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Abstract

Experimentation and data collection are becoming accepted practices within the software en-

gineering community to determine the effectiveness of various software development practices.

However, there is wide disagreement as to exactly what the term “experimentation” means in

this domain. It is important that we understand this concept and identify how we can best

collect data needed to validate software methods that are effective. This understanding will

provide a basis for improved technical exchange of information between scientists and engineers

within the software community.

Keywords: Data collection; Experimentation; Measurement; Process measures; Product mea-

sures; Software complexity;
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1 Experimentation

Experimentation 1 and data collection are becoming accepted practices within the software engineer-

ing community as a means to understand both software and the methods used in its construction.

Data collection is central to the NASA/GSFC Software Engineering Laboratory [5], the concept

behind the Data and Analysis Center for Software (DACS) located at Rome Laboratories and a

crucial part of the upper levels of the Software Engineering Institute’s (SEI) Capability Maturity

Model (CMM) [17]. However, there are many ways to collect information within the software en-

gineering community. The purpose of this paper is to explore these methods and to understand

when each is applicable toward our understanding of the underlying software development process.

The long term objective is to enable a better technical exchange of information between scientists

and engineers in the software community. The software industry will have the means to become

aware of software technology and criteria for selecting the methods and tools appropriate to their

development projects.

In this section we explore the goals for experimentation and describe the context of why we want

to collect data, and in Section 2 we describe the various forms of experiments that can be applied

to software development, what data we can collect by this experimentation, and the strengths

and weaknesses of the various methods. In Section 3 we compare our classification model to other

models of software engineering experimentation, and in Section 4 we apply this model to a collection

of some 600 published papers in order to understand how experimentation is being used by the

software engineering community. We then compare our results with a related study performed by

Tichy [20], who also looked at the role of experimental validation in published papers.

1.1 Goals for Experimentation

Software engineering is concerned with techniques useful for the development of effective software

programs, where “effective” depends upon specific problem domains. Effective software can mean

software that either is low cost, reliable, rapidly developed, safe, or has some other relevant at-

tribute. We make the assumption that to answer the question “Is this technique effective?” we

need some measurement of the relevant attribute. Just saying that a technique is “good” conveys

no real information. Instead, we need a measurement applied to each attribute so that we can say

one technique is more or less effective than another.

For some attributes, this mapping from an effective attribute to a measurement scale is fairly

straightforward. If effective means low cost, then cost of development is such a measure. For

reliability, we have measures that are not as clear as in the previous example. We can use measures

like failures in using the product per day, errors found during development, or MTBF (Mean Time

Between Failure) as used in hardware domains. All of these give some indication of the relative

reliability between two products, but the correlation between these measures and the attribute we

want to evaluate is not as clear cut. For example, a count of the number of errors found during

testing does not, by itself, indicate if there are further errors remaining to be found. Unfortunately,

1
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for other applications of effectiveness, we have no good measurement scale. Safety is one example

of this measure. What does it mean for one product to be safer than another? Safety is related to

reliability, but it is not the same. A very unreliable program can be very safe if it can turn itself

off each time the software fails. Security is another one of these nebulous attributes. What does it

mean for one product to be more secure than another? Does it mean how long it takes to penetrate

the software to bypass its security protection, how many data protection “items” it contains, or

what level of information the program is allowed to process?

While the classification of attributes and their effective measurement is an important aspect of

software engineering, we do not address this problem further in this paper. We will simply assume

that we have some mechanism for measuring the attribute we wish to observe in our experiment.

We summarize this then by saying that within the software engineering community, the basic

purpose for experimentation is to determine whether methods used in accordance with some under-

lying theory during the development of a product results in software being as effective as necessary.

Questions that the experimentalists need to address include: Does a particular technique work?

Is the resulting software more effective? What processes can use these techniques? What is the

quantitative improvement in our “effectiveness” by using this technique (i.e., can we measure the

improvement in the measurement of interest)?

Aside from validating the effectiveness of particular techniques, experimentation provides an

important feedback loop for the science of software engineering, given by (c.f. [19]):

EXPERIENCE Es|> THEORY Es|> EVALUATION

Experimentation is a crucial part of the evaluation feedback loop in the development of new theories.

Can we modify the underlying theory upon which the technique is based? What predictions can

we make upon future developments based upon using these techniques?

1.2 Measurements

Software development needs to generate reliable, effective products. For most engineering disciplines

we have various performance measures that can be used in this evaluation. For example, if a highway

is built, there are tests that can be made on the concrete or asphalt road to test durability and

other surface characteristics; for bridge building we can test for the load the bridge can handle and

for the various stresses that the bridge may be subject to. However, for a software product, we have

few related performance measures. We have no qualitative measure of a program that is generally

agreed to by most professionals.

We cannot measure the reliability (in absolute terms) of the software or the correctness of the

software. Because of this, given data we can measure, what are the appropriate conclusions we

can draw from this data? Since we don’t have causal relationships between data we can measure

and the attributes we are interested in, we often have to resort to indirect measures. Rather than

measuring the product itself, we often measure the process used to develop the product. We make
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the assumption (which has never been thoroughly evaluated) that an effective development process

will produce a good product. This assumption is the basis for the Capability Maturity Model and
the interest in ISO 9000 certification, and while they intuitively seem reasonable, still need scientific

validation.

Because of the lack of effective measurements on a software program, we generally approach

the problem of experimentation with software development in two diverse ways: (1) We can mea-

sure software products and develop a quantitative evaluation of the components that go into that

piece of software; or (2) We can develop a quantitative evaluation of the process used to develop

the product. Both serve as methods for experimenting on software development to result in a

better understanding of the relationship between development and the attribute we are trying to

quantitatively measure.

1.3 Process and Product

As we just described, experimentation in software engineering can be separated into experiments

validating a particular product and experiments validating a particular process. Depending on the

specific underlying theory, measurement of program complexity is defined on the basis of measures

such as lines of code, function points, or cyclomatic complexity. In these examples, the artifact of

study is the program itself, or a representation of the program (e.g., a specifications or requirements

document).

On the other hand, measures like reliability (e.g., number of failures in the software or mean
time between failure), cost of development, and time to develop, all represent measures of the

development process. They do not represent data about the artifact itself, but instead represent

information collected by the group performing the development or use of the product.

Can we modify the development process (e.g., replace testing with a verification process, or

replace Ada with Smalltalk as the development language) and then measure the effect of this

change on the overall development process with respect to measures like cost and reliability? If

our measures were effective, then the changes in our measurement data would indicate changes in

actual development methods.

However, what we would really like to know is what effect do changes in the development

method (e.g., changing methods to test the product) have on the product itself? If changing a

programming language, for example, results in more errors being found during the testing phase

(generally perceived to be a good thing), does this mean that the new language results in more

errors being caught during development (and hence results in a more reliable product), or does it

mean that the new language results in more errors being made by the development staff (and hence

there may be many more latent errors not yet found, resulting in a less reliable product)?

For the most part, we haven’t established this connection between the development process and

the product being developed, but we assume they behave as highly correlated phenomena. Good

testing strategies, for example, are viewed as producing well tested products containing few errors.
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We have been fairly informal, so far, in using terms like process, techniques, and methods.

These terms are quite overworked and mean different things to almost everyone. For the remainder

of this paper we will use ISO 12207 [10] terminology wherever possible. This terminology is:

• The major work items for software engineering are processes. There is an acquisition process,

a development process, an operations process, a quality assurance process, etc.

• Each process consists of a set of activities
,
or a set of jobs to be done. For software develop-

ment, the activities consist of the typical waterfall lifecycle activities, such as software design,

coding, and testing activities. For the most part, experimentation is too specific to affect an

activity. We generally view the set of activities as fixed and are most concerned about how
to achieve each activity most effectively.

• Activities are broken down into tasks. These now vary depending upon the particular method

employed. For example, the coding activity may consist of the source code generation task,

the unit testing task, and the documentation task. For a cleanroom development [14], the

unit testing task may be replaced by a verification task. An inspection task or a walkthrough

task may be added. It is at this level that experimentation may result in data being collected

which can be used to compare one task with another.

• Tasks can be further subdivided into methods, techniques, and tools. For this report we will not

differentiate between a method or a technique. Both represent a relatively specific algorithm

for achieving the goals of the task. For example, path testing, branch coverage, and mutation

testing are all methods for achieving a unit testing task. They have different effectiveness,

and a considerable number of experimentation papers have been published about the relative

merits of each method toward realizing an effective testing task.

• We will describe a tool as a program which implements a method (or technique). Thus a

program which takes a module, creates mutations of it, and then executes each mutation,

is a tool which implements the mutation testing method. A long range goal for much of

software engineering is to implement every effective method as a tool. This would go a long

way toward automating the software development process.

We therefore view experimentation as dependent upon collecting data that can be used to

differentiate among various tasks (and the components of tasks) in order to determine which tasks

produce more effective programs than other tasks.

1.4 Why study process?

At first glance it may seem superfluous to study the process of software development. In most

engineering domains we are concerned about the product being designed. For example, new aircraft

design seemingly depends upon airframe composition, engine design, and on-board avionics for

control, and bridge design depends upon the composition of the components used and the basic

model of the bridge (e.g., suspension, cantilever, truss, arch). The process used to construct
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the product does not seem to be involved. However, a more in-depth study of other engineering

disciplines reveals many similarities with the software engineering domain, the major difference

being that most other engineering domains are older and have undergone this process evolution

research many years earlier.

Leveson [12] provides an excellent example comparing the development of steam boilers in the

19th century and the development of software engineering today. The basic problem was simple: As
the temperature and pressure increased in order to increase the power and efficiency of the steam

that was produced, boilers had a tendency to explode and kill nearby people. While engineers were

concerned with the development of effective products that did not explode, the process of building

and using boilers was also under considerable study. Leveson cites the following process issues that

occurred during the development of boiler technology:

1. As a way to limit explosions, there were proposals to limit boilers to low pressure, and hence,

low power production. This was an attempt to modify the process where the boiler would

be used. The analogy today would be to determine the application domains where a given

software technology could be used effectively.

2. Since boilers were being designed by poorly trained engineers and used by unskilled operators,

there were attempts to limit where they could be used. The obvious economic benefit (i.e.,

measurement of power production) made this process solution ineffective. Cleanroom is a

modern-day example of this phenomenon. Although hard to implement, data on its use has

shown it to be too effective to be ignored [3].

3. Liability laws were changed to allow for compensation to families of passengers killed in boiler

accidents. The economic measurement of potential loss was a strong impetus to the process

of construction of boilers to include safety features that would limit losses. Unfortunately,

perhaps, the software industry has not reached this level of concern. In fact, the opposite

is often the case. Companies are often unwilling to investigate certain technologies (e.g.,

security and safety issues) since they are not liable as long as “due diligence” was used in

the construction of the software. If better technologies were used and they knew about these

problems, they would be liable for not producing better products.

Leveson cites several reasons that drove the problems with boiler technology in the 1800s.

“Safety features [of boilers] were not based upon scientific understanding of the causes of acci-

dents.” But “trial and error is a time-tested way of accumulating engineering knowledge,” and

experimentation did lead to more effective design of products.

1.5 Experimentation — Not!

Experimentation is one of those terms frequently used incorrectly in the computer science commu-

nity. Papers are written that explain some new technology and then “experiments” are performed

to show the technology is effective. In almost all of these cases, this means that the creator of the

technology has implemented the technology and shown that it seems to work. Here, “experiment”
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really means an example that the technology exists or an existence proof that the technique can be

employed. Very rarely does it involve any collection of data to show that the technology adheres to

some underlying model or theory of software development, or that it is effective, as “effective” is

defined previously, to show that application of that technology leads to a measurable improvement

in some relevant attribute.

A typical example could be the design of a new programming language where the “experiment”

would be the development of a compiler for the new language and sample programs compiled on this

compiler. The “success” for the experiment would be the demonstration that the compiler success-

fully compiles the sample programs. What is missing is data that shows the value or effectiveness

of this new language.

A true experiment would determine whether programs written in this new language were more

effective than programs written in another language, executed faster, were easier to develop, easier

to maintain, or fulfilled some other attribute of interest to the language designer. Simply building

and demonstrating a compiler does not really address the utility of that language within the realm

of software development.

Without the true experiment, why should industry select a new language (or new method or

tool, etc.)? On what basis should another researcher enhance the language (or extend a method)

and develop supporting tools? As a scientific discipline we need to do more than simply say, “I

tried it and I like it” [7]. Can we imagine an engineer at an airplane manufacturer going to the head

of the company saying “Yesterday, we discovered this new metal. Beginning tomorrow all airplanes

will be built using it, and we don’t need to test it. It obviously works.” However, such statements

are said daily in almost every information technology company, and the resulting engineer not only

does not get fired, but probably gets a bonus instead.

1.6 So, How Do We Experiment?

This then leads to the purpose of this paper. How do we collect data necessary to evaluate the

effectiveness of the tasks that are part of a software development activity? How do we validate a

new development technique? Can we use this data to determine if a new product is effective? What
are the characteristics of a new product? Is it reliable? Is it complex? Is it efficient? Understanding

the answers will lead to the goal of identifying the elements needed in experiment design and data

collection relevant to types of hypotheses, which in turn will yield uniform methods of representing

results that will enable industry to understand and compare techniques and tools.

When one thinks of an “experiment,” one often thinks of a roomful of subjects, each being asked

to perform some task, followed by the collection of data from each subject for later analysis. In

a recent report [16], experimentation is broken down into three categories: case studies, academic

studies, and industrial studies. However this narrow definition does not distinguish among the

various forms of data that may be collected. The selection of statistical methods for measuring and

expressing the results of software experiments depends on the various forms of data that may be

collected.
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These categories, however, are really related methods among the four models of experimentation

[1]. Experimentation can mean any of the following approaches:

1. Scientific method. This, as described above, is the “classical” way to run an experiment.

A theory to explain a phenomenon is developed. A given hypothesis is proposed and then

alternative variations of the hypothesis are tested and data collected to verify or refute the

claims of the hypothesis.

2. Engineering method. In this model, a given solution to a hypothesis is developed and tested.

Based upon the results of the test, the solution is improved, until no further improvement is

required.

3. Empirical method. In this model, a statistical method is proposed as a means to validate a

given hypothesis. Unlike the scientific method, there may not be a formal model or theory

describing the hypothesis. Data is collected to verify the hypothesis.

4. Analytical method. A formal theory is developed, and results derived from that theory can

be compared with empirical observations.

Note that not all of these require the collection of data coincident with the running of the exper-

iment. While this is typically true of the scientific method, others, such as the engineering method

and empirical method, can use previously- collected historical data for appropriate validation.

The common thread from all of these questions is the collection of data on either the development

process or the product itself. We will address this in the next section by describing several classes

of data collection models that can be designed to test hypotheses like those suggested previously.

From the data collection models, we will describe classes of experiments that can employ these data

collection methods.

2 Data Collection Models

In this section we discuss the various data collection models that are used in the software engineering

domain and will discuss how they relate to the various experimental models explained in the

previous section. Importance, time, budget, and criticality to project success all determine which

one to employ for a given development.

2.1 Experimental design

When we do an experiment, more properly an experiment using the scientific method described

above, we are interested in the effect that a method or tool, called a factor
,
has on an attribute

of interest. The running of an experiment with a specific assignment to the factors is called a

treatment. Each agent that we are studying and collecting data on (e.g., programmer, team, source
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program module) is called a subject or an experimental unit. The goal of an experiment is to collect

enough data from a sufficient number of subjects, all adhering to the same treatment, in order to

obtain a statistically significant result on the attribute we are concerned about compared to some

other treatment.

In developing an experiment to collect data on this attribute, we have to be concerned with

three aspects of data collection [18]:

1. Replication - The most important attribute of the scientific method is to be able to replicate

the results of an experiment so that other researchers can reproduce the findings of a given

experiment. In order to ensure that this is so, we must be certain that we don’t confound two

effects. That is, we must make sure that unanticipated variables are not affecting our results.

As a simple example, if our subjects are student programmers who use a certain method and

professional programmers who use another, we cannot be sure whether method or experience

is the cause of any differing results. In this case we are confounding the impact of experience

and method in achieving our results.

We counteract this confounding effect by randomizing the factors that we are not concerned

about. If we mix up students and professional subjects for each method, and we still observe

a difference, then we can say (with a fair degree of certainty) that the method and not the

experience was the cause of the difference.

2. Local control - Local control refers to the degree to which we can modify the treatment

applied to each subject. This is one of the major distinguishing characteristics separating a

case study from a formal experiment. We usually have little control over the treatment in a

case study.

In a blocking experiment, we assume each subject of a treatment group comes from a homoge-

neous population. Thus if we randomly select subjects from a population of students, we say

that we have a blocked experiment of students. For ease of mathematical analysis, we often

try to balance each treatment by having an equal number of instances for each assignment to

the factors.

3. In a factorial design we apply for each factor every possible treatment. Thus if there are two

factors we wish to evaluate, and each has 3 possible values, then we need to run 9 experiments,

with subjects randomly chosen from among the blocked factors.

In a factorial design, however, we often can test for several factors at once. If we have two

factors, A and B with two values each, then half the treatments can be viewed as factor A
with one value and half with factor B with the other value. Similarly, we can do the same

with factor B. With 32 subjects, we can test for four separate factors, each with two values,

and each replicated twice. Although each individual treatment has only two subjects, each

factor is replicated 16 times in this design.

In addition to the above three traditional characteristics for an experiment, we add the following

two that seem appropriate for the software development domain.

8



Influence. We want to know the impact that a given experimental design has on the results of

that experiment. We will call the various methods passive or active. Passive methods are those

that view the artifacts of study as inorganic objects that can be observed, inspected, and studied

with no effects on the object itself. Static analysis techniques which look at the set of collected

data artifacts are examples of a passive method.

On the other hand, we will consider active methods as those which interact with the artifacts

under study. Thus we introduce the possibility of contamination or modification of the results due

to the very nature of our investigations. For the most part these are time-sensitive studies where we

are collecting data in real-time to monitor either the process being employed or the product that is

being developed. The well-known “Hawthorne effect,” where the process of observing individuals

causes them to change their behavior, is an example of an active effect we wish to minimize.

Results obtained via passive methods should be more indicative of the actual development

process due to a lack of interacting with the developers. However, passive methods, by their nature,

rarely collect exactly the data needed to arrive at the desired conclusion. Therefore, we usually

need to employ active methods, with an attempt to eliminate, minimize, or at least understand,

the influence the data collection process has on the project.

Temporal properties. Experiments may be historical (e.g., archaeological) or current (e.g.,

monitoring a current project). There is certainly less control over the experimental design if the

basic data was collected before the experiment began.

We will classify the various data collection models and indicate how they are affected by the

various experimental parameters. We will group the various data collection methods into three

broad categories:

1. An observational method will collect relevant data as a project develops. In general, there

is relatively little control over the development process other than using the new technology

that is being studied.

2. An historical method collects data from projects that have already been completed. The data

already exists; it is only necessary to analyze what is already there.

3. A controlled method provides for multiple instances of an observation in order to provide for

statistical validity of the results. This is the more classical method of experimental design in

other scientific disciplines.

2.2 Observational Methods

An observational method will collect relevant data as a project develops. There are four such

methods: Project monitoring, Case study, Assertion, and Survey.
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2.2.1 Project Monitoring

Project monitoring represents the lowest level of experimentation and measurement. It is simply

the collection and storage of data that occurs during project development. We view it as a passive

model since we are simply collecting whatever data the project is generating with no attempt to

influence or redirect their process or affect the data they are collecting.

Method. Almost every project collects some data, often in the form of time cards recorded by

project personnel on a weekly basis or a list of error-report forms submitted by users. This project

data should be collected by the organization and made available to others for later use.

Surprising as it seems, many organizations do not preserve project information. In a survey

performed in the early 1980s [21], it was found that although project information was often collected

by project management, this information was also “owned” by the project manager and would not

be used on some future project. The situation is still quite true today in many organizations.

The argument that data collection and preservation uses valuable computer resources simply is

no longer true. With 1.6 Gbyte hard disks for PCs costing under $300 today, there is no reason

not to collect this information and preserve it for future use.

Strength. Project monitoring represents the minimal level of data collection that should be ap-

plied to any organization. The data is generally collected, anyway. The only problem is the central-

ization of the collection process and the capability to retrieve this information later. This solution

requires some minimal coordination among the various development activities in an organization,

but represents a level of experimentation that should be required of all.

Weakness. This method generally lacks experimental goals or consistency in the data that is

collected. Data is simply collected for its own sake. It is important, however, to collect this

information so that a baseline can be established later, should the organization build a more

complex experimentation process. Establishing baselines are crucial for later process improvement

activities, such as applying Basili’s Quality Improvement Paradigm (QIP) [4]. One first has to

know where one is, before trying to determine the effect of changes.

Since there is no design of what data to collect, consistency between projects is often limited.

Conclusions based upon data from several such projects must be suspect since it is not clear how
each project interpreted its data.

2.2.2 Case Study

In a case study, a project is monitored and data collected over time. The project is often a

large commercial development and would be undertaken whether data was to be collected or not,
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although could also be part of a university project as well. The key factor is that the development

would happen regardless of the desire to collect data for this study. With a relatively minimal
addition to the costs to the project, valuable information can be obtained on the various attributes

characterizing its development.

This method differs from the project monitoring method above in that data collection is derived

from a specific goal for the project. A certain attribute is monitored (e.g., reliability, cost) and

data is collected to measure that attribute. Similar data is often collected from a class of projects

so that a more consistent baseline is built that represents the organization’s standard process for

software development. Once the baseline is established, it is easier to measure the effects of any

change caused by experimentation with a new technology.

While project monitoring is considered passive, a case study is an active method because our

experimental goals influence the data we want to collect, which may have an effect on the devel-

opment process itself. The very nature of filling out a certain form, which, by itself, may not be

very intrusive to the development group, may have the side effect of having the staff think about

certain issues in order to fill out the form. This could cause them to react differently had they not

filled out that form.

One of the goals of groups like the NASA Software Engineering Laboratory is to establish a

consistent project monitoring data collection activity to reduce this case study method to a passive

project monitoring method. This accomplishment would move the results obtained from an active

method to a passive method where the results may be more significant, since we are no longer

perturbing the process in our attempts to collect the relevant information.

Method. Typically, data collection forms are used to perform case studies. Resource data (e.g.,

hours worked) is collected from project personnel and often forms are collected periodically (e.g.,

submission of forms to identify errors, when modules are placed under configuration control, when

new releases are made). This data can be processed in a database to produce a profile of information

that describes the behavior of the development over time.

Strength. The strength of this method is that the development is going to happen regardless

of the needs to collect experimental data, so the only additional cost is the cost of monitoring

the development and collecting this data. With only minimal changes to accounting data already

collected by many companies, valuable development data can be collected to produce these profiles.

There are many developments currently happening, so if the organization is attuned to the

needs for experimentation and data collection, data from many projects can be amassed over a

short period of time.

Weakness. The weakness of this method is that each development is relatively unique, so it

is not always possible to compare one development profile with another. Determining trends and

statistical validity becomes difficult. There have been some efforts at collecting different profiles and
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looking at techniques such as cluster analysis [13] or optimized set reduction statistical techniques

to combine diverse projects. However, the lack of experimental controls to set common sets of

independent and dependent variables for each such case study limits their utility.

In addition, most projects may involve a significant expenditure of money. The NASA SEL has

estimated that collecting data for such projects may require from 5% to 6% additional funds. While

a relatively low percent of total projects funds, this amount may represent, in absolute numbers,

a large amount of money on a large project. When a project is late or over budget, the data

collection activity is often the first one curtailed. And more importantly, this late project is exactly

the project where we must have data for analyzing what went wrong to avoid similar problems in

the future.

Because case studies are often large commercial developments, experimental controls are often

hard to impose. The needs of today’s customer often dominate over the desire to learn how to

improve the process later. The practicality of completing a project on time, within budget, with

appropriate reliability, may often mean that experimental goals must be sacrificed. Experimenting

with new development methods or new tools may be a risk, which management is not willing to

take, so good experimental results become hard to achieve.

If data is collected for later study, there will be further incentives to curtail such activities if

behind schedule or over budget. Those projects which merge experimentation for research with

real-time feedback of data to project management stand the best chance of collecting data that will

be useful with data collection activities continued in the face of adverse conditions.

2.2.3 Assertion

We subdivided the case study method by adding an assertion classification. This is a case study

where the developer of the technology is both the experimenter and often the subject of the study.

The purpose of this case study is to validate the effectiveness of the proposed technology (e.g.,

building a toy program to show how well a new tool works). In essence, the developer is saying “I

tried it, and I like it.” However, if the developer is using a new technology on some larger industrial

project, we will classify it as a case study since the developer of the technology does not have the

same degree of control over the experimental conditions that need to be imposed.

Method. The developer of a technology uses the new technology on a project. In general, the

sample project used is relatively small or incomplete. In some cases, the purpose of the development

is to simply show the value of the new technology and has no intrinsic value itself.

Strength. The developer of a technology knows it best and is often best able to demonstrate its

effectiveness.
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Weakness. While the assertion form of case study has value, it is often viewed with more suspi-

cion in other scientific disciplines than is a case study by some other neutral party. The potential

for biasing the results by using a specific example is great.

2.2.4 Survey

It is often desirable to compare several projects simultaneously. This is related to the case study,

but is less intrusive to the development process. For this reason, we classify it as a passive method
and not as an active method. If the survey becomes very intrusive with a significant involvement

of the development staff in the collection of the necessary data, then this method is just a form of

the replicated experiment to be described later.

Method. This form of experiment represents a parallel set of case studies. Typically, survey

forms are collected from each activity in order to determine the effectiveness of that activity. Often

an outside group will come and monitor the actions of each subject group, whereas in the case

study model, the subjects themselves perform the data collection activities.

Strength. This model best represents an organization that wishes to measure its development

practices without changing the process to incorporate measurement. An outside group (either

another organization or another group within the same company) will come and monitor the subject

groups to collect the relevant information.

The method also works best for products that are already complete. If a new tool has been

established in one organization, survey teams can monitor groups that use the new tool and ones

that do not in order to determine differences in the effectiveness of what they produce.

Weakness. The model limits the information that can be collected. Since a primary goal is often

not to perturb the activity under study, it is often impossible to collect all relevant data.

2.3 Historical Methods

An historical method collects data from projects that have already been completed using existing

data. There are four such methods: Literature search, Legacy data, Lessons learned, and Static

analysis.

2.3.1 Literature Search

The literature search represents the least invasive and most passive form of data collection research.

It requires the investigator to read and analyze the results of papers and other documents that are
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generally available to the general public. This can be useful to confirm an existing hypothesis or to

enhance the data collected on one project with data that has been previously published on similar

projects.

Method. This method is included for completeness of the set of given methods. Relevant papers

in journals and conference proceedings are read, and the results are synthesized into an approach

that may be used in another environment. This is the classical form of information gathering using

a library as the main source of information.

Strength. This method places no demands on a given project and only affects the person doing

the literature search. It provides information across a broad range of industries, and access to such

information is at a low cost. In addition, since the uncertainty of a measurement drops with an

increasing number of observations, combining the data from several previously published projects

into one larger analysis (e.g., meta-analysis) provides for a more precise finding [15].

Weakness. A major weakness with a literature search is selection bias
,
or the tendency of re-

searchers, authors, and journal editors to publish positive results. Contradictory results often are

not reported, so a meta-analysis of previously published data may indicate an effect that is not

really present if the full set of observable data was presented.

Quantitative data is often lacking due to the proprietary nature of much of this information.

Often the controls used in the experiment are lacking leading to an inability to duplicate the

experiment at another location. This makes it difficult to determine homogeneity among several

reported data items. The amount of information is limited and its validity is often open to question.

Understanding the environment of the published experiment is crucial for interpreting the results,

and such an understanding is often lacking.

2.3.2 Study of Legacy Data

We often want to determine what happened on a previously completed project, so that we can

apply this information and evaluate a new project now under development. The study of legacy

code and the data collected with its development is often used to validate experimental results

on this new project. This is similar to an after-the-fact project monitoring method. Rather than

collecting data as a project proceeds, the data is collected from projects that have already been

completed.

Method. Literally bilhons of lines of code exist worldwide, and much documentation and data

exist for many of these bilhons. A search through this documentation often discovers interesting

aspects that may be applicable to new development methods.
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In this method we consider the available data to include all artifacts involved in the product.

These artifacts can include the source program, specification, design, and testing documentation,

as well as data collected in its development. We assume there is a fair amount of quantitative data

available for analysis. Where we do not have such quantitative data, we call the analysis a lessons

learned study (described later). We will also consider the special case of looking at source code and

specification documents alone under the separate category of static analysis.

Strength. Study of legacy data is a low cost form of “experimentation.” The term experimen-

tation is used loosely here. In this case, existing documentation and data are studied to see if any

effects can be traced to the methods used in its development. It can be called a form of software

archaeology as we examine existing files trying to determine trends. Data mining is another term

often used for parts of this work as we try to determine relationships buried in the collected data.

In this case, we are not encumbered by an ongoing project, so costs, schedules, and the needs

for delivery of a product are not involved in this activity. All interactions with the project artifacts

are passive and are not bound by the real-time pressures of delivering a finished product according

to some contractual schedule.

Weakness. Since data has already been collected, the information available is necessarily fixed

and limited. It is not possible to collect information not thought of originally. This limits the

results we can obtain from these types of experiments. Much like a case study, each experiment

will be unique and it will be difficult to compare one project with another due to great variability

in the availability of the collected information.

2.3.3 Study of Lessons-learned

A weaker form of legacy data is the investigation of lessons-learned documents from previous

projects. If project personnel are still available, it is possible to obtain some low-cost trends in

lookin g at the effects of methods. This method is more of a qualitative assessment of a completed

project.

Method. Lessons-learned documents are often produced after a large industrial project is com-

pleted, whether data is collected or not. A study of these documents often reveals aspects which

can be used to improve future developments.

Strength. This study is perhaps the cheapest form of experimentation. Only existing documents

are studied, and interviews with project personnel may indicate other existing conditions. It is most

effective for recently completed projects where the project personnel are available for interviews

and memories are all fresh.
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Weakness. By its nature, the data available is severely limited. This form of project may indicate

various trends, but cannot be used for statistical validity of the results. Unfortunately, lessons-

learned documents are often “write only,” and the same comments about what should have been

done is repeated in each successive document. We never seem to learn from our previous mistakes.

2.3.4 Static Analysis

The passive methods we have described so far all evaluate development according to some criteria.

We can often obtain needed information by looking at the completed product, which we call the

static analysis method. This is a special case of studying legacy data except that we centralize our

concerns on the product that was developed, whereas legacy data also included process measure-

ment. In these cases, we analyze the structure of the product itself to determine characteristics

about use. The realms of software complexity and data flow research fit under this model. For

example, since we do not fully understand what the effective measurements are, the assumption is

made that products with a lower complexity or simple data flow will be more effective.

The use of tools to analyze software points to a possible ambiguity in our classification model.

Tools can be used to help develop software (e.g., use a data flow tool to find illegal usage of

a variable) or to help evaluate software (e.g., use a cyclomatic complexity tool to classify the

complexity of each module in a system). In some cases, the same tool can be used for both

purposes. In this paper, however, we are only concerned about the latter application of collecting

data about a completed project. Using tools during the construction of software is an important,

but for this paper, unrelated issue.

Method. A product, usually as a collection of source program files, is analyzed by a series of tools

in order to extract relationships among the components of the program. Measures (e.g., the software

science measures, cyclomatic complexity, lines of code, function points, prime decompositions, fan-

out, data-bindings) are computed in order to determine a value for the program according to that

measure. The assumption is made that programs with a better value will be easier to understand

and process. Therefore, products that have better computed attributes should be more reliable,

more maintainable, etc. and be more effective products according to our usual set of attributes.

Also methods which produce such products will be more effective methods.

This method, because of its ease to implement, is generally a favorite in the academic world

in demonstrating that a given measure has a positive correlation to an attribute of interest. Most

correlations, however, are relatively weak.

Strength. Most program analysis measures are variations of software complexity models that

are based upon specific models or formulas, so the computation of these complexity values is often

specific and reproducible. Since the product is complete, it has the same positive attribute of

studying legacy data in that the analysis is not influenced by the needs of an ongoing project.
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Weakness. It is difficult to show that the model’s quantitative definition relates directly to pro-

gram complexity. Numerous studies have shown, for example, that lines of code is only marginally

related to program complexity. The application domain also has a big impact. All the other

measures cited above also have problems in addressing the attribute they claim to address.

2.4 Controlled Methods

A controlled method provides for multiple instances of an observation in order to provide for sta-

tistical validity of the results. This is the more classical method of experimental design in other

scientific disciplines. We consider four such methods: Replicated, Synthetic environment, Dynamic
analysis, and Simulation.

2.4.1 Replicated Experiment

The replicated experiment represents the other extreme of active method from the case study.

Several projects are staffed to duplicate a given specification in several ways. Control variables are

set (e.g., duration, staff level, methods used) and statistical validity can be more easily established

than the large case study previously mentioned. On the other hand, the risk of perturbing the

experimental results is great since the subjects generally know they are part of an experiment and

not part of a true development.

Method. In a replicated experiment, a given task is proposed to be replaced by another task (e.g.,

replace Ada by C++, eliminate walkthroughs, provide for independent verification and validation

as part of acceptance testing). Several groups are formed to implement products using either the

old or new task. Data is collected on both approaches, and the results are compared.

Strength. This represents a true scientific experiment in a realistic setting. If there are enough

replications, statistical validity of the method under study may be established. Since this is part

of a realistic setting, the transfer of this technology to industry should be apparent, and the risk

of using the results of this study should be lessened.

Weakness. The cost of this form of experiment limits its usefulness. Industrial programmers are

expensive and even a small experiment may represent 6 months to a year of staff time. Since we

need about 20-40 replications to ensure good statistical validity of our results, the total costs for

such an experiment can be enormous. In this case, replications are often limited to at most 2-4,

which greatly increases the variability of the results and the lack of statistical significance in its

conclusions.

In addition, the effects of performing a replicated experiment among human subjects (i.e., the

development team) perturb the experiment. Since the various groups know that they are part of
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a replicated experiment, they may not take their task as seriously as if they were developing a

product that would be delivered to a customer. This could have an adverse impact on their care

and diligence in performing their tasks, which of course would have an impact on the observed

results.

Of course, we could avoid this by having each replication represent a slightly different product,

each one required by a different customer. This then becomes a variation of the case study method

described earlier. That method has its own set of strengths and weaknesses, as we previously

described.

2.4.2 Synthetic Environment Experiments

Another form of widely used experiment is the synthetic environment experiment. It is similar to

smaller versions of the replicated experiment above. In the software engineering community, this

often appears as a human factors experiment investigating some aspect in system design or use.

Typically, a large group of individuals (e.g., students or sometimes industrial programmers) work

at some task for several hours, leading to data being collected on this task.

Like the replicated experiment, it can be used to obtain a high degree of statistical validity, but

even more than the replicated experiment, may perturb the results to make their applicability to

an industrial setting very suspect.

Method. A relatively small objective is identified and all variables are fixed except for the control

method being modified. Personnel are often randomized from a homogeneous pool of subjects,

duration of the experiment is fixed, and as many variables as possible are monitored.

Strength. The large number of subjects involved in such an experiment greatly leads to statistical

validity of the results. Such experiments are often modeled after psychological experiments, where

there has been a great body of research on how to conduct such experiments and how to analyze

the data collected from these activities.

Weakness. By its very nature, such experiments are often of short duration. Since we are dealing

with many subjects, the time and cost involved in each subject is relatively low. So while we can

get a high degree of statistical significance by studying the behavior of even hundreds of subjects,

the problems they are working on will be of limited usefulness, relevance, or importance to some

of the complex problems encountered in building large systems.

Because the objectives of such experiments are often limited, the relevance of transferring the

results of such experiments to industry may also be limited. In this case it is not clear that the

experimental design relates to the environment that already exists in industry. So we may end up

with valid statistics of an experimental setup for a method that may not be realistic.
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In addition, tasks that by their nature are complex may not be tested in this manner. Developing

good configuration management, for example, requires a large system, so an experiment of a few

hours may prove little. An experiment requiring an analysis of a system of 100 modules over 4 hours

may not translate to the management of a system of 10,000 modules. Similarly, a task involving

a large group of 20 or 30 people cannot be effectively tested in an experimental setting involving

2 or 3. The scaling-up problem of transferring a result covering a few subjects may not apply to

large groups of individuals.

The scaling-up issue points out a major weakness in this model of experimentation. Often such

experiments are conducted because they are easy to conduct and should lead to statistical validity.

We often lose sight of the fact that the experiment itself has little value since it doesn’t relate to

any problems actually encountered in an industrial setting.

2.4.3 Dynamic Analysis

The controlled methods we have so far discussed all evaluate the development process. We can

also look at controlled methods that execute the product itself. We call these dynamic analysis

methods. Many instrument the given product by adding debugging or testing code in such a way

that features of the product can be demonstrated and evaluated when the product is executed.

Others execute the product as a means to compare it with other products. This differs from the

static analysis method mentioned earlier; in that instance the product is only evaluated as is.

For example, a tool which counts the instances of certain features in the source program (e.g.,

number of if statements) would be a static analysis of the program, whereas a tool which executed

the program to test its execution time would be a dynamic analysis method. We discuss this further

in Section 2.5.

Method. The given product is either modified or executed under carefully controlled situations

in order to extract information on using the product. Techniques that employ scripts of specific

scenarios or which modify the source program of the product itself in order to be able to extract

information while the program executes are both examples of this method.

Strength. The major advantage of this method is that scripts can be used to compare different

products with similar functionality. The dynamic behavior of product can be determined often

without a need to understand the design of the product itself. Benchmarking suites are examples

of dynamic analysis techniques. These are used to collect representative execution behavior across

a broad set of similar products.

Weakness. There are two major weaknesses with dynamic analysis. One is the obvious problem

that if we instrument the product by adding source statements, we may be perturbing its behavior

in unpredictable ways. Secondly, as Dijkstra had observed close to 30 years ago, testing a program
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shows the presence of errors and not their absence [8]. Similarly, in this case, executing a program

shows its behavior for the specific data set being used that cannot often be generalized to other

data sets. The tailoring of performance benchmarks to favor one vendor’s product over another is

a classic example of the problems with this method of data collection.

2.4.4 Simulation

Related to dynamic analysis is the concept of simulation. In this case we evaluate a technology

by executing the product using a model of the real environment. In this case we hypothesize, or

predict, how the real environment will react to the new technology.

Method. This process is much like the dynamic analysis method given above with the difference

being that we execute the product using a simulated environment rather than real data. If we can

model the behavior of the environment for certain variables, we often can ignore other harder-to-

obtain variables and obtain results more readily.

Strength. By ignoring extraneous variables, a simulation is often easier, faster, and less expensive

to run than the full product in the real environment. We can often test a technology without the

risk of failure on an important project, and we will not be adversely affected by the needs of project

personnel to complete a project.

Weakness. The real weakness in a simulation is a lack of knowledge of how well the synthetic

environment we have created models reality. Although we can easily obtain quantitative answers,

we are never quite certain how relevant these values are to the problem we are trying to solve.

2.5 Which model to use

When we wish to collect data from an experiment, it is not sufficient to consider only the object

that is under study. For example, if the goal is to test the impact of a new testing tool, one cannot

a priori decide what sort of data must be collected. Data can be collected that conforms to several

of our data collection models. All of the following represent different ways to model data collection

activities related to this new tool:

• Case study. Use the tool as part of new development and collect data to determine if the use

of the tool results in a product that seems more efficient, more reliable, or easier to develop

than similar projects were in the past.

• Assertion. Use the tool to test a simple 100 fine program to show how easy it is to find all

errors.
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• Literature search. Determine if there are any other published studies that analyze the behavior

of tools such as the testing tool under evaluation.

• Legacy data. Find a previously-completed project that collected data on using the tool to

determine whether the characteristics of the project improved because of the use of the tool.

• Lessons learned. Find a completed project that used this tool and ask the participants of

that project if they believed the tool had a positive impact on the project and why.

• Replicated experiment. Develop multiple instances of a module in an industrial setting, some

using the tool and some not using it, to see if there are any measurable differences.

• Survey. Distribute the tool across a broad range of projects and collect data later on the

impact that the tool had on those projects.

• Synthetic. Have 20 programmers sitting at workstations spend two hours trying to debug a

module, half using the tool and half using other techniques in order to quantify the differences

that the tool provides.

• Dynamic analysis. Execute a program with a new algorithm and compare its performance

with the earlier version of the program.

• Simulation. Generate a set of data points randomly and then execute the tool and another

tool to determine effectiveness in finding errors in a given module.

• Static analysis. Use a control flow analysis tool to see if one design method results in fewer

logic errors than another design method.

In fact, for just about any technology, a data collection method can be devised to collect relevant

data on that technology that conforms to any one of the twelve given data collection methods.

3 Classification of Experimental Models

We can summarize the previous discussions by Table 1. Most of the entries should be fairly

obvious, although a few deserve some explanation.

A literature search can be replicated by others and should yield similar results. Static analysis

can be either passive if it is an analysis of a completed system, or active, if the results of the analysis

are used to direct development (e.g., limiting cyclomatic complexity of a given module to 10 or

less). The same can be said of dynamic analysis.

We have to be very careful here; the example of cyclomatic complexity given above may have

a dual purpose. If limiting cyclomatic complexity to 10 is part of the development method, then

it is not an artifact of the experimental design, in which case the analysis is passive. However, if

computing cyclomatic complexity is not part of the normal development plan, and if a manager
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Exp. Model Replicate Local

control

Factorial

design

Influence Temporal

Observational

Proj. mon. No None No Passive Current

Case study No Some No Active Current

Assertion No Some No Active Current

Survey Yes Some No Mostly

passive

Current

Historical

Lit. search Yes None No Passive Past

Legacy data No None No Passive Past

Lessons learned No None No Passive Past

Stat. anal. No None No Both Past or

Current

Controlled

Replicated Yes Some Yes Active Current

Synthetic Yes Much Yes Active Current

Dyn. anal. No Some No Active Current

Simulation Yes Some No Active Current

Table 1: Data collection experimental design.

decides to use those numbers to modify test plans, then the computation of the value does become

an active part of the development cycle.

There are other relationships we can make among some of these techniques:

1. Project monitoring occurs during the lifetime of a project, while legacy data is a simil ar

process that occurs after a project is completed.

2. A case study is a more intrusive version of a survey, which is the reason one is classified as

passive and one as active.

3. A replicated experiment is often multiple instances of a case study.

4. Static analysis is a legacy data method that is solely concerned with the artifacts produced

and not on the process of producing the artifacts.

Basili [6] has placed several of these experimental methods within a consistent framework (Table

2). An experiment can be in vivo
,
at a development location, or in vitro

,
in an isolated controlled

setting (e.g., in a laboratory). A project may involve one team of developers or multiple teams,

and an experiment may involve one project or multiple projects.

This permits 8 different experiment classifications. Our case study, for example, would be

an in vivo experiment involving one team and one project. The synthetic study, on the other
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Projects

Teams 1 Many
1 in vivo (Case study) in vivo (Survey)

Many in vitro (Synthetic); in vivo

(SEL studies)

in vivo (Replicated)

Table 2: Experimental models.

hand, is often a multiple team blocked (multiple individuals in most cases) in vitro study involving

one project. Replicating this several times would be an in vitro blocked team multiple project

study. Data collected by the NASA SEL could be considered a multiple team single project in

vitro experiment. A survey could be classified as a vitro single team multiple project study. The

interesting case of multiple team multiple project in vivo experiment is unlikely to occur in practice

due to the high cost of replicating such experiments. Basili’s model does not include our product

or legacy methods, since they are not properly experimental designs.

Kitchenham [11] has another way to classify experimental design. She has grouped experiments

under nine different classifications. A quantitative experiment is used to identify measurable benefits

of using a method or tool; these may include measures like reduced production time, reduced rework,

lower costs. A qualitative experiment is used to assess the features provided by a method or tool

(e.g., the usability and effectiveness of a required feature, training requirements). The assessment

results are based on use and subjective opinion.

There are three quantitative evaluations for determining explicit information about a method

or tool:

1. A quantitative experiment is a formal experiment to evaluate the impact of a method or tool.

2. A quantitative case study is a case study to discover the impact of a method or tool.

3. A quantitative survey provides a quantitative survey to discover the impact of a method or

tool.

There are also five qualitative evaluations of a method or tool:

1. A qualitative screening is performed by a single individual and may be a literature search to

observe the feasibility of using a method or tool.

2. A qualitative effects analysis is a subjective assessment of a new technology based upon expert

opinion. It can be viewed as a multiperson qualitative screening.

3. A qualitative experiment is a feature by feature evaluation by a group of users who will try a

technology (e.g., method or tool) before making an evaluation.
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Quantitative Qualitative

Screening Not applicable Lit. Search

Effects anal. Not applicable

Experiment Synthetic, Replicated Project monitoring

Case study Case study Legacy data, Lessons learned

Survey Survey

Benchmarking Stat, anal., Dyn. anal., Simulation

Table 3: Kitchenham classifications.

4. A qualitative case study is a feature-based evaluation by someone who has used the new

technology on a real project.

5. A qualitative survey is the opinion from a group of experts on the effectiveness of a new

technology. It is related to a qualitative screening, but may be more biased in its conclusions

since participation in the survey results would be voluntary on the part of the experts.

The final method is benchmarking where a number of standard tests are run against alternative

technologies in order to assess their relative performance.

In Table 3 we list our set of data collection approaches and compare them to the nine classifica-

tions in the Kitchenham model. (Note that we classify project monitoring as a qualitative method

since the experimenter has little control over the collection of necessary data.)

4 Model Validation

In order to test whether the classification presented here reflects the software engineering com-

munity’s idea of experimental design and data collection, we looked at software engineering pub-

lications covering three different years: 1985, 1990, and 1995. In particular, we looked at each

issue of IEEE Transactions on Software Engineering (a research journal), IEEE Software (a mag-

azine which discusses current practices in software engineering), and the proceedings from that

year’s International Conference on Software Engineering. We classified each paper according to

the data collection method used to validate the claims in the paper. We added the following two

classifications in addition to the ones presented earlier:

1. Not applicable. Some papers did not address some new technology, so the concept of data

collection does not apply. For example, a November, 1985 paper in IEEE Software described

the goals of the then-new Carnegie Mellon University Software Engineering Institute [2]. It

was not expected to have experimental data in it since it described a new organization.
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2.

No experiment. Some papers describing a new technology contained no experimental vali-

dation in it. Note that we do not put a value judgment on this and no experiment is not

the same as bad experimental validation. For example, a paper that describes a new theory

may be quite important and useful to the field. It would be up to the next generation of

researchers to implement and evaluate the effectiveness of the proposed technology.

An appropriate research paper typically contains four sections [9]:

1. An informational phase reflecting the context of the proposed technology,

2. A propositional phase, stating the hypothesis for the new technology,

3. An analytical phase analyzing the hypothesis and proposing a solution, and

4. An evaluative phase demonstrating the validity of the proposed solution.

Glass [9] observed that most papers contained some form of the first three sections, and the

fourth evaluative phase was often missing. Tichy [20] performed a comprehensive study of 400

published papers, and arrived at a similar conclusion.

In our own survey, we were most interested in the data collection methods employed by the au-

thors of the paper in order to determine comprehensiveness of our classification scheme. Therefore,

we tried to carefully distinguish between the analytical and evaluative phase in order to carefully

distinguish between demonstration of concept (which may involve some measurements as a “proof

of concept,” but not a full validation of the method) and a true attempt at validation of their

results. Therefore, as in the Tichy study, a demonstration of a technology via an example was

considered part of the analytical phase. The paper had to go beyond that demonstration to show

that there were some conclusions about the effectiveness of the technology before we considered

that the paper had an evaluative phase.

Before collecting this data, some of our hypotheses about this collection of papers were:

• Our model is complete; all papers should fall into one of our proposed classifications. Anecdo-

tal evidence and studies such as the Tichy study would suggest, however, that No experiment
,

Case study, and Assertion would greatly outnumber the other methods.

• We wanted to see how well our data collection models agreed with the experimental models

of the Tichy study. In particular, since there is growing interest in data collection and

experimentation, we wanted to see if the percentage of papers that use some experimental

validation increased between 1985 and 1990, and between 1990 and 1995.

• We would hope that replicated experiments would become more prevalent over time and that

industrial experimentation would increase along with university data collection.
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ICSE15 ICSE18
Method Count %* Count %
Not applicable 1 - 6 -

No experimentation 16 34.0 20 37.7

Replicated 0 2 3.8

Synthetic 1 2.1 1 1.9

Dynamic analysis 0 2 3.8

Simulation 1 2.1 1 1.9

Project monitoring 0 0

Case study 8 17.0 9 17.0

Assertion 6 12.8 4 7.5

Survey 0 1 1.9

Literature search 3 6.4 3 5.7

Legacy data 5 10.6 5 9.4

Lessons learned 4 8.5 5 9.4

Static analysis 3 6.4 0

* - Percentages do not include “h ot applicable” category.

Table 4: Pilot study - 1993 and 1996 conferences.

4.1 Pilot study

We first calibrated our model by each, of us classifying the papers in the proceedings from the 1993

(ICSE 15) and 1996 (ICSE 18) conferences. The results are given in Table 4. In our initial test

we had over an 80% agreement, which we jointly resolved, in classifying papers and believe now
that we would agree on 95%+ of the time. It seems clear that one cannot get 100% agreement

since “intent” of the experimenter often colors which of the 12 techniques is actually being applied.

From this initial pilot study, about one third of all ICSE papers (for these two years) have no

experimental validation.

4.2 Full study

The raw data for the complete study involved classification of 612 papers that were published in

1985, 1990, and 1995. This data is presented in Table 5 (ACM/IEEE ICSE conferences), Table

6 (IEEE Software Magazine), Table 7 (IEEE Transactions on Software Engineering), and Table 8

(Summary totals).
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Method 1985 % 1990 % 1995 % Total %
Not applicable 6 - 1 - 5 - 12 -

No experimentation 16 32.0 12 35.3 10 37.0 38 34.2

Replicated 1 2.0 0 1 3.7 2 1.8

Synthetic 3 6.0 0 0 3 2.7

Dynamic analysis 0 0 0 0

Simulation 2 4.0 0 1 3.7 3 2.7

Project monitoring 0 0 0 0

Case study 5 10.0 7 20.6 4 14.8 16 14.4

Assertion 12 24.0 12 35.3 4 14.8 28 25.2

Survey 1 2.0 0 1 3.7 2 1.8

Literature search 1 2.0 1 2.9 0 2 1.8

Legacy data 1 2.0 2 5.9 1 3.7 4 3.6

Lessons learned 7 14.0 0 5 18.5 12 10.8

Static analysis 1 2.0 0 0 1 0.9

Table 5: ICSE Conferences

Method 1985 % 1990 % 1995 % Total %
Not applicable 2 - 3 - 5 - 10 -

No experimentation 15 39.5 21 36.8 5 13.2 41 30.8

Replicated 0 0 0 0

Synthetic 1 2.6 1 1.2 0 2 1.5

Dynamic analysis 0 0 0 0

Simulation 0 0 1 2.6 1 0.8

Project monitoring 0 1 1.8 0 1 0.8

Case study 2 5.3 6 10.5 6 15.8 14 10.5

Assertion 13 34.2 19 33.3 14 36.8 46 34.6

Survey 0 0 1 2.6 1 0.8

Literature search 1 2.6 5 8.8 3 7.9 9 6.8

Legacy data 1 2.6 0 1 2.6 2 1.5

Lessons learned 5 13.2 4 7.0 7 18.4 16 12.0

Static analysis 0 0 0 0

Table 6: IEEE Software Magazine.
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Method 1985 % 1990 % 1995 % Total %
Not applicable 0 - 1 - 0 - 0 -

No experimentation 60 40.8 42 34.7 16 20.8 118 34.2

Replicated 0 1 0.8 3 3.9 4 1.2

Synthetic 1 0.7 4 3.3 2 2.6 7 2.0

Dynamic analysis 0 3 2.5 4 5.2 7 2.0

Simulation 10 6.8 11 9.1 6 7.8 27 7.8

Project monitoring 0 0 0 0

Case study 11 7.5 6 5 10 13. 27 7.8

Assertion 54 36.7 42 34.7 22 28.6 121 34.2

Survey 1 0.7 1 0.8 1 1.3 3 0.9

Literature search 3 2. 1 0.8 2 2.6 6 1.7

Legacy data 2 1.4 2 1.7 1 1.3 5 1.4

Lessons learned 4 2.7 8 6.6 8 10.4 20 5.8

Static analysis 1 0.7 0 2 2.6 3 0.9

Table 7: IEEE Transactions on Software Engineering.

Method 1985 % 1990 % 1995 % Total %
Not applicable 8 - 5 - 10 - 23 -

No experimentation 91 38.7 75 35.4 31 21.8 197 33.4

Replicated 1 0.4 1 0.5 4 2.8 6 1.0

Synthetic 5 2.1 5 2.4 2 1.4 12 2.0

Dynamic analysis 0 3 1.4 4 2.8 7 1.2

Simulation 12 5.1 11 5.2 8 5.6 31 5.3

Project monitoring 0 1 0.5 0 1 0.2

Case study 18 7.7 19 9.0 20 14.1 57 9.7

Assertion 79 33.6 73 34.4 40 28.2 192 32.6

Survey 2 0.9 1 0.5 3 2.1 6 1.0

Literature search 5 2.1 7 3.3 5 3.5 17 2.9

Legacy data 4 1.7 4 1.9 3 2.1 11 1.9

Lessons learned 16 6.8 12 5.7 20 14.1 48 8.1

Static analysis 2 0.9 0 2 1.4 4 0.7

Yearly totals 243 217 152 612

Table 8: ICSE, Software, and TSE Summary Table.
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4.2.1 Quantitative Observations

The most prevalent validation mechanisms appear to be lessons learned and case studies, each at a

level of just under 10% (from Table 8). Assertions were close to one-third of the papers. Simulation

was used in about 5% of the papers, while the remaining techniques were each used in about 1%
to 3% in the papers.

Much like in our pilot study, about one-third of the papers had no experimental validation;

however, the percentages dropped from 38.7% in 1985 to 35.4% in 1990 to only 21.8% in 1995.

Improvement in this important category seems to be occurring.

Tichy, in his study, classified all papers into formal theory, design and modeling, empirical

work, hypothesis testing, and other. His major observation was that about half of the design and

modeling papers did not include experimental validation, whereas only 10% to 15% of papers in

other engineering disciplines had no such validation.

Many empirical work papers really are the result of an experiment to test a theoretical hypoth-

esis, so it may not be fair to ignore those papers from the set of design and modeling papers. If

we assume the 25 empirical work papers in Tichy’s study all have evaluations in them, then the

percent of design and modeling papers with no validation drops from 50% to about 40% in Tichy’s

study. (These numbers are approximate, since we don’t have the details of his raw data.) This

number is consistent with our results.

We did not try to classify our database of papers into subject matter, so our results are not

strictly comparable with Tichy’s. However, by combining the no experimental validation papers

with the weak form of assertion validation, we found that almost two-thirds of the papers did not

have strong statistical validation of their reported claims. However a claim that 66% of the papers

had no validation is too strong a statement to make, since the assertion papers did include some

form of quantitative analysis of the effects of their technology.

4.2.2 Qualitative Observations

We also offer the following observations on our classification of the 612 papers. It often was

extremely difficult to classify individual papers. This was due to several major problems with

many papers:

1. Authors often fail to clearly state exactly what their paper is about and exactly what their

contribution to the software engineering literature is to be. Its hard to classify the validation

if one doesn’t know what is being validated. Authors often fail to clearly state their research

hypothesis.

2. Authors fail to state how they propose to validate their hypotheses. We had to inspect each

paper carefully in order to determine, as best we could, what the authors were intending

to show in the various sections called “Validation” or “Experimental results.” Often such a
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section heading was not present and we had to determine if the data so presented could be

called a validation.

3. Terms are used very loosely. Authors would use the term “case study” in a very informal

manner, and even words like “controlled experiment” or “lessons learned” were used indis-

criminantly. We attempted to classify each paper by what the authors actually did, not how

they specified what they did. It is our hope that our paper can have some effect on formalizing

these terms somewhat.

There are two caveats, however, in understanding the data presented in this paper:

1. Most of the 1985, 1990, and 1995 papers were classified by someone other than the authors of

this paper who did the pilot study. Numerous spot checks were made on the classifications.

The major difference seemed to be the classification of many of the case study papers as

assertions. As we stated earlier, these two mechanisms are very similar, and it is a subjective

opinion, to some extent, of in which category such papers are classified.

2. The papers that appear in a publication can be influenced greatly by the editor of that

publication or program committee in the case of conferences. In our study, the editors and

program committees from 1985, 1990, and 1995 were all different. This then imposes a

confounding factor in our analysis process that may have affected our outcome. While our

goal is to understand how research in software engineering is validated, the only way to

discover such research is via the publications on software engineering, which leads to this

dilemma.

5 Conclusion

In a 1992 report from the National Research Council [15], the Panel on Statistical Issues and

Opportunities for Research in the Combination of Information recommended:

The panel urges that authors and journal editors attempt to raise the level of quan-

titative explicitness in the reporting of research findings, by publishing summaries of

appropriate quantitative measures on which the research conclusions are based ...

Such problems are well-known in the software engineering world, and surveys such as the Tichy

survey [20] and our own tend to validate the conclusion that the software engineering community

can do a better job in reporting its results.

Toward that end, in this paper we have addressed the need to collect both product and process

data in order to appropriately understand the development of software. We have developed a

classification model that divides data collection activities into twelve passive and active methods.

These twelve methods are grouped into three major categories of observational methods which look

30



at contemporary data collection, historical data collection of completed projects, and controlled

methods, which apply the scientific method in a controlled setting. This model includes the typical

forms of experimentation that has been employed previously in software engineering in the past.

Via our analysis of some 600 published papers from 1985, 1990, and 1995, we observed that:

1. Too many papers have no experimental validation at all (about one-third), but fortunately,

this number seems to be dropping.

2. Too many papers use an informal (assertion) form of validation. Better experimental design

needs to be developed and used.

3. Lessons learned and case studies each are used about 10% of the time, the other techniques

are used only a few percent at most.

4. Terminology of how one experiments is sloppy. We hope a classification model, such as ours,

can help to encourage more precision in the describing of empirical research.

Our next step is to understand the relationship between a given method and the data that can

be achieved by using it. Given a specific new technology, we need to understand which method

best addresses the collection of data that can be used to validate the new technology.
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