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Abstract

This paper presents the development of a mathematical model describing the stiffness of a Stewart-

platform-based milling machine. Matrix structural analysis is used to derive the stiffness matrix for each of the

elements in the model and assemble them into a system-wide stiffness matrix. By incorporating the inverse

kinematics of the machine tool, the system model is used to visualize the stiffness variation over the mill’s

workspace. Estimation of the system parameters is conducted through experimental stiffness measurements.

Computer simulation is used to demonstrate how the developed stiffness model suggests an optimization process

for tool-path planning.

1. Introduction

Competitive pressures compel machine

tool designers to continually search for equipment

that can deliver higher accuracies and material

removal rates. The search for new and innovative

machine tool designs has led to an exploration of

the capabilities of parallel mechanisms. Typically,

these mechanisms consist of a moveable platform

connected to a rigid base through multiple,

identically jointed and extensible struts. The unique

characteristics of high stiffness and high speed,

combined with versatile contouring capabilities

have made parallel mechanisms good potential

candidates for the machine tool industry to advance

machining performance.

The potential use of parallel mechanisms

as machine tools dates back to Stewart’s paper on a

six-degree of freedom mechanism [1]. He designed

this mechanism, commonly called a Stewart

platform, to provide motion for a flight simulator,

but also suggested its use as a machine tool. It has

not been until recently, though, that computing

power and control software have matured to the

level necessary for the development of commercial

parallel machine tools. Several prototypes of

Stewart platform based machine tools are now

being tested throughout the world.

In this paper, a stiffness model of a Stewart

platform based milling machine is presented. This

model uses traditional matrix structural analysis in

conjunction with preliminary experimental stiffness

results from the Ingersoll Octahedral-Hexapod

located at the National Institute of Standards and

Technology (NIST). The use of matrix structural

analysis differs from the traditional approach to

robotic stiffness modeling taken by Gosselin[2],

which relies on the calculation of a Stewart

platform’s Jacobian.

The objective of this stiffness model is to

provide an understanding of how the stiffness of the

machine tool changes as a function of its

workspace. This can be accomplished using a

mapping algorithm. It can also be combined with

numerical control programs to examine stiffness

variation as the machine follows a tool path. It

should be pointed out that the work presented in

this paper demonstrates the importance of using the

system stiffness model to maximize the machine’s

stiffness during operation.

2. Ingersoll Octahedral-Hexapod

The NIST Ingersoll Octahedral-Hexapod'

is a prototype Stewart platform based milling

Certain commercial equipment, instruments, or materials are

identified in this paper to specify the experimental procedure

adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of

Standards and Technology, nor is it intended to imply that the
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machine. As illustrated in Figure 1, the machine

tool consists of a small platform that supports the

spindle motor and tool connected to a space frame

structure through six identical struts. These struts

consist of two spherical joints connected by a servo

driven ball screw. The spindle platform is translated

and rotated by changing the length of the ball screw

in each strut.

The use of six struts imparts six degrees of

freedom to the milling machine. This allows the

Hexapod to machine complex contoured surfaces

common in areas such as tool and die

manufacturing and the aerospace industry. The

unique geometry of the Hexapod means that

machining forces are primarily distributed as axial

loads throughout the structure, greatly increasing

stiffness. This also provides for the use of lighter

components, allowing higher feed rates and reduces

the need for heavy duty foundations necessary for

traditional machine tools.

Figure 1. NIST Ingersoll Octahedral Hexapod

3. Development of Stiffness Model

The Hexapod stiffness model is based on

matrix structural analysis[3], which models

structures as a combination of elements and nodes.

Equation 1 describes the basic relationship in this

method of analysis, where {F} is a force vector

materials or equipment identified are necessarily the best

available for the purpose.

applied to the nodes of the structure and {x} is the

displacement of the nodes due to those applied

forces. [^] is the structure stiffness matrix that

relates the two vectors. The stiffness matrix

depends on the nature of the elements in the

structure, whether they are truss or frame elements,

their geometric orientation and connectivity.

{f} =WW (1)

In this study, the Hexapod stiffness model

relies on truss elements. These elements consist of

two nodes and are only capable of linear

deformation along their length, as assumed. The

deflection of a truss element in its local coordinate

frame is thus described by equation 2, where i and j

represent the two nodes of the element and [F] and

[m] are the external forces and nodal displacements

respectively. The element is assumed to lie along

the local x axis. This matrix is scaled by the cross-

sectional area of the element. A, the elastic

modulus, E, and the length of the element L.

1 0 0 -1 0 0
‘

0 0 0 0 0 0

Fa _ 0 0 0 0 0 0 ^iz

Fj. L -1 0 0 1 0 0 ^jx

Fjy 0 0 0 0 0 0 Ujy

Fj. 0 0 0 0 0 0
_

(2)

When analyzing a structure, it is necessary

to transform the element stiffness matrices in the

local coordinate system to the global coordinate

system of the structure. This is accomplished

through the use of a rotation matrix (eq. 3), where

iu, jv, and are the unit vectors in the local

coordinate system and i^, jy, and are the unit

vectors in the global coordinate system.

Letting

h L h -Jv h K
F=: jy -L Jy Jv Jy -K

]^z L -jv K -K.

_X2-
-yx

(3 )

and

^3 where Xi, X2 , etc. represent the x.

y, or z global coordinates of the two nodes

associated with each truss element and
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L = .J(X2-X,)K(Y2-y,f*(Z2-zf . i,

can then be shown that the overall stiffness matrix

for one truss element in global coordinates is equal

to equation 4 [3].

‘-ri

^1

C3

(4)

This equation is combined with other

element stiffness matrices to create a single stiffness

matrix for the entire structure. This is accomplished

by adding the individual stiffness matrices together

with respect to the connectivity of the elements in

the overall structure.

In this study, twenty-five elements are used

to represent the Ingersoll Octahedral-Hexapod.

Figure 2 a, b shows the location of those elements

in the machine tool model. Truss elements are

assumed to be pin jointed at each end and unable to

transmit a moment from one element to the next.

Due to this, it is necessary to use a large number of

truss elements to represent the spindle platform to

ensure that the spindle platform elements form a

locked kinematic structure. Furthermore, the tool

element is included to properly transmit the moment

experienced by the machine due to lateral forces on

the tool.

Heiapod Stiffness Model

Figure 2b. Detail of Spindle Elements

The second assumption made in this

analysis is that the majority of the mill’s deflection

under load occurs in the struts of the machine

instead of the spindle platform. This is

implemented by assigning a high stiffness to the

elements representing the spindle platform. Figure

3 depicts the error between the modeled stiffness

and experimental measurements, averaged over all

experimental data points and stiffness measurement

directions, for varying stiffnesses of the spindle

platform elements. As seen in Figure 3, assigning

stiffnesses above 1 x T0'° N/m to the spindle

platform elements minimizes the average error

between simulated stiffness and measured stiffness.

Average Error vs. Spindle Platform Element Stiftrwss

Figure 2a. Machine Position (-0.3 m,0.3ni,0.3m)

Machine Orientation (-30,0,0) (degrees)

Figure 3. Plot of Simulation Error Versus

Spindle Platform Element Stiffness

It should be noted that the compliance of

the spindle bearings and tool are not addressed in

this model. This is because these compliances were

not measured by the experimental set-up described

later in this paper.
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The displacement of the structure due to a

load on the tool is solved using Gaussian

elimination.

Stiffness is then calculated for a machine

pose and force vector by equation 5, where F is the

scalar load applied to the tool tip and x is the tool

tip’s deflection in the same direction as the applied

force.

necessary to reach the two planes in the Hexapod’s

workspace where stiffness measurements were

made.

Expanded stiffness measurement coverage

of the workspace, especially in a greater variety of

x-y planes, would allow the investigation of the

nonlinear stiffness aspects of the ball screws.

3.2 Inverse Kinematics

Fk=- (5)
X

3.1 Strut Stiffness Model

In this simulation, the struts of the

Hexapod are assumed to change stiffness as a linear

function of length. This function is developed with

the aid of experimental results, using the concept of

average error. To calculate the average error, the

Hexapod stiffness model is iterated over all

experimental data points and the amount of error

between modeled and experimentally determined

stiffness is calculated for each of the three

directions of measurement, x, y, and z. The

objective then is to define a linear model of strut

stiffness which produces the least average error. A
total of forty-two stiffness measurements are used in

determining the strut stiffness model.

In the development of the strut stiffness

model, two independent parameters are identified.

These are the stiffnesses, ku and kL2 , at two

arbitrarily chosen strut lengths, Ly and L2 . The

dependent parameter in this case is the average

error between the modeled stiffness and the

experimental results. To minimize the average

error, the independent variables are optimized using

a univariate search routine.

The resulting stiffness model used in this simulation

is given by equation 6.

The optimization resulted in the values of

46.5 X 10^ N/m and 32.5 x 10^ N/m for ku and ku
in order to minimize the average error, values of

which are presented later in this paper. Li and L2

are equal to 2.5616 m and 3.2132 m respectively.

These values correspond to the strut lengths

According to the derived strut stiffness

equation (eq. 6), the stiffness of a strut depends on

its length. Therefore, it is necessary to calculate the

inverse kinematics of the Hexapod to determine the

strut lengths for any given machine position and

orientation. Unlike many serial mechanisms, the

calculation of the inverse kinematics of a parallel

mechanism is generally straight-forward [4].

The first step in the inverse kinematics

problem is to assign coordinate systems to the fixed

and moving reference frames [5], [6]. These

correspond to the top center of the base structure

and the center of the spindle platform.

Furthermore, reference points are used to

geometrically define the spindle platform. These

points are coincident with the center of the spherical

joints which connect the spindle platform to the

struts. Additional points are located at the tool tip

and at the intersection of the tool with the plane of

the spherical joints. These points are used as

references for the later assembly of elements into a

machine model.

Figure 4. Base and Platform Coordinate Systems
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In general spatial motion, a moving

system, in this case the spindle platform, is

displaced and rotated from its initial position to a

new location in space. For each solution of the

inverse kinematics, we assume that the spindle

platform’s coordinate frame is initially coincident

with the base coordinate frame. The resulting

translation to the spindle platform’s current location

can then be described by a single three-term vector,

q, containing cartesian coordinates. The rotation of

the machine can also be described by three angular

variables, roll, pitch, and yaw.

(qx, qy, qz)-Coordinates of the center of the spindle

platform with respect to the base frame

a (roll angle)-Rotation about the x axis of the base

frame

P (pitch angle)-Rotation about the y axis of the base

frame

y (yaw angle)-Rotation about the z axis of the base

frame

The spindle platform is first rotated and the location

of the spherical joints are described in the base

coordinate frame by equation 7,

Rotated n _ d Platform „
I -

U

where the rotation matrix is defined as;

^apy
~

cosacosjS cosasin cos7— sina cos7 cosasinj3cos7+sino;sm7

sinacos /3 sinasin sin7-cosa cos7 sinasin^cos7 -cosa sin 7

-sinj3 cos/3sin7 cospcosy

( 8 )

These points are then translated using the

transformation vector, q, as illustrated in Figure 5.

This relation is given by:

Base n Rotated n . ^
^i= ^i^^xyz

Overall, this transformation can be represented by

the following equation:

Base P = R p ,

xyz ^uvw ' ^xyz

Figure 5. Inverse Kinematic Vectors

Vectors representing the struts can then be

calculated,

( 11 )

where Bj is the vector, defined in the base frame,

from the base coordinate system to the connection

of the strut with the base. The length of the leg, Lj,

is then the magnitude of the strut vector, Sj.

L, =|S,| (12)

4. Experimental Stiffness Measurements

In this research, stiffness measurements

were made on the NIST Ingersoll Octahedral-

Hexapod to validate the system stiffness model. A
relatively high degree of uncertainty exists in this

data due to the observed stiffness variation between

data points and the variation between subsequent

measurements at the same data point. The data are

presented with the understanding that these are

preliminary results subject to further refinement

with improved experimental techniques. They are

of sufficient quality, though, to validate the

approach taken to the modeling of the NIST
Ingersoll Hexapod’s stiffness characteristics.

( 10)



4.1

Methodology

Figure 6. Experimental Set-up

for z = 1268.225 mm

The experimental procedure was similar to

the stiffness tests outlined in the ASME standard

B5.54[7]. The machine was restrained from

movement in the x, y, or z direction with a force

gauge, while the machine was jogged in 100 |xm

increments (fig. 6). The actual displacement of the

machine was recorded by digital dial indicators.

For each measurement position, the machine was

jogged from zero to +200 pm, from +200 pm to -

200 pm, and from -200 pm back to zero. Force and

displacement data were recorded for each

movement increment.

Figure 7. Location of Stiffness Measurements in

Work Plane

Selection of measurement position in the

machine’s workspace took into account the

machine’s symmetry. Stiffness was measured at

discrete points within a 30° planar wedge of the

workspace at two different z heights (Fig. 7).

Measurement positions were selected along a radius

leading to a strut-structure attachment and halfway

in between two leg sets. This would allow the

measurement of the stiffness gradient in the radial

and circumferential directions.

4.2

Analysis and Sample Calculations

At each data point, measurements were

made in the x, y, and z directions. Only data

recorded when the machine was at the +200 pm
displacement extremes is used in the calculation of

the stiffness. This is done to reduce the error in our

calculations by attempting to eliminate the

machine’s backlash from our measurements, in

accordance with ASME standard B5.54. Equation

13 is used for the stiffness calculations, where F is

the measured force in Newtons and D is the

measured deflection of the machine tool in

millimeters.

k = ^y=0.2 ^y=-0.2

0.4mm - (d^^o 2
“ -^>^=-0 .2 )

(13)

4.3

Data Summary

Table 1 lists the measured stiffness data

collected for each position in two different planes of

the machine’s workspace. The position values

given in Table 1 indicated the programmed nominal

positions used for these tests.

Table 1. Experimental and Modeled Stiffness

Data Summary for z elevation of 1266.225 mm
1 1 1

Position (mm) Machine Stiffness (N/mm) Stiffness Model (N/mm)

X Y Z X Y Z X Y Z

0 0 1268.23 56813 64522 85714 57950 57950 110141

-150 0 1268.23 62636 53544 88617 59959 55210 107719

-300 0 1268.23 60100 48908 97001 60963 51978 100372

-130 75 1268.23 66123 55236 93922 59544 55560 107723

-260 150 1268.23 71105 74527 103778 6006] 52614 100413

-75 130 1268.23 62062 67234 103065 58646 56371 107970

•150 260 1268.23 58257 67397 104348 58404 53998 102172

Std. Dev Std. Dev Std. Dev Std. Dev Std. Dev Std. Dev
4890 9197 7560 1070 2103 4087

1 )Bta Summary for z elevation of 353.225 mm
I I i

Position (mm) Machine Stiffness (N/mm) Stiffness Model (N/mm)
X Y Z X Y Z X Y z

0 0 353.225 32186 33656 121235 37527 37527 119346

•150 0 353.225 51989 32281 105608 39380 35114 116404

-300 0 353.225 47356 32502 127156 40670 32232 107722

•130 75 353.225 34132 35218 104916 38961 35446 116449

•260 150 353.225 42238 30814 113975 39635 32864 108043

•75 130 353.225 40S78 31387 99206 38038 36236 116663

•150 260 353.225 41503 34093 104472 37584 34342 109560

Std. Dev Std. Dev Std. Dev Std. Dev Std. Dev Std. Dev
6913 1556 10185 1171 1851 4830

The stiffness measurements made on the

Hexapod exhibit a high degree of variability. This

occurred between both geometrically close
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Hexapod Radial Stiffnessmeasurement positions and consecutive

measurements at the same measurement position.

Standard deviations in the above data can be as high

as 10,185 N/mm. In an effort to isolate the source

of much of the variation, three measurements were

made at point 1 with loading in the y direction.

Without unclamping the structure between

measurements, the standard deviation was 44

N/mm. If the experimental set-up was undamped,

re-clamped, and the force gage re-zeroed, the

standard deviation over three measurements was

244 N/mm. In a separate test of two measurements

where loading was in the x direction, the standard

deviation was 1442 N/mm. Future refinements in

experimental procedure will be necessary to

increase the accuracy of these measurements.

Data listed in Table 1 shows the model

predicted stiffness for the corresponding data

points. The average difference between model and

experimental results for the z = 1268.225 mm plane

is equal to 9.05%. Average difference for the z =

353.225 mm plane is equal to 8.95%.

5. Stiffness Mapping

The complex geometry of the Hexapod

milling machine means that the identification of

maximum and minimum regions of stiffness in the

workspace is not an intuitive process. Stiffness

maps, therefore, can aid in workpiece placement to

maximize machine stiffness and thereby increase

part accuracy. Figure 8 shows the stiffness of the

Hexapod over a constant z height of 1.2 m. The

computer model was posed, without rotation of the

spindle platform, over a 0.3 m by 0.3 m workspace.

The stiffness was then calculated by applying a

planar force vector in the direction from the current

position of the spindle to the center of the

workspace. The purpose of this force application

was to match the applied force to the machine’s

radial geometrical symmetry. This symmetry is

reflected in the stiffness map with three stiffness

maxima and three minima. These maxima

correspond to the struts’ intersection with the base

space frame. Figure 9 illustrates the change in z-

direction stiffness over a planar workspace.

xIO

-0.4 -0.4

Figure 8. Stiffness of Hexapod Under Load
Vector from (x,y) to (0,0) at z = 1.2 m

He)apod Z Direction Stiffness

x10‘

Figure 9. Stiffness of Hexapod in Z Direction at

z = 1.2 m

6. Tool Path Planning

An application of the system stiffness

model is tool-path planning. The complexity of the

stiffness variation through the workspace suggests

that identical tool paths in several areas of the

workspace can be compared to maximize the

machine’s stiffness and minimize the variation in

stiffness over a tool path. Both of these objectives

are advantageous to the machining of high accuracy

parts.

A case study is presented in which a

simulated tool path is run in four different areas of

the workspace. Figure 10 shows the location of

these four areas. Stiffness is calculated along the

path, by simulating a load on the machine tangential

to the machine’s movement. The Hexapod’s spindle

7



Stiffness vs. Planar Machine Pathremains vertical throughout the machine’s travel.

Discontinuities in the stiffness plots exist due to this

load changing direction. Results detailed in Figs.

11, 12, and 13 show that the overall stiffness of the

path increases as the z height of the movement

plane increases. An increase in overall stiffness is

somewhat offset by an increase in the variation of

the stiffness over the tool path. Simulations at the

same z height at different positions and orientations

on the work-plane show stiffnesses of the same

magnitude, with a small difference in standard

deviation.

Location of Tool Paths in Workspace

Figure 10. Location in the Hexapod Workspace
of the Four Test Tool Paths

Stiffness vs. Planar Machine Path

xio"

Figure 11. Tool Path at z = 0.3 m. Average

Stiffness = 33,828 N/mm
Range = 8,377 N/mm

x10‘

Figure 12. Tool Path at z = 1.2 m. Average

Stiffness of 57,192 N/mm
Range = 12,075 N/mm

Stiffness vs. Planar Machine Path

xio'

Figure 13. Tool Path at z = 0.7 m. Average

Stiffness of 49,201 N/mm
Range = 13,771 N/mm

Stiffness vs. Planar Machine Path

xio'

8

Figure 14. Tool Path at z = 0.7 m. Average

Stiffness of 49,441 N/mm
Range = 14,195 N/mm



7.

Conclusions

1. The preliminary stiffness results from the

Ingersoll Octahedral-Hexapod support the

validity of this approach to stiffness modeling.

2. Stiffness as a function of the workspace is

complex and varies considerably due to the

machine’s position and orientation, as well as

the orientation of the applied structural load.

3. Tool-path stiffness increases as the height of the

tool path increases and for the case study was

mostly independent of its location in a

particular x-y plane of the workspace. The

latter statement may not be true over more

complex tool paths involving non-orthogonal

cuts.
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