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Abstract

Thermal diffusion in stratified media is important in many applications such as electronic

packaging, optical disk recording, and nondestructive evaluation. A straightforward

algorithm is presented for the solution of the one dimensional thermal diffusion equation in a

stratified medium containing a modulated heating source. In this context, media with thermal

conductivity (or diffusivity) gradients normal to the specimen surfaces can be considered

stratified media. Interface thermal resistance is easily incorporated into the calculation. In

the case of heat sources varying in the x-y plane parallel to the layers, the procedure can be

used to find the x-y Fourier transform of the temperature. In the case of a multilayer stack

of rectangular cross section, the procedure can be used to fiind the coefficients of the x-y

Fourier series expansion of the temperature. A sample calculation for a delaminated

diamond film on a WC substrate is presented.

Key words: diamond film, heat diffusion, multilayer, stratified medium, thermal diffusion,

thermal waves
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ALGORITHM FOR SOLUTIONS OF THE THERMAL DIFFUSION EQUATION IN A
STRATIFIED MEDIUM WITH A MODULATED HEATING SOURCE

1. Introduction

The solutions of the thermal diffusion equation in a stratified (multilayer) medium are

important for many modem applications such as thermal diffusivity measurements^ thermal

wave nondestmctive probes^, heat conduction in optical disk recording^, and heat dissipation

in electronic multilayer stmctures"^. Several analyses have been made of ac^ or dc steady

state heat flow in general multilayer systems^'^, however, they have included either no heat

source^ or a heat source at an outer surface^

This paper presents a simple algorithm to solve the one dimensional heat diffusion

equation for a general multilayer stack containing a modulated (ac) heating source located at

an arbitrary plane within the stack. The algorithm used involves a simple matrix formalism

that is analogous to that given in Carslaw and Yaeger^. Thermal resistance at each interface

is easily incorporated into the solution. The solution for heat sources distributed normal to

the specimen surfaces is obtained by using the discrete plane source as the Green function.

Recently, several papers have treated the propagation of thermal waves in linearly

inhomogeneous materials*’^ with the thermal conductivity (diffusivity) gradient normal to the

specimen surfaces. From a computational point of view, the procedure presented in this note

can easily treat any profile as a series of uniform layers. We present a sample calculation

for a delaminated diamond film on a WC substrate.

The procedure is also applicable to solving a wider range of problems: 1) Layered

systems containing heating sources distributed in the x-y plane parallel to the layers. The

procedure yields the x-y spatial Fourier transform of the temperature distribution. 2)

Layered systems having a rectangular cross section. The procedure yields the coefficients of

the x-y spatial Fourier series expansion of the temperature.

2. Matrix formulation

The one dimensional homogeneous differential equation that describes heat diffusion

for a modulated heating source of angular frequency co is.

d^T 0)

+i—T=0,
dz^ ^

( 1 )

where D is the thermal diffusivity and T is the complex temperature at co. The time

dependence is We assume that D for any medium in the problem is homogeneous,

isotropic, and independent of T. The heat source has not been included in the equation;

instead, heating is treated as a boundary condition. The solutions can be written as the sum

of exponentials that are growing (+) and decaying (-) in the positive z direction.
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r(z)=rv'«+r-^-'«, (2)

where, m^ = -i—, and and T constants to be determined. The solutions to eq. (2) can
D

also be expressed in the form of waves, called thermal waves, if we make the substitution

u=iw.

The temperature can be treated as a two dimensional vector T given by

T=
T\z)

[T-(z)) T'e-
. Consider a boundary plane at between media a and b, as seen

in figure 1, with no heating in the vicinity of the boundary. The temperature and heat flow

are continuous across the boundary, thus

(3)

(4)

where, is the limit as z approaches the boundary from the right, is the limit as z

approaches the boundary from the left, and kj is the thermal conductivity of medium j. The

thermal conductivity is related to the thermal diffusivity by K.=DpjCj, where pj is the mass

density and Cy is the specific heat. Inserting the solution eq. (2) into eqs. (3) and (4), we
obtain

= r;(^)+r,(^), (5)

yX(^) - y7;(^) = Y,r;(^) - Y,r;(^) , (6)

where 7y =«/«/•

Equations (5) and (6) can be represented as a matrix equation

Ti=r,,T„ (7)

where

1

2Y,

Yi,-^Ya YrY

IY,-Y, Y,+Y,J
(8)

Equation (7) relates the temperature on two sides of an interface.

If the interface between two media contains a thermal resistance, R [ref. 6], then eq.
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(8) becomes

2Yi

Yj-Y„-Yi,Y/

[.Yj-Y^+Y^Y^R Y(,+Y„-Y(,Y/,

The relationship between the temperatures at two points

separated by a distance L=Zj-Zi with no intervening heat source

in a given medium a

is

where.

u«(^)=
0

^

0

(8a)

(9)

( 10)

Thus, eqs. (7) and (9) allow us to express the temperamre at any coordinate as a function of

the temperamre at any other coordinate, provided there is no intervening heat source.

If heat is applied uniformly to the boundary at a rate ^ W cm"^, then eq. (4) becomes

and the matrix equation becomes

(11)

Ti,=rz,A _g_

2Y,
(12)

If the heating occurs within a single medium, eq. (12) simplifies considerably (r=l, the

identity matrix); thus, when performing calculations, it is most convenient to consider

heating to occur within a single medium. Heating at a boundary between two different media

can be considered as heating within one of the media in the limit that the distance between

the heat source and the boundary is vanishingly small.

3. One dimensional multilayer heat flow

Consider a multilayer system as seen in figure 2. We want to solve for the

temperamre at every point (or plane) for heat input at any particular point (or plane).

Before proceeding with the solution, let us define some nomenclamre. If we have N
slabs of finite thickness with media to the right and to the left, there will be N+2 media and

N+1 interfaces. We begin counting media from the left starting with 0 and ending with N+\
to the right. Each interface takes the label of the medium immediately to its left. The origin
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(z=0) is placed at interface 0. The coordinate of interface j is Zj and the thickness of layer j
is Lj. The nomenclature for the temperature vector at any plane z located in medium j is

where f is the distance from the left boundary of medium j, that is, For

brevity, we define Tq=Tq{Q) and •

Now, let us consider the temperature vector relationship in the vicinity of the heat

source. Because a single medium surrounds the source, eq. (12) simplifies to

T/r)-T/r)= q

2Y;
(13)

In medium 0, the temperamre must remain finite in the limit, z-»-oo, thus, Tq (z)=0,

whereas in medium A^+1, the temperature must remain finite in the limit, z~»oo; thus,

r^^i = 0. Hence one can easily show that and are both proportional to Tq*

and Tj*{^+) and Tj~{^+) are both proportional to If Tj \t-)=A Tq Tj Tq
*

and then eq. (13) becomes

'N+l B-ro"A= —

^

2y.
(14)

/ N

A^
/ \

B*
where, A= and B = Equation (14) represents two simultaneous equations that

can be solved for Tq and The solutions are

^ 2yjA^B--A-B^
(15)

q A*+A

2yj A B -A B^
(16)

The temperamres in all of the layers can be obtained from Tq* and ^iV+l by successive

applications of the vector relationships eqs. (7) and (9).

4. General Procedure

To solve for the temperamre distribution throughout the multilayer stack for a heat

source at position z=Zj_j+t, we must first solve for the components of the vectors A and B.

These are given by
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(17)XTjj_j X . . . Xr
5 2,1^^ 1,0^

B =Uy(^-Ly) X Tjj ^j
X IJj +j{-Lj ^j)x Tj

_^jj ^2
X • • •

• • • ^^N-2,N-l ^N-l) ^"^N.N+l ^ (18)

By inserting the components of A and B into eqs. (15) and (16), we obtain the temperatures

at the outer surfaces of the multilayer stack. Successive applications of eqs. (7) and (9)

allow us to obtain the temperature at any location within the stack. If heating occurs at an

interface between two media, such as to position z=Zy_j, we just take the limit as

If there are heat sources at two or more coordinates, we solve for the temperature for

each source separately and then sum the solutions. In the case of a heat source distributed

along z, the solution obtained above can be used as the Green function for obtaining the

solution.

5. Spatially Varying Heat Source in a Multilayer System

In the previous discussion, we assumed that heat was applied to a plane uniformly.

Let us now assume a planar heat source that is varying in the plane exists at z=f, that is,

q=q{x,y). The heat diffusion equation in cartesian coordinates for three dimensional heat

flow is given by

q2t— +— +—+i— r=o.
dx^ dy^ dz^ D

The general solution for each layer in a multilayer system is of the form

(19)

Tj(.x,y,z)=

f

/{f;(k,,k^,z)+ (20)

where.

(21)

f;k„k^,z)=cr(k,,ky‘‘\ (22)

and
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1/2

(23 )

We see that the temperature is the inverse two dimensional Fourier transform of two terms.

The two dimensional Fourier transform of q{x,y) can be written as

(24)

If we match the boundary conditions at an interface between two layers using eqs. (20) and

(24), we obtain a matrix equation of the same form as eq. (12) with Fourier transforms of

the temperarnre and the heat source replacing the temperature and heat source of the one

dimensional case. In addition, eqs. (21) and (22) have the same form as the terms in eq. (2).

Thus, the formalism developed for the one dimensional case can be seen to apply directly to

the Fourier transforms of the higher dimensional case. In the case of an axially symmetric

heat source in the xy plane, the formalism holds as well except that we must use Hankel

transforms instead of Fourier transforms.

6. Multilayer System with Rectangular Cross-Section

The procedure described above also applies to a buried planar heat source in a

multilayer system having a rectangular cross-section of dimensions and L^. In this case

the above procedure can be used to solve for the coefficients of the Fourier series analogous

to that given by eq. (15) in reference 4. In this case we assume heat loss from the edges of

the films is neglible compared to loss through the end faces of the stack and, therefore, can

be ignored.

7. Sample calculation

Thermal waves can be used to probe for delamination of a thin film on a substrate

and the one dimensional formalism is useful for analyzing this system. The system consists

of an air ambient (medium 0), a film (medium 1), an air gap (medium 2) of varying

thickness, and a substrate (medium 3); N=2. We assume that the modulated heat source is

in medium 1 at the boundary with medium 0; we want to know how the magnitude and phase

of the temperature at the film surface vary as a function of the air gap thickness. From eqs.

17 and 18 we obtain

2Yi
’ (25)

(26)
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(27)

(Yi-^Y2)(Y2-Y3)g'“^^(YrY2)(Y2n3)g“^ -.,t,

4y,Y,

and

^-_ (Yi-Y2)(Y2-Y3)^'“^'^(Yi~^Y2)(Y2~^Y3)g“^ u,l,

4YiY2
(28)

Inserting these into eq. 15, we obtain the surface temperature .

The magnitude of the thermal signal is given by
|

Tq""
[ ,

and the phase is given by

arctan(-Sro'/0iro'). Figure 3 shows a plot of the magnitude and phase of the thermal signal

as a function of air gap thickness at a modulation frequency of 200 Hz for a delaminated film

of diamond 20^m thick on a tungsten carbide substrate. Table 1 lists the material parameters

used in the computation.

8. Conclusion

We have demonstrated a straightforward algorithm for solving the thermal diffusion

equation in one dimension for a stratified medium with a modulated heating source. It can

be applied to media with thermal conductivity gradients if the gradient is normal to the

specimen surfaces. In this case the media can be decomposed into sublayers of uniform

composition. Interface thermal resistance is easily incorporated into the calculation. If the

heat source has a spatial variation in the x-y plane parallel to the layers, the procedure can be

used to obtain the x-y spatial Fourier transforms of the temperature distribution. In the case

of a mulitilayer stack of rectangular cross section, the procedure can be used to solve for the

coefficients of the x-y Fourier series expansion of the temperature. A sample calculation for

a delaminated diamond film on a WC substrate was presented.
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Table 1. Numerical Parameters Used in the Example

medium /c (W cm*^ K'^) p (g cm'^) C(Jg-'K-‘)

0, 2 0.00026 0.00129 1.01

1 9.6 3.5 0.51

3 0.95 15. 0.28

z=^

h'

Medium a Medium b

Figure 1. Heating at a boundary between two media.
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q

Figure 2. General multilayer system. The numbers at the top denote the boundary indices,

the numbers near the bottom denote the media indices, Lj denotes the layer width, and q
denotes the heat input a distance f from the left layer boundary.
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Figure 3. Magnitude and phase of the thermal signal as a function of air gap thickness at a

modulation frequency of 200 Hz for a film of diamond lOfim thick on a tungsten carbide

substrate. Table 1 lists the material parameters used in the computation.

12






