
SparseLib++ v. 1.5

Sparse Matrix Class Library

Reference Guide

Roldan Pozo
Karin A. Remington
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

Andrew Lumsdaine
University of Notre Dame

QC

100

.056

NO. 5861

1996

NIST

NISTIR 5861

SparseLib++ v. 1.5

Sparse Matrix Class Library

Reference Guide

Roldan Pozo
Karin A. Remington
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

Andrew Lumsdaine
University of Notre Dame

June 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

!^;-a

xf «•

p m 'ti'- V.

5r
'ji.*''

'

'* ^W. rr

i /v

ukiii.'.'^.i

I
Klfe-.-:,

.
.^Q'.

t'* ' '

yB-^ jSQS^'t
^JI.V ’^

!it.

(f.

'^cfia^rtb^>l.fccia ,-

'-
'V' , '.!l

A'

w;'.
’¥•'

a

I.F-.

ii I i’il

tS'

3m,
*

'I AH

fs^**
,'W

•»
' i^- ..

A f 15

t ^

WHOT '3«A ^ . ,

-j^tiS Of '*rt^? ' I ' afvn L

n

>;‘ii

Contents

1 About SparseLibH—h 1

2 Sparse Matrix Representations 1

2.1 Data Storage Formats 2

2.2 Coordinate Storage 2

2.3 Compressed Row Storage 2

2.4 Compressed Column Storage 3

2.5 Creating Sparse Matrices from C Arrays 3

3 Sparse Matrix Operations 3

3.1 Matrix-Vector Multiplication via Sparse BLAS 3

3.2 Preconditioners 4

4 File I/O 4

4.1 Reading from and Writing to a Plain Text File 5

4.2 Reading a Harwell-Boeing Formatted File 6

4.3 Writing a Sparse Matrix in Harwell-Boeing Format 6

5 Programming Considerations 7

5.1 Integrating with Fortran 7

5.2 Ordering of Sparse Matrix Elements 8

6 References 8

A Class Man Pages 9

Coord-Mat-double 9

CompRow_Mat_double 12

CompCol_Mat_double 14

DiagPreconditioner 16

ICPreconditioner 17

ILUPreconditioner 19

1

iwO<(A i

<7
a ;"^ s

g~klioi4ia;S'&a:««n[<|«»H.,4rfvl»t^ 'VTIffillS S

'*,'•*
,

,

V . »84i(«i43# J.S

•
'" -

y «ieK!?ha'*»’qO

•^^.. ,, aiv 1 .C ^ _.
,

'•’'i

.. .'"""»A

— L-'

^ - 1?^..
,.'i

“ “
' - "

1% ^

^ ^ Oyit^lf'^. ^

b

4 3
.

Y- . . .,,. !.. «.i.>4-. ; -

®

f^
ra „

"•
.. ’S*

.' ./V"-

^ .'.'B^
:' ^1% 4*‘’'-i% •

'• >«-. . ., /•VeJxiwm.'iiia.. joVj»M >eraa2 -Wgjj&ttmO
’

pi
"'- '•1^ ? '..:j> - ra

LSI

SI ._..-.,f?r*
^

r^S'liyfiiibjO R.fi
'

d*/

fA

“f; j-*

r't *.'• •

'^l'
'''.,' •^' ' •*

* T.. rt '•'"^^C,^'..

0 "
,

S'

'

':^,'

Si,??

a ^ ..I * 'it' »'«;. < , . ^. 4

p- ^.. ** .

'

1‘>.,^ ^ ^
tl

.
>’y.^

, , . . ri . i.

,

-fW^ ... ? : ., V-

|•r.
S

yi ^368 t’ ^ ^

k
|y,«^- y,^j9jS|^.£Xiij|W jHwdp 'A

1
.

^
'• '•

f^k - ^‘

. V T ;’
. t!Woi*ilj(B03«« vj I

SparseLib++

1 About SparseLibH—

h

SparseLib4-+ is a C++ class library for efficient sparse matrix computations across various computa-

tional platforms. The software package consists of matrix objects representing several sparse storage

formats currently in use (in this release: compressed row, compressed column and coordinate formats),

providing basic functionality for managing sparse matrices, together with efficient kernel mathemati-

cal operations (e.g. sparse matrix-vector multiply). The Sparse BLAS Toolkit [1] is used to enhance

portability and performance across a wide range of computer architectures. Included in the package are

various preconditioners commonly used in iterative solvers for linear systems of equations. The focus

here is on computational support for iterative methods (see IML++[5]), but the sparse matrix objects

presented here can be used in their own right.

The goal of SparseLib++ is to provide the ability to develop and experiment with numerical linear

algebra algorithms through the separation of the internal details of a sparse matrix representation from

the code that uses it. With this object-oriented approach, the need for separate hand-coded numerical

linear algebra routines for each sparse matrix type is reduced.

The SparseLib++ library provides

• double-precision sparse matrix classes for compressed column, compressed row, and coordi-

nate storage formats

• access to matrix elements of any sparse matrix type with the conventional notation A(i, j)

• conversion between any two sparse matrix types through simple matrix assignment (e.g. A = B)

• computational kernels based on the Sparse BLAS Toolkit interface [1] for maximum efficiency and

portability across various hardware platforms

• basic preconditioners useful in iterative methods: incomplete LU (ILU), incomplete cholesky (ICP),

and diagonal scaling

• the ability to read and write Harwell-Boeing formatted files and simple text files for matrix in-

put/output

• easy integration with generic Fortran, C arrays together with user-defined C++ matrix packages

2 Sparse Matrix Representations

In the following subsections we describe the underlying data structures for the sparse matrix classes

currently supported in SparseLib++. Although the object-oriented paradigm encourages hiding such

issues, we have included this section to assist the user in integrating SparseLib++ with Fortran libraries

and in matching a storage scheme with their specific problem structure. The SparseLib++ classes use a

0-based indexing internal representation (as opposed to the 1-based indexing representations commonly

associated with Fortran, see section 5.1). This should be kept in mind while reading the following

subsections.

Version 1.5 1 June 27, 1996

SparseLib++

SparseLibH—h classes also use the MVH—[- matrix/vector classes as internal building blocks. See the

MV++ Reference Manual[6] for details.

The current version (1-5) supports only double-precision matrices, although it is fairly straightforward

to generate complex or other user-defined data type sparse matrices from the SparseLib-l h source code.

(We provide scripts to generate these.) Future releases of SparseLib-l—h will incorporate fully templated

type parameters as template facilities mature in production level C-|—h compilers.

2.1

Data Storage Formats

To illustrate the various storage formats. we will use the nonsymmetric matrix:

/ 1 2 0 0 3 \

4 5 6 0 0

A = 0 7 8 0 9

0 0 0 10 0

\ 11 0 0 0 12 J

For symmetric matrices, one can store only the upper (or lower) triangular portion of the matrix. The

savings in storage is traded for additional bookkeeping. The current release of SparseLib-j—h does not

support symmetric storage, but future releases will incorporate this space-economic feature.

2.2

Coordinate Storage

The most straightforward scheme to denote a sparse matrix simply records each nonzero entry together

with its row and column index. Three data structures are used: a val () array to hold the floating point

values, and row and column index arrays, rowJ.nd() and col_ind(). The convention is that for each

k G {l,...,nz}. The value val (k) occurs at position (rowJ.nd(k) , col_ind(k)).

The matrix A in (1) could thus be stored with the following arrays:

valO 1 2 3 4 5 6 7 8 9 10 11 12

row_indO 0 0 0 1 1 1 2 2 2 3 4 4

col_Lnd() 0 1 4 0 1 2 1 2 4 3 0 4

One should note that the ordering of matrix elements in this format is not fixed, and so the given storage

representation for the matrix is not unique. See section 5.2 for details.

2.3

Compressed Row Storage

The compressed row storage format views nonzero elements in each row as a sparse vector, storing

pointers to the first element in each row in row_ptr(), and nonzero values and their associated column

Version 1.5 2 June 27, 1996

SparseLib+-|-

indices in the arrays val() and col^ndO. An additional element is appended to the row_ptr() array

specifying the number of nonzero array elements.

The matrix A in (1) can be stored in compressed row format with the following arrays:

row-ptrO 0 3 6 9 10 12

val() 1 2 3 4 5 6 7 8 9 10 11 12

col_indO 0 1 4 0 1 2 1 2 4 3 0 4

2.4 Compressed Column Storage

The compressed column storage format parallels compressed row storage, but with the roles of rows and

columns reversed. The appropriate array entries for the matrix A in (1) are as follows.

col_ptrO 0 3 6 8 9 12

valO 1 4 11 2 5 7 6 8 10 3 9 12

col_indO 0 1 4 0 1 2 1 2 3 0 2 4

2.5 Creating Sparse Matrices from C Arrays

SparseLib++ sparse matrices can easily be constructed from individual C/C+4- vectors. For example,

the 5x5 matrix A in (1) could be created by:

double val[12] = {1 .
,2

.
,3

.
,4 . ,5 .

,6
.
,7

.
,8

.
,9

.
, 10

.
, 11 . , 12 . };

int colind[12] ={0, 1, 4, 0, 1, 2, 1, 2, 4, 3, 0, 4};
int rowptr[6] = {0, 3, 6, 9, 10, 12

CompRow_Mat_double R(5 , 5 , 12 , val .rowptr , colind)

;

See the class man pages in section A for details of the various constructor parameter lists for each sparse

matrix class.

3 Sparse Matrix Operations

3.1 Matrix-Vector Multiplication via Sparse BLAS

One of the core operations in numerical linear algebra is the matrix-vector multiply, which, through

operator overloading, can be called in SparseLib-f--f with the simple A*x notation. Since our goal

Version 1.5 3 June 27, 1996

SparseLib++

1 1 1 . OOOOOOOOOOOOOOOOe+000

3 1 1 . 6065109611192374e+000

10 1 1 . 1329999260086812e+000

11 1 5 . 54171 56097831336e-001

13 1 1 .49994248007728646-001

2 2 1 .OOOOOOOOOOOOOOOOe+000

3 3 1 .OOOOOOOOOOOOOOOOe+000

13 3 -7 . 0499387778693664e-002

40 3 -4 . 05138316773604806-001

Figure 1: An example of a sparse matrix text format: <i>, <j>, <val>.

in creating this class library was to allow not only readable and reusable, but also efficient numerical

linear algebra routines, we have provided matrix-vector multiplication operations which use the proposed

Fortran Sparse BLAS Toolkit [1]. The Toolkit provides a uniform interface to kernel linear algebra

routines. With vendor support, using this interface should allow for efficient implementations across

platforms by simply linking with appropriate machine-specific BLAS libraries. The current SparseLib-|—

f

implementation provides its own sparse BLAS routines which may be used when machine-tuned versions

are not available.

3.2 Preconditioners

In solving linear systems Ax = h using iterative techniques, it is often advantageous to precondition the

coefficient matrix A to improve convergence. A preconditioner M for A needs to do at most two things:

solve the system Mx = y ,
or M'^x == y. Common preconditioners are Jacobi preconditioners, where

M = diag(A), or incomplete factorizations (LU, or Cholesky) of A.

In SparseLib-h-f we provide preconditioner class structures to serve this purpose, and these precondi-

tioners can be used with, for example, the IML-I--I- Iterative Methods Library (see [5]). The current

library contains the following preconditioners: DiagPreconditionerO
,
for diagonal preconditioning,

ICPreconditionerO, for incomplete Cholesky preconditioning, and ILUPreconditionerO, for incom-

plete LU preconditioning. Each preconditioner provides solveO and transpose-solveO functionality,

so they can be used interchangeably in the same base iterative method code if it is templated for a pre-

conditioner. For details on preconditioner construction and use, see the man pages in appendix A.

4 File I/O

To enable the use of SparseLib-f-f with previously generated sparse matrices, and to archive newly

created sparse matrices for later use, the SparseLib-f-1- library contains several functions for reading

from and writing to plain text files and Harwell-Boeing formatted files. (For a detailed description of the

Harwell-Boeing format, see [4].) Note that although the internal storage scheme indexing in SparseLib-|--f

is 0-based, file I/O is performed with the 1-based indexing convention to provide compatibility with

external Fortran libraries and other packages treating sparse matrices.

Version 1.5 4 June 27, 1996

SparseLib+-f

lunsyrametric matrix from pores pores_l
59 2 12 45 0

rua 30 30 180 0

(16i5) (16i5) (4d20 .10)

1 7 13 21 27 35 41 49 53 59 63 71 77 87 91 101

105 115 119 127 131 137 140 148 151 159 162 170 173 179 181

1 2 3 4 11 12 1 2 3 4 11 12 1 2 3 4

5 6 13 14 3 4 5 6 13 14 3 4 5 6 7 8

15 16 5 6 7 8 15 16 5 6 7 8 9 10 17 18

7 8 10 18 7 8 9 10 19 20 9 10 19 20 1 2

11 12 13 14 21 22 11 12 13 14 21 22 3 4 11 12

13 14 15 16 23 24 13 14 16 24 5 6 13 14 15 16

17 18 25 26 15 16 18 26 7 8 15 16 17 18 19 20

27 28 17 18 20 28 9 10 17 18 19 20 29 30 19 20

29 30 11 12 21 22 23 24 21 22 24 13 14 21 22 23

24 25 26 23 24 26 15 16 23 24 25 26 27 28 25 26

28 17 18 25 26 27 28 29 30 27 28 30 19 20 27 28

29 30 29 30

-0.9481011349e+03 -0.

0.9462545992e+03 0.

-0.3005164596e+04 0.

0.4731272996e+01 0.

0.1552207555e+02 0.

7178501646e+07

7134130875e+07

1293434629e+08

3567021095e+05

1628780334e+05

0.4731272996e+01
0.2334969309e+05

-0.3680715121e+04
-0.3120860678e+04

0.3104415110e+04

0.3574261854e+05

-0.2461341087e+08

0.6149543185e+07

-0.3250082045e+07

0.31914882106+07

Figure 2: A fragment of an input file from the Harwell-Boeing Sparse Matrix Collection.

4.1 Reading from and Writing to a Plain Text File

CompCol_Mat_double A;

readtxtf ile_mat("input_file". A)

;

cout » A;

writetxtfile_mat("output_f ile". A)

;

//or CompRow_Mat_double , or Coord_Mat_double

// read from file

// write to standard out

// write to file

Using standard output (cout), sparse matrices are written in a plain text coordinate format, one nonzero

element per line, with each line containing an integer row index, an integer column index and a double

value, with spaces separating the three fields. To ensure that the row and column dimensions, M and

N, of the matrix can be determined implicitly from written information, we include in the output the

A(M-1,N-1) matrix element, even if it falls outside of the sparsity pattern. (This convention is used for

sparse matrix saves and loads in MATLAB.) The functions readtxtf ile_mat () and writetxtfilejnatO

provide file access for reading and writing sparse matrix information in this plain coordinate format.

Version 1.5 5 June 27, 1996

SparseLib++

4.2 Reading a Harwell-Boeing Formatted File

void readHB_iiif©(const chax *filenaine, int &M, int &N, int &nz, int &nrh.s,

int verbose = 0)

void readHB.header (FILE *in_file, char *Title, chax *Key, char *mat_t 3rpe,

int &Nrow, int ftNcol, int ftNnzero, int &Nrhs, chax *Ptrfmt,

chax *Indfmt, chax Valfmt, char *Rhsfmt, int fePtrcrd,

int ftlndcrd, int ftValcrd, int ftRhscrd, char *Rhst 3rpe)

;

The readHB J.nfo function opens and reads the numerical header information from the specified Harwell-

Boeing file and returns the number of rows and columns in the stored matrix (M and N), the number of

nonzeros in the matrix (nz), and the number of right-hand-sides stored along with the matrix (nxhs).

The optional verbose parameter, if set to 1, sends to standard output more detailed information from

the header, including title, etc. To retrieve and save to variables all descriptive header information from

the file (such as “title” or “key’), the readHBJheader is available.

void readHB.mat (const char *fileneune,

void readHB.mat (const chax *filename,

void readHB_mat(const char ^filename.

Coord_Mat_double &A)

CompCol_Mat_double &A)

CompRow_Mat_double &A)

The readHB_mat function opens and reads the specified file, interpreting its contents as a sparse matrix

stored in the Harwell/Boeing standard format and creating a sparse matrix object of the type indicated

in the calling sequence.

void readHB.rhs (const chax *filenaine. MV_Vector_double &b, int j=0)

void readHB.rhs (const chax *filename, MV.ColMat.double &B)

The first readHBxrhs function opens and reads the specified file, returning a right-hand-side vector b. If

the file provides a matrix of right-hand-sides, (that is, a sequence of right-hand-side vectors), the optional

argument j can be used to indicate which right-hand-side is desired. The default reads the first stored

right-hand-side (the 0th column of the right-hand-side matrix). The second form of the readHBxrhs
function is used to read in an entire multiple right-hand-side matrix, assigning it to B.

4.3 Writing a Sparse Matrix in Harwell-Boeing Format

void writeHB (const chax *filenaine, const Coord.Mat.double A,

const chax * Title, const char * Key)

Version 1.5 6 June 27, 1996

SparseLib++

void writeHB(const chax ^filename, const CompRovj_Mat_double A,

const char * Title, const char * Key)

void writeHB(const char *filenajne, const CompCol_Mat_donble A,

const char * Title, const char * Key)

void writeHB(const char *filenaine, const Coord_Mat_doTible A)

void writeHB(const char ^filename, const CoinpRow_Mat_double A)

void writeHB(const char *filenaine, const CompCol_Mat_donble A)

The writeHB function opens the named file and writes the specified matrix to that file in Harwell-

Boeing format. If the Title and Key arguments are not supplied, default values are used to indicate

that SparseLib++ generated the file.

5 Programming Considerations

5.1 Integrating with Fortran

Since SparseLib++ matrices, like C and C++ arrays, have 0-based indexing, some care must be used

to ensure compatibility with Fortran subroutines. Note that this is an issue only with sparse matrices,

since the specific row/column index values are part of the data.

There are several ways to handle this issue: (1) one could create a copy of the matrix with each row

and/or column index incremented by one, (2) make SparseLib++ matrices explicitly 1-based (or use

arbitrary bases), or (3) modify the 0-based arguments to 1-based subroutines.

Solution (1) is easy to implement but rather expensive in practice, requiring an extra copy of the matrix

as well as a 0{nz) algorithm to update the indices. Solution (2) seems reasonable, particularly for

Fortran programmers, but makes SparseLib++ incompatible with native C arrays. There are several

other inconsistencies brought up by violating the basic indexing scheme of C. Solution (3) can sometimes

be used, but is not a universal solution. For example, the Fortran Sparse BLAS matrix-vector multiply

routine (y <— aAx-\-fiy) for a Coordinate storage sparse matrix and 0-based C/C++ array can be called

as:

DC00MH_("N", M, N, 1, alpha. A, &x(l), Idb, beta, &y(l), N,

work, iwork)

;

Similarly, for a more general matrix-matrix multiply
,
we can write (C <— aAB + /3C)

DC00HM_(’'N", M, K, K, alpha. A, &B(i,j)+ 1, Idb, beta, &C(k,l) + l, Idc,

Version 1.5 7 June 27, 1996

SparseLib++

work, iwork)

;

This scheme makes assumptions about how the 0-based parameters are used internally, and therefore its

correctness cannot be guaranteed.

Note, also, that an expression such as "&x(l)" assumes a vector has at least two elements. If this

causes an error when bounds checking is turned on, the equivalent expression "&xCO]+l" can be used to

circumvent the bounds checking in this case.

5.2 Ordering of Sparse Matrix Elements

Many of the sparse matrix formats do not require a unique ordering of their elements. Most obvious

in this category is coordinate storage, but other (more structured) formats share this ambiguity. The
compressed row storage format, for example, cissumes no explicit ordering among the elements in each

row, but there are varying levels of ordering which may be present, and advantages from each level. No
assumed ordering is the most general; ordering diagonal elements from each row first within each row is

convenient for scaling and Jacobi preconditioners; ordering within rows by column index is probably the

most natural and provides for most efficient addressing. Although the current release of SparseLib++

does not assume ordering, future releases will be equipped to order the elements to suit user requirements.

6 References

[1] S. Carney, M. A. Heroux, G. Li, and K. Wu, A Revised Proposal for a Sparse BLAS Toolkit, Army
High Performance Computing Research Center Technical Report 94-034, June 1994.

[2] J. J. Dongarra, R. Pozo, and D. Walker, LAPACK++: A Design Overview of Object- Oriented

Extensions for High Performance Linear Algebra, Proceedings of Supercomputing ’93, Portland,

Oregon, November 1993.

[3] J. J. Dongarra, A. Lumsdaine, R. Pozo, K. A. Remington, A Sparse Matrix Library in C-f-f for High
Performance Architectures, Proceedings of the Second Annual Object-Oriented Numerics Conference,

1994, pp. 214-218.

[4] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math. Soft., 15,

1, pp. 1-14, 1989.

[5] J. J. Dongarra, A. Lumsdaine, R. Pozo, and K. A. Remington, IML-h+ Iterative Methods Library

Reference Guide, littp://gains .nist .gov/acmd/Staff/RPozo/sparselib++ .html, 1994.

[6] R. Pozo, MV-h-h Matrix / Vector Classes Reference Guide, 1994. Available via anonymous ftp from
gams . nist

.
gov : ~ftp/pub/pozo/src.

Version 1.5 8 June 27, 1996

SparseLib+4-

A Class Man Pages

Version 1.5 9 June 27, 1996

Coord_Mat_double SparseLib++ Coord_Mat_double

Name Coord-Mat.double

Declaration #include "coord.h"

class CoordJVIat -double

Description A coordinate formatted sparse matrix class. Access to matrix elements as A(i, j)

are 0-based (i.e. A(0,0) is the first element).

The nonzero matrix elements and their indices are stored in three vectors, with

val () holding the element values, row_ind() holding the row indices, and col_iiid(

)

holding the column indices. For example, a Coord_Mat_double object specifying

the matrix

/ 1 2 0 0 3 \

4 5 6 0 0

0 7 8 0 9

0 0 0 10 0

V 11 0 0 0 12 /

may have the following vectors in internal storage:

valO 1 2 3 4 5 6 7 8 9 10 11 12

rewind0 0 0 0 1 1 1 2 2 2 3 4 4

col-indO 0 1 4 0 1 2 1 2 4 3 0 4

Constructors/Destructors

Coord-Mat-double
()

Construct a null 0x0 matrix.

Coord-Mat-double
(
const Coord_Mat_double SzC

)

Construct a copy of the coordinate matrix C.

Coord-Mat-double
(
const CompColJVIat-double icC

)

Construct a coordinate matrix from a given compressed column representation.

Coord-Mat-double
(
const CompRow-Mat_double &C

)

Construct a coordinate matrix from a given compressed row representation.

Coord-Mat-double
(
int M, int N, int nz, double *val, int *r, int *c

)

Construct a coordinate matrix of size M x N, with nz nonzeros, using the values

given in val [] ,
and row and column indices given in r [] and c [] . The vectors r

and c are assumed to be 0—based.

Version 1.5 10 June 27, 1996

Coord_Mat_double SparseLib++ Coord_Mat_double

~CoordJVIat_double
()

Matrix destructor.

Access and Information

double operator
(
int i, int j)

Return A{i,j). (Returns zero if matrix element not found in sparse structure.)

doubled set
(
int i, int j)

Assign A{i,j) a value. Reports an error to stderr and exits the program if the

assignment violates the sparsity structure of A (i.e. causes fill-in). For dynamically

growing a sparse matrix, use an appropriate class.

doubled val
(
int i

)

Return the ith element of the nonzero value storage vector,

int row_ind
(
int i

)

Return the row index of the element stored in val(i).

int colJnd
(
int i

)

Return the column index of the element stored in val(i).

int dim
(
int i

)

Return the size of the matrix along dimension i.

int size
(
int i

)

Return the size of the matrix along dimension i. (Same as dim().)

int NumNonzeros
()

Return the number of nonzeros in the matrix.

Standard Output

friend ostream&: operator<<
(
ostream &os, const Coord_Mat_double &C

)

Print nonzero matrix elements one per line in the format <i> < j > < val > .

See also CompRow_Mat_double, CompCol_Mat_double, MV.Vector (MV-|—1-),

SparseLib-|--t- File I/O

Version 1.5 11 June 27, 1996

CompRow^at.double SparseLib++ CompRow_Mat_double

Name CompRow_Mat_double

Declaration #include "comprow.h"

class CompRowJVIat -double

Description A compressed row formatted sparse matrix class. Access to matrix elements as

A(i,j) are 0-based (i.e. A(0,0) is the first element).

The nonzero elements and index information are stored in three vectors, with valO
holding the values of the nonzero elements, row_ptr() holding pointers to the first

element in each row, and col-i.nd() holding a column index for each of the elements

in val(). An additional element is appended to the row_ptr() array specifying the

number of nonzero array elements. For example, a CompRow-Mat-double object

specifying the matrix

/ 1 2 0 0 3 ^
4 5 6 0 0

0 7 8 0 9

0 0 0 10 0

V 11 0 0 0 12 yi

may have the following vectors in internal storage:

row-ptr () 0 3 6 9 10 12

val() 1 2 3 4 5 6 7 8 9 10 11 12

coU.nd() 0 1 4 0 1 2 1 2 4 3 0 4

Constructors/Destructors

CompRow-Mat-double
()

Construct a null 0x0 matrix.

CompRo-w-Mat-double
(
const CompRow-Mat-double &R

)

Create a copy of the compressed row matrix R.

CompRowr-Mat-double
(
const CompCoord_Mat_double &R

)

Construct a compressed row matrix from a given coordinate representation.

CompRo-w-Mat-double
(
const CompCol_Mat-double &R

)

Construct a compressed row matrix from a given compressed column representation.

CompRow-Mat -double
(
int M, int N, int nz, double *val, int *r, int *c

)

Construct a compressed row matrix of size M x N, with nz nonzeros, using the values

given in val [] ,
and row pointers and column indices given in r [] and c [] . The

vectors r and c are assumed to be 0—based.

Version 1.5 12 June 27, 1996

CompRow-Mat-double SparseLib+4- CompRow-Mat-double

~CompRow-Mat -double
()

Matrix destructor.

Access and Information

double operator
(
int i, int j)

Return A{i,j). (Returns zero if matrix element not found in sparse structure.)

doubled set
(
int i, int j)

Assign A{i,j) a value. Reports an error to stderr and exits the program if the

assignment violates the sparsity structure of A (i.e. causes fill-in). For dynamically

growing a sparse matrix, use an appropriate class.

doubled val
(
int i

)

Return the ith element of the nonzero value storage vector,

int row-ptr
(
int i

)

Return the row pointer associated with row i.

int col-ind
(
int j)

Return the column index of the element stored in val(j).

int dim
(
int i

)

Return the size of the matrix along dimension i.

int size
(
int i

)

Return the size of the matrix along dimension i. (Same as dimO.)

int NumNonzeros
()

return the number of nonzeros in the matrix.

Standard Output

friend ostream&: operator<<
(
ostream &:os,

const CompRow-Mat-double &:R
)

Print matrix elements one per line in the format <i> < j > < val > .

See also CompCol-Mat.double, CoordJMat-double, MV.Vector (MV-t—h),
SparseLib-f-f- File I/O

Version 1.5 13 June 27, 1996

CompCol-Mat-double SparseLib++ CompCol-Mat-double

Name CompCol_Mat-double

Declaration #include "compcol.h"

clciss CompCol_Mat_double

Description A compressed column formatted sparse matrix class. Access to matrix elements as

A(i, j) are 0-based (i.e. A(0,0) is the first element).

The nonzero elements and index information are stored in three vectors: val()

holding the values of the nonzero elements, col_ptr() holding pointers to the first

element in each column, and row_ind() holding a row index for each of the elements

in val(). An additional element is appended to the col_ptr() array specifying the

number of nonzero array elements. For example, a CompColJVIat.double object

specifying the matrix

/ 1 2 0 0 3 \

4 5 6 0 0

0 7 8 0 9

0 0 0 10 0

\ 11 0 0 0 12 /

may have the following vectors in internal storage:

col-ptr() 0 3 6 8 9 12

valO 1 4 11 2 5 7 6 8 10 3 9 12

row-indO 0 1 4 0 1 2 1 2 3 0 2 4

Constructors/Destructors

CompCol-Mat-double
()

Construct a null 0x0 matrix.

CompCol_Mat_double
(
const CompCol-Mat.double &;C

)

Create a copy of the compressed column matrix C.

CompColJMat -double
(
const CompCoord_Mat_double &C

)

Construct a compressed column matrix from a given coordinate representation.

CompColJMat-double
(
const CompRow-Mat_double &:C

)

Construct a compressed column matrix from a given compressed row representation.

CompColJMat-double
(
int M, int N, int nz, double *val, int *r, int *c

)

Construct a compressed column matrix of size M x N, with nz nonzeros, using the

values given in val [] ,
and row indices and column pointers given in r [] and c []

.

The vectors r and c are assumed to be 0—based.

Version 1.5 14 June 27, 1996

CompCol_Mat_double SparseLib-f+ CompCol_Mat-double

~CompColJVIat_doubie
()

Matrix destructor.

Access and Information

double operator
(
int i, int j)

Return A{i,j). (Returns zero if matrix element not found in sparse structure.)

doubled set
(
int i, int j)

Assign A{i, j) a value. Reports an error to stderr and exits the program if the

assignment violates the sparsity structure of A (i.e. causes fill-in). For dynamically

growing a sparse matrix, use an appropriate class.

doubled val
(
int z

)

Return the ith element of the nonzero value storage vector,

int rowJnd
(
int i

)

Return the row index of the element stored in val(i).

int col-ptr
(
int j)

Return the column pointer associated with column j.

int dim
(
int i

)

Return the size of the matrix along dimension i.

int size
(
int i

)

Return the size of the matrix along dimension i. (Same as dim().)

int NumNonzeros
()

return the number of nonzeros in the matrix.

Standard Output

friend ostream& operator<<
(
ostream &;os,

const CompCol-Mat-double izC
)

Print nonzero matrix elements to standard output, one per line, in the format <i>

< j >< val > .

See also CompRow_Mat_double, Coord_Mat_double, MV.Vector (MV-I—1-),

SparseLib-|--f File I/O

Version 1.5 15 June 27, 1996

DiagPreconditioner SparseLib++ DiagPreconditioner

Name DiagPreconditioner — Diagonal Preconditioner Class

Declaration ^include "diagpre.h"

class DiagPreconditioner

Description Implements diagonal preconditioning for use with IML++ iterative methods. Presently,

implementations for SparseLib++ compressed row and compressed column matrix

formats {CompColJiJai-double and CompRow-Mat-iouhle, respectively) have been

provided. In general, users of IML-f+ will not need to access member functions of

this class except to create an instance of a preconditioner.

Constructors/Destructors

DiagPreconditioner
(
const CompCol_Mat_double& A

)

Construct a diagonal preconditioner from the matrix A.

DiagPreconditioner
(
const CompRowJMat_double&: A

)

Construct a diagonal preconditioner from the matrix A.

~DiagPreconditioner
(
void

)

Reclaim memory space.

Member
Functions

Vector-double solve
(
const Vector_double&: h)const

Perform the preconditioning, that is, return the solution of the linear system with

the preconditioner and the vector h.

Vector-double trans-solve
(
const Vector_double&: h)const

Perform the transpose preconditioning, that is, return the solution of the linear

system with the transposed preconditioner and the vector h. For the diagonal pre-

conditioner (which is trivially symmetric), this is the same as the solve() member
function.

Example For examples of the use of this class, see the examples provided with the descriptions

of the IML-|--(- iterative method functions.

See Also SparseLib-f-l-

Version 1.5 16 June 27, 1996

ICPreconditioner SparseLib++ ICPreconditioner

Name ICPreconditioner — Incomplete Cholesky Preconditioner

Declaration #include "icpre.h"

class ICPreconditioner

Description Implements incomplete Cholesky preconditioning for use with IML++ iterative

methods. Presently, implementations for SparseLib++ compressed column and

compressed row matrix formats [Comp Col-Mat.double and CompRow-Mai.double,

respectively) have been provided. In general, users ofIML++ will not need to access

member functions of this class except to create an instance of a preconditioner. The
matrix A must be symmetric positive definite.

The present implementation of incomplete Cholesky factorization does not create

any fill for structural zero elements (i.e., it is an implementation of IC(0)), but it

does modify non-zero elements.

Constructors/Destructors

ICPreconditioner
(
const CompCol_Mat_double& A

)

Construct an incomplete Cholesky preconditioner from the matrix A.

ICPreconditioner
(
const CompRowJMat_double&; A

)

Construct an incomplete Cholesky preconditioner from the matrix A.

~ICPreconditioner
(
void

)

Reclaim memory space.

Member
Functions

Vector-double solve
(
const Vector_double& b)const

Perform the preconditioning, that is, return the solution of the linear system with

the preconditioner and the vector b.

Vector-double trans_solve
(
const Vector-double&; b)const

Perform the transpose preconditioning, that is, return the solution of the linear sys-

tem with the transposed preconditioner and the vector b. For the IC preconditioner

(which is symmetric), this is the same as the solve() member function.

Example The following example program uses IML-t—(- in conjunction with SparseLib-|--|- to

solve a linear system with CG. The program reads in a matrix and right-hand side

stored in Harwell-Boeing format from the file test.dai. An initial guess of 0 is made

for the solution and the system is solved using CG and an incomplete Cholesky

preconditioner.

Version 1.5 17 June 27, 1996

ICPreconditioner SparseLib++ ICPreconditioner

#iiiclude <iostreain.h>

#include <stdlib.h>

#include "cg.h"

#include "icpre.h"

#include "compcoll .h"

#include "iohb.h"

#include "vector.h"

tfinclude "blasl.h"

int mainO

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readHB ("test .hb". A);

Vector_double x(A.dim(l), 0.0), b;

readHB ("test .hb", b)

;

ICPreconditioner D(A)

;

result = CG(A, x, b, D, maxit.

// Create a matrix

// Read matrix data

// Solution, rhs vectors

// Read rhs data

preconditioner

// Solve system with CG

// IC

tol) ;

cout « "CG flag = " << result « endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

cout << x;

return 0;

}

See Also CG
SparseLib-|-+

R. Barrett ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM Press, Philadelphia, 1994.

J. Meijerink and H. a. van DER Vorst, An iterative solution method for linear

systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp.,

31 (1977), pp. 148-162.

Version 1.5 18 June 27, 1996

ILUPreconditioner SparseLib++ ILUPreconditioner

Name ILUPreconditioner — Incomplete LU Preconditioner

Declaration #include "ilupre.h"

class CompCoULUPreconditioner
class CompRow-ILUPreconditioner

Description Implement incomplete LU preconditioning for use with IML++ iterative meth-

ods. Presently, implementations for SparseLib-|—f compressed row and compressed

column matrix formats [CompCol-Mai.double and CompRow-Mat-douhle, respec-

tively) have been provided. In general, users of IML-f-l- will not need to access

member functions of this class except to create an instance of a preconditioner.

This implementation of incomplete LU factorization does not create any fill for

structural zero elements (i.e., it is an implementation of ILU(O)), but it does modify

non-zero elements.

Constructors/Destructors

CompCoULUPreconditioner
(
const CompColJV[at_double&: A

)

Construct an incomplete LU preconditioner from the matrix A.

~CompCoULUPreconditioner
(
void

)

Reclaim memory space.

CompRow-ILUPreconditioner
(
const CompRowJVlat_double& A

)

Construct an incomplete LU preconditioner from the matrix A.

~CompRowJ[LUPreconditioner
(
void

)

Reclaim memory space.

Member
Functions

Vector-double solve
(
const Vector-double& b)const

Perform the preconditioning, that is, return the solution of the linear system with

the preconditioner and the vector b.

Vector-double trans_solve
(
const Vector_double& b)const

Perform the transpose preconditioning, that is, return the solution of the linear

system with the transposed preconditioner and the vector b.

Example The following example program uses IML-t—t- in conjunction with SparseLib-|—f to

solve a linear system with GMRES. The program reads in a matrix and right-hand

side stored in Harwell-Boeing format from the file test.dat. An initial guess of 0 is

made for the solution and the system is solved using GMRES and an incomplete

LU preconditioner.

Version 1.5 19 June 27, 1996

ILUPreconditioner SparseLib++ ILUPreconditioner

ttinclude

#include

#iiiclude

#include

#include

#include

#include

#include

<iostream.h>

<stdlib.h>

"gmres .h"

"ilupre .h"

"compcoll .h"

"iohb.h"

"vector .h"

"blasl.h"

int mainO
{

double tol = l.e-6;

int result, m = 32, maxit = 150;

CompCol_Mat.double A;

readHBC'test .hb". A);

Matrix.double H(m+1, m, 0.0);

Vector.double x(A.dim(l), 0.0), b;

readHBC'test .hb", b) ;

CompCol.ILUPreconditioner D(A)

;

result = GMRES (A, x, b, D, H, m

// Create a matrix

// Read matrix data

// H matrix

// Solution, rhs vectors

// Read rhs data

// ILU preconditioner

maxit, tol); // Solve system with GMRES

cout << "GMRES flag = " << result << endl;

cout « "iterations performed: " « maxit « endl;

cout << "tolerance achieved :
" << tol << endl;

cout « x;

return 0;

}

See Also GMRES
SparseLib++

R. Barrett ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM Press, Philadelphia, 1994.

J. Meijerink and H. a. van DER Vorst, An iterative solution method for linear

systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp.,

31 (1977), pp. 148-162.

Version 1.5 20 June 27, 1996

