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Abstract

Line profiling of X-ray Bragg peaks has great potential for extracting mean-

ingful physical parameters from work-hardened single-crystal samples; these

include both dislocation densities and ordering lengths. However, a detailed

reading of the existing literature uncovered shortcomings in the required theo-

retical understanding of scattering from dislocations. We present a mathemat-

ically rigorous theoretical framework for understanding dislocation scattering;

the procedure is based upon first principles of kinematic scattering and basic

laws of probability theory. These results are then applied to the specific case

of parallel screw dislocations. As expected from experimental measurements,

the solution to this problem is neither Gaussian nor Lorentzian, but is “inter-

mediate” between these distributions. Detailed computer simulations of the

scattering are carried out and compared to the theoretical predictions. The

predictions match the computer simulations with no adjustable parameters.

Comparisons are also made to the work of previous authors.
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I. INTRODUCTION

This paper is motivated by plans to study dislocation structure evolution in single-crystal

metals deformed in situ at the National Synchrotron Light Source (NSLS) at Brookhaven

National Laboratory. One of the principal techniques to be used will be line profiling of X-

ray Bragg peaks (Mugrabi, Ungar, Kienle Sz Wilkens, 1986); to extract meaningful physical

parameters from these data, a quantitative theoretical model is required. The theory of X-

ray scattering of dislocations is an old subject, and the latest edition of a book by Krivoglaz

(1996) serves as an excellent review of the previous work. Indeed, Krivoglaz, together with

Wilkens (Wilkens, 1970a; Wilkens, 1970b; Wilkens, 1984), has given the subject its current

form.

Krivoglaz and Ryaboshapka (1963) examined scattering from an infinite cylindrical sam-

ple containing spatially uncorrelated screw dislocations with Burgers vectors parallel to

the cylinder axis. Because of the symmetry of this system, we will refer to it as a two-

dimensional (2D) dislocation distribution. In so far as it went, their analysis was essentially

correct, showing that for small scattering vector, q, the distribution is well approximated by

a Gaussian. Later, in his book, Krivoglaz (1996) predicts a simple power-law behavior at

large q.

In a classic work, Wilkens (1970a) showed that in 2D, if a finite density of dislocations is

embedded in an infinite lattice, and if the total Burgers vector content of the infinite lattice

is zero, then the energy per dislocation of the system is infinite. That is, the dislocation

strain fields do not cancel over a distance of order equal to the average distance between

dislocations. Because a physical arrangement of dislocations in a crystal cannot contribute

a logarithmically divergent energy per dislocation, Wilkens introduced the concept of a

“restrictedly random” distribution. In this distribution, there exists a lattice block of finite

size within which the dislocation total Burgers vector is zero; the physical crystal is composed

of a set of such blocks of equal size containing equal total numbers of dislocations. Clearly,

the energy per dislocation of the restrictedly random lattice is finite, and proportional to

the logarithm of the block size. Physically, the Wilkens postulate means that any very large

crystal will eliminate the energy catastrophe by small rearrangements of its dislocations. In

fact, it is thought that any deformed crystal will consist of low energy dislocation structures

for which the energy singularity is the driving force (Kuhlmann-Wilsdorf, 1995). Wilkens

found that the same kind of logarithmic divergence appears in the scattering problem, and

proposed the same construction for this case.

Unfortunately, due in part to some apparent errors in one of Wilkens’ papers (Wilkens,

1970b), we could not follow the details of his derivation (Wilkens, 1970a; Wilkens, 1970b;

Wilkens, 1984), and we were unable to reproduce physically correct line-shapes for the

scattering intensity from his solution for screw dislocations. Because of this difficulty, the

only direct comparison we could make between the predictions of Wilkens and Krivoglaz

was in the asymptotic behavior of the scattering at large q. Unfortunately, Wilkens and

Krivoglaz quote very different asymptotic behaviors. For all of these reasons, and because

we must be able to interpret our own experimental results, we have developed, and report

here, a new approach to the dislocation scattering problem, starting from first principles of

kinematic X-ray scattering theory.

All physical dislocation distributions in crystals are three-dimensional in the sense that
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the dislocations are almost never straight lines. However, 3D dislocation structures pose

a major mathematical hurdle in nearly all cases, and it is likely that a careful analysis of

scattering from straight dislocations will still prove useful in analyzing real data. For these

reasons, both Krivoglaz and Wilkens worked exclusively with straight dislocations and we

follow their lead. From the point of view of scattering theory, it might ultimately be best to

base the theory on the scattering of a collection of dislocation loops rather than on straight

dislocations, and some work has been done along this line (Krivoglaz, 1996), but for us, that

approach will be reserved for the future.

In this paper, we present a general theoretical framework for dealing with the various

problems of X-ray scattering from dislocations. This framework is very different from the

approaches taken by Wilkens and Krivoglaz and has several distinct advantages. First, we

believe our statistical approach is more mathematically rigorous than previous work in this

field. Second, our analysis exhibits certain universality attributes reminiscent of the central

limit theorem of probability theory. Thus, the expansion we use improves as the number

of dislocations, Nd, increases; for large Nd, higher order terms become completely negligible

and only the first order term is required to accurately predict the scattering distribution.

We next apply our general equations to the specific case of screw dislocations. The so-

lution we obtain has a character intermediate between the Gaussian and Lorentzian forms,

and is well approximated by a Voigt function (Young k Wiles, 1982). Although several

similarities exist between our solution and those of Krivoglaz and Wilkens, significant dif-

ferences also exist, and are discussed. We do, however, confirm Wilkens’ basic tenet, that

the scattering of dislocated blocks scales with block size (at fixed dislocation density) such

that the width of the scattering peak diverges logarithmically with block size. That is, large

blocks lose their coherence. Thus, the observed peak profiles in any dislocation X-ray scat-

tering experiment contain information on both the density (and type) of dislocations and the

length-scale over which ordering has taken place. This connects directly to the physical prob-

lem of what controls the dislocation patterning in a deforming crystal (Kuhlmann-Wilsdorf,

1995).

The theoretical structure of the dislocation scattering problem is very complex and re-

quires several important approximations. This is true, not only for us, but for the other

authors as well. Consequently, comparison between the various scattering models must be

based upon computer simulations. We therefore include in this paper a rigorous and sys-

tematic comparison of the theoretical predictions with computer simulations of scattering

from model systems. We find that our analytic treatment of the scattering problem beauti-

fully matches the computer simulations, thus validating our theoretical results. Computer

simulations will become even more essential for treating scattering from edge dislocations

(work in progress) where many of our current approximations no longer apply.

The work reported here, and the work of Krivoglaz and Wilkens to which we primarily

relate, is based on uniform random distributions of dislocations. The more recent work by

Krivoglaz (1996) and Wilkens (Groma, Ungar k Wilkens, 1988; Ungar, Groma k Wilkens,

1989) and their collaborators, and a particularly important work by Gaal (1984) has dealt

with the more difficult problem of the non-uniform correlations between the dislocations.

Ultimately, one must confront the partially ordered problem. But our purpose here is to

concentrate on the fundamental mathematical structure for dislocation scattering at its

simplest level, where the analysis can be carried through with a minimum of approximation.
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and to compare it critically with computer simulations. After that has been accomplished,

the more complicated problem of scattering from partially ordered dislocation structures

can be addressed (perforce with significant additional approximations, and most desireably

in 3D) in the light of appropriate computer simulations.

We stress that our goal is not merely to reproduce line shapes from dislocation arrange-

ments. This could be accomplished using just the computer simulations. Instead, we require

a quantitative theoretical model that describes the scattering in terms of the physical pa-

rameters we wish to explore. It is only through such a model that meaningful results can

be extracted from experimental measurements.

In the next section, we present the general kinematic analysis, propose a way of in-

troducing the dislocation statistics, and show that this leads to a similar expansion of an

exponential used by the previous authors. Detailed analyses of spatially uncorrelated screw

dislocations in 2D are presented in §III, and the predicted shape is compared to the Gaussian

and Lorentzian forms. Since nontrivial approximations are required for this analysis, in §IV

we present computer simulations of scattering from dislocated lattices for comparison with

the analytic predictions. This comparison is then used to validate the predictions for the

screw case. §V summarizes the paper and presents the conclusions. An appendix presents

an asymptotic analysis for the tails of the scattering distribution that predicts a behavior

distinct from the predictions of both Krivoglaz and Wilkens.

II. GENERAL KINEMATIC SCATTERING

We begin with the expression for the scattering intensity in the kinematic (single scat-

tering, far field) limit given by (Warren, 1990; Krivoglaz, 1996)

/(q) = 5(q)5-(q),

where q is the scattering vector and 5(q) is the lattice structure factor.

(
1

)

‘5'(q)=
Ao

= expjzq • n} exp{iq • u(n)},
Ao fc

(
2

)

where Nq is the number of atoms, n is a perfect lattice vector (we subsume in this sum
any additional sums over lattice basis), f(n) is the actual position of atom n, and u(n) is

the displacement at the lattice site caused by all of the dislocations in the crystal. In all of

these equations, we have left out the atomic scattering factors, /(q), which we take to be

identical. Thus, our 7(q) must be multiplied by //* to obtain the absolute intensity. The
normalization chosen relative to Nq leads to 7(0) = 1 for a perfect lattice, which simplifies the

equations, but NqI represents the actual intensity of scattering for a finite sample (relative

to the incident intensity).

A central problem of dislocation scattering is how to deal with the sample size in the pre-

vious equation. We do this by adopting Wilkens’ restrictedly random distribution construc-

tion; this also allows us to explore the block size dependence of the scattering. Therefore,
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with him, we assume that the lattice is composed of a set (say M) of finite-sized blocks, each

of the same size and shape, and each containing a random distribution of the same total

number of dislocations, N^. We assume that the scattering between the blocks is incoherent,

which implies that the scattering intensity, /, of the total lattice is a sum of the scattering

intensities of the individual blocks.

We will not assign any physical significance yet to these blocks, but presumably if a

deformed crystal arranges its dislocations so that the energy per dislocation is finite, this

arrangement will also destroy the scattering coherence between blocks.

With no approximations, 5(q) can be written as a sum over M blocks,

S(q)= ^ Y. exp{iq • m}^ exp{iq • \} exp{zq • u(r+ m)}

= jWH exp{zq • m} exp{?q • f} expjiq • [u'(r-(- in) + u^{\ + m)]}, (3)

where 1 is the ideal position of an atom in a block located at m, u*(l-|-rn) is the displacement

due to dislocations internal to block m and u®(l-l-m) is the displacement due to dislocations

external to the block.

In our first approximation, we replace the displacement from external dislocations with

an average displacement field, u®(l). An additional term must then be added to account for

relative rotations and displacements of the block m. Writing in just the displacement term,

dm, we obtain

‘5(q)= -^^exp{iq- (m + din)}^exp{zq-r}exp{zq- [u*(r+m) + u®(l)]}. (4)

0 m 1

Using the notation m* = m -f dm and substituting Eqn. (4) into Eqn. (1) gives

^(q)= ^ E - ^'1}
0 m,m'

X E exp{zq • [F— f]} expjzq • u®(l, 1')} exp{zq- u*(l -1- m, 1'
-h m')}, (5)

1,1'

where we define the difference of the displacements at sites 1 and 1' as u(l, 1') = u(l) - u(l'),

with two lattice arguments.

Separating out the m = m' terms then gives

/(q)= ^ E exp{zq- [F- l']}exp{zq- u®(r,r')}exp{zq-u*(r-f m,r' + m)}
° m.M'

E exp{zq-[m*-m'*]}
0 m^m'

X E^xpjzq- [r-l']}exp{zq*u®(r,r)}exp{zq-u‘(r-l-m,P + m')}. (6)

1,1'
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If the scattering from m* and m'* is (close to) incoherent as discussed above, then with the

assumption of the restrictedly random distribution, the second term in Eqn. (6) becomes

negligible and Eqn. (6) can be rewritten as

(^(q)) exp{iq • [1- P]} exp{iq • u^([, P)} (^(1, P, q ;
C))^

, (7)

° TJ'

where (A) will be called the amplitude function,

(A(r,P,q;C))^ = (exp{iq-u*(r,P;C)})^, (8)

and the average is taken over all possible configurations, C, of dislocations. This approxima-

tion is only valid if the number of independent scattering blocks is large enough to adequately

sample the set of dislocation configurations.

Eqn. (7) shows that the X-ray scattering intensity profile for the whole sample can be

determined by the proper average over dislocation configurations within a single block. The

average over configurations can be rewritten as

(.4(r,P,q;C)) =5:P(C) exp{*q-u‘(U';C)}. (9)

c

where P{C) is the probability of each dislocation configuration.

To this point, the only assumption we have made concerning the dislocation distribution

is that the number of atoms and dislocations within each block is the same. We now
invoke the 2D approximation alluded to in the Introduction, in which the dislocations are

all parallel to the Z-axis and the blocks are infinite in this direction. In this case, we only

need to consider a 2D plane of atoms perpendicular to the Z-axis. If the dislocations are

uniformly distributed within a block as independent random variables, then

P{C) = P{U)P{i2), P(t«J = [i]

,

(10)

where Nr is the number of sites in a block and P(t) is the probability of finding a specific

dislocation at a specific site t.

We can then write the amplitude function as

(.4(r,r'.4C)),=

where we have defined the variable (5(l,r;dc) to denote the relative displacement at sites 1

and r due to a single dislocation at dc, and Nd is the number of dislocations in the block. The

Eexp{iq-u(l,r;C)}

Enexp{*q-(^(l,r;dc)}
^ C dc

Nr.
^exp{zq-j'(r, !';!)}

Nd

(
11

)
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sum over all lattice positions, t, in the last equation is the contribution to {A) from a single

dislocation whose center is averaged over the lattice, and the power Na simply means that

the dislocation distribution is uncorrelated. Since the above probability distribution allows

an unphysical superposition of dislocations on a single lattice site, this approximation is only

valid for low dislocation densities {Nd/No) — an approximation which is always satisfied in

reality.

The external displacement term, u®(l, F), is expected to be nearly constant over the area

of an individual block, and becomes a constant phase factor in the analysis. We will simply

assume exp{u®(l, F)} = 1. Substituting Eqn. (11) into Eqn (7) and rewriting as a double

integral then gives

(/(«) = (^)7 exp{iq. (r-r')}(.4(r,r.q;C))^ cSdV.
(
12

)

In this equation, we have set M = 1 since we are now considering the scattering from a

single averaged block, and V is the volume of a cylindrical block of radius L. Symmetry

reduces the problem to 2D so the volume element becomes a circular cross section. The

amplitude function then becomes

(A(r,F,q;C))^= [(aCU'.q)),]""

(o(r,?,q))j= y j exp{iq-f(r,P;t)}(lt. (13)

Since
^
0

(
1

,
F, is raised to a high power, Nd, the maximum in the amplitude function

will be converted into a strong and sharp peak. Our procedure, therefore, is to identify the

peak in
^
0

(
1

,
F,q)^ and then expand ^7l(f, F, q)^ around this point.

For an arbitrary 1 and F, the relative displacement will be of order unity, so that the

phase will vary from 0 to 27r as the integration over the dislocation position is carried out

in Eqn. (13). Thus, as the dislocation is varied from place to place in the block during the

integration, the integrand will tend to cancel itself for typical choices for 1 and 1', and the

integral will be small compared to V. However, when the lattice sites are close together

relative to the block size, L, the phase is close to zero for nearly all choices of dislocation

position, and the integral approaches V. Thus, the maximum of the amplitude function

is at 1 = F, and the exponential can be expanded about zero phase. Indeed, because Nd
is very large, the peak character will be captured accurately in the lowest order expansion

of the exponential. Similar expansions are often used in solving scattering problems but

the usual justification involves displacement fields that decrease with distance; this is not

true for dislocations. This same expansion was also used by both Krivoglaz and Wilkens

although we believe their justifications for it were not rigorous.

Because of the very high peak expected for the amplitude function, (A), it is convenient

to write it as an exponential,

(4(r.r',q;C))^ = e-^

T = -JVdln(a(r,r',q)),. (14)

7



The use of T corresponds to a cumulant expansion of the scattering (Krivoglaz, 1996).

The final expression in Eqn. (11) can easily be generalized to handle dislocations of

multiple types. For example, if we include Nf dislocations of type A and TVf dislocations

of type B, then

X

li
1^/ 5];exp{iq-5-^(r,F;t)}

. t

r 1 n AT®

[j^]
5^exp{zq-^(r,F;t)}

. t

(15)

One use of Eqn. (15) would be to handle samples with several slip systems.

III. APPLICATION TO SCREW DISLOCATIONS

In this section, we will apply the procedures introduced in §II to analyze the scattering

from restrictedly random distributions of screw dislocations. We assume that the displace-

ments are given by isotropic elastic theory, since anisotropic theory adds a degree of com-

plexity which is not desired at this stage. Also, nonlinear core effects can be neglected, since

the major issues in dislocation scattering revolve around what happens at large distances.

Two cases will be examined: 1) B = Ylbi = 0 and 2) B = Na- In order to understand

the difference between these two cases, consider the dislocations in pairs. In case 1), each

pair will consist of a positive and a negative dislocation, while for case 2), both dislocations

will have the same sign. Thus, for each pair, using Eqn. (13) with the shorthand notation

p{t) = q • 5(1, F; t), we can write

Tp{t2)]}dtidt2, (16)

where the upper sign corresponds to 5 = 0 and the lower to B ^ 0. The imaginary part of

this integral is

J sin (p(fi) T p(t2)) dii dii

= I
sin (p(ti)) cos {p{t2))dtidt2T

J
sin (p(t2)) cos (p(ti))dt,rft2. (17)

which is zero for B = 0] when B ^ 0, the amplitude function is complex.

Since the scattering vector is very close to a Bragg condition, the phase factor in Eqn.

(13) can be written with a high degree of accuracy as Q • 5(1, l';t), where Q is the Bragg

scattering vector (Warren, 1990). In the case of screw dislocations, both the Burgers vector

and the dislocation line lie along the Z-direction. Thus, Q • 5(1, F;?) = Qz6{l,V]i), where

Qz = 27rNB/ao, oq is a lattice constant and Nb is the order of the Bragg reflection (along Z).

Thus, we see that reciprocal lattice peaks will only be broadened if they have a component
in the Z-direction. Also, this broadening will be independent of both Qx and Qy.

8



In the following analysis, it will be important to refer frequently to Fig. 1 which shows the

coordinate system together with the complicated collection of angle variables which describe

the geometry of the screw dislocation problem. Substituting the isotropic approximation

for displacement from a screw dislocation (Hirth &: Lothe, 1982) in our geometry, the phase

factor becomes

‘27rclq

^sm{9 - /3), (18)

where Q;(r, ?;!) is the relative angle between the dislocation at t and the two sites 1 and 1'

(see Fig. 1). In the above equation, we used the dipole term in a Taylor expansion for a, and

we took the Burgers vector to be a lattice vector, so Qzbjao = 2'kNb- We also introduced

the variable d=\\' — 1|, and the angles 9 and (3 from the figure. The radius, r, is the distance

between the dislocation and the point half way between 1' and 1, r = |t — (1 + 1')/2|.

Since the maximum value of the amplitude function occurs at f= T in the phase factor,

expanding about this point gives, with reference to Fig. 1,

(a)

(fli)

(«2 )

(04)

u
I

V
sin(0 — /3)

2V

r dr d9

A8VL^

siir{9 - P)
r dr d9

2L
/

sin^(^ - P)
r dr d9. (19)

We shall have no need for the third order term.

The amplitude function can be evaluated by doing the integrations over the circle in

Fig. 1, using as origin the center of the line between the field points, 1 and F. Using

the notation I = |l + F|/2, the cosine law yields the relation L3 = + P + 2lRcos9,

from which the (normalized) upper integration limit for the radius, r, is R/L = p{9) =
—Xcos9 + \/l — sin^ 9, with A = l/L. The lower limit is more subtle. For r < d/2, the

dislocation lies within the circle defined by the field points, 1 and 1', and the angle, a, is

large. It will not then be correctly described by the dipole assumption in Eqn. (18). Instead,

when a is large there should be no significant contribution to the integral. Thus, we take

the lower limit to be rlower = d/2 and the integrals become

rR sm{9 — P)1 /•27r rR

L Jo Jd/2

f2'K

=
/ sm{9 — P)pd9
Jo

r dr d9

9



(20)

sin^

cos^

A cos 0 + \Jl- sin^ 9

|-A cos 6 + \/l - A2 sin^

de

dO,

from which

Further, with

then

(tti) = A7rsin/3.

c-

A=

r-1
L ’

r+r
2L

’

C-ICI

A = |A|,

rl-K r,

(«2)= /Jo Jc

2^ fp sin^(0-/?)
dr d6

0 Ja2
2-k

= r’sin"(e-/3) In^
Jo C

de

= f\os^e In^
Jo C

This complicated integral can be evaluated exactly to give

(02 )
= TT In 0\/l - A2^ .

In a similar manner, the quartic integrals can be evaluated exactly to give

<““> = [3 + a"(i + »!!“ 0)]

.

(21)

(
22

)

(23)

(24)

(25)

Numerical integration shows that the contribution of the A variation to the overall results

is minor for both
(02 )

and
(04 ), so we will use only the dominant term obtained in the limit

A = 0. We then get

(a) — 1 + iNbC^ sin p +
(NbC?

2

Co= 2exp(-A^|/8). (26)

The next step is the integration of the amplitude function to obtain the intensity from

Eqn. (12). When the total Burgers vector is zero, B = Q, the second term in Eqn. (26) is

zero, while for B = all three terms must be used. We now carry out the quasi-Fourier

sums over the amplitude functions to obtain the final intensity distribution for both of these

two special cases.
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A. Zero Total Burgers Vector, S = 0

From Eqn. (12),

y(q)>= (^)"/exp{iq-(P-r)} (A)d\'dl (27)

In developing this integration, first note that Qz • (1 — F) = 2nNB, so only the deviation

from the Bragg g-vector, (q — Qz) contributes. We note that (A) is not a function of so

Eqn. (27) is a 5-function in 2
,
and only the integration in the (X,Y) plane is considered. We

will write g = |q — Qz| for a variable in this plane. With the variables C and A, from Eqn.

(22), and the angle variables ^ and from Fig. 1., we can write the double volume (area)

differential as dldV = d^ dX d^ d^'. With this coordinate transformation, however, the

limits are no longer simple. The limits on A still go from 0 to 1, but the upper limit of C

depends in a complicated way on the angle, much like the R variable in Fig. 1. Fortunately,

the contribution to the C integration falls off very rapidly with increasing C, so the final

solution to the scattering problem is insensitive to the upper limit, Cmax- All that is required

is to ensure that Cmai is small enough to satisfy the various approximations we have made.

To illustrate the problem, we note that if C > Co in Eqn. (26), then the log term changes

sign resulting in an unphysical divergence of the integral. Setting Cmai = Co/3 completely

solves this problem for all cases. Then, noting that (A) is not a function of A for B = 0,

and taking the first term in the expansion for In (a), we obtain the final solution

(/(«)> = ^/ exp{*«Cicosf} (71(C,A)) CXdCdXd^di', (28)

and

{l(q))=2 Jo(q(L) exp ln(Co/o|

Co=2exp(-JVj/8). (29)

Jo refers to the zeroth order Bessel Function. Remember that the scalar, g, is the magnitude

of the vector, |q — Qz| in the (X-Y) plane. We will show in §IV that this solution beautifully

matches our computer simulations, especially in the tails of the distribution.

The integration in Eqn. (29) can only be performed numerically. First, we note that

this function is definitely not a Gaussian. Figure 2 shows a logarithmic plot of the predicted

intensity as a function of g^ (individual points). This plot exhibits a distinct curvature

whereas a Gaussian would produce the straight line shown. This deviation from a Gaussian

distribution is caused by the logarithmic C dependence in the exponential of Eqn. (29). For

completeness in Fig. 2, we also show a plot of a Lorentzian function fitted to the proper

slope and starting value at g = 0 (upper curve)

.

The exponential term in Eqn. (29) is essentially the Fourier-Bessel transform of the

scattering function, (/(g)), and is the term Wilkens focuses on. He obtains the same pre-

logarithmic term we do in the exponential, but quite a different term from our logarithm

(see Appendix 1. of Wilkens, 1970a). He claims (Wilkens, 1970b), however, that in an

11



approximation suitable for the physical case involved, the function he calls / (rj) reduces to

a form similar to the logarithm given in our Eqn. (29) (see equation (2.11) of Wilkens,

1970b). The major difference is in how the Bragg order, Nb, enters into the two different

expressions. Thus, in spite of very different mathematical approaches, we both come to

similar (but distinct) predictions for the function we call (^). We note at this point that

more serious differences exist in how we handle the measured intensity distributions, but we

defer discussion of this point to the Conclusions section.

An important question involves the behavior of the scattering as a function of block size.

We begin our investigation at the top of the scattering peak where q = 0. With the change

of variable, x = (C/Co)^? Eqn. (29) becomes

a(0)) = Co7^

n= NiNlQl/A = NiNl exp(-JV|/8)/2. (30)

Although the integrand has an essential singularity at the origin, the integral over this

function is finite and well behaved. This integral can be estimated by assuming the Gaussian

approximation of Eqn. (29) which gives instead of x^^ in Eqn. (30). Here, x^ is

a constant that depends only upon Nd and Nb- This dependence can be determined by

matching the values of these two functions at the point l/ry^, giving an optimized value of

Xd = ln(2)/(77 ln(7?)). We then obtain

N, X (/(0)> = (/„(0))
4

cAf|ln{j;ln(7;)/(ln2)}’
(31)

where {la) is the scattering intensity per atom of the total sample, and c = Nd/No is the

density of dislocations in the sample. This equation, with Nb = I, is plotted along with

a numerical evaluation of Eqn. (30) in Fig. 3, which shows that Eqn. (31) is an excellent

approximation over the whole range of Nd explored. Larger values of Nd are unlikely to

occur since this would imply unphysically large dislocation ordering distances.

Using the above value for Xd allows us to find the “best fit” Gaussian approximation,

(Ig), for Eqn. (29),

(^G(g)>=2^^^ JoiqCL) exp
|

ln(l/2:d)| (dC

^ 4 f
-q^L^

NdNl\n{T]\n{r])/{\ii2)} | ln{7?ln(7?)/(ln 2)}

The functional form of Eqn. (32) perfectly matches Krivoglaz’s Gaussian prediction, but

some of his parameters are different, thus leading to incorrect predictions of the scattering.

For rough work, one can certainly approximate the scattering by a Gaussian. However,

because the scattering deviates markedly from the Gaussian away from the peak, it will be

important to use the correct shape in any interpretive use of scattering data.

Equation (31) shows that for fixed c, {la) decreases logarithmically to zero as the sample

size increcises without limit. But since the integrated intensity per atom must be independent

of the sample size, the decrease of the peak height to zero requires a corresponding divergence
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of the peak width. This is seen clearly in the Gaussian approximation, Eqn. (32). The

divergence of the peak width demonstrates that for a crystal with a fixed density of spatially

uncorrelated dislocations, the scattering will become completely incoherent as the crystal

size grows to infinity.

Observationally, one finds that dislocated crystals with moderate dislocation density

retain distinct diffraction peaks. We conclude that this coherence arises from regions much
smaller than the total sample size, in confirmation of the Wilkens (1970a) postulate.

Another important question concerns the asymptotic behavior of the scattering.

Krivoglaz (1996) proposes a q~^ behavior of the scattering for large 9, with a suggestion

about how to derive it. However, following his hint, and after looking at our own analysis,

we find a q~‘^ asymptotic relation; the argument is presented in the Appendix. However,

it is very simple to integrate Eqn. (29) numerically and plot the results, and Fig. 4 is a

logarithmic plot showing both the large q behavior of this equation (points) and Krivoglaz’

proposed q~^ behavior (straight line). Numerically, the scattering curve converges perfectly

to Krivoglaz’s prediction for the parameters given in the figure caption. By varying the

parameters, Na and L, however, we can obtain equally good agreement with our own

prediction. This wandering behavior between q~'^ and q~^ suggests that the behavior of Eqn.

(20) is more complicated than a simple power law for the range of q that we have explored

numerically. We do not find that the power goes as low as q~^, however, as predicted by

Wilkens (1970b). Comparison with experimental data is not appropriate at this stage since

we have not yet included the effects of edge dislocations in the analysis.

B. Non-Zero Burgers Vector (The Twisted Crystal), B ^ 0

The restrictedly random distribution was introduced to eliminate the problem of long

range strains in an infinite crystal. This rationale is not valid for the B 0 case since

the crystal would contain an infinite number of unpaired dislocations. However, as will be

explained in §IV, the averaging procedure we have introduced can also describe the scattering

from a large (but finite) sample containing just one block. We will therefore continue our

analysis of the B ^ 0 case using the same techniques used for the B = 0 case.

When B ^ 0, the first three terms in the expansion of (a) in Eqn. (26) are taken. As

before, substituting this equation into Eqn. (12) and using the T expansion of Eqn. (14)

leads to

^ ^ J {iC{qL cos

^

+ NdNeXsini^ - O)} exp
{
- ln(Co/C)}

xCAdC dXd^d^'

= i J exp {iCh sm{^ + x)} exp
{
- ln(Co/C)}

= ^l Jo(hC) exp ln(C/Co)}CAdCdAdr

7rNdNg\n{T]\n{r])/{\n2)} Jo Jo i 7VdV|ln{77ln(7/)/(ln2)}-’
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In expanding the various sinusoidal functions in these integrations, we have used the follow-

ing abbreviations

/»"= (qL - /VdAfsAsinf')" + (N^NeXcosif

x= tan'
fqL-NdNBXsme\

V NaNeXcose )' (34)

Further, in going to the last approximate equation in (33), we have neglected the variation

of the logarithm with using the same approximation which led to a Gaussian scattering

law for the B = 0 case. Since we are now primarily interested in the general behavior of the

scattering, this approximation is adequate and it greatly simplifies the analysis.

The scattering is now quite different from the B = 0 case. Even though a closed form

solution for the final integral is not possible for all values of the variables, there are two

ranges of important behavior, depending on the magnitude of qL relative to N^Nb- When
qL < NdNB, then h'^ and

(^(9)> = j^. {qL^N.Nb}. (35)

The second case is qL N^Nb-, when h? —)• Then the integration is again possible,

and takes the same form as in the B = case above (in the Gaussian approximation).

Ar,Af|ln{7,ln(»,)/(ln2)}®^p{iV,JV|ln{r,ta(,,)/(ta
’ (36)

These two equations thus yield a flat scattering around the Bragg peak out to a critical

scattering vector, qc N^Nb/L. This critical q simply describes the “bending” of the

lattice generated by the screw dislocations. Around qc-, the scattering falls off abruptly and

converges to the B = 0 solution.

The B ^0 case has been explored by Barabash, Krivoglaz, & Ryaboshapka (1976) with

equivalent results.

IV. COMPUTER SIMULATIONS

As discussed in §11, scattering from a restrictedly random distribution of dislocations

can be found by averaging the scattering intensities from many independent blocks. In the

computer simulations, therefore, line profiles for many different blocks are calculated and

then averaged. Each block simulation uses a different spatially uncorrelated arrangement of

dislocations whose positions are determined using a random number generator. No approx-

imations are made since we use Eqn. (2) directly and evaluate the intensity by computing

SS*. The lattice sums were carried out for 2D circular samples with an underlying square

lattice. Typically, Nq ^ 10^.

Figure 5 shows a contour plot of the 001 peak from a single circular diffracting region with

L = 50 and Na = 50. The large fluctuations are typical of scattering from a spatially random
collection of dislocations. We find that as the size of the simulation increases (with a constant
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dislocation density), the characteristic wavelength of the oscillations decreases. Thus, even if

a sample contained just one macroscopic block, an instrument with a finite resolution would

perceive only the local average value of the scattering. For practical purposes, therefore, the

radius, L, of our computer simulations can be interpreted as either the size of a scattering

block within a larger sample, or as the size of a sample containing just one block. The same

is true for our theoretical formalism.

Figure 6 shows scattering results for three cases of randomly distributed screw disloca-

tions in a circular lattice with B = Q. As discussed above, these plots are intensity averages

of simulations from many individual blocks. Since the resulting scattering distributions must

be circularly symmetric about the Bragg peak, we display just a single radial cross-section.

In each of the three plots, the solid curves are the theoretical predictions from Eqn. (29)

and the individual data points come from the computer simulations. The parameters used

in Fig. 6(a) are L = 100 and Nd = 100; those for Fig. 6(b) are L = 200 and N^, = 500.

In both cases, the 001 peak is displayed. The theoretical predictions accurately follow the

computer simulations in the tails of the distributions. At the peaks, we find nearly perfect

agreement in Fig. 6(b) and only a small deviation in Fig. 6(a). Analysis of many such plots

suggests that the theoretical predictions improve as the number of dislocations increases.

This is not surprising since our expansion of {A) becomes more accurate as increases.

Figure 6(c) shows a plot of the 002 peak with L = 200 and Nd = 500. Although agreement is

still quite good in the tails of the distribution, the overall fit is not as good as that observed

in the previous simulations. Once again, agreement improves with increasing numbers of

dislocations.

One final check that must be made concerns our prediction that (/(O)) (not (/a(0))) is

independent of the sample size, L. As shown by Eqn. (31), we expect (/(O)) to depend only

upon Nd and Nb- We have varied L in our simulations while keeping Nd constant and have

found that (/(O)) is indeed independent of L.

The observed agreement between the theory and the simulations is remarkably good.

We stress that there were no adjustable parameters in any of the plots. Of course, the

agreement can only be investigated for sample sizes and dislocation densities which we can

do in reasonable times on current work stations, and L = 200 was the largest practical

lattice for us. However, as remarked above, the quality of the theoretical prediction is likely

to improve as the number of dislocations increases. We conclude that Eqn. (29) accurately

describes the scattering from screw dislocations with B = 0.

Figure 7 shows the 001 peak for a circular sample of radius 50, with Nd = 50 and B = 50.

Thus, all of the dislocations have the same Burgers vector. The scattering is approximately

constant (though somewhat ragged due to the statistics) from g = 0 to a critical qc, where

a sharp fall-off takes place. As predicted in §III, Qc ~ Nd/L = 0.5. This Qc corresponds

quantitatively to the lattice “rotation” induced by S / 0. (The actual lattice geometry

is not a pure rotation, of course, because two sets of screws are necessary to cause pure

rotation.)
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V. CONCLUSIONS

In this paper, we develop a new approach to dislocation X-ray scattering theory based

on a straightforward application of probability theory; specifically, we make central use of

the proposition that, for large N, the Nth power of a peaked function is very strongly

peaked. An integral over the resulting function is accurately found by integrating the lowest

order expansion around the peak position. In our case, N = Na is the (large) number of

dislocations. After developing the general equations, they are applied to the problem of

scattering by screw dislocations in 2D. Analytically, the screw dislocation problem turns

out to be barely tractable, provided a number of reasonable approximations are made. The

results obtained, even in this simple case, highlight the physical features of dislocation

scattering in general, and will be useful in guiding our approach to the more difficult edge

dislocation scattering in a subsequent paper.

We have two principal conclusions. First, the scattering intensity of a (screw) dislocated

crystal is non-Gaussian in form, and given very well by Eqn. (29). Computer simulations

indicate that the accuracy of this solution increases with increasing iV^. For the first Bragg

peak, good convergence to Eqn. (29) was demonstrated at N^, ^ 100; for higher-order Bragg

peaks, convergence appears to be slower. Second, in a sample with fixed dislocation density,

as the block size goes to infinity, the lattice loses all scattering coherence. These conclusions

are discussed in turn.

As expected from previous analyses of experimental results (Young & Wiles, 1982),

Equation (29) yields results which are “intermediate” between Gaussian and Lorentzian

distributions. Deviation from a Gaussian solution arises from a proper estimate of the lower

limit of the integral for (a). Unfortunately, this limit also leads to a final solution which can

only be evaluated numerically.

Previous authors have made different choices for this lower limit. Krivoglaz and Rya-

boshapka (Krivoglaz, 1996; Krivoglaz k Ryaboshapka, 1963) take a limit which is inde-

pendent of the integration variable in our Eqn. (29); this choice allows them to obtain an

approximate analytic solution which is a Gaussian distribution. In our own analysis, where

the statistical treatment is more rigorous, if we take a lower limit which is proportional to

the sample size, then we also arrive at a Gaussian line-shape. There is good physical rea-

soning for such a choice as an approximation: (a2 ), because of its definition as a normalized

volume average, must not scale with the sample size, a requirement which is possible if the

lower limit is taken to be proportional to the sample size, L. This makes the argument

of the logarithm term a constant, and the final result is found to be roughly equivalent to

Krivoglaz ’s approximate solution.

Wilkens (1970a; 1970b), on the other hand, looks very hard at this lower limit. Working

with what appears to be his equivalent of our amplitude function, Ag, he finds a very

complicated function for our logarithm term, ln(Co/C )5 in Eqn. (29). In a later paper

(Wilkens, 1970b), this function is greatly simplified to a logarithmic expression similar to

our own, although several important differences in detail still remain.

Due in part to, errors in Wilkens’ published geometric factors, we were unable to use

his published solution to obtain physically realistic line-shapes. Comparison between our

basic definitions and those of Wilkens suggests that our differences lie in how we relate the

functions Ag and {A) to the scattering intensity. This, in turn, suggests that the Wilkens
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function, Ag, should not be functionally equivalent to our amplitude function, (^). A final

point of contact is his published curve, (Fig. (2) in Wilkens, 1970b). When we compare that

figure with our numerical results as given in our Fig. 2, we seem to get a stronger deviation

from the Gaussian than he reports. To summarize, we have been unable to use Wilkens’

published equations to reproduce physically correct scattering profiles. Also, comparisons

between his results and our solution, Eqn. (29), show substantial differences in the respective

functional forms.

We have also explored the asymptotic behavior of the scattering intensity. From Eqn.

(29), we find that the intensity varies as (/(g)) oc 1/g^, which differs from both Krivoglaz’s

(1996) and Wilkens’ predictions. Numerical integration of Eqn. (29) was used to examine

the g dependence at large, but finite, g. Some reasonable parameters gave a near perfect

agreement with Krivoglaz’s q~^ prediction; other reasonable choices gave a near perfect

agreement with our large-g prediction of q~'^. This variation suggests that the intensity

converges so slowly to a power law that our simulations were not carried out at a sufficiently

large g. Although there is some apparent uncertainty between the predictions of Krivoglaz

and ourselves, we do not see the q~^ dependence reported by Wilkens (1970b).

All of the above results relate to the case B = 0. When B 7^ 0, we find the peak

is broadened by the lattice “rotation” contributed by the dislocations in the crystal. For

significant non-zero content, the peak becomes flattened on the top, with a sharp fall-off at

a g-value corresponding to the lattice rotation. In the Gaussian approximation we used for

this case, the wings of the distribution follow the same behavior as predicted for the B = {)

case. This same result has previously been reported by Barabash, et al. (1976).

The second major conclusion of the paper concerns the sample size dependence of the

scattering. Analysis of Eqn. (29) shows that for a fixed dislocation density, the maximum
peak height per atom, (/a(0)), decreases approximately as l/ln(L). Since the integrated

(/a(g)) for a given Bragg peak must be constant as the sample size increases, there exists

a reciprocal relation between peak height and peak width. Thus, as (/a(0)) ^ 0 with

increasing sample size, the width of the distribution must diverge and the sample loses all

coherence.

The above functional dependence of the size scaling agrees roughly with both Krivoglaz’s

Gaussian analysis and Wilkins’ report that the peak width is approximately proportional to

hi{y/cL). This size scaling is a direct confirmation of Wilkens’ basic thinking regarding the

sample size dependence of dislocation scattering. Thus, in any experimental measurement

on a macroscopic dislocated sample, a finite peak width refiects the length-scale beyond

which the dislocations are not randomly distributed.

This leads us to a final question regarding the use of Wilkens’ results for analyzing

experimental data. In his interpretation of experimental results, Wilkens (1984) relies on

the shape of the scattering function to determine his parameter, M, which is essentially

our sjNd/i:. He then finds that M is always of the order 1! This implies that the block

size is roughly equal to the distance between dislocations. This is a very remarkable result,

and we wonder if this is the correct interpretation, for several reasons. First, of course, is

our difficulty in relating to his scattering intensity function, I{S). More fundamentally, we

believe that it is dangerous to use a functional form originally derived for screw dislocations

to fit experimental data where edge dislocations predominate. Also, parameters such as
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peak heights, peak widths, and asymptotic tails can be measured with some degree of

confidence. The exact functional form of a curve, however, is likely to be much more sensitive

to experimental and theoretical details. Therefore, we believe it may be more reasonable to

base a measure of Na on a comparison of peak heights with Bragg order, perhaps tempered

by considerations of peak shape. But this is a point we wish to pursue only after we have

presented the edge scattering results in a following paper.

In spite of the success we have demonstrated in our theoretical treatment of the above

scattering problem, we must emphasize that a major issue of scattering from dislocations

remains essentially unresolved. This involves the partially ordered non-random character

of dislocation structures in physical systems. In Wilkens’ original view (Wilkens, 1970a),

non-randomness is associated with the block size of his restrictedly random distribution.

In Krivoglaz’ view (1996) and in that of Ungar et al. (1988, 1989) and Gaal (1984), it is

associated with the pair correlations in the distribution. Both of these viewpoints have merit,

but neither approach answers the important question of what the measured coherence length

really means in a physical system. At present, the most feasible approach to this problem

would be through computer simulations of scattering from model systems, a problem to

which we return in a later work.

APPENDIX A

In this section, we develop an asymptotic expansion for Eqn. (29),

(/(«)> =2/'
Co/3

Jo{qCL) exp<

2 rpCo/s (

a:Jo(x)exp|

-NiiNeif
ln(Co/f) CdC

-NdN%x^ ln(pCo/x)

I

dx, (Al)

where x = pC and p = qL. As g ^ 00
,
the exponential function and the integration

limits spread out with respect to xJo{x). We make the crucial assumption that when the

oscillations in the Bessel function are very fast relative to the variation in the exponential,

the only significant contribution to the integral comes where the magnitude of the argument

of the exponential is much less than one.

P

Nb]I NaHpCo/xY

If true, then the exponential can be expanded to give

2 r^max

-X /
xJo{x)

Jo

NdN^xHuipCo/x)

2p2
dx

(A2)

(A3)

where Xmax satisfies the condition in Eqn. (A2). The only q dependence in the first integral

in Eqn. (A3) is in the upper limit. Therefore, as ^ ^ 00
,
we can also let x^ax cx) in this

first integral which then becomes identically zero, leaving

/VjTVi. r^max ^

U(9)> ~ x^Jq{x) [ln(a:) - In(pCo)] dx. (A4)
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We can now pull all of the q dependence out of the integrands, allowing us, once again, to

set the upper integration limits to oo. These integrals can also be evaluated exactly, giving

m) ^ (A5)

In this last equation, we remember that c = Nd/i'n'L^) is the dislocation density.

Given the assumption that we can expand the exponential in Eqn. (Al), the asymptotic

limit given by Eqn. (A5) is exact. We must emphasize, however, that the above analysis

suggests a very complicated behavior for finite q. Therefore, it is not surprising that nu-

merical integration of Eqn. (29) for different values of Nd and L gives apparent power law

behaviors that wander between and q~^. We note, however, that we never find a power

law behavior as low as q~^ as predicted by Wilkens (1970b).
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FIG. 1. The integration for the amplitude functions is over a circle of radius L. The origin

for the integrations is not the center of the circle, it is placed at the center point of the vector

joining the field points, P and 1. Prom this origin, the distance to the dislocation at the point t

is r, and has a maximum value, R. R is thus a fimction of the integration angle variable 6. The

angle subtended by the two field points from the dislocation is called a. The angle between the

x-axis and the vector P — 1, is p. The scattering vector direction is shown as q, and the angle from

this direction to the x-axis is The angle from the scattering vector to the vector, P — f, is

The latter two angles are needed in the Fourier integrals for the scattering intensity.



FIG. 2. Data points show In (/(g)) plotted as a function of g^ using Eqn. (29). For compar-

ison, the figure shows Gaussian (straight line) and Lorentzian (curved line) curves fitted to the

appropriate slope and value at g = 0.
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FIG. 3. Plot of (/a(0)) vs. the number of dislocations, Nd, for fixed dislocation density, c. The

curved fine is the approximate solution given by Eqn. (31), while the points were obtained by

numerical integration of Eqn. (30).
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FIG. 4. Log/Log plot of Eqn. (29), showing that in the extreme wings of the distribution, at

least for a Umited range of q, the scattering curve becomes power-like with a power in the range

of -5, as suggested by Krivoglaz. The straight hne shows a power function, 1/g^, for comparison.

See text.
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FIG. 5. Contour plot ofa single simulation of a circular block containing 50 randomly positioned

screw dislocations, and with L = 50. The contours are very tortuous and fluctuate strongly. When
a large number of independent simulations are averaged, the fluctuations smooth out.
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FIG. 6. Simulation results for a variety of cases with jB = 0, compared with Eqn. (29).

Each case is averaged over a large number of separately randomized simulations. The data points

represent the computer simulations and the full hnes axe the theoretical predictions from Ekjn. (29).

a) Scattering from a circle of radius 100, with 100 dislocations and averaged over 10,000 simulations.

First Bragg peak, Nb = 1. b) Scattering from a circle of radius 200, with 500 dislocations and

averaged over 5000 simulations. First Bragg peak, Nb = 1. c) Scattering from a circle of radius

200 with 500 dislocations and averaged over 5000 simulations. Second Bragg reflection, Nb = 2.
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FIG. 7. Computer simulation of the scattering from a circle of radius 100 with 50 same-sign

screw dislocations {B = 50), and averaged over 2000 simulations. The shape of this distribution

matches the theoretical predictions.
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