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ABSTRACT

In order to integrate motion control hardware into an advanced operating system

environment such as Microsoft Windows NT, a flexible set of device drivers delivering a

wide range of motion control services are required. This paper describes the set of user

and kernel-mode Windows NT device drivers NIST researchers developed to provide

device-independent software-based access to motion control hardware in support of

various research activities underway here. A technical presentation of the device driver

design and development process are given to benefit those designing or in the process of

migrating device drivers to the Windows NT environment. As an important by-product of

this device driver effort, a motion control extension to the defacto standard Microsoft

Media Control Interface was developed to provide device independent access to motion

control hardware. This capability places motion control hardware in the same category as

other Microsoft Multimedia compliant computing peripherals such as sound, audio,

video, and compact disk devices.

Keywords: application programming interfaces, device drivers, device independence, interrupts, kernel-mode, motion

control, multimedia, operating systems, portability, user-mode.
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1. Introduction

Motion control refers to the automated methods by which an application can control hardware

axes, coordinate systems, motors, and input/output data in a specific manufacturing domain. For

example, the majority of motion control applications are found in rather mundane and discrete

transfer-line style applications, such as controlling the operations that paintM&M’s or that affix

labels to soup cans. However, there are other highly specialized and complex industrial

applications as well, ranging from controlling large machines to orchestrating robotic movement.

As part of ongoing manufacturing research efforts at the National Institute of Standards and

Technology (NIST), the need to host generic motion control hardware using an advanced

operating system environment such as Microsoft Windows NT was required.

In order to provide motion control-based application access to the hardware, device driver

software is needed to drive the specific motion control board from within application-space.

Unfortunately, device drivers for the Windows NT environment did not exist. In association with

Delta Tau Data Systems (Delta Tau) a Cooperative Research and Development Agreement

(CRADA) partner from industry, researchers from the Manufacturing Engineering Laboratory

(MEL) at NIST have developed an initial Windows NT-based motion control device driver

platform to serve as the basis for several manufacturing research projects. Delta Tau develops

and markets a product specifically for the motion control domain called a Programmable Multi

Axes Controller, or PMAC. PMAC essentially functions as a plug-in central controller of motion

peripherals for an Industry Standard Architecture (ISA) BUS-based computer. The ISA board for

the Intel 80x86 class of microprocessors was used for this study.

A key aspect of this device driver development effort was to provide a means of accessing any

motion control hardware, not just PMAC, from within an application using hardware independent

methods to ensure application portability. This was accomplished by using a standardized

messaging scheme based on the Microsoft defacto standard Media Control Interface (MCI)

specification^. This common messaging scheme developed as an extension to MCI provides

access to the Motion Control domain through a standard Multimedia-based application interface.

This portable interface to motion control provides exciting possibilities for mainstream

multimedia-based applications.

The use of a MCI-based multimedia device driver will provide developers with hardware

independent means to generate motion control-based applications regardless of the underlying

motion control board used. Motion control vendors could support these standard interfaces in the

form of libraries that would provide standard application access to their motion control boards.

This article addresses the application programming interfaces and the device driver software

development efforts undertaken using the Microsoft Windows NT operating system. It is

important to note that the device driver design methodology used during this study would be

appropriate for other motion control board vendors as well. A majority of the device-dependent

kernel-mode layer will also be usable to vendors as many support similar techniques for board

communication schemes. We simply used the motion control board developed by Delta Tau

because it was readily available on a machine that had previously been used in another study.

2 MCI is the Microsoft sanctioned defacto standard method for accessing multimedia devices. By extending MCI to

include motion control, we provide yet another standard multimedia accessible peripheral interface.
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1.1 NIST NT Device Driver Design

Within the Windows NT operating system, software executes in one of two modes user-mode

or kernel-mode. User-mode is essentially a non-privileged processor mode in which all access to

system data is allowed only through well-defined subsystem-supplied functions, which in turn

call system services. User applications, the Win32 subsystem, and some device drivers execute

above the line in the user-mode realm. User-mode device drivers donot have access to hardware;

therefore, they must call a kernel-mode supplied device driver. Kernel-mode processes utilize a

privileged processor mode in which the WindowsNT Executive (kernel) and kernel-mode device

drivers execute. A driver or thread running in kernel-mode may access system memory and

physical hardware directly.

The device driver architecture we designed is based on the idea of providing a paired set of user-

mode and kernel-mode Windows NT device drivers to bridge the two system modes. This paired

set would provide both a device-independent user-mode driver to allow application portability,

while also maintaining a device-dependent kernel-mode driver for low-level hardware access,

and to provide a centralized area for hardware specificity. Figure 1 illustrates theNIST Windows

NT user-mode and kernel-mode device driver architecture.

O Win32/NT Applications

M u Itim e d ia ^ Win32 Subsystem

5 p m a c joy ©MCI vd m
dll d II d II

g d i

user-m ode

O pm ac.sys
M o tio n Mr
Con tro I

^
D e V ic e

D rive r

kernel-m ode

S ystem S ervices

NT Executive

n e tw o rk

PM AC ISA M C BOARD

Figure 1: The NIST Windows NT Device Driver Structure.

The thick dark line shown in Figure 1 separates applications, subsystems, and devices drivers into

either user-mode or kernel-mode processor status areas. The NIST developed user-mode device

driver called pmac.dll, shown in area ® consist of a Win32-based user-mode multimedia device

driver that provides Windows NT application-level access in area O with motion control related

services.
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Using NIST developed custom extensions to various multimedia application programming

interfaces (API) provided by Windows NT, we implemented pmac.dll using a standardized

interface for motion control that was based on the MCI specification^. A Win32 application would

then obtain multimedia services by using either the high-level device-independent MCI or use a

low-level device-independent API, both of which are embedded into the pmac.dll device driver.

The user-mode device driver used in the device driver architecture design satisfies the NIST

interface concerns for allowing application portability and interoperability.

Area D illustrates the path an application uses to call MCI directly for basic or required system

commands that fall outside the NIST developed MCI command set in area ©. The second device

driver in the paired set includes pmac.sys, this is the Windows NT kernel-mode device driver,

shown below the line in area O. Notice the dotted arrows showing the relative direction of the

messaging and application calling paths. When the user-mode device driver in area © requests

hardware access in response to an applications request from area O, the user-mode driver must

call down to the kernel-mode driver in area O to perform all hardware- level access on behalf of

the user-mode driver.

The calling path leading directly from the application to the kernel-mode driver represents an

emulated interface to the legacy application/DLL (dynamic-link libraries) environment. We
provided this parallel interface implementation in support of legacy applications and DLL’s that

we wanted to port into the NT/Win32 area later. That is, when a DLL associated with the legacy

applications requires hardware access, it calls the kernel-mode driver directly using a Win32 API

function call DeviceloControlQ, or by directly addressing portions of memory-mapped RAM, that

were previously mapped into the user’s address space. This method bypassed the user-mode

device driver in order to maintain the backward compatibility with the legacy driver interface.

Area @ shows the complete NIST Windows NT paired device driver set.

Before specific implementation details of the user-mode and kernel-mode device drivers can be

discussed, it first becomes necessary to describe the Windows multimedia architecture. The

Windows multimedia architecture provides the application interaction model in which to support

the device independent user-mode device driver. The device dependent hardware specific areas

were supported using a kernel-mode Windows NT device driver. The two device drivers working

together would satisfy all application requests for motion control related services. Therefore, all

application interaction with the device driver framework as we have designed it, must take place

at the user-mode multimedia-based Windows NT device driver level. The next section provides a

background on the Microsoft Windows NT multimedia architecture, including an overview of the

Media Control Interface (MCI) used to implement the custom message-based user-mode

multimedia device driver.

3 API refers to application programming interfaces. In this context, API can either mean an actual function call

signature, or the term can refer to the actual standardized messages sent as part of the MCI interface.
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2. Windows NT Multimedia Architecture'

As background for the multimedia driver implementation, this section briefly discusses the

Windows NT multimedia architecture. The Windows NT Multimedia architecture design

philosophy centers around two very important concepts: extensibility, and device independence.

It is because of this design philosophy that the multimedia architecture can readily accommodate

new technology without modification to the architecture. The multi-level, device-independent

methods for accessing multimedia resources provide applications with different levels of

multimedia support while also providing the capability of execution on a wide variety of

hardware platforms. Essentially, all extensibility and device-independence in the Windows

Multimedia architecture is provided by three layers of software subsystems including: the

WINMM multimedia library, actual device drivers for multimedia, and MCI device drivers. Each

of these subsystems will briefly be described.

2.1 The Windows Multimedia Library

Windows provides an interfacing layer between applications and device drivers — applications

do not call device drivers directly. When an application calls a function that requires a device

context, Windows uses the WINMM library to translate the call into a message and then

dispatches that message to the appropriate device driver. The WINMM library provides this

translation layer to insulate applications from the device drivers while centralizing the device

independent code. In addition, the run-time linking that provides this translation layer with the

necessary device drivers it needs is included in the WINMM module. WINMM library also

provides dispatch capabilities for high-level MCI services and the low-level multimedia support

functions. When the inverse relationship occurs, that is a device driver must notify a client of an

event, it calls the WINMM library with a message that is routed back to the client application. The

term client application is sometimes used to describe the Windows interface from the device

driver’s perspective. The client application can include the Windows environment as well as the

application that is controlling the multimedia operations.

2.2 Multimedia Device Drivers

Multimedia device drivers and other installable drivers are dynamic-link libraries, usually written

in C or assembly language, or a combination of the two languages. Multimedia device drivers

provide the communication between the low-level WINMM library functions and multimedia

devices. These drivers present a well-defined and consistent driver interface to minimize device

dependent cases while providing the user with error free upgrades and installation of future

device drivers in the system.

All Win32-based multimedia device drivers have essentially the same functional structure— they

provide exported functions to process messages received by the driver. There is one common
function that centralizes all the message reception activities, caW^dDriverProcQ*. This function is

4 When a dynamic link library is compiled and linked into the system, the function signatures or API, i.e.,

DriverProcQ, must be visible to the application programs if it is to be used. The export process allows the developer

to selectively choose which functions should be globally visible to the user. By doing selective exports, the developer

can shield the DLL from unwanted abuse of internal functions that are not a part of the usable interface.
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called by the Windows system when a request is made to install, configure, or to use the device

driver. DriverProcQ handles all requests to install, open, close, remove, and configure a given

device. It must be provided if the driver supports configuration by the user. There is a set of

standard system messages that the driver must be able to handle in response to requests from an

application or from the Control Panel Drivers applet of the Windows NT graphical user

interface^. Some of these include: DRV_OPEN, DRV_CONFIGURE, and DRV_LOAD. The

DriverProcQ entry point processes messages sent by the system to the driver as the result of an

application call to a low-level function. For example, when an application opens a motion-control

device, the system sends the specified device driver a DRV OPEN message. The DriverProcQ

function receives and processes this message in the device driver. Unsupported messages are

handled using a default processing module inherent to the Microsoft multimedia architecture.

The DRV CONFIGURE message is sent to the device driver when the user or another application

wants to configure the device for installation and use. The NIST multimedia device driver

supports more than one interrupt-level, I/O port assignment, and Dual Ported RAM address;

therefore, it provides a configuration menu in the Drivers section of the WindowsNT system

Control Panel applet. Using the Control Panel to configure the driver automatically forces the

WINMM subsystem to send a DRV CONFIGURE message to the installable driver. The driver,

after it receives the configure message, must display a configuration dialog box for this purpose.

The dialog box is inherently a part of the device driver code and displays the name, version

number, and other information about the device driver in addition to the user-configurable fields

for modifying the PMAC motion control board. The initialization information obtained by the

driver during the configuration phase is subsequently stored in the WindowsNT Registry for later

probing by the kernel-mode driver initialization routines^.

2.3 MCI Device Driver Overview

Device drivers for MCI provide the high-level services for the control of multimedia peripherals

and devices. The MCI provides applications written for the Microsoft Windows environment with

device-independent capabilities for controlling various multimedia devices such as animation

players, videodisk players, and audio hardware. MCI provides an extensible interface to device-

independent control of virtually any peripheral device. By using the Microsoft sanctioned

methods for extending MCI, we were able to develop an MCI interface for motion control devices,

such as the PMAC motion control board from Delta Tau.

MCI device drivers are in fact Windows multimedia device drivers. MCI-based Win32 multimedia

drivers accomplish this by extending the DriverProcQ entry point to accept MCI messages specific

to that device type or by adding additional entry points by selectively exporting their custom

multimedia API. Because motion control is new to the MCI, we needed to create a completely

new set of MCI commands for motion control. In addition to the MCI interface, we supplemented

the multimedia device driver with additional exported entry points for a low-level motion control

API. We added both capabilities because we wanted to provide a device-independent and

versatile interface to control motion peripherals, while also providing an additional robust, data-

^ Applet refers to a Windows-based graphical user interface menu, dialog box or similar user input display area.

6 Registry (or registry hive) is a Windows NT and Windows 95 maintained database that holds all software and

hardware configuration information in the system. The information is used frequently in the Plug-and-Play subsystem.
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driven capability to the architecture. We provided the standardized extensions to the DriverProcQ

entry point using motion-related MCI messages and exported functions^.

Microsoft encourages multimedia software developers to use and to develop with the MCI

interface instead of hardware specific functions because of MCI’s device independent

characteristics. By using Microsoft’s methods for extending the MCI, we have developed a first

draft specification and implementation of motion control for industry review. If adopted as a

primary MCI-based method for controlling motion devices, it could benefit the industry by

providing low-cost, universal coverage of an application programming interface for generic

motion control. An overview of the types of MCI devices and the programming interfaces

available is given in the next section in order to familiarize the reader. This background will be

helpful when the actual MCI/multimedia driver implementation is discussed.

2.3.1 MCI Devices

In the MCI domain, devices can only take one of two possible forms simple or compound.

Simple devices range from compact discs (CD) to videodisk players, while compound devices

require a data file for playback conditions. In the latter case, a data file associated with the device

is called a device element. MIDI files for music, WAVE files for audio, and AVI files for video are

all examples of compound device elements. The NIST MCI driver is only concerned with simple

devices motion control devices.

Device types identify standard classes of MCI devices, such as videodisk players, CD audio

devices, or image scanners. Device names are used to uniquely represent a specific device driver

instance (i.e., pmacO), since there may be several drivers for one particular device type available

at any given time on the system. The device names are located in theMCI32 part of the Registry

on a Windows NT machine. The device names are sequentially numbered based on whether it is

the first, second, etc., driver installed on that system for a particular device class. To use a MCI
device from within an application, the simple motion control device is opened by specifying the

device name in the mciSendCommandQ call shown in Figure 2. The mciOpenParms data structure

in Figure 2 provides a place holder for the specific device type. In our case, we use the “pmacO”

device name as the identifier to indicate a motion device. Either a device name or device type can

be used to specify a device during the open. In our device driver implementation however, the

call to open “pmacO” will translate into and specify the device type MCI_DEVTYPE_OTHER.
This is a special device type and is used because the motion device type is undefined in the

Microsoft multimedia architecture at this time. All devices falling outside of the currently defined

device list in the Microsoft multimedia architecture must use this designation to disambiguate

between open calls. Besides opening the device, there are also corresponding commands to close

the device, query the device status, and to find out about specific device capabilities.

MCI_OPEN_PARMS mciOpenParms;

DWORD dwStatus;

mciOpenParms.IpstrDeviceType = “pmacO”;

dwStatus = mciSendCommand{ NULL, MCI OPEN, ... );

Figure 2: Specifying the Device Name in the MCI Open Device Call.

2 The temi standardized used here refers to the Microsoft sanctioned formats, structures, and methods that we used to

define and extend the MCI-based command set and API for the control of Motion Devices.
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2.3.2 MCI Programming Interface

MCI provides two application programming interfaces for communicating MCI specific

information to the driver: an ASCII string command interface called a command-string interface

and a message-based interface termed a command-message interface. The command-string

interface allows users to embed English-language string commands into their applications in

order to communicate with MCI devices. Using a text-based interface for example, assume a

multimedia application requires the use of a videodisk player to display video frames on the

screen. The application could use MCI to issue a request to place the currently selected videodisk

player in play mode, and to display the consecutive video frames from 1 to 10 by embedding the

following text into the application: “play videodisk from 1 to 10”. Text-based interface

applications, high-level languages such as Microsoft Visual Basic, and multimedia authoring

environments all use this type of interface to provide device control to their respective application

domains.

The command-message interface on the other hand provides a message-passing paradigm to

communicate with MCI devices. Applications that require a C language binding to directly

control MCI devices can use the command-message interface. In addition, the message-based

paradigm allows a smoother integration of multimedia software into event-driven Windows-

based applications. If desired, it is also possible for C language-based applications to use the

command-string interface. To do this from within their application, developers use the

mciSendStringO API function together with the specific MCI English-language statements

embedded as a quoted parameter to the function. By design, MCI device drivers are able to handle

both the string and message-based invocations. The code segment in Figure 3 illustrates the data

structure and MCI API mciSendCommandQ function call that performs the identical operation as

the string invocation using the command-message interface.

WORD wDevicelD;

MCI_PLAY_PARMS mciPlayPanns;

DWORD dwStatus;

mciPlayParms.dwFrom = IL;

mciPlayParms.dwTo = lOL;

wDevicelD = mciGetDeviceJD{ VIDEODISC );

dwStatus = mciSendCommandi wDevicelD, MCI PLAY, (MCI FROM
|

MCI_TO), &mciPlayParms );

Figure 3: A C Language Binding for the mciSendCommandQ Videodisk Example.

In general, the command-message includes the following items: (1) a constant command message

value, i.e., MCI PLAY, (2) a data structure that acts as a container for additional parameters used

in the call, i.e., mciPlayParms, and (3) a set of flags that specify what items in the data structure

are enabled or validated (i.e., MCI FROM). The commands are sent using the mciSendCommandQ

API function call, which includes the parameters for the device ID, message, flags, and a pointer

to the data structure. The function call returns an error string associated with an error number

(returned in the dwStatus variable). WDevicelD is the Id associated with the current device

retrieved using the mciGetDevicelDQ function. MCI PLAY is the command-message command,

MCI_FROM and MCI TO constitute the logically OR’d flags to notify MCI that they are being

used and thus should be validated upon receipt, and &mciPlayParms is an address to the data

structure holding the FROM and TO frame intervals as well as other possible parameters. The next

section discusses the NIST multimedia device driver from a design and implementation approach.

A specific example of integrating the device driver into the WindowsNT multimedia architecture

is also described in detail.
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3. User-Mode Multimedia Device Driver DesigrT^^^^;^^

In the previous sections, a general overview about the Windows Multimedia Architecture

including the MCI interface was given as background. In this section a more detailed look at the

interworkings of MCI device drivers are highlighted with specific reference given to the NIST

multimedia-based motion control device driver. This section illustrates specific ideas that are

relevant to all MCI device drivers including the message format, data structure layout, flag

determination and usage, and the command table composition process. However, they are

presented here in the context of motion control using examples from the NIST MCI device driver.

Using the Windows multimedia architecture, both high and low-level services can be bridged

together using a consistent interface to provide a wide range of service capabilities and

functionality. The use of special device drivers that interpret and execute MCI commands are

essential for providing the device independence. These drivers can control the hardware directly

or through the low-level functions provided by the Windows Multimedia library WINMM. Our

Win32 MCI driver provides the hooks for both the indirect hardware control using MCI and a

homegrovsm low-level Windows API for direct control of hardware although not currently an

integral part of the Windows multimedia definition^. Therefore, we developed both the low-level

motion control functions as an API provision, and an MCI-based command set while also

integrating them into the currently defined Windows architecture for multimedia. Figure 4

illustrates where the NIST high-level MCI interface and low-level API functions for motion

control reside in the currently defined Windows multimedia architecture^.

Figure 4: Windows Multimedia Architecture Augmented with Motion Control.

8 Microsoft has not yet developed a Windows-based Multimedia/MCI solution for Motion Control.

9 The multimedia architecture depicted here is based on the Windows Multimedia architecture as described in the

Microsoft Win32 Programmer’s Reference, Volume 2. The architecture has been modified to include placement of the

NIST Motion Control device drivers.
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Figure 4 illustrates the various paths a multimedia application can follow to obtain motion control

related services. The first method (multimedia application to MCI) uses the high-level MCI
interface directly to control motion devices. The second method (multimedia application to

motion control functions) uses the low-level API functions to manipulate the device using such

API functions as motionJogStopQ. Direct use of the low-level API from an application level

instance may be required to exploit extensive device capabilities that may not be provided by the

higher-level MCI services interface such as those requiring a data transfer capability. Notice the

path from the MCI interface (high-level) to the low-level motion control functions; in this case,

MCI may need to use the low-level services to support its interface. The low-level API is provided

for such applications as a motion control tool package or software that would otherwise

require specialized motion requirements.

3.1 High-Level MCI Application Programming interface

MCI device drivers are Windows Multimedia drivers; therefore, they must follow the standard

Windows multimedia approach of providing a DriverProcQ entry point. In this section, we
describe how MCI messages are defined with examples of how this entry point handles the new
MCI message context. MCI uses this entry point to handle messages for MCI services and system

messages that install, initialize, and configure the driver. The changes made to the entry point

during the development process are based on custom messages designed for the particular device

being used. The developer augments the DriverProcQ entry point to handle these new messages.

The construction of motion control messages uses the Microsoft standardized conventions.

MCI can use up to four types of messages including required, basic, extended, and system

messages. We did not extend any existing MCI command sets; this was impossible due to MCI
currently not supporting motion control. However, we did extend the MCI framework in general

to include motion control by creating a completely new command set that augments the other

four message types. In addition, some subsets of the basic and required commands were provided

such as OPEN and CLOSE. In the following section we discuss how these new messages are

developed and integrated into the existing high-level MCI multimedia infrastructure.

3.1.1 Adding New Commands to the MCI System

Motion control is not currently a device type that is controllable using the standard Microsoft

MCI component interface API. For this reason, we were not able to simply extend an existing

command table for our use. Instead, a completely new set of commands for the motion control

domain were developed. Microsoft provides a methodical way to create and integrate new MCI

commands into the multimedia architecture. The following steps have been summarized below;

1 . Define the new MCI custom command-messages that the driver will support.

2. Define the new data structures and flags in support of these new commands.

3. Generate a custom command table for the MCI parser to use for command translation.

4. Provide support for these new messages in the driver’s DriverProcQ entry point.

5. Register the custom command table with MCI during the driver’s DRV LOAD phase.

These steps will be covered below with respect to the NIST multimedia device driver

implementation.
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3.1. 1.1 Defining the Custom Messages

In a separate C language header file, all new messages to be processed by DriverProcQ should be

defined with a specific command name and an unique message identifier. For all custom or new

messages defined in this header file, their message identifiers should be offset by the constant

MCI_USER_MESSAGES. This special constant is the first integer available for user-defined

custom messages, and insures that the new starting identifier sequence does not overlap any

known messages within the standard MCI command space. The following code segment in Figure

5 illustrates the message definition area of the header file that we used in ourMCI device driver.

Notice the highlighted command-message MCI_SERVO_JOG; we will expand on this message

and use it in an upcoming example to illustrate how new MCI messages are built and used.

* MCI Device-Specific Extended MCI Message Commands

#define MCI_COMMAND_FIRST (MCI_USER_MESSAGES + 1)

#define MCI SERVO JOG (MCI COMMAND FIRST)

#define MCI_SERVO_HOME
#defme MCI_SERVO_DISABLE
#defme MCI_INTR_INIT
#defme MCI INTR TERM

(MCI_COMMAND_FIRST+ 1

)

(MCI_COMMAND_FIRST+2)
(MCI_COMMAND_FIRST+3)
(MCI_COMMAND_FIRST+4)

#define MCI_COMMAND_LAST(MCI_COMMAND_FIRST+50)

Figure 5: Extending the MCI Command Set For Motion Messages.

A core MCI command set was identified and used as a starter set for motion control based

messages in this driver. Core commands that JOG (rotate the axis of a motor to a specific point)

and HOME (bring the motor axis back to its original starting position) the axis of a motor are

representative of the typical operations a motion control board would provide. Notice the

messages are offset by MCI_USER_MESSAGES to alleviate confusion during processing by MCI.

3.1. 1.2 Defining the Data Structures and Flags

After the custom messages such as MCI_SERVO_JOG have been defined in our header file, an

associated data structure for that message also needs to be defined. Any MCI message sent to

DriverProcQ contains two parameters, IParaml which consists of a concatenated flag field that

describes which elements of the data structure have been enabled, and IParaml which contains

the pointer to the data structure. For each member of the data structure that provides data from

the calling application, there must exist an associated flag. The application uses the flags to bit-

wise OR together the flags field representing the IParaml. The flags may also specify options

without necessarily corresponding to any associated member of the data structure. Each member
in the data structure is based on a Windows 32 bit DWORD or a multiple of a DWORD. There is

no limit on the number of members in the structure; the amount of members declared is based on

the type of message being described. There are certain restrictions on what must be the first

member of the structure and what types of data must be associated with certain return members.

For instance, referring to our MCI header file example once again, notice the data structure we
defined below in Figure 6 for the MCI SERVO JOG command message.
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typedef struct {

DWORD dwCallback;

DWORD axisint;

DWORD speedStr;

DWORD szSpeedStr;

} MCI SERVO JOG PARMS;
typedef MCI_SERVO_JOG_PARMS *LPMCI_SERVO_JOG_PARMS;

Figure 6: MCI SERVO JOG Data Structure.

A structure of type MCI_SERVO_JOG_PARMS will be allocated prior to each command-message

function’s use of the structure. The first member of the structure be reserved for a handle to

a callback function that MCI uses for the MCI NOTIFY flag. MCI provides the MCI_NOTIFY flag

for developers to use if application- level notification of the command status is required. After an

application issues a command to the MCI system, asynchronous behavior within the application

can be maintained by forcing MCI to immediately relinquish control in the driver to the

application. In this case, the application may want to be notified later after the execution of a

particularly lengthy command has in fact completed. If on the other hand a more synchronous

behavior is required whereby the application vaxxsXhold up until the device actually completes the

command, then the MCI WAIT flag is provided. During the wait operation, user input is not

monitored; therefore, MCI supports a break key definition to re-establish communication with the

applications main-loop in the event the notification does not propagate (due to problems with the

physical device).

Every data structure defined for use with MCI must contain a field for a dwCallback element.

This element provides a storage area for the application’s window handle assignment for use in

the notification process. Notification to the application will be posted to the application’s main

window messaging loop using the MM_MCINOTIFY message after the device command
completes. The low-order word (16-bits) of the MM MCINOTIFY message will contain the

specifics of the notification (i.e., successful, aborted, failure, or superseded). When the

application needs to be notified (i.e., a MCI NOTIFY flag was enabled), the driver must issue a

mciDriverNotiJyO at some specific time typically when the command has been completed 10.

The driver, in response to a MCI NOTIFY flag from the application should do the following tasks:

1. Determine if the MCI NOTIFY flag has been set.

2. Configure a timer or event to fire off when the specific device has finished the task.

3. Return control to the caller pending notification.

4. When the task completes, notify the application-specified callback via mciDriverNotifyO-

Returning to the data structure example in Figure 6, other requirements for data members are

placed on the structure if the structure is to return data. If no data is returned in the call and only

data members are needed to pass information on to the driver then no data members need be

reserved. This is the case in the example shown in Figure 6. The first data member is the

dwCallback DWORD; this member must be present and is mandatory for MCI. The next field is

the axisint variable indicating an integer is stored there that will represent a motor axis if the

In general, the conditions and timing of the notification back to the application is completely device driver

dependent. In fact, notification may return immediately, after the actual command completion on the physical device,

or at some other pre-determined driver interval.
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corresponding flag has been set. A partial list ofMCI message flags are shown in Figure 7. These

flas definitions have also been defined within the MCI header file used for the command data

structures. The flags are used to indicate which data members (such as the axisint) are currently

being used. In addition to specifying data members, the flags are also used to indicate an option

such as the MCI_NOTIFY or the synchronous MCI_WAIT flag option.

/**:|c*=|c*=l=***** + * *********** ****=»:*** +**************

* MCI Device-Specific Extended MCI Message Flags
:|!*:jc*:(c>(c*!|c*!|c**************************************/

#define MCI SERVO AXIS OxOOOIOOOOL

#define MCI SERVO SPEED 0x00020000L

#defme MCI SERVO STOP 0x00040000L

#define MCI SERVO POS OxOOOSOOOOL

#define MCI SERVO NEG OxOOIOOOOOL

#define MCI INTR MASK 0x00200000L

#define MCI INTR_HAND 0x00400000L

Figure 7: MCI-Specific Message Flags Used in the Driver.

Just as new MCI commands for motion control cannot conflict with any predefined MCI
commands, we also need to uniquely differentiate bit fields for the new command set flags. Bits 0

through 15 of a 32-bit DWORD are reserved for use by MCI. Therefore, bit 16 (0x00010000) is the

first bit pattern that can be used with the new driver flags. Unused bits in a flag must be set to

zero. Again using the MCI_SERVO_JOG command as an example, when the MCI SERVO AXIS

flag is set in the data structure, this tells MCI that a value is assigned in the axisint field of the

data structure.

3.1.1.3 Creating the Custom MCI Command Tables

For the most part we have discussed how the new motion control command set definition process

supports the command-message interface. However, when the command-string interface is in use,

there must be some way for MCI to parse the string and generate the equivalent command-
message format that is ultimately used as parameters to the DriverProcQ function of the MCI
driver. The construction of a custom command table provides the input to the parser in table-

driven format for the command-string recognition process. Typically, the table data is stored as

Windows resources (RCDATA) within the driver and is bound to it during compile and link time.

Command tables may also be dynamically bound to an executing driver by declaring it as

external. External tables are compiled as separate Windows DLL’s and can be dynamically

loaded and unloaded as needed. In our implementation of the device driver, resources for the

command tables were bound at link time within the executable image of the device driverDLL. In

some cases, the developers may want a less constraining way of binding command tables than at

link-time. The attractive feature of providing external tables is that other developers can add and

extend the existing commands simply by adding their specific DLL with the new command tables.

Otherwise, the developer needs access to the source code of the original device driver. In

addition, developers may want to provide multi-language subsets of the commands so that

internationalization of the driver is possible. For these cases, external resource files can be bound

during run time so that the command tables can be found during the actual execution of the
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driver. This provides a flexible alternative to link-time binding. Figure 8 below illustrates a

portion of our device driver command table example.

* MCI command table for MCI Motion Control Device-specific commands

pmac RCDATA
BEGIN

L"jog\0", MCI_SERVO JOG, 0, MCI COMMAND HEAD,
L"notify\0", MCI_NOTIFY, MCI FLAG,
L"axis\0", MCI SERVO AXIS, MCI INTEGER,
L"speed\0", MCI_SERVO_SPEED, MCI STRING,
L"pos\0'’, MCI_SERVO_POS, MCI FLAG,
L"neg\0", MCI_SERVO_NEG, MCI FLAG,
L"stop\0", MCI_SERVO_STOP, MCI_FLAG,
L"\0", OL, MCI_END_COMMAND,

L"home\0", MCI_SERVO_HOME, 0, MCI_COMMAND_HEAD,

END

Figure 8: Partial MCI Command Table for Motion Control.

Essentially, the .command table consist of three columns of information. The first column

includes the commands and flags that would be used in the command-string interface. Each

quoted string is zero terminated and must be prefixed with an L to indicate that wide-string

literals are in use. The second column contains 32-bit DWORD commands and flags that would

be used to construct a command-message during the parsing phase. The third column contains

16-bit WORDS identifiers that allow the MCI parser to interpret each type of entry in the

command table.

The table is aligned on 32-bit DWORDS; therefore, it was necessary to pad the WORDS in the

second column to fill out the table in DWORDS. This can be seen with the command
MCI_SERVO_JOG,0 example from the table. The 16-bit WORD was aligned to 32-bits by adding a

zero after the command definition. Each command table entry is defined as a command table list

and defines the parsing action of a particular command. For instance, the partial command table

above provides several command lists which directs the parser to which flags are currently valid

and how the corresponding data structure is defined for the jog command. Likewise, the

command table entry for the home command would provide yet another set of lists to this

command table.

Microsoft provides a rigid structure for defining the tables: each verb block of a command must

begin with an MCI COMMAND HEAD and end with an MCI END COMMAND delimiter. The

entire command table text must end with an MCI_END_COMMAND_LIST denoting the end of all

possible commands. The tables can define return values that must be accounted for in each data

structure. Return types can include strings, integers, window handles, rectangles etc. If the

MCI_FLAG command flag is present in the third column, then MCI does not associate this with

any member in the data structure such as MCI NOTIFY. Like commands, flags in the tables

use the first column to represent the string command used for the flag. When the MCI parser

comes upon a command list entry of either MCMNTEGER, MCI STRING, or MCI RECT, then the

entry will immediately be associated with a data member in the data structure. The data members
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are not explicitly named in the command list; however, they are positionally referenced by the

parser. That is, the order in which the entries appear in the command list implies the order of the

data members as they appear in the data structure. MCI reserves the first member in the data

structure for the notify callback function. The second member is associated with the first entry

needing space in the data structure. This filling out of data structures to entry members continues

until the list is terminated. This association assumes that the data members are aligned on either

DWORDS or a multiple of DWORD. Command flags which do not require referencing of data

members can be interspersed throughout other table list entries. The flags will not change the

alignment of the data members, they only set bits in IParaml of DriverProcQ-

3.1 .1 .4 Preparing DriverProcQ for the New Messages

Now that we have described the message format, the data structures, flags, and the command
tables, let’s illustrate how the DriverProcQ function is updated to reflect the newMCI message set.

The most straightforward way to accomplish this is simply to modify the default handler in

DriverProcQ to look for the new range of messages we have defined. By prefixing the

MCI_USER_MESSAGES constant to each new MCI message, we have effectively defined a range

of new command values that can be selectively chosen.

Figure 9 illustrates how the first command value and the last command value are used to

selectively determine if the multimedia driver should accept the command message as one

pertaining to our MCI motion command range. In the partial DriverProcQ handler shown below in

Figure 9 we simply expanded the range of messages to include our newly defined MCI messages.

Notice that we continue to honor the existing MCI core and required set of MCI commands by

maintaining the test for the DRV_MCI_FIRST and DRV_MCI_LAST ranges. After DriverProcQ has

selected the new message in its default processing, it merely calls the motionProcessMessageQ

function in the driver to handle the specific MCI command (i.e., MCI_SERVO_JOG) that was

initially issued.

default:

/* select messages in the MCI range */

if (!HIWORD(dwDriverID) &&
uiMessage >= DRV_MCI_FIRST && uiMessage <= DRV_MCI_LAST

j]

uiMessage >= MCI_COMMAND_FIRST &&
uiMessage <= MCI_COMMAND_LAST)

{

return motionProcessMessageidwDrweTlD, uiMessage, IParaml, lParam2);

}

Figure 9: Portion of the DriverProcQ Entry Point to Handle Custom Messages.

The actual processing associated with each custom message is provided in other source modules

of the MCI device driver. Notice in the call to motionProcessMessageQ, the parameters in the

function include the dwDriverld which is the device id that was parsed, the uiMessage which is

the MCI_SERVO_JOG message, and the two IParaml and IParaml which correspond to the flags

bit field and the pointer to the data structure, respectively.

DriverProcQ can now handle the new messages generated by the custom command tables.

However, in order for the device driver to use the new commands, the command tables must first

be registered with MCI. This process is covered in the next subsection.
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3.1. 1.5 Registering Command Tables with MCI

After the command tables have been setup properly and DriverProcQ has been modified to handle

the new messages, the command tables need to be registered with MCI so that they can be

referenced when called upon. These modifications again occur in the DriverProcQ function code.

Typically, during the DRV_LOAD phase of the DLL loading into memory, the tables are

registered with MCI. The partial DriverProcQ code snapshot in Figure 10 illustrates this method by

CdWmgmciLoadCommandResourceQ. When the device driver is opened in the DriverProcQ section,

we set the device type to MCI DEVTYPE OTHER because we are using a device that is undefined

to MCI. When MCI sees the other device type designation it automatically searches for the type-

specific (motion) command table that we registered. When an application has closed all of its

remaining devices, the device driver is taken out of memory with the DRV FREE call from the

Windows multimedia subsystem. In the DriverProcQ function where the DRV FREE message is

collected, the custom command tables should be freed as well. This is accomplished by calling

the mciFreeCommandResourceQ function in the DRV FREE message handler shown in Figure 10.

switch (uiMessage) {

case DRV LOAD;
/* register the custom command table */

LoadString(ghModule,IDS_COMMANDS,aszResource,sizeof(aszResource));

wTableEntry = mciLoadCommandResource{ghMod\i\e, aszResource, 0);

break;

case DRV_FREE:
/* free the custom command table */

mciFreeCommandResource(y^'\ableEntry)

;

break;

}

Figure 10: Registering the Custom Command Tables with MCI in DriverProcQ.

3.1.1.6 Using the New Command Set

Now that we have our MCI interface defined and working, lets go through an example of how to

integrate the newly created MCI interface into Windows. We have defined both an ASCII

command-string interface and a message-based command-message interface for motion control.

Now let’s proceed through an example to illustrate how the MCI parser would interpret the string:

jogpmacO axis 1 speed 5.5 notify. The parser reads the string to determine what device driver the

request is going to and the actual command to carry out. The parser uses the device namepmacO

to map it into the destination device id (dwDriverlD - Figure 9) for DriverProcQ to use. In

addition, the parser uses this information to determine what custom command table should be

used to continue parsing the current command-string. In our example, thepmacO alias is used to

tell the parser to use thepmac custom command table that we have defined in Figure 8. The zero

suffix is appended to distinguish between multiple device driver instantiations. Several locations

are searched when the parser looks for the command tables associated with the pmacO device

alias. In order of priority they include:

1 . any command table contained in external files for run-time linking,

2. all device-specific (new custom command tables) tables bound during link-time,

3. all device-type tables such as those for videodisks,

4. the core command set table for play, stop, etc.
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The delimiter MCI_COMMAND_HEAD in the command table is used as a sentinel for the parser

to begin. When that identifier is reached the command is compared with the string (“jog\0”)

location in the first column. If a match is found, the DWORD in the second column

(MCI_SERVO_JOG) is used as the message field parameter to the multimedia driver. Notice that

the MCI_SERVO_JOG command is the custom message used by the MCI SERVO JOG PARMS
data structure. As the parser recognizes each string it processes, it essentially fills in the

command-message data structure with the appropriate commands and flags. Upon completion of

the parsing phase, the newly constructed data structure is sent off to be processed by the

DriverProcQ entry point in exactly the same fashion as if a command-message using

mciSendCommandQ was issued. Continuing with the example, the parser tries to match each

subsequent string element. For example, the next element is axis and has an MCI INTEGER

descriptor in the third column. This indicates to the parser that additional data is available from

the command string. The parser then reads in the next string of data associated with

MCI INTEGER., converts it to an integer and stores it in the DWORD axislnt of the data structure

corresponding to the MCI_SERVO_AXIS. This parsing process continues until the end of the

string is reached. The order of parsing is irrelevant, because the parser maps the strings found to

command messages and data structures. Therefore, if we had entered the same string in a

different way such asjog pmacO notify speed 5.5 axis 1; the parser would generate the identical

sequence of messages for MCI.

Finally, we discuss how the command-message interface could be integrated and used in a

Windows-based application. The example in Figure 11 illustrates a typical use of the

MCISERVOJOGPARMS data structure the data structure used when aJog command is sent.

This example comes from the MCITest program (see Section 4.5) we developed to exercise the

MCI interface.

void yog(HWND hwndDlg) {

MCI_SERVO_JOG_PARMS mciJogParms;

DWORD dwStatus;

mciJogParms.axislnt = IL;

dwStatus = mciSendCommandimcilD, MCI_SERVO_JOG, (MCI_SERVO_AXIS
|

MCI_SERVO_POS
I

MCI_NOTIFY),
(DWORD)(LPVOID)«&mciJogParms );

}

Figure 11: Sending a MCI-based MCI_SERVO_JOG Message.

The JogO wrapper function simply allocates a structure of type MCI SERVO JOG PARMS. The

motor axis number (IL) we want to jog is hardcoded here for simplicity. The arguments to the

mciSendCommandQ are as follows: the mcilD is a global device identifier that was returned when
the device was first opened. The MCI SERVO JOG parameter is the MCI command message, and

the flags OR ’d together include the axis, move in positive direction, and notify the application

when the command completed. The last parameter is the pointer to the structure

MCI SERVO JOG PARMS. Upon return from mciSendCommandQ, a return code in dwStatus can

be checked allowing a string associated with the result to be printed using ih^mciGetErrorStringQ

call. In the Windows application MCITest, the JogQ function was typically invoked as the result

of pressing a Jog button on the user interface. Section 4.5 describes in further detail the MCITest

application we used to test the MCI driver interface.
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3.2 Low-Level Application Programming Interface For Motion Control

In addition to the high-level MCI interface, the NIST multimedia driver architecture provides a

low-level interface as well. The low-level interface API (i.e., the motionJogStopQ function shown

in Figure 12) was implemented as a Windows multimedia compliant interface to provide;

a) additional performance related capabilities,

b) access to motion control board capabilities otherwise inaccessible through MCI,

c) a vehicle for sending and receiving large amounts of data, and

d) as an alternative multimedia interface for testing purposes.

The functions included in the NIST low-level API would be exported via the multimedia driver to

applications. Instead of sending messages via the MCI interface, the software developer would

use the API calls directly in the application software. Providing a low-level function-call based

API in addition to the MCI capability is typical of most peripheral-oriented multimedia device

drivers. A fully developed low-level API is seen as being critical to implement future motion

control-based capabilities. Many of the issues regarding performance bottlenecks in the driver

and tapping the additional capabilities of motion control boards will need to be addressed using

this low-level API.

3.2.1 An Example API Implementation

The implementation details of the motionJogStopQ function call encapsulate in many respects

many of the similarities found with any follow-on low-level API calls a developer would

implement. Figure 12 illustrates the code snapshot implementing the ?LCt[xd\motionJogStopO low-

level API call found in the device driver code. Although specific to the Jog command, the

functional structure is generic and typical of how basic command and/or data transfer routines

would be accomplished.

VOID motionJogStopiyoid) {

CHAR buffer[80];

SENDBUFFER SendBuffer;

wsprintfAfbuffer, aszJogFormat, 1, aszServoJogStop);

SendBuffer.IpData = (LPBYTE)buffer;

SendBuffer.dwBufferLength = sizeof(buffer);

MCJSendCommand (pBoardInfo->vh, (LPSENDBUFFER) &SendBuffer);

J

Figure 12: The motionJogStopQ low-level Multimedia API Call.

Briefly, this function’s responsibility is simply to stop a specified motor axis from being jogged

(rotated). The function allocates a data structure that will provide storage for the jog stop ASCII

command string {aszServoJogStop). SendBuffer is then assigned the pointer to the ASCII command

buffer and the size of the string. The MC SendCommandQ^^ function is then called with the

pointer to the buffer and a pointer to a global handle representing the device driver. The

MC SendCommandQ function simply calls the user-mode routine that sends the request down to

the kernel-mode driver. This function is described further in Section 4.3.2 and characterizes the

important linkage between the user-mode and kernel-mode drivers in this architecture.

^ ^ All user and kernel-mode specific device driver functions begin with the prefix MC, meaning motion control.
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4. Kernel'Mode Device DriverDesign

The user-mode multimedia device driver previously discussed provides motion control-based

application software with the device independent methods for accessing the capabilities of the

PMAC motion control board. The Windows-based multimedia device driver is contained within

the Win32 subsystem and therefore must execute in user-mode. In Windows NT, user-mode

applications or subsystems cannot access the hardware directly; therefore, they must have a

paired kernel-mode native WindowsNT device driver to facilitate all hardware access. The NIST

paired device driver strategy thus provides applications with multimedia-based device-

independent access to the PMAC board functions through a device-dependent in-kemel Windows

NT device driver. In general, the kernel-mode device driver provides all hardware-level access to

the PMAC on behalf of the multimedia driver. In high-level terms, the WindowsNT kernel-mode

driver can be divided into two areas of functionality; namely:

1 . Required functions supporting the Windows NT model for device driver construction, and

2. Hardware specific functions required to interact with the PMAC motion control board.

Describing the implementation and use of any required low-level device driver functions would

be meaningless without first providing a reasonable background of the underlying operating

system’s device driver data flow and system interaction models. This background is provided to

the reader in the following section. Later sections describe the PMAC specific functions that were

needed to control the motion control board at the kernel level in the Windows NT environment.

4.1 Windows NT Device Driver Model

In general, all operating systems provide an implicit or explicit model for controlling the flow of

data to and from its hardware resources, with the ultimate goal of the device driver to provide

application software with access to the hardware in the system. Software-based access to devices

typically uses a file-oriented strategy for controlling the device; whereby, devices are only visible

in the user-mode realm as named file objects that must be opened. This means application

software interacts with devices (via device drivers) through operations typically used to do

normal I/O with a file in the operating system. More specifically, in these types of systems,

application software has the ability to open, close, read, write, or control various device

characteristics with the file. Windows NT also provides this file-oriented view of device drivers

by using what are known as file objects in the NT system. Windows NT provides this object-

oriented file view of device driver interactions by implementing what is known as the Windows

NT executive I/O model 12.

The Windows NT executive I/O model essentially combines a rigidly defined standardized

interface for device driver communication with object-oriented concepts for representing devices.

The model encapsulates these concepts with an abstraction called an I/O Manager. Figure 13

illustrates the location of the I/O manager in the Windows NT system. Notice how device drivers

12 The Executive is the collection of components that form the base NT operating system. Executive components

include: executive support, kernel, memory manager, cache manager, process structure, interprocess communication

(LPC and RPC), object manager, I/O manager, configuration manager, hardware abstraction layer, and the security

reference monitor.
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are enveloped by the I/O manager, implying that specific guidelines must be adhered to in order

to carry out meaningful interactions with the device driver.

User Mode

Kernel Mode

System Services

I/O Manager

Device Drivers

Configuration

Manager
Memory
Manager

Process

Structure

Local

Procedure

Call (LPC)

Object

Manager

Kerne!

Security

Monitor

Hardware Abstraction Layer (HAL)

I

A/indows NT
Executive

Hardware

Figure 13: The I/O Manager Component in the Windows NT System.

The I/O manager component provides a consistent, object-based, and packet-driven I/O style of

device driver interaction. The primary function of the I/O manager is to provide a means to

accept I/O requests, create a standardized packet of information to represent the request, and to

route the request packet to the appropriate device driver. In addition, the I/O manager must

monitor the request packets completion status, and finally return this status to the calling

program. In order to accept I/O requests in the first place, the I/O manager defines and exports a

single I/O model with a set of standardized kernel-mode support routines to manipulate NT
device objects. Consistent interfaces between the originator of the request and the device driver

that must handle the request are supplied by the I/O manager. Any native Windows NT
application or subsystem can make requests on device drivers using the aforementioned file

abstraction. Win32 applications, display programs, or printer drivers all request kernel-mode

driver services via standardized Win32 subsystem API services (i.e., CreateFileQ,

DeviceloControlQ, etc.). The Win32 API call to open or control the device/file is mapped onto a

specific I/O manager area in the system services part of the NT executive (see Figure 13).

The I/O manager is responsible for exporting the I/O specific system services initially; therefore,

all requests for file/device interaction will be received by the I/O manager. The request is then

packetized by the I/O manager in a form suitable for consumption by the kernel-mode driver. The

basic unit or packet of information used to build a request in the I/O manager is called an

Input/Output Request Packet, or IRP. This is the basic I/O manager structure used to
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communicate with kernel-mode device drivers in the NT system. An IRP packet consists of two

parts: a header, or fixed part of the packet, and I/O stack locations. The header is used by the I/O

manager to store parameters (i.e., open device driver command) and the address of the device

object (i.e., file handle) from the original request (callers parameters). The fixed part is also used

during the return from the call, where the device driver places the status of the requested

operation in the header part. The I/O manager uses the I/O stack location part to set device driver

specific parameters. For example, the particular operation requested is transferred by the I/O

manager into the I/O stack location as a special function code understood by the driver. The

driver then uses that special function code in the driver to dispatch a particular function to handle

the request. The I/O manager defines a set of standard routines for NT driver implementers to

manipulate IRP’s, thereby providing a consistent interface for all kernel-mode drivers. The I/O

manager supports NT driver development using a single I/O model, a set of kernel-mode routines

to execute I/O operations, and a consistent interface between the requester and the NT driver that

fields the request. The required I/O manager elements needed to begin developing the framework

for the NIST kernel-mode Windows NT device driver are discussed in the next section.

4.2 Elements of a Windows NT Device Driver

During a Windows NT kernel-mode device driver development effort, a skeleton driver is

typically created using the many inherent WindowsNT provided functions, routines, and macros.

Adherence to this rigid driver structure used by Windows NT provides a consistent interface for

developing device drivers. The consistency of the interface allows other device drivers to

communicate with each other in an abstract manner (object-based) while providing cross-

hardware support for a variety of microprocessor architectures (MIPS, INTEL, PowerPC). These

important functions used during the driver development process form the basic skeleton of a

minimal driver which can then be compiled and linked into the WindowsNT system. Once the

shell has been properly integrated, the developer then begins to add the device-specific

functionality required for the hardware being used. Depending on the type of hardware device

being used, the device driver may require a great deal of internal NT support functions or only a

small subset. The PMAC board essentially required various methods for communicating

commands, manipulating memory mapped RAM, and receiving interrupts from the board.

Therefore the requirements of the driver were such that we did not have to provision the driver

with every possible inherent Windows NT driver function available. In support of a generic NT
device driver framework, we included the following standard NT defined functions:

* I/O manager defined functions for driver Initialization, Interrupt Servicing, and IRP Queuing.

* Ancillary functions to allocate spinlocks and interrupt objects, manage memory, use the

registry, and setup symbolic links to the physical device name.

In order to support the device-specific portions of the device driver, many other Windows NT
Executive defined functions were needed. These functions are explained later in the section on

PMAC hardware integration functions (Section 4.3). The Windows NT specific portion of the

device driver is reasonably generic and similar in scope to most device drivers written for theNT

environment. These functions will be briefly summarized. For a more in-depth discussion of each

entity and those not discussed here, developers should consult with the documentation and source

code examples available from Microsoft in the Device Driver Development Kit (DDK) for

additional information.

20



4.2.1 NT Device Driver Initialization

Depending on the level of the device driver or the nature of the underlying physical device, a

Windows NT kernel-mode driver must provide several I/O manager defined routines^ In a

library-based system such as Windows NT, the transfer address of the device driver entry point

must be linked into the OS loader (the boot stage Windows NT program that loads the kernel

image into main memory) to allow initialization. The name of this transfer address in driver space

is the DriverEntryO initialization routine. By naming the entry ^omX DriverEntryO this linkage is

automatically setup; otherwise, the developer would have to specify the new entry point name to

the linker. This is the first function Windows NT calls when initializing the driver. Upon
initialization, the DriverEntryO routine is responsible for exporting additional I/O manager

defined entry points, initializing the Windows NT device object the driver will use, and for setting

up, or requesting any system resources needed.

Prior to any application issuing requests to the device driver, t\\Q DriverEntryO function creates a

special device object that is bound to the underlying physical device. This binding or association

phase commences when a call to loCreateDeviceO is made. The loCreateDeviceO function allocates

space for the device object. A pointer is created as a result of a successful return from this

function that provides a handle the device driver will use to access the hardware specific portions

of the device. After the device object has been created and bound, several other staged

initialization functions typically begin as part of the DriverEntryO routine; namely:

* Set up and export DispatchO function entry points.

* Interrogate the device or the NT Registry to gather device configuration information.

* Report hardware resources needed to NT and check for conflicts.

* Initialize the physical device.

* Connect and Test the Interrupt Service Routine.

* Signal the User-mode Driver that the Kernel-mode driver has loaded successfully.

An important role of the DriverEntryO function is to assign addresses to the DispatchO and

UnloadO functions. After the device driver has been initialized and is placed in an operational

state, it can only handle request for services that the driver’s implementers supplied. In addition

to custom capabilities that the driver implementers may provide, most NT drivers should be able

to handle create, close, read, write, or device control requests ^4. The DispatchO routine is the

U Windows NT kernel-mode drivers are divided into three specific types lowest-level drivers, intermediate drivers,

and file system drivers. Lowest-level (also called device drivers) directly control a physical device. The NIST NT
kernel-mode driver is a lowest-level device driver. Intermediate drivers represent device-specific classes of drivers

such as a virtual disk driver abstracts a real hard disk device driver. Finally, a file system driver supports the system

supplied FAT, HPFS, CDFS, and NTFS file systems in the NT machine.

In the NIST kernel-mode device driver, we did not implement READ, WRITE, or custom major function code

DispatchO capabilities. I/O with the motion control board was facilitated using device control requests for character-

based and memory-mapped data manipulation exclusively. READ/WRITE requests are typically used during large

DMA-based data transfers. The PMAC board does not support DMA-based data transfer.
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centralized function that receives IRP’s routed from the I/O manager and dispatches functions to

handle such requests. It is the responsibility of the DriverEntryO routine to have these routines

exported during the driver’s operation to correctly field these requests from the I/O manager. By
providing these addresses, the driver effectively exports to the I/O manager the entry pointers to

the driver for all possible requests handled by the driver. Figure 14 illustrates how the assigning

of function addresses for the DispatchO and UnloadQ routines are handled in the DriverEntryO

routine.

pDriverObject->DriverUnload = MC_Cleanup;

pDriverObject->MajorFunction [ I
RPMJCREATE] = MC_Dispatch;

pDriverObject->MajorFunction[IRP_MJ_CLOSE] = MC_Dispatch;

pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = MCDispatch;

Figure 14: Setting up the DispatchQ Table in Windows NT.

The MCjCleanupO function has been defined as the device driver’s UnloadQ function address.

This function is called when the device driver is taken out of memory by the NT system. The

MC CleanupO function simply unmaps all memory used, disconnects the interrupt interface, and

reclaims all resources used by the driver back to the NT system. Notice that all the major function

codes for creating, closing, and device control have all been set to the same function address

MC DispatchQ. This process centralizes all requests to the driver in just one functional area;

however, this approach is not mandatory. Indeed, there could be a single dispatch function for

each major function code handled by the driver. The centralized approach is typically opted for in

many designs if the number of major function codes is not significantly high.

The abbreviated MC DispatchQ routine is shown in Figure 15. The functionality normally

associated with each case statement identifier in Figure 15 have been omitted for clarity and will

be addressed in a later section.

NTSTATUS MC_Dbpatch(
IN PDEVICE_OBJECT pDeviceObject,

IN PIRPpIrp)

{

PIO_STACK_LOCATION ploStack;

NTSTATUS Status;

PDEVICE_INFO pDevInfo;

ULONG loCode;

switch(pIoStack->MajorFunction) {

case IRP_MJ_CREATE:
case IRP_MJ_CLOSE:
case IRP_MJ_DEVICE_CONTROL:

loCode = pIoStack->Parameters.DeviceIoControl.IoControlCode;

switch(IoCode) {

case IOCTL_MOTION_READ_PORT:
case IOCTL_MOTION_WRITE_PORT;
case IOCTL_MOTION_GET_DPRAM:
case IOCTL_MOT10N_SEND_COMMAND;
case 10CTL_M0TI0N_INTR_INIT:
case 10CTL_M0TI0N_INTR_TERM:

Figure 15: An Abbreviated Windows NT Kernel-Mode Driver Dispatch Function.

Figure 15 illustrates where the connection between the NT device driver and the developers

placement of the code necessary to carry out the drivers hardware-specific capabilities can be

found. For example, all PMAC hardware related methods implemented, such as mapping Dual-
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Ported RAM into NT space, performing raw hardware port I/O, and initializing the interrupt

interface were all done using special device control codes utilized in \heMC DispatchQ routine.

Use of special device codes, or Input/Output Control codes (lOCTL’s) are typically used by many
operating system designers to designate the functional entry points to the kernel device driver

interface.

In the centralized function MC DispatchQ shown in Figure 15, a case statement determines what

major function code has been received by inspecting the I/O stack location of the IRP. If the major

function code is of type IRP MJ DEVICE CONTROL, then the specific lOCTL code is determined by

parsing the I/O stack parameter location. After the type of lOCTL has been determined, the

function responsible for carrying out the necessary lOCTL is called (not shown in Figure 15).

This provides a central hub for all incoming device control requests.

After the DispatchQ entry points for the driver have been defined, the device-specific

configuration information such as the hardware I/O port range, interrupt requested, the base

address of memory mapped RAM is obtained by probing the device directly if the hardware

supports this, or by querying the Windows NT Registry. The information returned from the

Registry/device is used to request resources from NT and to detect resource conflicts. Reporting

resources and detecting conflicts within Windows NT drivers is provided by the kernel call

loReportResourceUsageQ function. If the resources can be claimed by the driver, then they are

written to the Registry as part of the driver load function.

At this point, the actual physical hardware can be initialized. Hardware initialization is a generic

function needed in all device drivers. However, because devices differ in great respects, very

specific methods to bring each on-line and in stable state are required. The PMAC initialization

occurs as part of the DriverEntryQ function. The PMAC’s initialization procedure requires writing

various hexadecimal codes to the onboard registers of the PMAC at various offsets to the base I/O

address. Each base offset provides access to specific data areas such as the PMAC data registers

for sending and receiving information or the interrupt control word for acknowledging interrupts.

To properly initialize the PMAC, BUS communications must first be brought on-line providing

command-driven capabilities to applications using the BUS. Initialization procedures writing or

reading to the base I/O address offsets of the PMAC are all done using wrapper functions we

developed to front-end Windows NT macros that provide raw hardware I/O port addressing (see

Section 4.3.2 and the MC InQ routine). Values are sent to all data registers of the PMAC to clear

them prior to usage just for safety and is recommended. Hardware initialization begins by

enabling the Programmable Interrupt Controller (PIC). There are two PIC’s in the Intel-based

system that we are using. The on-board PMAC PIC is an Intel i8259A controller that has the ability

to generate eight different types of interrupts to the PC. In the old DOS/Windows version of the

device driver, separate code to write values to the PC’s PIC were also used; however, this should

not be done in the Windows NT environment. The PC’s PIC will be initialized to the correct

values during the NT kernel call that actually connects the Interrupt Service Routine we

developed to the NT system. This will occur later after the interrupt mask has been set prior to

connecting the interrupt to NT. Depending on the type of interrupts the driver wants to be made

aware of when they occur, a mask can be applied to the PIC to filter those particular interrupts

only. This hardware method for selectively masking interrupts is provided all the way up to the

application level. That is, as part of the original application scenario, a user has the ability to

request what types of interrupts will be masked, and the driver will respond by masking off only

those specified. We maintained this capability in the current driver to provide backward
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compatibility. However, as part of the initial board setup, all interrupts are masked off until the

actual interrupt service routine is connected with the NT system.

Interrupt testing routines in the driver were only concerned with testing whether or not interrupts

were actually being generated on the PMAC. A for-loop designed to force a specific interrupt

every 1/25 of a second was entered. If interrupts were occurring at a substantial rate then the

testing phase returned a successful status and the ISR was then actually connected to the NT
system. When successful initialization of the driver has completed, the DriverEntryQ routine

finally returns a successful load status to the user-mode device driver by writing special values to

the Registry that the user-mode driver reads and validates when it starts.

4.2.2 NT Specific Interrupt Service Requirements

If a hardware device such as the PMAC generates interrupts, then the device driver must include

an Interrupt Service Routine (ISR) function. The internals of the ISR are quite specific to the

PMAC device and thus are discussed in detail in Section 4.3.1 on the PMAC specific NT driver

functions. However, the structured process for developing, installing, and connecting to an

interrupt using an ISR contains Windows NT specific functions as defined by the kernel. There

are generic ISR functions available through NT that bind the ISR routine to the NT hosted system.

Figure 16 illustrates the driver function MC ConnectlnterruptQ that contains the NT specific

functions to connect the ISR to the NT system.

BOOLEAN MC_ConnectInterrupt{

PDEVICE_INFO pDevInfo,

ULONG Interrupt,

BOOLEAN bLatched)

{

KAFFINITY Affinity;

KIRQL InterruptRQL;

ULONG Vector;

NTSTATUS Status;

dprintf2(("connecting to interrupt Ox%x", Interrupt));

Vector = HalGetInterruptVecioripDe\lnfo~>BusType, pDevInfo->BusNumber, Interrupt,

Interrupt, &InterruptRQL, &Affinity);

Status = IoConnectInterrupt{&pDe\ln{o->lntQrTupXOb}ect, MC_InterruptService,

pDevInfo, NULL,Vector, InterruptRQL,InterruptRQL,

bLatched ? Latched ; LevelSensitive, FALSE, Affinity, FALSE);

return ((BOOLEAN) NT_SUCCESS(Status));

}

Figure 16: Connecting the Interrupt Service Routine with Windows NT.

In this function, several key procedures need to take place in order to connect the ISR to NT.

First, the kernel call to HalGetlnterruptVectorQ uses the Hardware Abstraction Layer (HAL) ofNT
to return a portable representation of the interrupt to use withNT^^. Given a specific choice for

HAL - Hardware Abstraction Layer, refers to the only non-portable component of a Windows NT Executive

(kernel). The HAL exports routines that abstract hardware platform-specific details about the hardware ports, buses.
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an interrupt vector number, i.e. 10 decimal, the HAL layer does the mapping needed to represent

the chosen interrupt vector into a machine independent fashion. This and other similar hardware

layer abstraction techniques allow NT to provide cross-platform support for device driver code.

The second aspect of this function actually uses the number returned by HAL to connect the

named ISR to the system using the loConnectlnterruptQ NT kernel call. Finally, the function must

provide an address of the user developed ISR function to map into NT when an interrupt occurs.

The user supplied function we developed is called MC InterruptServiceQ. This function essentially

is an interrupt acknowledgment routine that queues another procedure called a Deferred

Procedure Call (DPC) to carry out most of the work associated with the interrupt event.

A DPC is queued to perform the actual functions of the interrupt at a later (lower interrupt

dispatch priority) time. This concept of queuing work to be done at a later time is typical of most

multi-tasking operating systems and provides a fundamentally different ISR model then

previously used in the DOS/Windows environment. That is, under DOS/Windows setting, the

entire microprocessor interrupt system is held up until the ISR terminates. In NT as well as many
other multi-tasking operating systems, this behavior would be disastrous. This is a key area to

consider when targeting device drivers from DOS/Windows to operating systems such as NT.

4.2.3 IRP Queue Management Routines

As part of the interrupt processing algorithms of the kernel-mode device driver, the need to

initialize and maintain queue management functions for the IRP’s arose. IRP queue processing

includes providing textbook style functions capable of enqueing and dequeuing IRPs. The ability

to peek inside a queue for a specified IRP was also provided although it was not used in this

phase of testing.

Ancillary functions to provide synchronization (spinlocks and mutexes) were needed during

access to the queue functions as contention for resources during ISR instances would require it.

The ISR executes at a processor priority of DISPATCH LEVEL in Windows NT which is the

highest priority^^. If mutual exclusion primitives are not used then data in thelSR as well as the

queue could be overwritten as a minimum due to multiple accessing.

4.3 PMAC Specific Device Driver Functions

In addition to the NT specific areas that form the skeletal driver, the device-specific portions were

developed and integrated to form the functioning PMAC component of the NT kernel-mode

device driver. This area essentially provided the driver with the capability to communicate with

the PMAC board using a variety of hardware-specific methods, as well as provide hardware

initialization, testing, and shutdown facilities. Some portions of the NT specific area (i.e.,

connecting the Interrupt Service Routine to NT) although inherent to NT required PMAC device-

specific support in the driver and therefore are discussed in detail.

and interrupts. Moving the Windows NT kernel from one platform to the next simply requires the developers of

Windows NT to rewrite the HAL for the new target platform. This fact has put Windows NT into the realm of being as

portable as UNIX to different microprocessors.

16 Interrupt Request Levels within NT are broken down into several different types that specify differing priority

levels for hardware interrupts. DISPATCH_LEVEL is the highest priority task; the ISR executes at this level.
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By far the most critical implementation detail of the kernel-mode device driver was providing the

communication pathways from the application via device drivers to the motion control board.

There are a variety of generic ways to provide the necessary communication paths. In the case of

the PMAC, it provides communications using serial ports, BUS-based (parallel I/O Port address),

Dual-Ported RAM, and Interrupt-driven paths. The Dual-Port RAM ability is an option so it may

not be present in some systems (although unlikely). In the next sections we will discuss how we

provided Interrupt, Dual-Port Ram, and BUS-based communication in the device driver. Serial

port communications are provided by the PMAC; however, we did not implement this as serial

drivers are readily available and can be integrated rather easily if the need arose. In our testing

we did not need to provide this functionality.

4.3.1 Interrupt Services for PMAC Communication

The Interrupt Service Routine and the Deferred Procedure Call support routines contain a great

deal of PMAC specific code. In general, the ISR and DPC together provide the Windows NT
capability to service interrupts from the PMAC. Unlike DOS/Windows, when an interrupt occurs

the entire machine is not disabled from interrupts while the interrupt is being serviced. NT is

multi-tasking; therefore, stopping the machine from interrupting theCPU would be disastrous for

any length of time. NT provides a model of servicing interrupts by acknowledging the interrupt

on occurrence and then queuing a DPC routine for a lower interrupt request time to do the actual

work of the ISR. In fact, you will get much better interrupt servicing response time in a system

such as NT if the ISR in general does not perform any time consuming tasks. The DPC routine is

the actual ISR function that must handle the interrupt. In this case, theDPC in the NIST NT driver

is the workhorse of the entire interrupt process. The DPC mainly allows the driver to extract the

type of interrupt that occurred and any data associated with that interrupt for later notification to

the application. In order to discuss the interrupt process at this level, it becomes necessary to

provide some background into how the original applications used interrupts in theDOS/Windows

setting and what they do with them. We then can discuss the user-mode interaction with the

kernel-mode driver to facilitate the communication of interrupts from the PMAC board to the

kernel-mode driver and ultimately to the application.

4.3.1. 1 DOSAA^indows Interrupt Architecture

In the DOS/Windows setting, fielding an interrupt from an Intel-based machine proceeds in the

following manner: when an interrupt occurs, the application’s ISR would call an Intel-specific C
run-time function called disableQ to actually disable all interrupts on the Intel i8259A PIC of the

AT-based machine^^. All interrupts on the PIC of the PMAC motion control board would also be

disabled at this time. The ISR would then acknowledge receipt of the interrupt from the PMAC
PIC. The application’s ISR would then set a flag and post a message to the application’s message-

loop, telling of an impending interrupt. The ISR would then re-acknowledge the PMAC interrupt,

unmask the appropriate interrupts, and finally, call enableQ to allow interrupt generation on the

AT-based machine’s PIC. During that point when the message is posted, the application responds

to the interrupt message by doing whatever post-processing is required. At this point the machine

continues on with whatever it was doing. Clearly, this happens in a very short amount of time;

however, it becomes evident that this method of enabling/disabling interrupts on theCPU to get

U Disabling the AT machines’ PIC under Windows NT is not possible. After the ISR is connected to the interrupt

vector then the ISR must determine if the interrupt is in fact for this ISR or it is spurious. In a multitasking OS like

NT, disabling all interrupt generation on the machine would be disastrous.
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ISR work done when migrated to a multitasking and multi-user operating systems such as

Windows NT is unreasonable.

The interrupt capabilities in the Windows NT device driver structure emulate many of the

functional methods used by the original DOS/Windows interrupt service handler. We wanted to

not only implement the ISR using inherent Windows NT functions, but also emulate, the

personality (the application interaction with the ISR) of the application-interrupt capability from

DOS/Windows. By doing this, we could measure performance characteristics and recommend

alternative strategies for bridging the DOS/Windows style of interrupt interaction with that of an

advanced graphical OS environment such as Windows NT.

4.3.1.2 NT Interrupt Processing Overview

The interrupt handling capability of the NIST device driver architecture is embedded throughout

all three layers of the architecture. That is, interrupts initially are generated on thePMAC and are

received in the kernel-mode ISR routine. As part of the kernel-mode ISR implementation, the

user-mode multimedia driver is notified of this event. The user-mode driver then notifies the

application’s messaging loop that an interrupt has occurred via a callback or messaging

mechanism. In order for the application to receive Xh\spseudo interrupt from the PMAC, it must

do so via several layers of device and application interaction. Clearly, this interrupt path involves

significant latency overheads. The next section on performance discusses why this particular

architecture was chosen and some of the issues it raises. Figure 17 illustrates the interrupt

processing algorithm we used to support interrupt generation from the PMAC.

APPLICATION
Messaging loop

receives interrupt from

PostMessageO

THREAD

Create Event | Thread receives

Objects and jioverlapped I/O calls

!

Loop Forever j!up PostMessageO

KERNEL-MODE DRIVER

Memory Mapped RAM

Interrupt Service Routine

Receive Interrupt, complete IRP,

releases pending overlapped I/O

Thread queues asynchronous interrupt

requests down to kernel-mode driver

Kernel-mode driver marks IRP as

pending, and then queues it,

awaiting completion event

PMAC
Hardware Generates Interrupt

Figure 17: Interrupt Processing Algorithm in the Windows NT Drivers.

In general, the interrupt processing through the various device driver and application layers is

accomplished using the following algorithm; the user-mode driver spawns a thread, creating an

event-based asynchronous request/signal feedback loop. A forever loop waits on the possible

events from several event objects created pertaining to any possible interrupt that can occur.
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These events are queued down to the kernel-mode driver (in the form of IRP’s) as asynchronous

request for pending overlapped I/O completion.

The kernel-mode driver cannot complete the request until an interrupt happens from PMAC;

therefore, it must use the queue management routines from Section 4.2.3 to queue the request as

an IRP on its interrupt queue. Upon receipt of an interrupt from PMAC, the kernel-mode driver

will: acknowledge and prevent PMAC from continued interruption, determine what type of

interrupt occurred, unless it is spurious (not meant for this ISR), dequeue any IRP from the

interrupt queue, fill-in the necessary return buffer with the type of interrupt and Tm&Wy,complete

the IRP. Completing the IRP in the kernel-mode driver immediately signals the event object in the

user-mode driver by releasing the pending overlapped I/O event flag. The thread in the user-mode

driver catches the event and sends a message back to the application that an interrupt has

occurred. The application then receives the interrupt in a special messaging loop (message pump)

that has been setup to receive all incoming interrupt messages from the driver. The handle or

instance data for the window or callback has been passed to the driver from the application in an

initial call to MCI through the user-mode driver setup routine that we defined. The application

decodes the parameters of the EvPmacNotijy^

^

message upon receipt and uses the decoded

information (i.e., what interrupt type) to perform some post-processing. After returning from the

message send routine, the user-mode driver thread immediately queues another interrupt request

down to the kernel-mode driver asynchronously, and continues to wait for other interrupt event

objects to be released.

In the Windows environment, the latency involved with getting the message back to the

application (through the Windows messaging pump) has been the major bottleneck. Several

interfaces for transmitting the message from the user-mode driver to the application have been

exercised to find ways of minimizing the message communication response time. Some of the

interfaces include DriverCallbackQ, SendMessageQ, PostMessageQ, and mciDriverNotifyQ. The

DriverCallbackQ interface sends a message back to an application via either a callback function or

to a window handle. The DriverCallbackQ function is the Multimedia-based method for doing this

sort of communication. SendMessageQ is the Win32 API which sends a message to an application

and does not return until the message has been received. PostMessageQ, another Win32 API, posts

a message to an application’s message loop and returns immediately to the calling program. The

mciDriverNotifyQ API has also been used for testing purposes only. It is inherently part of the MCI
driver interface and presents only four possible messages. Because this API is part of the internal

multimedia structure of Windows, it would not be prudent to extend this interface.

4.3.1.3 Interrupt Algorithm Performance Issues

In general, interrupt-driven communication approaches are the most efficient; however, they are

much more difficult to implement with respect to hardware. Under the umbrella of the

DOS/Windows implementation of interrupt-driven I/O this is certainly the case. However, as we
found out in our Windows NT implementation of interrupt-driven I/O, this was not the case. Most

of the issues precluding efficient implementations of the interrupt-driven approach resulted from

the need to provide application-level support for interrupt notification. Whenever the higher level

Windows subsystem (ring 3) interacts with the lower-level (ring 0) kernel, it causes time

EvPmacNotiJy refers to the message currently used in the Delta Tau Windows 3.1 Software Release. When
interrupts are initialized on the PMAC, a special message-loop executes waiting for this message to arrive. After

arrival, the message parameters are then decoded and used to determine what type of interrupt has occurred.
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consuming context switches which preclude efficient interrupt notification algorithms. For

notification situations in which the latency of application-interrupt receipt can tolerate times in

the 100ms range, this algorithm is very well suited. In addition, the algorithm is sufficiently

generalized to be extended for data transfer cases as well. That is, if a buffer transaction scheme

were needed, this algorithm could be generalized enough to provide these capabilities and

integrated quickly. However, to remain backward compatible with the application base and for

testing capabilities this particular algorithm remains an optimal choice for these purposes ^ 9. It is

simply not advisable however to service interrupts all the way up to the application unless the

interrupts are occurring at such intervals that the application and kernel-mode driver can tolerate

them; otherwise, the kernel-mode driver (located at ring 0) will simply overrun the application

due to the large latency inherent in the Windows NT message routing and communication

subsystem (located at ring 3).

Several interrupt algorithms have been tried to minimize the response time and to provide

reasonable event processing during interrupt storms^^; including: (1) queue as many interrupt

request to the driver for all possible interrupts (eight in the PMAC), (2) create an arbitrary

threshold before we begin to queue more interrupts, (3) build in logic to determine when to send

interrupt requests, and (4) use multiple threads with critical sections for background data

management tasks.

We also modified operating system scheduling algorithms that would minimize the interrupt

latency problems at the hardware level, including modifying the processes class priority as well

as the thread scheduling priorities for the real-time class and priority. In the kernel driver we tried

to combine the ISR acknowledge and interrupt determination process into the ISR directly

thereby bypassing the queuing of deferred procedure calls to handle the interrupt response. We
theorized that if we could reduce the response and fielding time associated with the interrupt

determination by not using the DPC mechanism, then we could reduce substantially the response

time. However, this would adversely effect the applications ability to field the interrupts. That is,

the more speed-up of the kernel-mode interrupt fielding capability, the more the application/user-

mode driver suffers in trying to keep up with it. In general, the ability of NT to accept and

acknowledge interrupts in a timely manner is not a problem. In fact, we were profiling the driver

at one point to determine how fast NT could react to an interrupt. It was empirically found in our

environment that NT was responding to interrupts at the rate of around IQl^.

Interrupt latency measurements from within the kernel driver and the user-mode driver to

application have been done. Currently, it takes approximately 1 60 l^s to completely service an

interrupt in the kernel-mode (using IRP queue method) driver. This includes the average time the

kernel-mode driver takes to queue a DPC routine (i.e., the profiling takes place in the DPC routine

so we have normalized this into the result). One debug print statement in thelSR causes a 10 ms

delay in the total response, adding to the approximate 1 80 to 220 ms total round trip delay, and

actually causing some interrupts to be skipped. Therefore, the round-trip message delay using

either MCI or the direct API calls were profiled between 180 and 220 ms. This confers with other

Because of its inherent OS structure, Windows NT like many other multitasking operating systems is not

particularly well suited to handle application-based interrupt notification. For this reason several algorithms have been

proposed to emulate the DOSAVindows style of interrupt interaction. Through our research we have determined that

the algorithm we have developed is optimal for the general case.

20 Interrupt storms occur when interrupts are generated by the hardware faster then they can be serviced by the ISR or

application. The default procedure for dealing with these storms is to disable them.
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colleagues stating that heavily loaded systems can average turnaround latencies of around 100

ms., one-way. Setting real-time threads and upgrading process classes to real-time did not

significantly provide any better results, only to slow the GUI interface down on the NT host, as

could be expected. Because of these intolerable latency delays, other alternatives and design

issues surfaced during development.

4.3.1.4 Interrupt Design Alternatives

Limitations in the time it took for the messaging loop to react to the incoming interrupt callback

from the user-mode driver forced the designers to form alternative approaches to the interrupt

feedback loop problem. Because of the fundamental OS differences between DOS/Windows and

Windows NT, the architectural issues of designing interrupt-driven device drivers need to

change. The ideal option for developers is to migrate the interrupt and hardware intensive

algorithms down as close to the kernel-mode driver as possible. Only allow the hardware to

interact on an interrupt basis with the kernel-mode driver. Then in the user-mode driver or

application, simply set up some sort of passive interrupt notification scenario; perhaps based on

the overlapped I/O and event objects illustrated here. This way the direct coupling between the

application and the interrupt capabilities have been severed. This will provide better

serviceability of interrupts in the kernel-mode driver while maintaining reasonable application

performance. This strategy was not done here because we needed to emulate the existing

application requirements. If we were doing the application re-architecting in addition to the

device driver, we would of opted for bypassing the interrupt notification process in the

application altogether. In general, application-level interaction with interrupts is not a

significantly robust method and needs to be redesigned before migrating into the WindowsNT
setting.

4.3.2 BUS Communications

BUS communications allow applications, via device drivers to send thePMAC ASCII formatted

commands and to return result codes in ASCII string format. Formatted strings are sent through

the hardware address I/O ports to the PMAC using BUS-based communication. This means that

single bytes representing a command string are sent over the BUS using a specified I/O address

port.

Before the hardware address for the I/O ports can be used from within the NT system for BUS
communications however, a series of calls to the hardware abstraction layer of NT must again

take place in order to map the hardware port I/O address in to Windows NT system space. Recall

that the HAL layer provides a transparency layer to provide for cross-platform support for device

drivers; therefore, a mapping must take place that translates the physical I/O address of the port

(i.e., 0x210) into a comparable hardware address suitable to the underlying hardware.

Figure 18 illustrates the use of the HAL by mapping the hardware specific I/O address though NT
using the I/O start address returned from the HalTranslateBusAddressQ NT executive system call.

Notice the actual I/O address shown in the call as PortAddress (0x210) has been mapped into an

NT specific address based on what was returned by the hardware during the call. The newly

mapped address may be very different from that of the one requested and is placed in the variable

address named MappedAddress. This new address is then set to the pointer pDevInfo->PortBase,
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which will be used when the actual port accessing functions need a port address offset to read

from or write to during the drivers execution.—

* translate the bus-relative port address using HAL, map the port address into memory if necessary
*!

VOID MC_MapPort(PDEVICE_INFO pDevInfo, PUCHAR PortBase, ULONG NrOfPorts)

{

PHYSICAL_ADDRESS PortAddress;

PHYSICAL_ADDRESS MappedAddress;

pDevInfo->PortMemType =1; // i/o space

PortAddress.LowPart = (ULONG) PortBase;

PortAddress.HighPart = 0;

HalTranslateBusAddressi

pDevInfo->BusType,

pDevInfo->BusNumber,

PortAddress,

&pDevInfo->PortMemType,

&MappedAddress);

if (pDevInfo->PortMemType == 0) {

/* memory mapped i/o - map the physical address into system space */

pDevInfo->PortBase = MmMapIoSpace(MappedAddress, NrOfPorts, FALSE);
dprintf2(("ports at 0x%x", pDevInfo->PortBase));

} else {
/* this is what we want to do for this driver */

pDevInfo->PortBase = (PUCHAR) MappedAddress.LowPart;

dprintf2(("%d ports at Ox%x (i/o space)", NrOfPorts, pDevInfo->PortBase));

}

pDevInfo->NrOfPorts = NrOfPorts;

}

Figure 18: Use ofNT Hardware Abstraction Layer to Map Hardware Ports.

In order for the NT kernel-mode driver to provide the BUS communications capability using the

newly mapped port I/O address, a set of NT specific hardware port access macros were used.

Two methods shown in Figure 19 to access the port I/O routines from the device driver were

provided. These two functions use the address {pDevInfo->PortBase) that was mapped into I/O

space as the base address to use for port communication in the device driver.

/* output one BYTE to the port. bOffset is the offset from the port base address */

VOID MC_Om/(PDEVICE_INFO pDevInfo, BYTE bOffset, BYTE bData)

{

WRITE_PORT_UCHAR( (PUCHAR) pDevInfo->PortBase + bOffset, bData);

}

/* input one byte from the port at bOffset offset from the port base address */

BYTE MC_/n(PDEVICE_INFO pDevInfo, BYTE bOffset)

{

return (BYTE) READ_PORT_UCHAR( (PUCHAR) pDevInfo->PortBase -i- bOffset);

}

Figure 19: Wrapper functions to Access Hardware Ports in Windows NT.

During a read operation on the hardware port, the wrapper function MC InQ is called which

simply uses a Windows NT specific macro (READ_PORT_UCHAR) to read a raw byte from the
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hardware port. This use of macros for reading hardware ports in Windows NT illustrates yet

another aspect of how Windows NT device drivers remain portable across multiple classes of

microprocessors'. The device driver simply needs to read a character from a given hardware port

using the hardware independent macro. The use of macros in this case forces the HAL layer of

Windows NT to determine the underlying type of hardware it is using, (i.e., Intel, Mips, or

PowerPC) before it reads the port. Because microprocessor architectures differ in the way ports

are accessed (assembly language access), using this macro feature eliminates the device

dependent differences found among them.

In the original DOS/Windows driver scheme, BUS communications used a polling paradigm to

send each character of the command string down to the PMAC board one at a time via Intel

specific C Language Runtime extensions called outbQ and inpQ. Those familiar with developing

device drivers for Intel-specific machines should quickly recognize these Intel instruction

wrappers that send and receive, respectively, a single byte of data through an addressable I/O port

to the PMAC^ 1

.

/* Send a buffered command to PMAC via the Win32 DeviceloControlQ API call. */

BOOL MC_SendCommandiMC{JSER_UANDLE vh, LPSENDBUFFER IpSendBuffer)

{

BOOL bOK;
DWORD dwCount;

PPMACSENDBUFFER pBuffer; / driver can’t use LPSENDBUFFER, can use PPMACSENDBUFFER */

dprintf4(("pmac send buffer"));

pBuffer = (PPMACSENDBUFFER) IpSendBuffer;

bOK = DeviceIoControli\h->hDn\eT, IOCTL_MOTION_SEND_COMMAND,
pBuffer, sizeof(PMACSENDBUFFER),
pBuffer, sizeof(PMACSENDBUFFER),
&dwCount, NULL);

if (!bOK) dprintf3(("SEND_COMMAND ioctl not completed"));

dprintf4(("buffer sent to pmac"));

retum(bOK);

}

Figure 20: MCJSendCommandQ Illustrates User to Kernel-mode Driver Access.

The method we developed in the NT driver to provide this polling sequence increases by several

orders of magnitude the speed-up of the polling process by simply sending the command string as

a whole directly to the PMAC using the raw hardware port. This was accomplished by marshaling

the entire command string into a buffer which was then shipped down to the device driver via the

MC SendCommandQ user-mode driver call shown in Figure 20. The marshaling process resulted

in only one call to the kernel-mode driver to facilitate sending the entire command buffer to the

PMAC instead of issuing multiple driver calls for each character of the command. This allows a

higher performance polling paradigm then originally used because it lowers the level of polling

integration to directly on top of the hardware instead of being context switched in the user-mode

DLL. This results in one kernel driver call for each command invocation via a hardware-level

BUS communication scheme not one call per character sent.

Figure 20 illustrates the MC SendCommandQ function that allows the application to send an entire

command down to PMAC. The function is embedded into the user-mode driver and is accessible

21 The original API, in this case inpQ continued to be used as is; however, the functional part of the API was replaced

with a call to a Windows NT/Win32 specific system call DeviceloControlQ.
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from application space using MCI or the low-level API. Notice the bolded lOCTL function code

for sending a motion command to PMAC. This refers back to Figure 15 and the DispatchQ driver

function where a request comes into the driver. This function illustrates many of the ideas

necessary to provide user-mode application access to kernel-mode drivers. That is, notice in the

function code that the Win32 API call to DeviceloControlQ is used. This method provides a

standardized way of controlling the motion control device through the kernel-mode driver. In

fact, this is the preferred method for providing portable device control and access across many of

the newly emerging Microsoft operating systems.

4.3.3 Dual Port RAM Communications

The PMAC board provides an optional Dual Port RAM (random access memory that can be used

for both transmit and receive operations) capability for extending the RAM addressed by the

PMAC’s on-board microprocessor, as well as other functions. The Dual-Port RAM effectively

provides a very high-speed communications interface for both commanding the PMAC and

setting and getting status information. This memory is typically used in two ways: first, it

provides an additional addressing area to store and execute motion programs. Other functions

provide for some of the RAM to be partitioned and used specifically for various status monitoring

operations or high speed reading and writing of memory regions. The way in which dual-port

memory is used can vary depending on the application requirements. In the case of the PMAC,
application’s used the memory regions provided by DLL’s to access areas in clearly defined

terms. That is, memory addresses in dual port memory are partitioned into application-specific

areas that can only be used for certain functions such as monitoring the position of a motor axis

or the speed of the motor. These high speed memory areas do not change.

Dual-Port RAM access to the application was provided in the device driver by using low-level

Windows NT functions to map the address of the motion control board’s Dual-PortRAM into the

user’s address space of the application/DLL. Figure 21 illustrates the NT function

ZwMapViewOfSectionQ kernel call that maps the specified RAM address into the application/DLL

space. Upon successful return from this call, the pointer VirtualDpramAddress is sent back to the

calling application/DLL (through an I/O stack location specified in the IRP), providing the

connection to the DLL for any future memory addressing and accessing. This allows an

application/DLL to provide direct memory addressing capabilities by bypassing any NT-based

filesystem security checks.

niS,\.diPcLS = ZwMapViewOfSection (physicalMemoryHandle, (HANDLE) -1,

&pDevInfo->VirtualDpraniAddress, OL, length,

&viewBase, &length, ViewShare,

0, PAGE READWRITE
|

PAGE_NOCACHE);
if(!NT_SUCCESS(ntStatus))

{

dprintf (("ZwMapViewOfSection failed"));

ZwClose (physicalMemoryHandle);

}

Figure 21: Mapping the DPRAM Vsmg ZwMapViewOfSectionQ.

Microsoft provides several basic example source modules illustrating this concept. With the user-

space memory mapping modules from the MAPMEM DDK example, we were able to quickly map

the PMAC onboard DPRAM into the user-mode DLL’s that the applications could use.

33



Important reasons exist for why this direct approach would not be expected for use in the

production environment. The memory mapping capability needs to be made more secure from

application space. This is typically done by developing a user-mode driver that will map the

RAM into NT's system space. Subsequent access to the memory mapped areas would be

negotiated between the user-mode and kernel-mode drivers by sending messages from the

application to the user-mode driver to initiate such delegated actions. However, the kernel-mode

driver would in fact provide the actual accessing of memory on behalf of the user-mode

application.

For completeness, we also included this secure capability within the device driver. TheNT driver

provides this capability by using a MmMapIoSpaceQ kernel call shown in Figure 22. Notice in

Figure 22 that the ^oinXQVpDevInfo->FrameBase is used in a similar way that the I/O port address

was mapped into the Window NT system space.

/* translate bus-relative frame buffer address using HAL, and map buffer into system

memory */

VOID MC_MapMemory{?DEV\CEJ^VO pDevInfo, PUCHAR Base, ULONG
Length)

{

PHYSICAL ADDRESS BaseAddress;

PHYSICAD_ADDRESS MappedAddress;

pDevInfo->FrameMemType = 0; // memory space

BaseAddress.LowPart = (ULONG) Base;

BaseAddress.HighPart = 0;

HalTranslateBusAddress{

pDevInfo->BusType,

pDevInfo->BusNumber,

BaseAddress,

&pDevInfo->FrameMemType

,

&MappedAddress);
if (pDevInfo->FrameMemType == 0) {

/* memory mapped i/o - map the physical address into system space*/

pDevInfo->FrameBase = MmMapIoSpace(Ma.ppQdAddTQss, Length, FALSE);

dprintf2(("pmac dpram mapped at 0x%x", pDevInfo->FrameBase));

} else {

pDevInfo->FrameBase = (PUCHAR) MappedAddress.LowPart;

dprintf(("pmac using raw address 0x%x", pDevInfo->FrameBase));

}

pDevInfo->FrameLength = Length;

j

Figure 22: Mapping DPRAM into NT System Space Using MmMapIoSpaceQ.
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Software Development and Build Environment

The complete NIST Windows NT device driver package was put together with the help of many
software tools. These tools are part of the complete software development and build environment

we used to produce the set of user and kernel-mode device drivers. These tools along with the

development environment will be discussed to familiarize the reader with the process of creating,

installing, configuring, and debugging Windows NT device drivers. The software development

environment was used to develop, build, debug and test both the Windows NT user-mode

multimedia device driver as well as the kernel-mode drivers.

4.4 Development Approach

To get familiar with the NT device driver environment, we used Microsoft’s cookbook process

for starting the development process. In short, the process merely guides the developer through a

series of steps to take in order to build a skeletal driver environment using certain prerequisite

functions. At this point the Microsoft WindowsNT Software development Kit (SDK), the Device

driver Development Kit (DDK), and a suitable compiler environment should all be installed

properly to host the NT device driver build environment.

After compiling and linking the test driver, a small application is written that merely opens the

device object associated with the driver and closes the driver object. This is a minimal driver, but

after going through this process the developer becomes familiar with NT driver development

including the build and debugging environments. After being satisfied that we had correctly

installed the various kits to provide the build environment we wrote our own test driver as the

Microsoft cookbook process suggested.

Feeling confident with the build and debug environment, Microsoft next recommends sifting

through the various examples of device driver source code in the DDK to try to find a driver that

may closely fit what you’re trying to accomplish. Fortunately, we found a video capture hardware

device driver that seemed to suit many of our needs; that is, it consisted of a multimedia-based

user-mode driver and a paired kernel-mode NT device driver for the hardware capture board.

Most of the time spent developing the driver was in retrofitting the existing driver to support the

capabilities of the PMAC board.

The user-mode driver was also modified to support the MCI multimedia interface. We obtained a

videodisk MCI source code example from the DDK to use as a template for this process. All

PMAC device-level code for the driver was then written and integrated into the new driver shell.

When a reasonable set of skeleton drivers for the PMAC was at hand, we used the build process

described in the DDK documentation to compile, link, and assemble a driver installation package

that was used to start initial debugging.

4.4.1 Driver Development Environment

Windows NT device driver development requires two Windows NT systems: one for the actual

device driver development process (host) and one for debugging the executing driver code (the

target). In addition, the second or target machine executes a kernel debugger application. The
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device driver development process introduces the notion of using a free (retail) and checked

versions of the Windows NT operating system binaries.

A free build refers to the end-user version of the WindowsNT operating system. This version of

the Windows NT operating system is built using full optimization, all debugging asserts

statements are disabled and debugging information is stripped out of the binary image. A free

system or driver is smaller, faster, and uses less memory. The checked version of the Windows

NT operating system allows testing and debugging for Windows NT system and driver

developers. The checked build contains extra error checking, argument verification, and

debugging information not found in the free build of WindowsNT. A checked system or driver

can help isolate and track down driver problems that cause unpredictable behavior, resulting in

memory leaks or improper device configuration.

The checked build provides extra protection, and as a result it consumes more memory and disk

space than the free build. System and driver performance is much slower because the executables

contain symbolic debugging information. In addition, multiple code paths are executed due to

parameter checking and debug output (diagnostic messages). Typically, driver development and

debugging is done from a system running the free build. This host system is generally the more

powerful of the two, with the retail (free) build of Windows NT installed along with the Win32

software development kit and the Windows NT device driver development kit. TheSDK and DDK
together provide the environment and build tools needed for device driver development in the

Windows NT setting. The kits however, do not provide a compiler environment. Add-on 32-bit

compilers from Borland or Microsoft can be used. However, to reduce integration issues with the

Microsoft tools, usage of the Microsoft Visual C++ compiler version 2.00 (integrated C compiler

version 9.00) or greater is highly recommended. Other third party compiler technology is not

guaranteed to integrate well with the Microsoft hosted environment. The host system provides a

stable environment for building the driver. The target system can be a less capable WindowsNT
machine running a minimal checked build installation.

Both the free and checked builds of Windows NT provide the hooks necessary for debug

communication using a serial cable with a kernel debugger application running on a second

Windows NT system. The host system runs the kernel debugger application and typically

executes the free Windows NT kernel. The target system being debugged is running with kernel

debug hooks enabled and may likewise be running either the free or checked build.

Driver development begins by testing and debugging a checked version of the driver using a

system with a checked kernel. Later, a free version of the driver is tested and debugged using a

system containing a free kernel. This step is important as the executing driver may behave

differently in the two environments if timing or resource requirements in the driver become

critical. Performance tuning of the driver should be done with the free build. Final testing and

verification must be done on the retail (free) Windows NT system.

4.4.2 User-Mode Source-Level Debugging

Debugging the user-mode device driver and application software was done by using the inherent

source-level debugging facilities provided in Microsoft Visual C++ Version 2.00. TheMCITest

application was initially executed to exercise the MCI portion of the driver. To initiate debugging,

we would set breakpoints in the user-mode application to stop at a selected device driver API
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function. Doing this would allow us to step into the API call in the user-mode driver. Debugging

the application and the user-mode device driver together using a source-level debugger provides

tremendous capabilities. The application would call on the device driver in user-mode to carry

out some sort of MCI or low-level API call and the driver could be stopped and the contents of the

call captured. At this point the debugger in Visual C++ is used as the watch and display window
host. Ultimately, the user-mode driver would make calls to the kernel-mode driver to complete

the request for hardware access. When this would occur, a completely new set of interactions

would happen requiring a new set of debugging tools. At this point, the Windbg SDK-based kernel

debugger on the host machine would be used. This capability is discussed in the next section.

4.4.3 Kernel-Mode Source-Level Debugging

The user-mode driver must call upon the kernel-mode driver to accomplish any hardware level

access. The hardware level access is only provided in kernel-mode and requires a different

debugger. The Microsoft SDK provides a source-level debugger, Windbg (shown in Figure 23).

Figure 23: A Kernel-Mode Debug Session Using WinDbg.

Only starting recently (Windows NT Workstation Version 3.5) has this version of Windbg

provided the capability to debug kernel-mode drivers at the source-level. This has been quite a

boon to the Windows NT device driver development community. Machine level debugging of a

kernel-mode driver is an extremely painful and arduous task. Now with the source-level
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capability, the user-mode debugging suite can be used in unison with the kernel-mode debugger

WinDbg to provide a versatile platform for debugging. That is, on the target machine running the

application, user-mode driver, and kernel-mode drivers the Microsoft Visual C++ debugging

environment executes. On the host machine connected via a high-speed serial port to the target,

the host executes the Windbg program. Working together the application can call the user-mode

driver which is viewed on the Visual C++ display, while the user-mode driver calls the kernel

driver with its display status shown in the Windbg screen on the host. This is a powerful capability

that enhances the Windows NT device driver development process. The WinDbg command
window shown in Figure 23 typically provides the developer with insight into what sort of

exchanges are taking place between the debugger and debuggee (through the serial connection).

In addition, full source-level debugging of the kernel-mode driver is provided. During debugging,

a log file is optionally kept for tracing the command window at a later time. An example of a

partial log file is shown in Figure 24.

Thread Create: Process=0, Thread=0

Kernel debugger waiting to connect on coml @ 1 15200 baud

Kernel Debugger connection established on coml @ 115200 baud

Kernel Version 807 Checked loaded @ 0x80100000

Module Load: NTOSKRNL.EXE (symbol loading deferred)

Module Load: C:\NT35\symbols\EXE\NTOSKRNL.DBG (symbols converted & loaded)

Module Load: C:\NT35\symbols\DLL\PMAC.dll (symbols loaded)

PMAC (USER):DRV_LOAD
PMAC (USER):DRV_OPEN
PMAC (USER):Configuration open in progress

PMAC (USER):DRV_INSTALL
PMAC (USER):DRV_QUERYCONFlGURE
PMAC (USER):DRV_CONFlGURE
Module Load: C:\NT35\symbols\SYS\PMAC.sys (symbols loaded)

PMAC (KERN): pmac at port 0x210, int 10, dpram 0xd4000

PMAC (KERN): 16 ports at 0x210 (i/o space)

PMAC (KERN): mapping dpram into system

PMAC (KERN): pmac dpram mapped at 0xfc895000

PMAC (KERN): all interrupts enabled: 0x0

PMAC (KERN): board init complete

PMAC (KERN): connecting to interrupt Oxa

PMAC (KERN): timeout waiting for interrupt!

PMAC (KERN): driver loaded

Module Load: MCITEST.EXE (symbols loaded)

MClTest: started (debug level 1)

MCITest: MCITEST starting... module handle is 400000H
PMAC (USER):DRV_LOAD
PMAC (USER):DRV_OPEN
PMAC (USER):device opened

PMAC (USER):MCl_OPEN_DRIVER...

PMAC (USER):MC1_INTR_IN1T

PMAC (USER):curTent priority class: 32

PMAC (USER):new priority class: 256

PMAC (USER):worker 122 starting

PMAC (KERN): 10CTL_M0T10N_INTR_1N1T
PMAC (USER):interrupt init ok

PMAC (USER): interrupt request 0..7 queued

PMAC (USER):thread priority set for time critical

PMAC (USER):waiting for completion event

PMAC (USER):completion signalled

PMAC (USER):MCl_SERVO_JOG
PMAC (KERN): 161 usec/interrupt

MCITest: roundtrip message latency: 200 (ms)

PMAC (USER): interrupt request 0 completed

PMAC (USER): interrupt request 0 queue

Figure 24: Trace of Windbg Output During Kernel-Mode Debugging.
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The important exchanges include debugging print statements that the developer embeds into the

driver software. By tracing these print statements, a much more efficient means of arriving at a

predetermined state in the driver can be reached. In the log file of Figure 24, notice that the

messages are coming from both the user-mode and kernel-mode driver. This is evident by the use

of the USER and KERN parenthetical expressions in the log file indicating the source of the

message. In addition, notice that the symbols for both the user-mode driver and the kernel-mode

driver needed to be loaded early on in the kernel-mode debug initialization process (i.e.,

PMAC.dll, and PMAC.sys). This is required in order to do source-level debugging of the two

driver images during debugging.

4.5 MClTest— An Application for Multimedia Driver interface Testing

In order to exercise the user-mode multimedia driver we developed, an application that used both

the message and string interfaces of the new motion-based MCI command set was required. An
application that minimally tests the core MCI command set (located on the Microsoft SDK
CDROM), was selected as the template to exercise our extended MCI command set. The resulting

application MClTest, shown in Figure 25, was modified to include new user interface

characteristics that would provide the capability to: (1) exercise the NIST-extended MCI
command set, (2) utilize both user and kernel-mode driver interfaces, (3) test the new application-

level interrupt scheme, and to (4) provide an entry point into the user-mode dynamic link library

(an ultimately the kernel-mode driver), which would allow source-level debugging.

File Edit

String
Interface:

MCITest - jogtest.mci
Motion Devices

open pmacO
macO axis 1 ne

jog pmacO axis 1 stop
jog pmacO axis 2 pos speed 5.5
jog pmacO axis 2 stop
jog pmacO axis 3 pos speed 5.5
jog pmacO axis 3 stop
home pmacO axis 2 notify
home pmacO axis 1

close alll

MCI Output:

Error Text: The specified device is not open or is not
recognized by MCI.

Step thru String Commands:
|

[St^j ~|

Message interface:

Driver API Interface:

Jog Forward

Jog Stop

Initialize Interrupt Interface: Begin

“Interrupt Received

O IN-POSITION
O BUFFER-REQ
O HOST-REQ
O FOLLOW-ERR
O FATAL-ERR
O IR5
O IR6

O IR7

O Notify-Success

NIST Exit Runcount 1

MQtLOr

Figure 25: MClTest: Exercises the MCI-based Motion Control Interface.
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Because the legacy interrupt scheme required application-based interrupt notification, we needed

a way to initialize the interrupt interface through MCI. This was implemented through a push

button on the interface that when selected issued a MCI command to the driver to begin interrupt

initialization (Section 4.3. 1.2). A special notification area in the user interface ofMCITest shown

in Figure 25 illustrates the reception and notification of any interrupt received from the PMAC.

We installed and loaded the Windows NT device driver pair on a computer in our laboratory that

controls a machine tool it is connected to. The machine tool is a large Hardinge SuperSlant Lathe,

capable of very high-speed, high precision machining processes. This machine was retrofitted

with a PMAC controller from another study.

The MCITest program was designed to test the device driver interface on this machine tool. Using

MCITest, the user would simply start a motor axis on the machine tool jogging (rotating). After

the axis begins turning, the user would either click on the stop jog button with the mouse, or enter

the stop jog command as a string to MCI text input window shown in Figure 25. When the user

activates the button representing the jog stop command or enters the stop string in the text input

window, a connection between the MCITest application and the user-mode device driver is made.

The user-mode driver in turn interacts with the kernel-mode device driver to complete the

request. Therefore the MCITest user interface actually connects to code that interacts with the

user-mode driver.

After the user clicks on a specific button, the code in the application would execute until a

breakpoint at that function would be set; thereby allowing the user-mode debugger (Visual C-h-

debugger on the target machine) to begin the source-level debugging process22. Eventually, the

user-mode driver would call the kernel-mode driver, thus initiating the source-level debug

process on the host NT machine using WinDbg. This entire process takes place between two

different machines in real-time via a high-speed serial port connection.

The text input window in Figure 25 also illustrates some of the custom as well as standard MCI-
based string commands that can be issued to the user-mode multimedia device driver including

jog, stop, home, open, and close. The MCI string commands tojog or home the specific axis all

include additional parameters as strings to MCI. Specific commands require different associated

parameters to quantify the command to MCI. For instance, theyog command needs to know what

device to jog, what axis or motor to rotate, at what speed, and in what direction of rotation

negative or positive direction. Recall that the custom commands and parameters were constructed

from the custom command table that we developed for the MCI-based control of motion devices.

MCI specific flags or parameters in the string are also illustrated in Figure 25. That is, the notify

parameter is used to provide application-based notification when the command string has

completed processing. The all parameter on the close command is also a MCI specific parameter

that simply provides a convenient way of closing all the devices in the motion control-based MCI
environment that have been opened. The MCITest application provided a convenient interface for

us to test and debug the set of Windows NT device drivers.

22 Debugging tools allow developers to insert breakpoints into the debug source code. The breakpoints represent

locations in the source code that the user wishes the program execution to momentarily stop. When program execution

halts at these points, programmers can use other debugger capabilities to watch specific variables, step through

instructions one at a time, or to change certain values in memory locations. The main reason we set breakpoints in the

MCITest application was to provide a passageway into the user-mode driver.
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5C Summary^

We present in this document our current techniques and approaches to implementing device

drivers for the control of motion devices in the WindowsNT environment. We chose multimedia

as the venue and specifically Microsoft’s MCI interface because the device-independent control

of peripheral devices was the key guiding principle that we wanted to strive for during this

process.

The MCI interface generated from this research will benefit industry by allowing users of

multiple motion control hardware greater access to a variety of hardware solutions while

providing software developers the same application programming interface to motion control.

Developers can provide their own custom applications for any product that supports Microsoft’s

multimedia environment. In addition, all hardware access required by the user-mode multimedia

driver is facilitated by the use of an associated Windows NT kernel-mode device-dependent

driver in the set. Together they provide complete PMAC-based motion control services using

Microsoft standard multimedia accessing methods.

Integrators may extend these device drivers for custom applications just as we extended the

existing MCI interface for unsupported motion-based functionality. We specifically used the MCI
for motion related messaging to fulfill the requirements for our study; however, the messaging

framework does not preclude supplanting other motion control application domains with

additional messaging contexts. Indeed, the applicability of this type of framework is that it can be

extended to support message requirements for other motion control related applications readily.

Because all hardware dependence has been isolated at the kernel level, other motion control

board manufacturers need only reengineer it to provide hardware services based on their

particular communication strategies. This effort should be minimal, due to motion control board

manufacturers utilize similar communication approaches such as interrupt-driven, BUS-based, or

Dual-Ported RAM techniques.

The set of device drivers developed at NIST were tested out using two different environments.

During the early development effort, the device drivers were debugged using a hardware

demonstration box developed by Delta Tau that safely provided actual motion-based simulation

using small motors and supporting electronics. When the device driver development effort

stabilized, these drivers were successfully installed, tested, and used in a working machine shop

setting using live machine tools.

As of this writing. Delta Tau Data Systems has begun development on a beta version of Windows

NT device drivers for future products. Many of the concepts developed as part of the NIST

device driver effort have been incorporated into this release.
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Obtaining the Software

This work was done under the auspices of the United Stated Department of Commerce, National

Institute of Standards and Technology a U.S. Government Agency. Therefore, the software

developed at NIST cannot be copyrighted in the U.S. We have placed the source code for the

device driver in the Public Domain and is governed by the GNU Copyleft regulations and those

set forth by the Secretary of Commerce, U.S. Department of Commerce. Version 1.0 of the

software is available through anonymous ftp at daedalus.aptd.nist.gov (Internet Address:

129.6.36.21, for non-naming sites) in the pub/motion directory as motion.exe (a self-extracting

ZIP file). Although not discussed in this paper, there is also a limited device driver for the Linux

operating system (Slackware version 2.2). A graphical user interface-based Tcl/Tk application is

provided with the Linux driver to exercise the PMAC BUS interface. The Linux driver is located

in the same directory as the NT driver under the filename motion.tgz (GNU zipped and tarred).
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