 13552 16716 57876

Table 1: HSFSYSl accuracies and error rates for digit fields across the first part of SD19. Part (A)

reports character-level statistics and (B) reports field-level statistics.

form in SD19, with only 10 fields (6 digit fields, 1 lowercase field, and 3 Preamble fields) rejected

due to poor image quahty. The characters from these 10 fields have been tallied into the reported

statistics as deletions.

The results of uppercase recognition can be compared between tables 3 and 4. HSFSYS2 recognizes

uppercase characters at nearly 90% (4.6% higher than HSFSYSl). Again, the difference in perfor-

mance can be primarily attributed to the segmentation methods used. With HSFSYS2, insertion

errors are reduced by 46% and deletion errors by 58%.

Lowercase statistics are listed in tables 5 and 6. HSFSYS2 correctly recognizes not quite 80%
of the lowercase characters in SD19. Not only does the new system employ a new segmentor, it

also conducts intelligent line removal that preserves character stroke data that overlaps with the

form and extends beyond the immediate limits of the field. In an independent study, it was shown

that one can expect up to a 3% improvement in lowercase accuracy when using this method of

hne removal [12]. The difference between HSFSYSl and HSFSYS2 is 2.8%, some of which can

be directly attributed to the line removal. Adaptive character segmentation is also contributing,

as insertion errors are reduced by 70%. This demonstrates the segmentor’s abihty to compose

characters from multiple components, as unattached fragments contribute to insertion errors. On
the other hand, the number of deletion errors increases with HSFSYS2. This leads one to conclude

that the adaptive segmentor may be over-aggressive in merging components, and not aggressive

enough when it comes to spHtting touching characters. Independent studies have shown that the

general segmentation method used in HSFSYS2 can benefit from further refinement for lowercase

characters [15].

The last pair of tables (tables 7 and 8) list the results of recognizing words across SD19’s Preamble

fields. SD19 has completed Preamble paragraphs only in its first 4 partitions. These word-level

statistics were computed by tokenizing each word in the system output. The NIST Scoring Package

was then used to align the word tokens with the known Preamble text and statistics were accumu-

lated. Much effort was spent in improving the hne isolation algorithm used in HSFSYS2 [14]. Even

so, overall word accuracy only improved 2.3% (61.6% to 63.9%). Considerable work stiU remains
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HSFSYS2 DIGIT RECOGNITION
(A) Characters

hsf.O hsf_l lisf_2 lisf_3 hsf_4 hsf.oT hsf_7 hsf_8 Total

Correct 96.6%
62772

96.5%
62731

96.1%
62486

97.2%
75804

93.7%
60933

97.3%
63144

96.3%
62615

96.9%
8817

96.3%
459302

Substituted 2.8%
1816

2.9%
1871

3.0%
1972

2.4%
1891

5.5%
3575

2.1%
1367

3.0%
1920

2.5%
229

3.1%
14641

Inserted 0.7%
454

0.7%
487

0.7%
425

0.7%
571

0.8%
489

0.5%
318

0.6%
422

0.3%
25

0.7%
3191

Deleted 0.6%
412

0.6%
398

0.8%
542

0.4%
305

0.8%
492

0.6%
359

0.7%
465

0.6%
54

0.6%
3027

Total 65000 65000 65000 78000 65000 64870 65000 9100 476970

(B) Fields

Correct 86.3%
12084

86.7%
12139

86.2%
12068

88.6%
14881

77.5%
10855

89.6%
12517

86.5%
12105

88.2%
1728

86.0%
88377

Total 14000 14000 14000 16800 14000 13972 14000 1960 102732

Table 2: HSFSYS2 accuracies and error rates for digit fields across SD19. Part (A) reports

cbaracter-level statistics and (B) reports field-level statistics. (^Segmented character images from

the writers in this partition were used to train the neural network classifiers.)

HSFSYSl UPPERCASE RECOGNITION
Characters

hsf_0 hsf_l hsf_2 hsf_3 Total

Correct 84.7%
10808

85.5%
11004

84.7%
10661

86.2%
13377

85.3%
45850

Substituted 12.8%
1636

11.8%
1524

12.8%
1609

12.0%
1858

12.3%
6627

Inserted 4.7%
599

4.3%
556

5.5%
687

4.6%
717

4.8%
2559

Deleted 2.5%
322

2.7%
342

2.5%
314

1.8%
287

2.4%
1265

Total 12766 12870 12584 15522 53742

Table 3: HSFSYSl accuracy and error rates for uppercase fields across the first part of SD19.

in improving the segmentation of vertically and horizontally touching characters, the detection of

punctuation marks, and dictionary-based are speU correction.

As a final note on these accuracy statistics, note that results are reported with HSFSYS2 run across

the entire set of forms in SD19. This is one of the largest pubHshed experiments of its kind, and

it is reproducible by purchasing the SD19 database from NIST. In all, sample handwriting from

3669 writers was tested and a total of 109,200 words and 667,758 characters were recognized and

scored. As SD19 is our only handprint database, training samples were extracted from specific

writer partitions and used to train the PNN and MLP character classifiers off-line. From the

667,758 characters, 109,719 were used in training. In the case of digits, the writers in hsf_6 (6,1094

characters) were used in the training set, and in the case of upper and lowercase, writers in both

hsf_4 and hsf_6 (totalling 24,420 uppercase characters and 24,205 lowercase characters) were used.

Comparing the HSFSYS2 results on hsf_6 to other partitions, it is interesting to see that the
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HSFSYS2 UPPERCASE RECOGNITION
Characters

hsf.O hsf_l hsf_2 hsf_3 hsf_4t hsf_6T hsf_7 hsf_8 Total

Correct 89.1%
11587

89.3%
11603

89.2%
11591

89.9%
14029

90.3%
11740

93.0%
12062

88.9%
11563

89.5%
1629

89.9%
85804

Substituted 9.7%
1256

9.3%
1210

9.4%
1223

9.1%
1425

9.1%
1187

6.5%
847

10.4%
1347

8.8%
161

9.1%
8656

Inserted 2.3%
294

2.3%
300

2.5%
320

2.7%
426

3.4%
436

2.4%
315

2.6%
336

1.4%
25

2.6%
2452

Deleted 1.2%
157

1.4%
187

1.4%
186

0.9%
146

0.6%
73

0.5%
65

0.7%
90

1.6%
30

1.0%
934

Total 13000 13000 13000 15600 13000 12974 13000 1820 95394

Table 4: HSFSYS2 accuracy and error rates for uppercase fields across SD19. (^Segmented char-

acter images from the writers in this partition were used to train the neural network classifiers.)

HSFSYSl LOWERCASE RECOGNITION
Characters

hsf_0 hsfJ. hsf_2 hsf_3 Total

Correct 75.1%
9593

76.8%
9890

76.5%
9625

78.7%
12217

76.9%
41325

Substituted 22.9%
2927

21.4%
2748

22.3%
2804

19.9%
3092

21.5%
11571

Inserted 3.2%
405

2.6%
336

3.0%
381

3.2%
500

3.0%
1622

Deleted 1.9%
246

1.8%
232

1.2%
155

1.4%
213

1.6%
846

Total 12766 12870 12584 15522 53742

Table 5: HSFSYSl accuracy and error rates for lowercase fields across the first part of SD19.

inclusion of hsf_6 in the classifier training does have a small influence. With digits, HSFSYS2 is

97.3% correct on hsf_6 whereas the results on hsf_3 are alm ost as good at 97.2%, and the other

partitions (with the exception of hsf_4) range between 96% to 97%. The writers in hsf_4 are

from a different population and are known to be statistically more difficult to recognize [25]. The
influence of training is a bit more pronounced for the results on uppercase and lowercase fields. On
uppercase, HSFSYS2 is 93% correct on hsf_6, and the other partitions range between 89% to 90%.
For lowercase, HSFSYS2 is 83% correct on hsf_6, and other partitions range between 77% to 80%.
These small differences (particularly for the digits) demonstrate that the MLP character classifier

is doing a reasonably good job at generalizing on writers it hasn’t seen during its off-line training.

The MLP-based system doesn’t generalize as weU on uppercase and lowercase recognition in part

because fewer training samples were used than for digits.

4.1.5 Rejection versus Error Rate

Using a machine for OCR in many ways complements the performance of humans. Machines are

very efficient in doing tasks that are primarily repetitive and reflexive, whereas humans quickly

fatigue under these conditions. Humans, on the other hand, are very adept at performing tasks
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HSFSYS2 LOWERCASE RECOGNITION
Characters

hsf_0 hsf_l hsO lisf_3 lisf_4t hsf_6t hsf_7 hsf_8 Total

Correct 77.2%
10042

78.6%
10218

77.8%
10109

80.4%
12541

82.6%
10739

82.9%
10756

79.1%
10280

75.5%
1374

79.7%

76059

Substituted 20.4%
2654

19.2%
2495

20.3%
2645

17.8%
2781

15.1%
1967

15.2%
1966

18.4%
2397

20.5%
373

18.1%
17278

Inserted 0.9%
119

0.8%
102

0.8%
no

1.1%

168

0.8%
no

0.6%
75

0.9%
114

1.0%
18

0.9%
816

Deleted 2.3%
304

2.2%
287

1.9%
246

1.8%
278

2.3%
294

1.9%
252

2.5%
323

4.0%
73

2.2%
2057

Total 13000 13000 13000 15600 13000 12974 13000 1820 95394

Table 6: HSFSYS2 accuracy and error rates for lowercase fields across SD19. {^Segmented character

images from the writers in this partition were used to train the neural network classifiers.)

HSFSYSl PREAMBLE RECOGNITION
Words

hsf_0 hsfj. hsf_2 hsf_3 Total

Correct 60.3%
15403

59.8%
15387

60.5%
15237

65.0%
20166

61.6%
66193

Substituted 15.2%
3871

14.3%
3676

14.0%
3525

12.7%
3943

14.0%
15015

Inserted 1.1%
283

0.9%
224

1.1%
270

1.1%
335

1.0%
1112

Deleted 24.5%
6258

25.9%
6677

25.5%
6406

22.3%
6935

24.4%
26276

Toted 25532 25740 25168 31044 107484

Table 7: HSFSYSl accuracy and error rates for Preamble fields across SD19.

requiring higher-level reasoning, and as a result they provide more robust but much slower solu-

tions to complex problems. Accounting for these differences, successful recognition systems allow

the machine to perform the bulk of the work, and on an exception basis, humans are used to

resolve ambiguities and potential errors. This is accomphshed through rejection mechanisms that

automatically route low-confidence machine decisions to humans for verification. This section com-

pares the ability of the two NIST recognition systems to effectively reject low-confidence character

classifications.

The graph in figure 10 plots rejection versus error rates with error plotted on a logOrithmic scale.

Restilts are shown for both HSFSYSl and the new system HSFSYS2, and the results are broken

out by digit, upper, and lowercase recognition. In general, as the number of rejected character

classifications increases, the error rate on the remaining accepted (or non-rejected) classifications

decreases, and accuracy improves. Also, the impact of rejection on accuracy tapers off as more and

more characters are rejected. In the figure, the bottom two curves represent the performance of

the new and old systems on recognizing characters in the numeric fields on the HSF forms. With

no rejection, HSFSYS2 has an error rate near 4%, and HSFSYSl has an error rate over 7.5%.

As the number of rejected digit classifications is increased, the error rate proceeds to drop, but

HSFSYS2 falls at a significantly faster rate than does HSFSYSl. The difference in the slope of the

two digit curves testifies to the robustness of the MLP classifier used in HSFYS2 over the PNN

41



HSFSYS2 PREAMBLE RECOGNITION
Words

hsf.O hsfj. hsf_2 lisf_3 Toted

Correct 62.6%
16276

62.4%
16231

62.7%
16304

67.2%
20961

63.9%
69772

Substituted 15.4%
4012

15.2%
3958

14.7%
3833

12.6%
3940

14.4%
15743

Inserted 1.6%
405

1.0%
260

1.1%
287

1.3%
418

1.3%
1370

Deleted 22.0%
5712

22.4%
5811

22.6%
5863

20.2%
6299

21.7%
23685

Total 26000 26000 26000 31200 109200

Table 8: HSFSYS2 accuracy and error rates for Preamble fields across SD19.

classifier used in HSFSYSl. The digit error rate of HSFSYS2 continues to drop to nearly 1.2% at

15% rejection. One concludes from these results, that in terms of recognizing numeric fields, the

new NIST recognition system has hale the error-rate of the original syatem for a moderate rejection

level.

The differences between the two systems, is less dramatic with uppercase and lowercase recognition.

The middle two curves in figure 10 correspond to the results of recognizing the uppercase alphabet

fields on the HSF forms. The HSFSYS2 curve does fall off slightly faster than does HSFSYSl ’s,

but the distance between the curves is not as large as that of the digit curves. With no rejection,

HSFSYS2 has an error rate of almost 13% and HSFSYSl just over 19%. The two lowercase curves

are even closer to each other, and they maintain pretty much the same relative distance across the

range of rejections plotted. This emphasizes that lowercase recognition is stiH the most difficult for

the NIST systems. The small increase in separation between these two curves as rejection increases

can be attributed to a combination of two factors. First, the decision surfaces trained within the

MLP classifier for lowercase are much more complex than those of uppercase, and the decision

surfaces for uppercase are more complex than those of digits [20]. Second, the challenges remaining

in the system that are effecting accuracy lie primarily in components other than the classifier.

Otherwise, the relative slopes in the upper and lowercase curves would more closely resemble those

of the digit classifications.

4.2 Other Systems

The NIST OCR System Conferences evaluated a number of OCR systems developed by University

researchers and companies in the U.S. and abroad. A general discussion of the evaluations is

presented in Section 5. Due to proprietary considerations, only a high level understanding of the

system configurations and module functionalities has been possible. For the sahe of completeness we
present brief descriptions of three of the systems evaluated at the NIST OCR System Conferences.

These are the systems designed at ERIM [26, 27], MCC [28, 29] and KODAK [30]. The ERIM
system is based on an Image Analysis approach, while the MCC and KODAK systems have taken

an integrated segmentation and recognition approach using NN’s. The KODAK system can be
viewed as an enhanced and improved MCC system.
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% REJECTED

Figure 10: Rejection versus error rates for digit, upper, and lowercase recognition between HSFSYSl
and HSFSYS2.

4.2.1 The ERIM System

Application of UUman’s minimal mapping theory [31] of minimal correspondence has resulted in a

system that gave the lowest field-error rates and lowest field-distance rates at all rejection rates in

the Second OCR Systems Conference [4]. This system, designed by ERIM, uses an effective com-

bination of techniques such as feature-based matching, NN’s for learning feature attributes, and

unsupervised clustering schemes for generating character prototypes. After the mundane prepro-

cessing steps such as noise removal, slant correction, and scaling to a fixed height, feature extraction

driven by morphological operations is performed on multi-letter images. By identifying valleys in

the core stroke image, possible segmentation points (PSPs) are identified and features axe extracted

between pairs of PSPs. The features used are core area (where the center stroke information falls)

and discrete features extracted from six feature images (stroke above and below the core, holes and

concavities, lower and upper limbs in the core). Finding the discrete features amounts to extracting

connected components for holes, concavities and, lower and upper strokes, whereas for lower and

upper limbs, the extracted connected components are broken into local maxima and minima. To

generate the matches between character samples and character models, a random graph structure,

in which vertices represent character features and edges the spatial relationships between feature

pairs, is used. Features extracted as described above are represented using the attributes of position

and shape. The shape attribute is extracted using an NN training scheme.

For each PSP pair, a correspondence matching algorithm formulated as an assignment problem is

invoked. For each string in the given lexicon, an optimal match between the word image features
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and the model of the string is determined using a dynamic programming (DP) technique. Since

hand-printing can produce many variations, several character templates for each of the 26 lower-

case, printed, 26 upper-case, and 26 lower-case cursive characters are generated from the training

set using an unsupervised clustering procedure. A total of 457 character model prototypes is used

in the system derived from 996 word images. This system judged to be the best performing OCR
system at the Second OCR System Conference, is a good example of a commercial application of

computer vision research.

One of the important features of the ERIM system is the ability to generate confidence measures

along with the matched word. The word confidence measure and the ranking is derived from the

probability that a word model for the given string generated the set of features extracted from

the word image. The distributions for the position and shape attributes of the extracted features

are derived as part of the feature extraction process. Using assumptions such as the conditional

independence of the probability distribution of features, that the spatial relationships between the

features are independent of ajiy feature other than those connected to the given ones and that the

conditional distributions of the edges are independent, one can generate the probability of a word

from probabilities of its component features. The ERIM system provides an excellent example

of a pure OWR (as distinguished from OCR followed by OWC, illustrated by the NIST system

described earlier in this report).

Figure 11 illustrates aspects of the ERIM segmention process for the word medical appearing in

an answer box. The final ten segments are shown at the bottom of the figure. Figure 12 shows

the combinations of segments produced by the ERIM segment-combining process, including some

that are rejected as very likely multiple characters. A total of 34 unions were created, and a

total of 24 were accepted as likely character candidates. Each union was recognized by the ERIM
isolated-character recognizer, but the output of the recognition process was not the character with

the highest recognition confidence value. Instead, the output was a vector of confidence values, one

for each letter of the alphabet.

The ERIM word-construction algorithm tests each word from the dictionary of allowed words

against the set of 24 confidence vectors in a search for the best mapping of the segments and unions

onto the letters in each word. Figure 13 illustrates the ERIM algorithm for the case where the

dictionary entry is identical to the unknown answer. (Note that this is possible only when the

unknown answer is contained in the dictionary as described above.) Each of the original segments

of the word medical corresponds to a column in the matrix. Each row of the matrix corresponds to

a letter in medical. A dynamic programming algorithm is used to map the segments along the top

of the matrix onto the letters along the side of the matrix in such a way as to maximize a product

that is described below.

The path through the matrix in Figure 13 illustrates the mapping of the segments and unions of

medical onto the letters of medical by the dynamic programming algorithm. Only diagonal steps

down and to the right, and horizontal steps to the right, are allowed on this path.

A diagonal step in Figure 13 signals the start of a new letter, while a horizontal step signals a union

of segments. The path staxts with a diagonal step down from the upper left hand box to signal the

start of the first letter. The path takes two horizontal steps before taking another diagonal step

down. This indicates that the first three segments along the top of the matrix are to be treated as

a umon and mapped onto the first letter m on the left-hand side of the matrix. It is convenient to

suppose that the dynamic programming algorithm extracts the confidence with which that union
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Figure 11: Segmentation of the word “medical” by the ERIM system.

45



Primitive

Segments

Unions
2Dd Census

OCRSjntems
Contence

UnlanSize

(Number of Primitive Segments)

/ A At AlL
1 A AL A&
1 IL t& p^fiC
L &

D D» Die<

» ic.

t^k
*- kt.

1.

Figure 12: Formation of unions from segments by tbe ERIM system

46



Figure 13: Selection of the best combination of unions of segments to represent a word from a

dictionary of expected words.
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was recognized as an. m and puts this confidence into the last box before the diagonal step.

The diagonal step signals the start of the second letter. This time the union of two segments is

mapped onto the letter E, and the confidence of the recognition of this union is put into the last box

before the diagonal step that signals the start of the next letter. This time a single segment that

looks like a jD is mapped onto the letter D, and the confidence of the recognition of this segment

as a £> is put into the box under that segment. This process proceeds with diagonal steps through

the letters I, C, A, and L.

After this process is completed for every combination of letters and segments, there is a confidence

value in the last box associated with each letter (the box that precedes a diagonal step in the

matrix). The dynamic programming algorithm chooses the path that maximizes the product of

these confidence values for any given combination of letters and segments. Thus a separate word-

level confidence value is produced as a measure of how consistent each dictionary word is with the

segments produced from the answer in some box. Finally, the word from the dictionary that has

the greatest word-level confidence value is chosen as the best match.

In a subsequent paper [27] ERIM presented the design details of a phrase recognition system,

where a phrase can include multiple words, abbreviations, etc. Such applications arise in matching

a database record such as business, street name, etc. The key components of this system are a

word segmentor, a word recognizer, a lexicon generator and a dynamic phase recognizer. As the

intent is to handle both printed and cursive words, several techniques are used in the system. In

the case of the word segmentor module, machine-printed words can be separated by using simple

projection-based techniques. Since projection-based techniques do not work for cursive words, both

over- and under-segmentation of the fine image is done to mark possible locations of word brealcs.

Under-segmentation is done using breaks at large gaps between successive components, while over-

segmentation is done at locations such as capital letters, punctuation, etc. to produce multiple

hypotheses to be evaluated by the word recognizer. To keep the system’s capabilities as general

as possible, evaluation of word hypotheses is done using four kinds of word recognizers. Two of

the word recognizers use hidden Markov models trained on printed and cursive words, respectively.

The third is the word recognizer designed using the feature correspondence matching approach

described earlier. The fourth recognizer is based on segmentation followed by evaluation using a

dynamic programming technique. Since all of these modules return their top few choices and the

associated confidence measures, a voting scheme and reject curve are used for deciding on the top

choice and its new confidence measure.

The recognized words axe structured into phrases using a lexicon-directed dynamic progranaing

approach. For the case of matching of street names, the phrase lexicon is generated using aliases,

abbreviations, suffixes, and prefixes of street names. The results of experiments with 1200 hand-

written mail-pieces containing street address information indicated acceptable performance.

4.2.2 The MCC System

The MCC system is based on a novel approach to Integrated Segmentation and Recognition (ISR)

using NN’s [32, 29]. The network uses a sliding window and attempts to recognize a character only

if the window is centered on it. If the window center is between two characters a NOT-CENTERED
condition is declared. The training set is prepared by a human who clicks at the horizontal center

of each digit in sequence using a mouse button, and associates a digit label with each such center.
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The taxget output is generated, during training as follows: When the center position of the window

is within ±2 pixels of the center of a character, the target value of the character’s output node is

set at the maximum with the target values of the NOT-CENTERED mode and all other characters

set at the minimum, When the center position of a window is within ±2 pixels of the halfway point

between two character centers, the reverse situation holds. The NN is a two-hidden-layer MLP
network, with local shared connections in the first hidden layer, and local connections in the second

hidden layer. The weight-sharing techniques used to reduce memory reqturements often yielded

poor results.

This approach has been extended to handle hand-printed digits and characters [29]. An added

feature to the approach described above is the introduction of a saccadic scan. This is accompHshed

by training a MLP net to estimate the distance to the next character on the right so that at

run-time, the system can navigate along a character field by effectively jumping over the spaces

between characters. This effectively reduces the number of forward passes required compared to

the exhaustive scanning scheme [32]. In addition to the saccade system, when the recognition

of handwritten characters is considered, post-processing techniques that use dictionaries result in

significant reductions in the field error rate.

4.2.3 The KODAK System

It has been observed [30] that the MCC system using saccades worked weU on nicely spaced char-

acters, but if the localization was on inter-character space, then the saccade could move to the

previous character and classify it the second time. The reason given for this is the discontinuities

in weight values in the first processing layer lead to significant changes in input that get fed to

the NN when even small shifts are present in the input image. The saccade network in the MCC
system has the burdensome task of making saccades as web. as classification of characters using a

single complicated network. The KODAK system is an improvement over the MCC system using

the following modifications: a) projections of Gabor-basis sets are used as inputs instead of raw

input image windows, and the task of positioning and classification are done by two separate NN’s.

The positioning network accepts as inputs size-normalized subfields of disconnected groups of char-

acters with a spacing of six pixels and with two black rows appended at the top and bottom. The

resulting image is processed by a feature extraction layer that basically performs projection onto

Gabor basis sets. The input layer is followed by three hidden layers and an output layer with 12

outputs. As the input window slides to each pixel position in the input field, the output layer pro-

duces 12 activations corresponding to the chosen pixel position in 12 consecutive windows. Using a

weighted average of these activations and some post processing, a waveform with peaks character-

izing the positions of characters is produced. Based on extensive testing with the NIST database,

the author reports that 91% of all characters were positioned to within a pixel. Comparisons with

the performance of the MCC saccade system show the superior performance of the positioning

network.

The classifier network is similarl to the positioning network, but has only two hidden layers, and

an output layer with 10 outputs for digits. To account for the errors in positioning the characters,

the classifier network was trained and tested on five copies of input fields corresponding to shifts of

up to and including two pixels on either side of the center pixel. Comparison to the saccade system

shows improved performance.
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An interesting part of this work [30] is the system-level comparison of performance with the SAC-

CADE, NESTOR, AEG, and IBM systems. Using a small test data set (240 fields with 1492

characters) from IRS forms the author concludes that the KODAK system performed better than

the others.

5 Evaluation Studies

This section summarizes the results of three different system evaluations in which the authors were

involved. Two of these, the First and Second Census OCR Systems Conferences, were run by NIST

for the U.S. Bureau of the Census to ascertain the state of the OCR art with respect to Census-

like applications. The third was a comparison of two OCR engines that was commissioned by a

company that had recently developed a new OCR engine.

For the purpses this paper, these comparisons can be viewed as tests requiring very different levels

of segentation capability. The First Census OCR Systems Conference required no segmentation

capability. The test data for this comparison were isolated handprinted characters that had been

segmented from weakly constrained handprint entered onto questionnaires by members of the gen-

eral population. The only constraint on the handprint was a box into which all of the characters

associated with a particular question were to be printed. This was the level of constraint imposed

by the type of questionnaire generally used by the Census Bureau at the time of these conferences,

so this was the type of task of interest for benchmarking.

The comparison of two OCR engines involved a relatively simple segmentation task. The test data

for this task were short strings of handprinted characters, each letter in a separate box. The spacing

between boxes was uniform, and was available to the OCR systems to help in the segmentation

process. This task is typical of what is being done in commercial applications today.

The Second Census OCR Systems Conference involved a much more difficult segmentation task.

The test data for this task were single rectangular boxes containing all of the handprint characters

that constituted fuU answers (words or phrases) for the questions on the questionnaire. The only

constraint was the height and width of the rectangle into which the word or phrase answer was to be

entered. Since there were no boxes for individual characters, the spacings between the characters,

the number of touching and overlapping characters, and the slant of the characters were largely

unconstrained. Related discussions on performance metrics for an objective evaluation of automated

data-entry sytem is presented in [33].

5.1 First Census OCR Systems Conference

As mentioned above, the test materials for the First Conference were separate images of single

handprinted characters that had been isolated from a sample of (largely) unconstrained answer

phrases. The resulting images were checked to assure that they contained single characters that

could be identified in context before distribution to the conference participants. A small fraction of

the images failed this test and were removed from the test sample. Thus the First Conference was
concerned only with the central OCR task, the assignment of the correct ASCII character to the

image of an isolated character. At the time of the First Conference, it was widely believed that this

problem was essentially solved, and it was desired to verify or refute this belief. The test materials
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for the First Conference consisted of about 60,000 digital images of digits, 12,000 lower-case letters,

and 12,000 upper-case letters. The digit images were approximately uniformly distributed among

the ten digit classes, and the letter images were approximately uniformly distributed among the 26

letter classes. The digits and letters were produced by about 500 different people.

Training materials were provided before the actual test so that Conference participants could adjust

their systems to the data formats adopted for the Conference, and train their systems on a large

data set, if they did not already have one available. The training materials were similar to the

test materials with three exceptions: 1) approximately four times as many images of digits and

letters from approximately 2100 writers were provided, in an attempt to provide sufficiently diverse

examples for training, 2) different segmentation algorithms were used to produce isolated images

of single characters for the training materials than were used for the test materials, and 3) the

populations who created the training and test materials were not identical.

The training materials were obtained from 2100 fiUed-out questionnaires that were returned, out of

3000 questionnaires that were mailed to permanent Census Bureau field employees. The resulting

images clearly came from highly motivated people, as demonstrated by the fact that they filled

out and returned the questionnaires. The test materials were obtained from questionnaires filled

out by students at a local school as a supervised class exercise. The students were probably not

as motivated as the Census employees. In fact, a cross-validation study detected a statistically

significant difference between the digits and letters printed by the Census employees and those

printed by the students. In particular, the training digits turned out to be a subset of the test

digits even though there were more of the former. On the other hand, neither the training letters

nor the test letters were a subset of each other. Rather, each contained unique letters not contained

in the other.

Figures 14, 15, and 16 summarize the results of the First Conference test in terms of error versus

rejection curves. These results consist of 118 submissions from the 26 (of 29) participants who

provided submissions for scoring. Note that the shapes of these curves are very similar even for

systems having very different performances at zero rejection rate. In fact, it is possible to fit all of

the error-rate versus rejection-rate curves to a simple model that shows that most of the systems

are behaving as if they were Bayesian classifiers deciding between no more than two plausible

alternatives [5].

About half of the systems correctly recognized over 95% of the digits, 90% of the upper case letters,

and 80% of the lower-case letters. For comparison, a human correctly recognized about 98.5% of

the digits. Not all participants used the NIST training materials, but many did. This included

some participants who had larger or more general data sets available for training, but chose to use

the NIST set to remove training-material quality as a variable in the test. Many of the participants

in this catagory felt that the NIST training materials limited the performance of their systems in

the test. Following the test, some of these participants carried out further tests to demonstrate

this poiat. In the meantime, NIST carried out further, but still very limited, studies of human
classification of the test images.

The results of some of these studies are summarized in Figures 17, 18, and 19. These figures suggest

that human performance is still better on digits and lower-case letters at zero rejection rate, but

machine performance can produce significantly lower error rates at commercially viable rejection

rates than can human performance, which is not at all suited to sophisticated rejection strategies.

In other words, human and machine recognition capabilities have complementary strengths and
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Figure 14: Error rate versus rejection rate for isolated digits for systems in the First OCR Systems

Conference.
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Figure 15: Error rate versus rejection rate for isolated upper-case letters for systems in the First

OCR Systems Conference.
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Figure 16: Error rate versus rejection rate for isolated lower-case letters for systems in the First

OCR Systems Conference.
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Figure 17: Comparison of human error rate versus rejection rate for isolated digits with that for

some system results obtained following the First OCR Systems Conference.
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Figure 18: Comparison of human error rate versus rejection rate for isolated upper case letters with

that for some system results obtedned following the First OCR Systems Conference.
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Figure 19: Comparison of human error rate versus rejection rate for isolated lower case letters with

that for some system results obtained following the First OCR Systems Conference.
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weaknesses, and a system that uses the strengths of one type of recognition to compensate for the

weaknesses of the other type can outperform either one alone.

The major conclusions of the first conference were:

• At small rejection rates, many implementations of OCR algorithms behave like Bayesian

classifiers that need to choose between no more than two different plausible characters when

recognizing images of isolated characters. Therefore, the differences in performance among

different OCR algorithms occur primarily in two areas: 1) the fraction of images for which

only one chaxacter is plausible, and 2) the largest rejection rate for which the choice remains

between only two plausible characters. The first difference determines the error rate at zero

rejection rate. The second determines the minimum error rate achievable with rejection of

some fraction of the images.

• Human and machine recognition of isolated characters have complementary strengths and

weaknesses. Human performance, which has access to a hierarchy of capabilities ranging

from highly reflexive to highly cognitive, 1) is capable of superior accuracy on the hardest

cases and, 2) requires much more time for these cases than for the easiest cases, and 3) will

not improve much over the next ten years. Machine performance, which provides a measure of

the classification accuracy along with the classification, 1) is capable of higher accuracy with

sufficiently high rejection rates, 2) sacrifices very little speed to achieve reliable rejection, 3) is

capable of higher sustained speeds over long periods of time, and 4) will improve substantially

in all areas of performance during the next ten yeaxs due to continually increasing computing

power.

• While it is true that machine performance is currently roughly compaxable to human per-

formance in the recognition of images of isolated characters, this result misses the point.

The key conclusion is that it is possible (in both priuciple and practice) to combine machine

and human OCR capabilities in a hybrid system to achieve both lower error rates and lower

cost than can be obtained from a purely human key-entry or a purely machine OCR system.

However, a significant re-engineering effort, starting with form redesign, may be necessary to

obtain these improvements.

5.2 Evaluation of Two OCR Systems

This section summarizes a comparison of two OCR engines that was commissioned by a company
that had recently developed a new OCR engine. Internal studies suggested that the new engine

was better than another commercial engine that was weU accepted as an industry standard. The
company wanted to verify independently that the new product was indeed significantly better in

a typical application than the industry standard product. The two products will be referred to as

System 1 and System 2 in this section.

Both systems were OCR rather than OWR systems—that is, they produced characters rather

than words or phrases as output. The systems were separately compared in the recognition of

handprinted digits, uppercase letters, and mixed uppercase and lowercase letters referred to as

alpha. As mentioned in the introduction to this section, the test materials for this comparison were

typical of the types of applications for which commercial OCR systems are being used, whereas the
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other comparisons discussed in this section are not. Furthermore, the comparisons were conducted

in a manner as similar as practical to the sorts of tests that might be carried out by a potential

customer. Therefore, this comparison illustrates how a potential user might conduct a comparison

of two or more OCR software products before replacing a key-entry system with one of them.

Figure 20 shows the form that was used to collect a handprint sample for the comparison. Only

the characters above the boxes were used in the comparison. The samples of the other characters

were collected in anticipation of future reseaxch and compaxisons. AH future references to the form

or form design in this section are restricted to the characters above the boxes.

The particular form design shown in Fig. 20 was chosen to minimize the cost of classification

and verification of the handprinted characters entered on the form. Different form designs will

be better suited to comparing the performances of OCR engines in different applications. Since

apphcation-specific and generic tests have sHghtly different goals, they impose somewhat different

constraints on form design. However, it is very unlikely that the choice of the form adopted for

the comparison reported here had a significant effect on the outcome of the comparison since all

system were subject to the same form limitations.

Except for the use of a separate box under each character, the form shown in Fig. 20 is not well

optimized to improve OCR accuracy. The use of separated boxes and drop-out ink, as well as other

measures, could provide substantial improvements in OCR accuracy.

Alphabetical and numerical order were chosen to reduce the hkehhood that a person would inter-

change two characters when filling out the form. This type of handprint error is fairly common,

and it is probably more hkely with random groups of characters (nonsense words) than with the

alphabet, due to alphabet training in school. The alphabet was broken into small groups to sepa-

rate either the uppercase or the lowercase letters that are the most difficult to teU apart without

context clues. It was thought that separating these characters would reduce the chance that a

person would interchange them when filling out the form. This grouping should also reduce offset

errors, but these are already fairly unlikely on a form with a separate box for each character.

The low probability of offset error means that a fairly good estimate of the classification of each

character in each box can be obtained from the location of the box on the form. Since errors are

still possible, some sort of verification of the classification assigned by location is stiH needed. It

was decided to carry out the verification as an operator-assisted step during the OCR process.

Volunteers were encouraged to fiU out the forms by an incentive. (Enrollment in a drawing with

a small but not worthless prize is an example of a good incentive.) A total of 1200 forms were

collected. These forms were scanned with a BeU and Howell 2137A scanner to produce 200 by 200

dots per inch (dpi) binary, fuU-form images.

A subset of the resulting images were removed from the collection by a person who was naive

about how OCR works, using software written specifically for this task. The first 700 images

remaining after this step were stored in seven directories, 100 images per directory on a personal

computer system. These images will be referred to as the test images in the remainder of this

section. To restrict the test to segmentation and recognition performance, only one form-removal

software package was used, and the same image snippets were sent to both OCR engines for further

processing.

During these processes, some characters were lost due to unsatisfactory form removal, and some

others due to writer errors and local form-removal errors. Furthermore, some form-removal errors
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Hand Print Collection Form

Tliankyoulcrpaticipafing in our hand print test pnigiaTi Weappredateyourfime

I

Please print each indicated letter in the box below that letter using your

notnnal upper case printing. Please avoid touching the sides of the box

A B C DE FGH i J K LM

I

! i

I I I

M
N 0 PQR S TU WX Y Z

I

I

I

I I ij m
Please print each indicated letter in the box below that letter using your

normal lower case printing. Please avoid touching the sides of the box

abode fghi jkim

n 0 p q r s t u V w X y z

ID cm m
Please print each indicated number, or^ec^ character in the box below

that character using your norma! prin^ numerals and symbols. Please

avoid toudning the sides ofthe box

. .-()0123456789 @\/;:'"I?1 =

The quick brown fox jumps over the lazy

.
dog @ (1 ,234.00 - 5,678.90) = 1/2?

Please print the text into the

boxbelowiL Youmaywrite

in more than two lines if

necessary. Use your normal

writing, v\^ normal word

spacing.

Figure 20: A reduced copy of a FAX of the form used to collect the handprint sample for the

comparison of two OCR engines.
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DIGIT TEST: FILTERED

0.05 0.1

REJECTION RATE

Figure 21: Error rate versus rejection rate for two OCR engines in recognizing a set of 6,422 isolated

images, almost all of which contained digits.
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DIGIT TEST: UNFILTERED

0.05 0.1

REJECTION RATE

Figure 22: Error rate versus rejection rate for two OCR engines in recognizing a set of 700 images,

most of wliicli contained the ten digits, one digit to a box, but about 8 type of non-character

information typically found in OCR applications as described in the text.
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and some phase errors (see below) in the printing of the digits were discovered during the character

validation procedure. In the end, the comparison was run on about 18,000 upper-case letters,

18,000 lower-case letters, and 7,000 handprinted digits printed by 700 different people, and collected

specihcally for this comparison.

A total of six tests were run. Two tests used both the upper- and lower-case letters, two tests used

just the upper-case letters, and two tests used just the digits. One of the digit tests was run with

the entire data set, which had a number of non-characters among the images as weU as incorrectly

classified and ambiguous characters. The other digit test was run with a very clean subset (92%)

of the characters used in the first test. The same was the case for the letters tests, but the clean

subset contained about 95% of the characters used in the other test.

The Forms Processing (FP) system used in the comparison was configured specifically for these

comparisons. It was designed to read hand-print entered in the boxes on the form shown in Fig. 20

to support recognition by both OCR engines, and to support verification of the classification of the

character images on the test images. The OCR results were in the form of 700 files. The FP system

was run to recognize the characters in the test images with both OCR engines in two separate

passes, one for each system. During the second pass, the validation/rejection of any character

classified differently by either engine than expected on the basis of location on the form was carried

out.

In summcixy, the FP system was set up to perform the following tasks:

1. select one OCR engine,

2. retrieve a test image,

3. isolate a line from the image,

4. isolate a group of touching boxes from the line,

5. remove the outlines of the boxes, leaving a group of character images,

6. send the group of character images to the appropriate OCR engine for segmentation and

recognition, along with the scanner resolution in dots per inch (dpi) and the estimated uniform

character spacing in characters per inch (cpi), based on the form design.

7. store the classifications assigned to the character images (hypotheses) by the selected OCR
engine,

8. repeat steps 2) through 7) until all 700 test images have been processed,

9. select the second OCR engine

10.

repeat steps 2) through 8).

In addition, it was possible to configure the system to carry out the foUowLug steps between steps

7) and 8):

• compare the hypotheses from both OCR engines for the test image with the expected classi-

fication based on location on the form.
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• if either OCR engine produces an unexpected hypothesis for any character image in a group

of characters, display the entire group and mark the first discrepancy for the user to resolve

either by accepting the original classification based on the location on the form or by flagging

the original classification as problematic. If more than one discrepancy is found in a group,

continue display of the group after the first discrepancy is resolved, and mark the second

discrepancy for resolution. This process continues until all discrepancies have been resolved

by the user.

It took about 20 minutes for the system to process 100 forms in TIF format without validation.

It took about 1 hour and 15 minutes to process 100 forms with validation. Part of the increase in

time was associated with displaying the groups of characters on the screen. The rest was associated

with using a hierarchy of human cognitive skills to answer the following questions:

Is the character immediately identifiable in context? If so, is it identified as the expected character?

Does it remain so out of context? With what characters might it be confused?

On the basis of this thought process, each marked character was either flagged as problematic or

accepted. At least half of the marked letters were accepted, but probably less than three quarters.

Very few digits were marked, but a large fraction of those marked were flagged as problematic.

This reflects the fact that digits have to be much less ambiguous than letters in order to be useful,

due to the different way they are used. Thus different criteria were used in flagging problematic

digits and problematic letters. In any case, only a small fraction of the characters were removed

in this way as described below, and the tests were scored both with all characters and without the

flagged characters.

The verification process described above is important as a check on the validity of the results of

the test. It is tempting to assume that whenever one OCR system produces a hypothesis that

agrees with the classification based on position on the form, then this hypothesis is correct, even if

the other OCR system produces a different hypothesis. This assumption substantially reduces the

total number of discrepancies that must be resolved by the evaluator. However, the discrepancies

that would be ignored by this procedure are exactly those discrepancies that cause a difference in

score between the two systems. Therefore, it was important to verify the classification based on

location on the form in just these cases, and all discrepancies were displayed for resolution in the

FP system used in this comparison.

On the other hand, over-zealous removal of problematic images may mask real differences in per-

formance between the OCR systems. This would be the case if one system were as accurate as

the other in recognizing well-formed characters, but substantially more accurate than the other in

recognizing ambiguous characters. Therefore, it is a good idea to flag only obvious errors (such as

an 0 where an I is expected) when resolving discrepancies between the location-based classifications

and the hypotheses generated by the OCR systems. As a final check, it is a good idea to score

the results with and without the problematic images. Both types of scoring were adopted for this

comparison.

The validation process also serves as a check on overall system performance. During the validation

process, thirty forms were encountered with major form registration and removal problems that

were so severe that the zones sent to the OCR engines for segmentation and removal had no
character images at all or a mishmash of box lines and partial character images. Similarly, four

instances of phase errors in the number boxes were discovered during validation. In each instance
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the person filling out the form entered the digits 123456789in the boxes under the digits 0

1234567 8. Sometimes the digit 0 (zero) was entered in the last box under the 9; other times

the number 10 was entered.

Lower-case letters were accepted during validation when an upper-case letter was requested on the

form, provided that the lower case letter was recognizable as the letter requested. The same is true

for upper-case letters entered in boxes where lower-case letters were requested. The fact is that

many people print this way. Therefore, an OCR engine must be able to handle this situation.

For each image in the test, the FP system produced three files. The first was a key file, the second

was a classification file for one of the engines, and the third was a classification file for the other

engine. The key file contained 88 lines of data, 52 lines for the 26 upper-case and 26 lower-case

letters in the alpha test, 26 lines for the 26 upper-case letters in the upper-case letter test, and

10 lines for the 10 digits in the digit test. (Note that the same 26 upper-case letters from each

form were used in the both the upper-case letter test and the alpha test, but that different OCR-
engine classification options were used. Thus the 62 character boxes on the form give 88 different

classifications for the three tests.) The nth line of the key file contained either the ASCII character

expected in the nth box on the form, or a question mark to flag the classification as problematic

based on the validation procedure.

Each of the classification files had 88 lines corresponding to the 88 lines in the key file. The nth

line of these files had the hypothetical classification (hypothesis) assigned by the OCR engine to

the image in the nth box on the form, followed by a confidence value that ranged from 0.00 to 1.00

(two digits to the right of the decimal point).

Each test (alpha, upper-case letter, and digit) was scored for each OCR engine with the unfiltered

results and with the filtered results. The scoring was carried out in three operations. In the first

operation, four histograms were computed for each test and each engine. The histogram bins

were the 101 confidence values 0.00, 0.01, 0.02, ..., 1.00. The first histogram sorted the unfiltered

hypotheses by confidence value. The second sorted by confidence value the unfiltered hypotheses

that were not identical to the classes assigned according to location on the form. The third and

fourth sorted the filtered hypotheses in the same ways. A considerable amount of analysis of data

formats and values was carried out during the generation of the histogram data, and exception files

were created. The only exceptions discovered by these analyses were the forms having unsatisfactory

form removal and the phase errors on the digits. It was decided to remove all characters from these

forms (fields in the case of phase error) rather than only those flagged during validation.

The second operation combined the histogram data to produce error-rate versus rejection-rate

data for each engine and each test using both unfiltered and filtered results. The third operation

interpolated the error-rate versus rejection-rate data at 0.01 intervals of rejection rate for plotting.

A final point about error-rate versus rejection-rate data may be in order. Error-rate versus rejection-

rate curves are not continuous, and are uniquely defined only at as many different rejection rates as

there are different confidence values. Nevertheless, it is common to interpolate them to uniformly-

spaced rejection rate values for comparison purposes as if they were both continuous and unique.

The error-rate versus rejection-rate data had some widely separated rejection-rate points. Usually,

interpolation between such widely separated points will produce values that are indicative of what

would be obtained in a real application. If, however, the data are inadvertently or purposely sorted

by the accuracy of the classification as well as by the confidence value, then very different shapes
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of the error-rate versus rejection-rate curves would be obtained wherever the interpolation takes

place between widely separated points.

The graphs containing the error-rate versus rejection-rate data were cutoff before interpolation

between widely separated points took place. The cutoff for the letter data, which was 40%, was

chosen because larger rejection rates are not considered commercially useful. The cutoff for the

digit data, which was 15%, was chosen because the curves were quite flat over a large range of

rejection rates above 15%, and involved interpolation between only two points over most of this

range.

Figures 21 and 22 show two of the six different graphs that were generated to summarize the test

results. Figure 21 shows the results for filtered digits. At zero rejection rate the new engine reduces

the error rate by almost a factor of 2, while at larger rejection rates the new engine reduces the

error rates by as much as a factor of 8. This is the largest difference encountered in the tests.

Figure 22 shows the results for the unfiltered digits. For this data set form registration rather than

character recognition was the accuracy-limiting step, so the differences between the performances

of the two engines was not nearly so dramatic as in Figure 21. This illustrates the importance of

locating and improving the accuracy-limiting module when attempting to improve OCR system

performance. The relative differences in performance for the upper-case letter and alpha tests feU

between the extremes shown in Figs. 21 and 22.

In summary, the new engine produced consistently lower error rates at all relevant rejection rates

in all six tests, ranging from 81% of the industry-standard engine’s error rate at a rejection rate

of 4% on the dirty (unfiltered) digit test to 12% at a rejection rate of 15% on the clean digit test.

On the letter tests, the new engine’s error rate was typically 50% of that of the industry-standard

engine at zero rejection, and an even smaller fraction at larger rejection rates.

Both setting up the FP system and validation of the test data required a substantial amount of

work. As it turned out, the bad images flagged in the test data during the validation process had no

effect on the conclusions of the test. However, if the performances of the two engines had been more
similar, the overall conclusions might have depended upon which data set was used. Depending

on the application, either the filtered data or the unflltered data might be more representative of

what would be encountered in normal use of these engines.

5.3 Second Census OCR Systems Conference

The test materials used in this Conference were by far the most difiicult of the three tests discussed

in this section. Nevertheless, they are typical of the types of applications that many organizations

would like to convert to OCR from manual key entry. Two different types of source document were

used to create the training and test materials for the Second Conference. For one set, the Industry

and Occupation answers were scanned from a sample of microfilm copies of the 1990 Census Long
Forms. For the other set, the Industry and Occupation answers were scanned directly from a sample

of the 1990 Census Long Forms that had been reserved for this purpose. The image quality of the

former was quite poor, while that of the latter, although not ideal, was much better. Only some
of the participants attempted to recognize the images scanned from microfilm, and the error rates

were higher than for the images scanned from paper, but not much higher in the case of one of the

participants. The images scanned from microfilm will not be discussed further here.
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The test materials for the Second Conference were mini-forms containing three phrases entered

into three answer boxes, supplemented with a dictionary of the ASCII transcriptions of answers

that were provided on a sample of similar forms. The resulting images were checked to assure a

minimum level of image quality and readability. A small fraction of the images failed this test

and were removed for this reason. A small fraction of the images were also removed because these

images contained potentially sensitive information. Thus the Second Conference was concerned

with the full task of converting unconstrained handprinted phrases (one answer per answer box)

into ASCII transcriptions of the answers.

Reference data for scoring was generated by having the same Industry and Occupation answers

keyed twice independently, and rekeyed a third time when differences occurred between the results

of the first two keyings. This allowed a fair comparison of the machine recognition results with

human performance on the same task. The training materials consisted of 6,000 mini-forms with

18,000 answer fields, while the test materials consisted of 3,000 mini-forms with 9,000 answer fields.

The average answer field contained about 13 characters.

Two different error measures were employed in scoring the test. The first, the field error rate, scored

a field as incorrect if it had a single error, and reported the ratio of the number of incorrect answers

to the total number of answers. The second, the field distance rate, aligned each test answer with

the corresponding reference answer, summed the number of deletion, insertion, and substitution

errors, and reported the ratio of the sum to the total number of characters in the reference answer.

The field-distance rate reduces to the character error rate when there axe no deletion or insertion

errors.

This test was much more difficult than the character recognition test at the First Conference. Of

over 25 participants, only 10 provided a total of 31 submissions for scoring, and of these, only 14

were provided on time. The remainder were provided within an extended time period set up to

allow the completion and submission of results that were only partially complete by the end of the

originally allowed test period. Figures 23 and 24 show the field error and distance rates for the

on-time submissions. None of the late submissions were better than the best on-time submissions,

but many were significant improvements over the on-time submissions of the same participant. This

is another illustration of the difficulty of the test at the current state of the art.

The field error rates shown in Fig. 24 are much larger than the character error rates obtained in the

First Conference. The best machine system in the conference does not reach the 8.5% field error rate

or the 1.6% field distance rate at zero rejection rate that was achieved by the human keyers working

in the 1990 Census until over 45% of the fields have been rejected. This is very different from the

results of the First Conference where the best system achieved the zero-rejection-rate error rate of

a human reference at a rejection rate of less than 10%. Furthermore, a number of better results

were submitted to NIST for scoring within less than two years following the First Conference. On
the other hand, no better results for the Second Conference have so far been submitted to NIST
for scoring. Finally, a great number of systems in the First Conference produced results that were

roughly comparable to the best results from that conference. This was not true for the results

of the Second Conference, where greater differences in performance among the participants were

evident.

The main reason for these differences between the results of the First and Second Conferences was

the difference between the tasks. For the Second Conference, it was necessary to segment multi-

character images into single, isolated character images before they could be recognized by the same
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Figure 23: Field error rate versus rejection rate for systems in the Second OCR Systems Conference.

See [3] for a detailed explanation
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Figure 24: Field distance rate versus rejection rate for systems in the Second OCR Systems Con-

ference. See [3] for a detailed explanation
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or similar algorithms used in the First Conference. AH of the participants in the Conference found

this to be the accuracy-hmiting step, even with the help of dictionaries of hkely answers. AU but

one of the participants accepted a great deal of over-segmentation (breaking the images of single

characters into images of pieces of characters) in order to avoid under-segmentation (combining

multiple characters into a single image). AU of these participants had to then reconstruct or

recognize single characters from the pieces. The success in carrying out these two operations was

the single most important determinant of the error rate.

The major conclusions of the Second Conference, which are quite different in tone from those of

the First Conference, are the foUowing:

• The accuracy-hmiting step in the recognition of unconstrained handprinted phrases is the

segmentation of each phrase into isolated characters. This task is apparently so much more

difficult than the other OCR-system tasks that it can wash out differences in the accuracy

with which the other tasks are carried out.

• Dictionaries and language models can be used to assist in the correct segmentation of uncon-

strained handprint.

• Humans are stiU significantly better at the recognition of unconstrained handprint than are

machines, but the best machine performance is close enough to human performance to suggest

that it is only a matter of time before a hybrid system can outperform either type of pure

system.

6 Summary and Conclusions

Four categories of handprint are relevant to the design and evaluation of OCR systems:

i) one character (digit or letter) per box

ii) one multi-digit number per box

iii) one multi-letter phrase per box

iv) unconstrained

Separate comparison and evaluation of isolated OCR modules (subsystems) would be convenient

but misleading. There are many algorithms which can perform these isolated tasks satisfactorily,

when evaluated in isolation, but which are not the best components to use in OCR systems. The
proper question is which customized combination of modules is best for a given apphcation. It is

not even possible to clearly define what might be meant by the best module, because a module that

is best in an OCR system for one application is not necessarily best for a different apphcation.

Interactions among components are extremely important to the successful design of an OCR sys-

tem. Simply Unking together modules developed by different vendors without considering these

interactions is unlikely to result in an optimal system. Furthermore, prior estimates of recognition

rates based on tests of the isolated components are Hkely to be overstated, because isolated tests

are necessarily based on ideaUzed input that is Hkely to differ from the kind of input that will be

produced by earHer modules in the real system. This was one of the reasons for the failure of the
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IRS DocTiment Processing System. By contrast, the Census Bureau has recognized the importance

of interactions, and this is a major reason for the anticipated success of their OCR efforts.

Analysis of interactions is facilitated by partitioning the output of each module into at least three

distinct categories: “correct”, “incorrect”, and “incorrect, but it doesn’t matter”. The designation

depends on the effect on the performance of the next module. “Correct” means that the module

made the correct decision, which cannot hurt the next module’s performance. “Incorrect” means

that the module’s output deviates from the correct output, and further, that this caused the next

module to produce an incorrect result, whereas the next module woiild have produced a correct

result had the first module’s output been correct. “Incorrect, but it doesn’t matter” means that

the module did not make the correct decision, but that this did not affect the correctness of the

next module’s result, one way or the other. Without this kind of analysis, it is impossible to predict

system performance from module performance, and it is quite possible for system performance to

decline when a module is replaced by another module that has a higher isolated performance score.

1

Segmentation is the major obstacle to improved performance of OCR systems, with the difficulty

of segmentation varying enormously over the four categories. For applications in the first category,

segmentation is relatively easy, particiilarly if the size and spacing of boxes are uniform. For the

last two categories, however, segmentation is very difficult, and sufficiently difficult that the limited

accuracy of the segmentation step, more than any other factor, is responsible for limitations in the

recognition capabilities of OCR systems for applications in these categories. In fact, feedback from

other modules is needed before useful segmentation results can be obtained.

There are two distinct ways of utilizing feedback for segmentation of handprint in categories (iii)

and (iv). Under the first approach, segmentation windows of different widths are used, starting

from the current position, with a specified minimum width, and expanding towards the right,

up to a specified maximum width. Recognition is performed for each window, and the result

with the highest confidence level is chosen. Processing continues from the right side of the window

associated with the chosen result. Under the second approach, character segmentation is performed

first, followed by recognition. The system then searches through phrases in a dictionary of expected

phrases, or uses a more sophisticated language model in order to find the best match.

^

Machines and humans have complementary strengths and weaknesses. Machines can work contin-

uously and indefatiguably at full speed, and can also provide an estimate of correctness probability

as part of the recognition process. On the other hand, machines cannot process the most difficult

fraction of the workload accurately, and cannot handle unexpected data. The major strength of

humans is the ability to utUize a hierarchy of recognition procedures, ranging from highly reflexive

to highly cognitive. They may also be able to handle unexpected data. On the other hand, humans

display rapid fatigue when functioning at high speed, and experience boredom when operating at

low speed, in both cases with consequent deterioration of performance. They are also incapable

of providing estimates of correctness probabilities. Further, processing speed is rather slow for the

more cognitive recognition procedures.

OCR systems designed to take advantage of the complementary abilities of humans and machines

^Theoretically, one might also consider making a complete partition of the results produced by an OCR module,

and then using this exhaustive analysis to evaluate the performance of a system based on the components. This is

impractical because the types of errors that a module can make vary continuously over a multi-dimensional spectrum,

and also evidence statistical variations across the spectrum.

^The ERIM system combines both of these approaches
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axe capable of attaining higher accuracy than systems that only use one or the other. In some

applications, such as remittance processing, the improved accuracy has been accompanied by a

reduction in total system cost. Presently, it would not reasonable to attempt to remove humans

completely from the most difficult and demanding of OCR tasks. It is reasonable, however, to

design OCR systems that require fewer human workers by changing their role from key entry to

checking and correcting the small fraction of the data that the machine cannot recognize.

7 Appendix: Literature Review

Up to now this report has focused on a few systems. This appendix provides a review of a number of

different algotithms, some of which were used in the systems reviewed here and many of which were

not. As pointed out earher, many different algorithms can be used to sucessfuUy solve the various

problems enciuntered in designing an end-to-end OCR system. In this review of relevant hterature,

we focus mostly on work reported since the pubhcation of the special issue in the Proceedings of

The IEEE [34].

7.1 Preprocessing

Typical preprocessing techniques include noise removal, form identification, form registration, skew

detection, size normalization, and thinning algorithms. Of these only skew detection and form

registration are discussed here. The other preprocessing techniques mentioned above have been

discussed extensively in the literature on document processing and understanding. A comprehensive

review of all of the relevant preprocessing techniques is beyond the scope of this paper. Typical

approaches used for some of these problems are outlined in the context of designinig a form-based

OCR system in Section 4.3. A detailed survey of thinning algorithms can be found in [35]. A
methodology for comparing thinning algorithms using human subjects is discussed in [36]. A more

recent paper characterizing the performance of the thinning algorithms is [37]. For a comparison

of normalization methods for character recognition, the reader is referred to [38].

Registration: Form registration is the process of registering the form to be processed with a blank

form. Subsequent to this process, pixels corresponding to the form’s boxes and instructions are

removed, leaving the hand-printed data in each field of the image. In form processing apphcations,

the registration problem has been treated as a 2-D problem, with the goal of estimating the trans-

lation along the x and y directions, the rotation angle, the skew and the scale difference between

the input and reference forms.

Earher approaches to skew detection have rehed upon Hough transform techniques [39, 40]. Baird’s

[39] approach projects the bottoms of the bounding boxes of connected components parallel to a

set of angles, and chooses the angle which maximizes a measure of the variance of the counts in the

projection. Measures such as local region complexity [41] and cross-correlation between two hnes

at a fixed distance [42] have been used for skew estimation. In the latter work the shift for which

the cross- correlation measure accumulated over all pairs of hnes in the image (separated by a fixed

distance) is a maximum determines the skew angle. A novel apphcation of an array processing

technique for the angle of arrival problem [43] is used for skew estimation in [44]
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The 2-D approach to the estimation of translation, scale, and rotation is outlined in [8]. Feature

points needed for registration are located using spatial histogram projections, where spatial his-

tograms are constructed using black pixel densities summed across an image region in either the

vertical or horizontal directions. The transformation parameters axe estimated by applying least-

squares techniques to the required minimum of three points. Additional feature points that are

within the respecified regions of points projected using the computed transformation are used to

refine the transformation. After the input form is transformed to the blank form, pixels comprising

the blank form axe removed, leaving only the hand-printed material for subsequent analysis.

By establishing point correspondences between five points in the reference and input forms using

methods from projective geometry, the 2-D transformation between the two forms is computed

[45]. The feature points selected for establishing the correspondence do not depend on any special

markings.

Often, in addition to global warping, one may have to deskew sections inside the document. Al-

though this is an unlikely situation for forms, global as weU as local skew detection can be done

as described in [46]. This method first estimates and then corrects the global page skew using

a least-squares technique. The corrected page is than divided into blocks using a fractal-based

segmentation technique. The text blocks are skew-corrected using the least-squares algorithm.

7.2 Character Segmentation

This sub-area is probably one of the most studied ones in OCR. From low-level, model-free thresh-

olding and thinning techniques to the more recent NN-based approaches, hundreds of papers have

been published and several modules have also been built. Recent attempts formulate and solve

segmentation and recognition in an integrated manner. Earher attempts treated segmentation as

an isolated problem. This strategy worked reasonably well for handprinted digit recognition; in

handprint and cursive writing most of the errors in character recognition can be attributed to

poor segmentation. Feedback from character segmentation algorithms is almost always useful for

improving the quality of segmentation and consequently that of recognition.

While surveying the state of the axt in character segmentation, it became obvious that this sub-

area deserves a detailed paper it its own right. Due to space constraints and a focus on the hand-

printed and cursive OCR problem, we will not present a detailed assessment of the state of the

art in character segmentation. In particular, we do not discuss algorithms for the segmentation

of isolated, machine-printed characters. Detailed surveys of these and other related issues can be

found in [47]. As in many other subareas of OCR (and image analysis in general), metrics and

performance measures for the evaluation of segmentation algorithms axe sorely lacking.

Segmentation methods for handwritten digits and words can be divided into three groups: a)

segmentation of handprinted words, b) segmentation of handwritten numerals as in zip codes and

bank checks, and c) segmentation of handwritten cursive words. In the first group at-least three

possibilities arise: boxed characters, spaced characters, and touching characters. Of these three,

the last one, segmentation of touching characters, is the challenging one. Segmentation methods

developed for the machine-printed OCR problem work quite well, with minor modifications in the

first two cases.

Following [48], strategies in character segmentation can be divided into three groups: a) In the clas-

sical approach, the segments axe “dissected” into meaxdngful components, b) In recognition-based
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segmentation, segmentation algorithms produce tentative segmentations which are then presented

to recognition algorithms for verification. The interactions between the segmentation and recog-

nition modules are so closely coupled, that these techniques axe often called “segmentation-free”

methods, c) The last group is the holistic approach, where segmentation of individual characters is

not attempted, but the whole word is viewed as the character to be segmented. A purely bottom-up

approach to character segmentation will not scale up to real applications. Introduction of context

in the form of post-processing, verification, etc. is crucial. Such contextual information is used in

different ways in each of the groups described above.

Although techniques that rely on attributes such as white space and pitch do not work for the

cursive chaxacter segmentation problem, other techniques such as (vertical) projection analysis

have been attempted for hand-printed characters such as addresses, zip codes, etc. In general, 1-D

approaches based on projections can at best serve as initial conditions, even for handprinted isolated

character segmentation problems. Their use for cursive handwritten character segmentation is very

doubtful.

Segmentation of handwritten numerals is an easier task than segmentation of handwritten cursive

words. In situation involving zip codes, one can use the dictionary of valid zip codes, or derive

context-based rules to refine segmentation. Some of the heuristic algorithms for the segmentation

of handwritten numerals and zip codes axe reported in [49, 50, 51, 52].

One of the popular tools in the category of dissection methods is connected component analysis,

which was popular in the image analysis literature during the early seventies. Since algorithms

for connected components operate in a bottom-up manner, several post-processing strategies axe

required to extract “character-like” segments. Some post-processing techniques incorporate con-

text. One of the simplest post-processing techniques is the so-called bounding box [53] technique,

where assumptions about the expected number of characters, which of the characters appear in

lower/upper cases or joined, etc. axe used for cleaning the results of the connected components

algorithms. The nature of these assumptions makes this approach useful in limited handprinted

digit recognition problem (as in the case of postal addresses).

Segmentation of handwritten, cursive characters poses many challenges, one of the most difficult

being the segmentation of touching or merged characters. Both rule-based and NN approaches

have been suggested for this problem. Several examples [54, 55] of bottom-up approaches to seg-

mentation of cursive handwritten characters can be found in the literature. These approaches feed

the results of the segmentation algorithm to recognition algorithms, but no attempts are made to

refine the segmentation using the recognition results. Typically these algorithms have pre- and

post-segmentation steps. The goal of the pre-segmentation step is to generate potential break-

points corresponding to characters and partial characters. All the possible segmentations of the

word are evaluated in the post-segmentation step using heuristic rules or a Viterbi algorithm.

Pre-segmentation is typically achieved using connected components algorithms or singularities and

regularities [56].

Recent exaxnples of rule-based methods for segmenting cursive handwriting may be found in [54]. A
set of heuristic rules based on associations between specific geometric and topological attributes and

English-laxiguage characters is used. These attributes include geometric shapes such as horizontal

or vertical bars or loops. Topological attributes are defined using end, branch, crossing, convex and
concave points. The alphabet is divided into six classes, each class being chaxacterized using rules

combining the geometric and topological features. Limited experimental results are reported. A
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correspondence-based approach, using the maximum and minimum excursions of the handwriting

image is suggested in [55] for the cursive word segmentation problem. Once correspondences are

established, ascenders, descenders and loops are identified. A set of heuristic rules is then used for

locating coarse segmentation points.

Another technique for segmenting touching hand-printed words relies on locating concavities at

touching points. Of the many possible segmentations that are hypothesized by selecting any subset

of these touching points, optimal segmentation is achieved using a classifier to evaluate the different

segmentation hypotheses.

The second class of methods realizees the importance of integrating the segmentation and recogni-

tion steps. Methods based on search, hidden Maxkov models, and relaxation procedures have been

attempted. Search methods divide the image into many overlapping segments. These segments are

passed on to a recognizer for confirmation. Many of the earlier attempts utilized an image analysis

approach. Recently, NN approaches have been taken. We will discuss these techniques in Section

7.4. A more holistic strategy is to combine segmentation and recognition at the word level. Many of

these techniques have their origins in speech recognition and differ mainly in the way comparisons

aie made between word hypotheses and reference words. The use of hidden Markov models and

dynamic programming techniques are common. A recent overview of segmentation techniques for

handwritten words can be found [57].

7.3 Feature Extraction

The feature extraction stage is an important component of any recognition system. It is also very

much dependent on the task, input, and recognition algorithm to be used. In OCR applications,

the types of features extracted depend on whether gray-scale, binary, or vector representations are

used. If statistical pattern recognizers axe used, then the standard features tend to be based on

contours of characters, with features such as Fourier descriptors, moment invariants, and other

boundary features. If structural recognizers are used, features that represent the structure of the

character are preferred. When NN’s are used, the feature extraction stage has gone through some

evolutionary developments. Eaiher NN approaches used local feature maps. Methods developed

later side-stepped the issue of feature extraction, and used the segmented character or digit image

as the input. This works well for the case of isolated digits or characters. When touching characters

or digits are present, the input image (corresponding to a Zip code, handprinted or cursive word) is

presented as such. One of the important considerations in the feature extraction stage is invariance

with respect to shape transformations such as translation, rotation, and dilation. Some features

are designed to be insensitive to these transformations, while in other cases transformations of the

extracted features achieve invariance to some of the shape transformations. Another consideration

is whether the original patterns (digits or characters) can be reconstructed. Global descriptions such

as Fourier descriptors, moments and coefficients of circular autoregressive models can reconstruct

the original patterns, the quality of reconstruction being dependent on the number of coefficients or

paxameters retained. Reconstructability is easy to achieve in the case of isolated digits or characters

but can be quite hard for cursive handwriting

A recent survey of most of the feature extraction techniques for OCR can be found [58]. Techniques

for feature extraction from gray-scale and binary images, binary contours and vector representations

such as skeletons are described in detail. For gray-scale images, methods based on template match-

ing, deformable templates, unitary image transforms, zoning, geometric moment invariants, and

75



Zernike moments axe surveyed. In addition to template matching, unitary image transforms, zon-

ing, and geometric moment invariants, projection histograms are also discussed as features derived

from binary images. For the case of binary contours, contour profiles, elliptic and other Fourier

descriptors, moment invariants, and sphne representations are reviewed. Lastly, when patterns are

represented in vector form, character graphs (generated by the topographical primal sketch), graph

descriptions, zoning, and discrete features such as the number of T-joints, X-joints, bend points,

etc. are reviewed. As this article surveys most of the feature extraction methodologies that are

useful for isolated hand-printed digits and characters, we decided not to review them here. Instead,

we win make brief remarks about feature extraction techniques that are not included in [58].

The image analysis approach to OCR has traditionally rehed on classification or matching of specific

features such as those mentioned above. On the other hand, NN approaches seem to have shied away

from the need to define specific features. They have rather used windows of raw pixels or global

transforms such as principal component analysis [59] or the projection on to a Gabor basis set.

Features derived from principal compoenents have been used in the NIST form-based recognition

system [8, 59]. Projections on the Gabor basis set have been used in the NIST [60] as weU as the

KODAK system [61]. In [61] the utility of global transforms such as Gabor, Fourier, and Cosine

has been evaluated as a source of features for a standard NN recognizer of isolated handprinted

characters. Experimental results indicate that when windows of raw image pixels are replaced by

projections on the Gabor basis set, signifiant reductions in errors have been observed. An NN
recognizer using Gabor basis set projections was evaluated in the First OCR System Conference

and was one of a tight group of leaders. This feature set was also used in the KODAK system

reported in Section 4.3. Another trend in NN approaches, is to avoid deciding any sort of features

explicitly, but to let the NN determine the appropriate features in an autonomous manner. The
convolutional NN (CNN) developed by researchers at AT&T is a good example of this approach

[62].

Deformable spline models whose shapes are determined by the positions of eight control points have

been suggested as features [63] for handprinted digit recognition in Zip codes. Shapes are deformed

when the control points wander. An energy function that penalizes shape deformations due to

displacement of the control points is minimized. The fitted models are then used for recognition

by deciding on the model of the digit that cordd have generated the data.

As noted in [58], deformable templates have been used for feature extraction for both binaxy and

gray-scale images. One of the vexing problems of fitting deformable templates is initialization of

the parameters chaxacterizing the surface. In [64], an NN is used to learn the associations between

images and the instantiation parameters of deformable templates that characterize these images.

A 3-layer NN was trained using the BP technique and the CEDAR CDROM and database. The
trained NN was used to provide better initial conditions for the new images.

7.4 Recognition

7.4.1 Statistical Techniques

Techniques that fall under this category typically extract numerical features such as Fourier de-

scriptors [65, 66, 67], moments [68, 69, 70], and other global descriptors [71, 72] and use any of the

existing statistical pattern recognition techniques. In the early seventies, much of the reported work
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on shape recognition using the statistical approach was geared to isolated machine-or hand-printed

digits and alphabetics. Some of the global descriptors are sensitive to one or more of the typical

shape transformations, such as translation, tilt, dilation, etc., while others are insensitive to these

transformations.

The success of statistical methods very much depends on the existence of a perfect segmentor.

In the case of touching/broken characters, there is no simple way to relate the features extracted

from the forms to the training samples. A recent comparison [73] of classical classifiers such as

the linear and k-nearest neigbor classifiers and several NN based classifiers developed at AT&T
using a modified NIST dataset of isolated digits has shown that NN classifiers and hybrid NN and

nearest neighbor classifiers perform much better. One would extrapolate that the performance

improvement would be even greater when connected digitis and/or words are used for comparison

since the classical statistical approaches treat segmentation/feature extraction as an independent

stage from classification. As discussed later, the ISR approach which is natural for NN based

approaches are more appropriate for these difficult cases. The NN techniques developed at AT&T
axe reviewed in Section 7.4.3.

Similar conclusions axe drawn about the nearest-neighbor rule based approach reported in [74].

By increasing the size of the training set, nearest-neighbor techniques using simple metrics have

been shown to be as good as the best system reported in the NIST First OCR Conference [1]

where isolated chaxacter recognition systems were evaluated. The utility of these approaches for

the general cursive handprint problem is doubtful.

Over the last ten years, traditional statistical pattern recognition schemes have been superseded

by hidden Markov model (HMM)-based techniques [75, 76, 77, 78, 79]. The premise of HMM
approaches is to avoid individual chaxacter recognition, but to perform recognition at the word

level using extensive contextual knowledge in the form of transition probabilities.

7.4.2 Image Analysis Techniques

The image analysis approach to the OCR problem is based on four major steps: preprocessing, fea-

ture extraction, description, and classification. Major techniques used have relied upon template

matching, graph and subgraph matching, and correspondence matching. Features used include

binary templates, polygonal approximations of skeletons, their locations and associated orienta-

tions, strokes or arcs, topological and geometric features, morphological features, and ascenders

and descenders. There axe differences among the techniques in the matching stage.

A two-stage binary template matching algorithm using two similarity measures known as the Jac-

card and Yule measures has been used for the handprinted digit recognition problem in [80]. The
similarity measures are used to create templates from the training samples using a sequential clus-

tering procedure. Typically, several templates are stored for each digit to account for inter-digit

variations. Since recognition of the testing samples is accomplished through matching with stored

templates, the success of this system depends on how weU the templates represent inter-digit vari-

ations, how many of them are needed, and the numerical values of thresholds. In the two-stage

method proposed in [80] the errors made by the template matching step in the first stage are used

to refine the templates used in the second stage. This approach works well for isolated digits, but

has problems with touching digits. One may partially overcome this by increasing the number of
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templates characterizing the different ways the digits touch; this may require a prohibitively large

number of templates, often leading to a decrease in recognition accuracy.

One of the recurring problems in any template matching approach is the need to reduce the number

of templates stored. In the context of a feature-based system, an indexing approach that uses a

coarse description as a pre-screener is proposed in [81]. Polygonal approximations of characters are

decomposed using a curve fitting method to produce meaningful parts, which are termed super-

features. Super-features are used in a pre- classifier that decides which of the more detailed protypes

should be used for final recognition. Results with USPS data demonstrate the effectiveness of this

approach.

A scaled-down version of an object recognition approach used in the computer vision literature

is apphed to the recognition of handprinted digits in [82]. Using the locations and associated

orientations of the segments of polygonal approximations of the digits, the outputs of a fc-nearest-

neighbor rule are used to build a decision tree classifier. One of the features of this work is

the use of decision trees for automatically setting the thresholds needed in an optimal boundary

error matching algorithm. Extensive experiments with the NIST and CEDAR databases produced

impressive results; the failures are almost always due to poor segmentation. A similar alignment-

based approach to this problem was previously described in [83]

.

An interesting approach to recognition of handprinted alpha-numerics using the “recognition by

parts” paradigm [74, 84] is described in [85]. Eight or nine vaxiations of 36 alpha-numerics are

decomposed into 2 or 4 of 6 paxts. The recognition rates achieved using a computer algorithm are

evaluated in comparison to humans’ performance [86]. As part of the analysis, crucial parts that by

themselves could produce 100% recognition for alpha-numerics axe identified. Crucial paxts could

provide useful clues for feature extraction. A better understanding of recognition by parts may
yield promising techniques for the touching/broken character problem, where parts can be more

reliably extracted.

The image analysis approach to off-hne cursive recognition has a long history of basic and ap-

plied research. In the recent past, applications of ideas pursued by computer vision researchers

working on object recognition have made an impact on this difficult problem. A key feature in

all cursive recognition systems is the lexicon or dictionaxy to provide top-level constraints in the

post-processing stage. Since even the best segmentors fail to produce acceptable results for cursive,

handwritten text, many possible character streams axe produced; later, matching constraints pro-

vided by the lexicon axe used. The dominant strategies used axe some form of Levenshtein distance

based matching, or more recently, hidden Markov models. The NN-based approaches described

later also use a dictionaxy to provide high-level constraints.

One of the standard paradigms used in object recognition is the so-called hypothesis verification

paradigm, where based on matching of a partial set of image and object features, the set of possible

objects is hypothesized. Subsequently, the remaining features, extracted with guidance from the

chosen models, are matched to find the best-matching object. In the same vein, Favata and Srihari

[87] propose a generate-and-test paradigm for cursive word recognition. The generate phase of

the system segments the cursive words into characters using one of uniform, hgature, or heuristic

segmentation technique. The uniform segmentation technique generates cut points at fixed inter-

vals, while the ligature method finds the relatively horizontal strokes in the word. The heuristic

technique combines the uniform and ligature techniques. In the test paradigm a two-step proce-

dure is used. In the first step, a string matching algorithm with a modified Levenshtein metric
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is used to find the match between a word in the lexicon and the interpretations generated by the

segmentation step, subject to bounds on the number of editing operations (insertions, deletions and

substitutions). After the best pairing is accomplished, the second stage verifies the local spatial

consistency between each sequential pair in the lexicon word and the interpretation. The character

recognition system used in the test stage uses eight normalized features that include the entire char-

acter, chajacter holes, vertical and horizontal strokes, and concavities pointing up,down, left and

right. Matching involves computing an evaluation function that measures the similajities between

the features extracted from the unknown character and those in the training set. This system has

been demonstrated on a database of handwritten city names extracted from addresses in envelopes,

. using a dictionary containing 271 words. A generalized Demerau-Levenshtein distance measure

that includes merges, splits and visually pleasing edit operations is presented in [88]. Adaptation

of the system developed for postal applications to reading names and address blocks in IRS tax

forms is described in [89]. Using a loosely coupled multiprocessor architecture upto 8500 forms per

hour can be processed.

In [90], researchers at the University of Michigan, Deaxborn reported the design and evaluation of

a system that recognizes handwritten words and digits in the context of USPS apphcations. Names

of cities, streets, states, persons and businesses are represented in the test. Writing styles range

from strictly printed to strictly cursive. Three lexicons of sizes 10,100, and 1000 are associated

with each word in the testing database. The preprocessing steps include standard techniques for

binarization and slant correction. Initial pre-segmentation points (PSP’s) are selected at or near

valley points of the upper contour of the preprocessed image. A connected component algorithm

followed by bounding box detection determines primitive segments. Using a lexicon-driven dynamic

programming technique, the segments created by the PSP cuts are merged and matched so that a

character likelihood measure is maximized. Using a data set of about 3000 word images, a careful

evaluation of recognition results pointed to problems due to poor pre-segmentation and incorrect

estimates of word length. After improvements in these areas and a redefined character hkehhood

measure, better recognition accuracies were reported using a much larger dataset.

7.4.3 Neural Network Techniques

Since the late 1980’s, applications of NNs to recognition of handprinted digits, characters and

cursive handwriting has become a very active area. Earlier attempts concentrated on recognition

of handprinted, isolated digits and characters, with more recent efforts looking at ISR methods.

One of the earlier projects that explored the applicability of NNs along with classical recognition

methods such as Paxzen window and fc-nearest-neighbor techniques is reported in [62]. The problem

considered is that of recognizing handwritten Zip code digits. After pre-processing steps such as

skew correction and skeletonization, about 49 convolutional masks are used for feature extraction,

focusing on lines and hne ends. Examples of typical features include horizontal strokes, right-hand

ends of horizontal strokes, etc. These 49 feature outputs are combined (subsets are combined using

logical AND or OR) to produce 18 feature maps. These feature maps are input to a Parzen window,

a fc-nearest-neighbor classifier, and a two-stage NN. Although initial results did not show improved

performance using the NN, a finely-tuned preprocessor and a large training set enabled the NN
to exceed the performance of the statistical pattern recognition techniques mentioned above. In

foUow-up work [91], a multi-layer network with back propagation (BP) training has been used

for the handwritten digit recognition problem. Using a combination of alternating hidden and
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averaging/sampling layers and local convolution feature detectors in the liidden layers improved

classification rates are reported. One of the issues in situations involving multiple layers is the

need to keep the number of free parameters to a minimum. Using the concept of weight sharing

[92], which in effect imposes shift invariance on the feature maps, the number of free parameters is

reduced. The effects of weight pruning using principal component analysis (PCA), optimal brain

damage (OBD) [93], and weight decay are reported in [94] for a modest data set consisting of

handwritten digits. The effects of smoothing followed by regularization, as well as using higher-

order networks, have also been studied. All of these embellishments yield improved performance.

Instead of the local feature maps used in [95, 62], a holistic approach that uses PCA to generate rep-

resentations for handwritten digit images is reported in [8]. This can be viewed as an “eigen-digits”

approach to digit recognition. A multilayer network with BP training has also been independently

reported in [96], for recognizing handprinted digits scanned from bank checks, and letters inter-

actively entered through a stylus digitizer. This work argues in favor of a large, representative

training set. Another departure from [62, 95] is the use of pre-segmented, size-normalized gray-

scale chaxacter or digit images, instead of local feature maps. The weight sharing principle is used

to reduce the number of free parameters. The absence of specific feature maps, appears to have

enabled easy generalization to ISR schemes, as discussed later on.

An application of auto-associative MLP to the recognition of handwritten characters taken from

the NIST 3 dataset is reported in [97] . In this work, a network is designed for each character,

using only instantiations of that character for trainiug. Each NN can thus be viewed as generating

a discriminant function. Since it is preferable for an object recognition system to be insensitive to

transformations such as translational, and rotation, error measures derived from tangent distances

[98] are suggested for learning. One can view this approach as letting the NN learn (or unlearn)

skew. Since in most applications, one can deskew and normalize using simple image-processing

operations, the advantage of requiring the NN to accoimt for translation and rotation at the cost of

increasing the complexity of the NN may be minimal. One can obtain better payoffs by integrating

segmentation and recognition, as discussed below.

By feeding candidate segments produced by vertical cuts to a recognizer and scoring the output of

the recognizer, the best possible segmentation of an input digit string is obtained in [99]. Knowledge

of number of the expected digits is used as an input; since the recognizer used is a convolutional

NN, the best segmentation can be obtained by segmentating the feature map.

A method for ISR using a BP algorithm is described in [100]. In a subsequent extension of this work

[101], an NN with two hidden layers, the second of which is connected to a block of exponentials

before being connected to the output layer, is used for simultaneous segmentation and recognition

of handwritten digits from the NIST database. The interconnections between the hidden layers,

the second hidden layer and the exponential block axe local 3-D interconnections. The output levels

are derived from ratios of the sums of the responses of the exponential blocks. The synaptic weight

updating rules are derived from minimizing the total sum of squared error measure. A combination

of hand-segmented and original (not hand segmented) field data sets is used for training two NNs.

The major drawback may be the need to normalize the digits, albeit crudely. The system is able

to handle normalizations up to a factor of 2 or more; severe changes in scale seem to reduce the

accuracy by 3 to 5%

The NNs for ISR described above have primarily used multilayer feed-forward networks trained us-

ing the BP technique. It has been argued in the NN literature that networks that permit feedback
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from activation levels at the output could yield improvements in classification as well as general-

ization. One form of networks that allows such a feedback is the recurrent NN [102]. In [103],

the use of a recurrent NN for ISR of digits in the NIST database has been experimented with.

Comparisons with other NN-based ISR techniques using the same NIST dataset seem to indicate

that the recurrent NN method compares favorably to other NN-based ISR techniques.

Other applications of NNs include modifications to the Neocognitron [104], and a booster technique

for improving the accuracy of NN approaches [105].
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