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ABSTRACT

This is a proposal to develop a software test service at the National Institute of

Standards and Technology for use in testing the accuracy, or numerical precision,

of mathematical software for special functions. The service would use the World

Wide Web to receive test requests and return test results. The tests would be

run on a network of workstations at the Institute. It is hoped that such a service

will be of practical utility to anyone who uses special functions in physics or other

applications, and that it will stimulate the interest of applied mathematicians

who are interested in the computation of special functions as well as computer

scientists who are interested in innovative uses of the Internet. The author

solicits comments on any aspect of the proposed service.
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1 Introduction

Mathematical software is deeply embedded in the computing environment. Since

this environment is evolving rapidly, its impact on mathematical software needs

to be revisited regularly.

Progress in parallel computing has stimulated much reworking of numerical

algorithms, particularly in computational linear algebra. The earlier introduc-

tion of vector computers had a similar effect. Recent advances in communica-

tions and networking have led to the global interconnection of computers by

high bandwidth communication links, one result of which is improved access

to information about mathematical software via the Internet and World Wide
Web. For example, electronic catalogs and repositories such as xnetlib [8] are

now consulted routinely for help in locating and obtaining mathematical soft-

ware packages for specific tasks.

Vector and parallel developments have had only a modest impact on the com-

putation of mathematical functions. Some references can be cited, for example

[4] and [10]. However, mathematical functions seem particularly appropriate for

demonstrating a new and potentially valuable use of the Web: mathematical

software testing. The problem of testing is intrinsically simpler for mathemat-

ical functions than for other kinds of numerical computation. The input and

output Euclidean spaces have low dimension. In contrast, numerical linear al-

gebra deals with Euclidean spaces of high dimension, and most other numerical

computations deal with function spaces of infinite dimension. Test procedures

for mathematical functions can be devised that apply, in theory, to all possible

inputs.

A question that needs answering at this point is: What would be the ad-

vantages, compared to current testing practice, in using the Web to test math-

ematical software? Our answer is that tests can be tailored to suit a particular

need, and they can be performed on demand.

To see why this is useful, we divide current practice into two categories.

Supplier testing is performed by the software writer or project team. Referees,

editors and software maintainers also play a role. These people have direct re-

sponsibility for the correctness of the software. For commercial software, high

license fees are justified largely by the high costs associated with software main-

tenance and testing. Independent testing is performed by other individuals and

groups. Users often perform this kind of testing for their own purposes because

it leads to an increased confidence in the correctness of the software. Some-

times independent tests are conducted and published in journal articles and

institutional reports as a guide for prospective users.

Published tests of either kind have a ‘frozen-in-time’ quality about them,

having been performed at some time in the past in a computing environment

that may be very different from the prevailing one. Even more unsettling, since

tests are never complete, their results may not apply directly to the numerical

computation of current interest.
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Just the simple repetition of a mathematical function test is often imprac-

tical because the test program is unavailable. Notable exceptions are the test

programs of Cody and Waite [7] and Cody [5] for elementary functions of real

and complex arguments, and of Cody [6] for special functions of real argument.

Here we are following the conventional terminology of calling the transcendental

functions met in calculus courses elementary functions and the higher functions

that appear in advanced applications special functions. The general unavail-

ability of test programs is undoubtedly related to the considerable effort that is

required to raise them to an acceptably high standard for publication or public

distribution. Another problem is lack of generality. For example, most test

programs apply only to a builtin set of test arguments, often with an element

of randomness included.

In this paper a software test service for special functions is proposed and

some implementational details are given. The emphasis is on special functions,

because this is where the need is greatest, but the service will apply equally well

to elementary functions. The service will provide a tool that can be used to

tailor tests to specific requirements. Therefore it should be of interest in both

supplier and independent testing.

2 Proposal

The purpose of the proposed software testing service for special functions is to

assess the accuracy, or numerical precision, of computed function values through

the use of a comparison method. Test values will be compared against reference

values computed in higher precision by highly accurate algorithms. Test re-

quests will be submitted to a Web server at the National Institute of Standards

and Technology. The tests will be conducted at the Institute using software

developed for the purpose. The test results will be returned to the requester in

the form of an appropriate document on the Web server.

The key components of the service will be

Reference Software This will consist of highly accurate and reliable, but not

necessarily efficient, numerical procedures for generating high-precision

reference values of special functions over very extensive argument domains.

The reference software will be an excellent repository for advanced algo-

rithms because it will be embedded in a computing environment that mit-

igates the computer arithmetic liabilities (underflow, overflow, and limited

precision) of conventional computing environments.

Comparison Software This will serve the purpose of orchestrating the gener-

ation of reference values and determining the precision of test values. The
comparison software will utilize parallel methods via the simple device of

domain partitioning. An appropriate measure of precision will be defined

in terms of interval mathematics.
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Communication Interface This will be an appropriately designed Web doc-

ument with associated subdocuments for accepting test requests and re-

turning test results via the Internet.

The comparison method was chosen because of its conceptual simplicity. An
alternative approach, numerical verification of identities, is advocated and used

by W. J. Cody and his coworkers. It avoids the need for higher precision but it

requires careful attention in the choice of identity to guarantee against incorrect

conclusions that could arise if the identity were not entirely independent of the

algorithm used in the implementation of the function. Also, care must be taken

to separate the error in the function evaluation from the error in the evaluation

of the identity. These complications will be avoided in the test service by taking

full advantage of the tremendous power of current capabilities for computation

and communication.

3 Reference Software

The reference software is at the heart of the proposed software testing system

for special functions. Not only must it be highly accurate, a definite bound on

the error in each computed reference value is essential. Otherwise, no one can

be certain of the results of a test. For this reason, the reference software should

be written using interval techniques. An introduction to interval computations

is given in the book by Alefeld and Herzberger [2]. However, aside from the

elementary functions, very little has been published on interval algorithms for

specific mathematical functions. An opportunity and a need exists here for

numerical analysts to develop interval algorithms that generate the required

error bounds.

The service must be able to test double-precision as well as single-precision

software. Thus it is appropriate to write the reference software in multiple

precision. The Fortran package of Bailey [3] is available and applicable for this

purpose. Because of its vast exponent range in comparison to conventional com-

puter arithmetic systems, Bailey’s package relieves the need to be careful about

underflow and overflow. The occurrence of these conditions can completely in-

validate an otherwise pristine computation. The algorithms will take fully into

consideration stability and roundoff questions because these too, if ignored, can

destroy a computation.

Highly efficient software, at least for functions of one variable, is usually

precision-limited because it employs polynomial or rational approximations that

are constructed with respect to a fixed target precision. Flexibility is more im-

portant than efficiency for reference software. Ideally, reference algorithms will

accept an arbitrary tolerance specification so that the same programs can be

executed in increased precision without a major effort to generate approxima-

tion coefficients for the higher precision. This means that methods will be
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constructed from Taylor expansions, asymptotic expansions, differential or dif-

ference equations, integral representations, and other analytical properties, just

as is done in much existing software for functions of two or more variables.

4 Comparison Software

The comparison software hcis a mathematical component and a computer sci-

ence component. The mathematical component is concerned with measuring

the error in test values. This could be done simply with pointwise absolute or

relative error but an interval formulation is more appropriate. The computer

science component is needed to collect and process the test and reference val-

ues. This is a natural application for parallel processing with a loosely coupled

network of computer workstations.

Only the mathematical component will be considered here. It is easy to

describe, at least when all variables are real. Let us consider a function

y = f{x), yeTi, (1)

where TZ denotes the set of real numbers. Let T be the set of real numbers

that are representable exactly in the format of a particular computer arithmetic

system, excluding any nonnumerical symbolic representations such as ±oo, ±0
and NaN (Not-a-Number). Thus an approximating function

y = f{x), xeT^, y^T (2)

is defined by the software to be tested. Our problem is to measure the error

committed when y is taken as an approximation to y.

The pointwise absolute error, defined for x E , is just \y — y\- Because

absolute error is naturally associated with fixed-point computation, and not

floating-point, relative error is more appropriate except near zeros of the func-

tion /. Instead of relative error p — \{y—y)ly\i we prefer to use relative precision

|in(y/y)l

undefined

if yy > 0,

otherwise;
(3)

this definition was introduced in [13]. Since rp(y, y) = p 0{p^), relative

precision and relative error are nearly the same when y is a good approximation

to y. But relative precision has the advantage for detailed error analyses that it

is a metric on TZ'^ and TZ~

,

where these symbols denote the open real intervals

(0,oo) and (— oo,0), respectively.

Given x E ^
the exact function value y = /(x) determines the interval

^ — [Vtiyu] where yi,yu are two consecutive elements of T. A criterion that

is applied sometimes in the construction of computer software is to require the

approximate function value y = S{x) to satisfy either y = yi oi y = y^. This
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will be called the criterion of full precision. It can be expressed in a different

way. First we define the machine epsilon

e = maxrp(t, <*). (4)

where 4+ denotes the successor of t in T. Then the approximating function /
satisfies the criterion of full precision if, and only if, rp(y, y) < e for all x G
such that f{x) and /(x) have the same sign. It is customary to employ full

precision, or nearly full precision, in software for elementary functions.

The strongest possible criterion is correct rounding. Required by [9] for

standard floating-point arithmetic operations, it is met by most up-to-date im-

plementations of floating-point arithmetic as well as by some software for ele-

mentary functions, particularly when supplied with Fortran compilers.

The criterion of full precision is quite rigorous. If x G let x~ and x"*"

denote its predecessor and successor (where the ordering is defined component-

wise). If we regard x as a representative of the multivariate interval

X = [x^,x^] = -[x +

X

,x + x+].
(
5

)

then the uncertainty in x is reflected in the range of / as its arguments vary

throughout X. If a partial derivative of / is large, it can be argued that it is

unnecessary to require full precision in f{x). In fact, the computation of f[x)

to full precision is unwarranted if it requires an inordinate amount of execution

time. This penalty is likely to be especially severe for special functions.

A more appropriate criterion of precision can be defined. Let I{TV} be the

set of all closed interval subsets of TZ. Alefeld and Herzberger [2] show that, if

A = [at,au] and B — [bi, are two intervals, then the function

g(A, B) = max{|a^ - 6^1, |ou - 6u|}, A,BeI{TZ) (6)

is a metric. Also, since g([a, a], [6, 6]) = |a — &|, the metric q generalizes the usual

metric in TZ. Arithmetic operations A + B, A — B, AB and A/B are defined in

I{TZ) by operating on the endpoints of the intervals. They are continuous in the

topology of {I{TZ),q}. Similarly, it is possible to define continuous interval ex-

tensions of continuous real functions. For example, for the logarithmic function,

the interval extension ln(A) = [lna/,lnau] is defined and continuous on I{TZ^).

Next, we define interval relative precision

r g(lny,lny) ify,y G/(72+),

rp(y,y)= rp(-y,-y) if y,y g /(7e-), (7)

[ undefined otherwise.

This is easy to compute, since it can be shown that

rp(y,y) = max{rp(y^,yi),rp(yj*,yu)}. (8)
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Interval relative precision is a metric on and and it generalizes

pointwise relative precision since rp([y, y], [y, y]) = rp(y, y).

Now consider the test argument x G again as a representative of the

multivariate interval X = [x^,Xu], and assume the function / is continuous on

X. Let Y be the range of / on X:

y = [yi, Vu] = f{X) = {/(x)
I

< X < Xu}. (9)

Finally, let the test function value y = /(x) G X represent the interval

Y = [yi,yu] = ^[y + y~,y + y'^]. (lo)

Then we will say that the approximating function f satisfies the interval crite-

rion of -precision if

rp(5^, Y) < max{e, rp(y^, y^)} (H)

for all X such that the relative precisions are defined. The right side of this

inequality provides a standard of comparison. It takes into account the behavior

of / as its arguments vary throughout the neighborhood represented by x. It

establishes the allowable range of relative errors over this neighborhood. The

left side measures the distance between the allowable range of / and the interval

represented by the test function value. If the interval criterion (11) is satisfied,

then the set intersection T n T is nonempty. If Y" QY or T C Y, then (11) is

satisfied. In all cases when (11) is satisfied, a simple interpretation in terms of

pointwise relative error can be given. This will be discussed in a future paper.

A fundamental problem in interval mathematics is how to compute the range

of real functions. Evaluation of explicit expressions using interval arithmetic

does not necessarily produce the range; to the contrary, the range may be over-

estimated substantially. Also, it is necessary to construct strict bounds for all

errors caused by truncating infinite processes. This problem will need to be

faced in the design and construction of reference software for the software test

service.

5 Communication Interface

For the software test system, an argument set is a subset of the domain of a

function. For each test, the test requester provides an argument set together

with corresponding function values to the communication interface. Then the

reference software computes the function to higher precision at all points in the

argument set, the comparison software compares the reference values against the

test requester’s function values, and finally the communication interface returns

a table or plot of the interval relative precision to the test requester.

A careful development of the software test service requires attention to the

processes of decimal-to-binary and binary-to-decimal conversion. Base conver-

sion processes between arbitrary bases are considered in detail in Matula [11]
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and [12]. A p-digit, base-/3 significance space is the set of all p-digit normal-

ized floating-point numbers in the base j3, excluding zero and without regard to

size. Let and be two significance spaces. The rounding conversion map-

ping Rl from into SI is the mapping that is defined by converting x G S^

into its ly-ary expansion to sufficiently high precision, then rounding it to q

base-i^ digits. The truncation conversion mapping TJ is defined similarly. The
composition of base conversion mappings is possible. An interesting kind of

composition is an in-and-out conversion mapping which maps into 5^, and

then back to S^. Matula proved two theorems:

Theorem 1 (Base Conversion Theorem) ///?* ^ for any positive inte-

gers i, j, then the base conversion mappings Rl : —* SI and : S^ SI

are:

1. one-to-one onto their ranges if and only if ~ 1 /

2. onto if and only if — 1.

Theorem 2 (In-and-Out Conversion Theorem) If for any posi-

tive integers i, j, then

1. R^Rl : 5^
—» is the identity if and only if > /3^

,
and

2. RF^T^ : S^ S^ is the identity if and only if > 2/3^ — 1.

The condition for any positive integers i, j excludes the trivial case

when the bases P and v are integral powers of a common base. Under the

conditions of Theorem 2, Rl and TJ are one-to-one onto their ranges and their

inverse mappings coincide with : S® —> S^.

As an example, consider decimal output from single-precision computer

arithmetic as defined in [9]. Then /3 = 2, p = 24, v —
10, and q is to be

determined according to some criterion. The rounding conversion mapping

S?o is

1. one-to-one onto its range if and only if 9 > 9;

2 . onto if and only if 9 < 6
;

similarly for T^q. Thus decimal output precision 9 need not exceed 9 digits if

each internal number is to have a unique decimal representation, and it cannot

exceed 6 digits if the complete set of 9-digit decimal numbers is to be covered.

Also, either of R^'^RIq or R^^T^q is the identity mapping if and only if 9 > 9.

Now let denote the significance space associated with the test requester’s

computer arithmetic T. Let be the decimal significance space with mini-

mum 9 such that the necessary and sufficient condition in part 1 of Theorem 2
I

is satisfied. Finally, let S^, denote the significance space associated with the
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reference software. We assume /3' and (3 are positive integral powers of two, and

we assume p' is such that 5^ C 5^/ •

Then the In-and-Out Conversion Theorem allows us to choose whether to

represent an argument set in binary or decimal. If we choose binary, the base

conversion mapping from 5^ to 5^, is trivial. It must be noted, however, that

this choice leads to programming complications that are not entirely trivial.

Also, conversion to decimal is necessary for human interpretation. Therefore it

seems that the decimal choice should be considered. Assuming that rounding

conversion mappings are correctly implemented in the computing environment of

the test requester and also in the computing environment used by the software

test service, it is immaterial (except possibly for practical concerns involving

execution speed) whether argument sets are represented in binary or decimal.

The same remark is true concerning other test data, such as computed function

values, that are passed through the communication interface from to the

reference software or vice versa.

To summarize, a test requester will want to consider argument sets as orig-

inating in one of two ways:

Decimal Origination The function y — f(x) is to be tested to obtain a gen-

eral impression of its accuracy over parts of its domain. Here knowledge

of exact binary representations is not important, so it is natural to specify

the argument set in decimal.

Binary Origination The function y = f{x) is to be tested at a set of ex-

actly machine-representable arguments. For example, if / is used in an

application program, it might be useful to have the capability of testing

/ at the exact arguments that arise in a particular program execution.

Here decimal representation is still permissible, provided the conditions of

Theorem 2 are met.

For decimal origination, use of a test generator avoids the need to supply

arguments explicitly. Let s : [0,
1]”^ — be a monotonic function, where

monotonicity is defined componentwise. To generate J test arguments, the

formula

= s{j/{J + 1)), j = l,2,...,J (12)

is used. Examples of univariate test generators are the equidistant generator

s{t) = xo(l —
't) + xjt and the logarithmic generator s{t) = Xq~^Xj. These

generators produce J test arguments in the x-interval [xo, xj] with equidistant or

logarithmic spacing. An element of randomness is introduced by using a pseudo-

random number generator to produce a t-sequence ti < t2 < . . . < tj instead

of the t-sequence defined by tj = j/[J -|- 1). With sufficiently careful coding of

the software test service, and cissuming all rounding base conversion mappings
are implemented correctly, test generators will produce identical argument sets

when executed either by the test requester or the software test service.
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We conclude this section by introducing a general approach that can be used

to specify argument sets on a proper submanifold of the function domain. Let

Df ^ d[^'> X d\/'> X ...X D[1'^ Cn^. (13)

denote the domain of a function /. If the dimension m exceeds 1, it may
be desirable to hold one or more variables fixed for the duration of the test.

The chief reason for such a procedure is that some of the variables may be

fixed in the application that gave rise to the test. A straightforward approach

would be to list the argument set with the components corresponding to fixed

variables remaining constant throughout. However, another approach avoids

this unnecessary specification of fixed variables. It has the advantage that it

can be generalized to permit testing on a A:-dimensional submanifold in the

TO-dimensional domain, where k < m, and it also can be used to change the

coordinate system.

First we reorder the variables so that the first k of them in the new order are

the ones that will vary; the remaining m—k are held constant. We suppose that

k is given such that 1 < k < m. Let p be a permutation, or rearrangement, of

(1, 2, . . ., m), and let p p Denoting

we have

the reordered variables ^1,^2, • •
J )

(r = l,2,...,m). (14)

and the test is applied to the function

y = 9{0 = f{^), ^ e7^^
,

xeTZ^, yen-, (15)

compare Eq. (1). The test requester provides the integer k, the permutation

p, the fixed arguments Ck+i,^k+2: • - and the argument set in the domain

Dg = X X ...xD[^\

Let us consider as an example the incomplete gamma function

Z

'y(a,z) = J
e~^t°’~^ dt (3?a > 0). (16)

0

Define a = xi + ix^, z = xs + ix^. Then

f{xi,X2, X3, 24) = 7(11 + iX2, X3 -f iX4). (17)

Suppose a test is wanted in which xi is held constant. Then k = 3, the required

permutations are p = (2, 3, 4, 1), p = (4, 1, 2, 3), and the function g is defined by

9(616.^3) = 7(^4 + + i^a)- (18)

Alternatively, suppose a test is wanted in which the variables are restricted to

real values. Then p = p = (1, 3, 2, 4) and p(^i,42) = 7(6 + ^3,^2 + ^44)-
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6 Concluding Remarks

The proposed software test service is undergoing active development at the

National Institute of Standards and Technology. The initial emphasis is on the

construction of the communication interface and associated Web documents.

This substantial programming task is being accomplished with the assistance of

M. A. McClain of the Applied and Computational Mathematics Division.

The envisioned communication interface will be accessed as a Web ‘home

page’ for the test service. It will present a menu of functions from which the

test requester will choose by clicking the mouse. Initially at least, the menu
will follow the classification that is used in [1]. Special functions are subject to

alternative definitions arising from varying normalization criteria, modification

by scaling functions, and other practical or theoretical considerations. This has

posed an identification problem in existing software for evaluating and testing

special functions because of the severely restricted character set used in comput-

ing. An important feature of Web documents is that they support the full range

of mathematical notation. This feature is being used to avoid any ambiguity in

the identification of functions in our software test service. It also facilitates the

possibility of offering a wide range of alternative function definitions for testing.

The software test service will be able to supply numerical function values

on demand as well as to evaluate software. Thus the comparison software will

not be relevant to all usage of the service. The reference software is essential

to all usage, and it is very demanding to provide. It will require a long-term

research and development effort. However, symbolic computing environments

exist that support numerical computing to arbitrary precision. Some have ex-

tensive support for special functions, including computing numerical values to

high precision. Initially at least, these environments will be used to supply ref-

erence values. Although they do not meet our requirements for the provision of

strict error bounds, they probably represent the best currently available source

of reference software.

Finally, in view of the new approach to testing that is introduced in this

paper, readers may have opinions, recommendations or criticisms that would be

useful in improving the proposed software test service. The author would be

most grateful for receiving all such comments.
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