
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

QC

100

.056

NO. 5859

1996

NIST

NISTIR 5859

MV++V. 1.5a

Matrix / Vector Class
Roldan Pozo

Reference Guide
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

June 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

m' - i' j

Em ,

'

Ji
1^’

-m
4!i

:m

'

-f.
"<>*,l,’fS' .

/-'

I
rii i rf<'*

S-.t

is4
',.ir

-.

,
vr*

1

Su' ^
|!^

lb

^1

,a^ -la^.

.

A<U£^)0;^'r/emVni3iyf tm

•^?

5S

'

it
'

”'-'i»l

1?
«'

> ^ &
jj

'# ^ '"111—11 „ tfJ..

:-"
. .

' 5.15J

^ i% 1
h'^r

'?3

.

III.
I*' ,

>,„ M

/'(

'

’*teK
'--*.

,]^-;y

‘1%W'''‘
i*4@
- « ^

' !a a"
i.wV'- '-

*'.'5

&
®

t.'.i Kx^1M^4bt^ <IM>

Vii

'i ..i ^ .

•
. y\Q^f^r0mm 'fliQ.immt /• • »?

lt» 'jtJ'.J<»T(iB#aS ^WWW >t»Cl|> -Jf
-: .,^,A - :

,

':w

Mi
>?=

LM
' ‘Iv •'

Contents

1 Overview 1

1.1 About MV++ 1

1.2 Basic Features 1

1.3 MV++ Classes 3

1.3.1 Templated class version 3

1.3.2 Non-templated class version 3

1.4 References 4

2 Reference Mcinual 5

MV-Vector 5

MV.VecIndex 10

MV-ColMat 13

1

, .r-'. . TT-f-V^ It-*
'

,'

-.itp^pali/sSkbSi
'

. (

’'“' - *!«'•, '« -- "
I', '* .., *- ("'-* M*!'

-
' “

'
*•

^

^
.

"

' ^4.1

:v,."v;; ®
' .v.s.'vv //:". .®:.:,.^; v<

t.:' . ;^-.S
'"

(ft’

Chapter 1

Overview

1.1 About MVH—

h

MV++ is a small, efficient set of concrete vector and matrix classes specifically designed for high per-

formance numerical computing.

The MV-H-I- package includes interfaces to the computational kernels found in the Basic Linear Algebra

Subprograms (BLAS), such as scalar updates, vector sums, and dot products. The idea behind MV-I--I-

is to leverage vendor-supplied or optimized BLAS routines that are fine-tuned for particular platforms.

The various MV-I--I- classes form the building blocks of larger user-level libraries such as SparseLib-f-|-[2]

and LAPACK-f-t-[l]. The MV-|--f library was built to supply simple, concrete, numerical vector and

column oriented dense matrix classes. These classes are designed to provide;

• minimal overhead in constructing, assigning, and copying vectors and matrices

• performance competitive with optimized Fortran kernels

• data structure compatibility with Fortran libraries and subroutines

• support for generic element types through templated parameters

• support for operations with contiguous subvectors and submatrices (e.g. zeroing out a section

of a vector)

• optional runtime support for curray-bounds checking

1.2 Basic Features

MV-|--b provides two basic classes: a numerical vector (1-d array), and column (Fortran) oriented dense

matrix. Indexing is performed via the operatorO, as in A(i, j).

1

MV++

Subvectors and submatrices can be accessed through MV_VecIndex classes. In other words, if B is the

vector

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

then B(MV_VecIndex(l,5)) = 9.9 sets B to

B = {0.0, 0.1, 9.9, 9.9, 9.9, 9.9, 9.9, 0.6}

and is equivalent to

for (i=l; i<=5; B[i++] = 9.9)

Other considerations:

• Support is provided only for unit strides (for efficient indexing).

• Indexing is as fast as native C arrays.

• “Copy-by-value” semantics are used.

• Optional “share” semantics are available, allowing vectors to be constructed as “views”
,
or “refer-

ences” of an existing memory. To create a view of (or reference to) an existing MV-f-f- matrix or

vector, use

MV_Vector_double A(&d[0] , n, MV_Vector_ : : ref);

This allows one to construct vectors as views of any contiguous C array. It will not release the

memory space when the vector is destroyed or goes out of scope. Vector views can assign and

reference sections of vector, but cannot modify their size.

• Block-range indexing is supported via MV.VecIndex class (e.g. A(I) = B;). Note that for this to

work, A (I) must return a vector view.

• Optional range checking is available via a compile switch.

• Support is provided for both
[|
and () style indexing for vectors, and () for matrices.

• Function code for the () and
|]
operators has been inlined into the class declaration for compilers

that refuse to inline otherwise.

• Loop unrolling (depth=:4) is used for copying and assigning vectors. Therefore, on some machines

it may be faster to execute A=scalar, rather than manually assigning a native C array using an

explicit for loop:

for (i=0; i<N; d[i++] = scalar);

Version 1.5a 2 June 27, 1996

MV++

1.3 MV+H- Classes

MV++ supports both templated and non-templated vector and matrix classes. Non-templated versions

of the classes are useful when using C++ compilers that do not provide full support for template

instantiations (several compilers have problems using templates in applications linked with multiple .o

files), or when large template header files begin to seriously aifect compilation.

1.3.1 Templated class version

Templated MV++ vectors are denoted as MV_Vector<tjrpe> in . /include/mvvtp .h. Matrices are de-

noted as MV_ColMat<type> in . /include/mvmtp.h.

Typical use is illustrated by an example:

#include "mvmtp.h"

class MyObject { /* . . . */ };

HV_ColMat<MyObject> A(m, n)

;

MV_Vector<MyObject> B(n), C(n);

The class MyObject should have a null constructor, operator=, and MyObject objects should have

operations +, *, /, and - defined.

1.3.2 Non-templated class version

Non-templated classes in MV++ have names such as MV_Vectorjiouble and MV_MatColJ.nt. By default,

the initial installation supports

• MV-Vectorjdouble

• MV-VectorjEloat

• MV_Vector_int

• MV_Vector_complex

• MV-ColMat -double

• MV_ColMat^loat

• MV-ColMat-int

• MV-ColMat-Complex

Version 1.5a 3 June 27, 1996

MV++

In general, the class corresponding to the templated equivalent of XX<t> is denoted as XX_t.

Type specific versions the MV+4- classes are generated from the same “base” file via an editor or simple

preprocessor, such as sed. For example, mvvt.h defines a class of

class MV_Vector_$TYPE

protected:

$TYPE *p_;

}

By creating a copy of this file in which every occurrence of “$TYPE” is changed to the name of a

user-specific class, one can create MV-)—|- vectors out of any numerical object which forms an algebraic

field. The simple command.

sed ' l,$s/\$TYPE/MyObject/g’ mvv.h > mvv_MyObject .h

will create an MV-|—|- vector of MyObjects. Similarly, one can create the accompanying mvvJiyObject . cc

file from the mvv.cc base in the /src directory.
^

1.4 References

[1] J. J. Dongarra, R. Pozo, D. Walker, “LAPACK-I—)-: A Design Overview of Object-Oriented Exten-

sions for High Performance Linear Algebra,” Proceedings of Supercomputing ’93, IEEE Press, 1993,

pp. 162-171.

[2] J. J. Dongarra, A. Lumsdaine, R. Pozo, K. A. Remington, “A Sparse Matrix Library in C-)—|- for

High Performance Architectures," Proceedings of the Object Oriented Numerics Conference, 1994,

pp. 214-218.

*^Use a preprocessor that can also change substring expressions, since the $TYPE expression occurs as part of the class

name.

Version 1.5a 4 June 27, 1996

Chapter 2

Reference Manual

MV.Vector MV++ Matrix/MV.Vector Library MV_Vector

Name MV.Vector

Description One-dimensional vector storage class with minimal overhead. It is one step above

a C array; it utilizes copy-by-value semantics, provides for unit-stride referencing

and indexing using (start, end) pairs.

• deep-copy (optimized)

• only a container class, no mathematical operations defined yet.

• unit stride (elements are in contiguous memory locations)

• fixed 0-based oifset

• A{i) declared inline for efficiency

Major differences between original LAPACK-f-f vector class and MV-|—t-

• templated

• copy-by-value, rather than share-semantics

• much faster A(i) indexing, since indices always have unit stride.

• only one owner of data, but maybe various references, so no reference-counting

scheme is used.

Declaration #include < mwtp.h >

MV_Vector<TYPE>()

Construct a null vector of zero length.

MV.Vector<TYPE>(int n = 0)

Construct a vector of length n, (n > 0). A vector of length zero is perfectly legal

and usually termed a null vector. MV.Vector elements are UNINITIALIZED.

MV_Vector<TYPE>(int n, const TYPE &s)

Construct a vector of length n and initialize all elements to the scalar value s.

MV_Vector<TYPE>(TYPE * x, int n)

Construct a Tvlength vector as a new copy of an existing C/C-1--I- array.

Version 1.5a 6 June 27, 1996

MV.Vector MV+-f Matrix/MV.Vector Library MV_Vector

MV_Vector<TYPE>(TYPE * d, int n, MV_Vector_;:ref)

Construct a Tvlength vector as a view (share semantics) of an existing C/C++
array. Further changes to elments of d will be reflected in MV_Vector<TYPE>.
Data space d will not be destroyed when calling MV_Vector<TYPE>.

MV_Vector<TYPE> (const MV_Vector<TYPE>& V)

Create a new n-length vector as a copy of an existing HV_Vector<TYPE>.

~MV_Vector<TYPE> 0

Reclaim vector memory space if this the only structure using it.

Assignments

MV_Vector<TYPE>&: operator=(const MV_Vector<TYPE>& V)

If *this is a reference then inject() left-hand side (V) into existing memory (both

sides must conform). Otherwise, ^this owns its data space, so delete it and create

a new copy of V. (If conformant with V, then just copy in place.) Return reference

to *this view.

MV_Vector<TYPE>&: operator (const TYPE& s)

Set elements of left-hand size to the scalar value s.

MV_Vector<TYPE>& inject(const MV_Vector<TYPE>& V)

Copy elements of V into the memory space referenced by the left-hand side, without

first releasing it. The effect is that if other vectors share memory with left-hand

side, they too will be affected. Note that the length of V must be same be the same

as that of the left-hand side vector.

MV_Vector<TYPE>& copy(MV.Vector<TYPE>& V)

Release left-hand side and copy elements of V. Unlike MV_Vector<TYPE> : : inj ect ()

it does not require conformity, and previous references of left-hand side are unaf-

fected.

Version 1.5a 7 June 27, 1996

MV.Vector MV++ Matrix/MV-Vector Library MV_Vector

int newsize(int n)

Resize to a new vector of length n. The element values are UNINITIALIZED, even

if n is less than the current vector length.

Access Functions

TYPE&: operator ()(int i)

Return zth element of vector, with zero-based offset. Optional runtime bounds

checking (0 < z < n) set by compile time macro MV_VECTOR_BOUNDS_CHECK.

TYPE&: operator
[
](int i)

Identical to MV_Vector<TYPE> : :operator() above. Included mainly for compat-

ibility to C/Q+-\- syntax.

TYPE&: operator
()

(const MV_VecIndex &!)

Returns a reference (view) of this vector specified by the ranges in MV.VecIndex.

For example, the following statements

MV_Vector<iiit> A(20) , B(30);

MV.VecIndex 1(0,3), J(7,10);

A(I) = B(J);

assign the first four elements of A to the values of B(7) through B(10).

Information

Functions
int size()

Return the length, n, of the vector.

int null()

Shorthand to test if zero-length vector. Identical to (size()==0).

Version 1.5a 8 June 27, 1996

MV.Vector MV++ Matrix/MV_Vector Library MV_Vector

int ref()

return 1 if vector is a view (reference) to another vector or C array, zero otherwise.

Macros

MV_VECTOR_BOUNDS-CHECK

Optional compile time macro, to perform bounds checking (0 < z < n) in a n-length

vector. The default is NOT to perform this check (this is consistent with C/C++);
however, it is highly recommended, particularly during initial phases of develop-

ment, testing, and debugging. There is a performance penalty for this, (essentially

a boolean test at each element reference) so it can turned off for production runs,

where performance may be critical.

This can specified at the compile line, e.g. C++ -DMV^VECTOR^OUNDS-CHECK

I/O Functions

ostream& operator «C(ostream&: s, const MV_Vector<TYPE>& V)

Print vector, one element per line.

See also MV.ColMat

Version 1.5a 9 June 27, 1996

MV.VecIndex MV++ Matrix/Vector Library MV-VecIndex

Name MV_VecIndex : a contiguous subrange of MV.Vector elements.

Description MV_VecIndex is an integer pair denoting the start and ending indices of a vector

view. Only supports unit strides, so there is no increment argument. As an exam-

ple, if B is the vector

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

then B(MV_VecIndex(l,5)) = 9.9 sets B to

5 = {0.0, 0.1, 9.9, 9.9, 9.9, 9.9, 9.9, 0.6}

and is equivalent to

for (i=l; i<=5; BCi++] = 9.9)

Declaration ^^tinclude <mvvind.h>

MV.VecIndexO

Construct a null index (start=end=-l). Used to denote the complete vector range.

For example.

B (MV.VecIndexO) = A;

will set all elements of B to those of A. This is equivalent to writing

B(MV_VecIndex(0,B.size()-l) = A;

or

BO = A;

or

for (i=0; i<N; i++)

B(i) = A(i)

;

Note that this is NOT the same as B=A! The latter resizes B accordinly to match
the size of A. The expression “BO = A” requires both vectors to be of the same

size.

MV_VecIndex(unsigned int i, unsigned int j)

Construct an index range starting from position i through j . Conditions: 0 < i < }.

Version 1.5a 10 June 27, 1996

MV_VecIndex MV++ Matrix/Vector Library MV.VecIndex

MV_VecIndex(unsigned int i)

Construct an index range consisting of a single position, i. Used mainly for con-

verting integers into MV.VecIndex’s.

int start

0

Returns the first index of the index range, or -1 if MV.VecIndex has been previ-

ously declared to automatically denote all of elements of a vector. (See method
MV.VecIndex: :all().)

int end()

Returns the end of index range, or -1 if MV.VecIndex has been previously declared to

automatically denote all of elements of a vector. (See method MV.VecIndex : : all ()
.)

int length

0

Returns the number of elements in index range, or 0 if MV.VecIndex has been

previously declared to automatically denote all of elements of a vector. (See method

MV.VecIndex: : all ().)

int all()

Returns 1 if MV.VecIndex has been declared to automatically denote all of elements

of a vector, (null constructor), 0 otherwise. For example.

MV_VecIndex I;

MV_VecIndex J(0,8);

if (I.allO) ... true ...

if (J.allO) ... false ...

MV-VecIndex& operator-|-=(int i)

moves index range up by i elements. For example.

Version 1.5a 11 June 27, 1996

MV_VecIndex MV++ Matrix/Vector Library MV-VecIndex

MV.VecIndex 1(1:10);

I+= 3;

reset I to be (4 : 13).

MV_VecIndex operator-f-(int i)

creates new index whose range is moved up by i elements.

MV.VecIndex 1(1:10);

MV.VecIndex K = 1+3;

sets K to be (4 : 13).

MV_VecIndex operator-(int i)

creates new index whose range is moved down by i elements,

MV_VecIndex&: operator-=(int i)

moves index range down by i elements.

For example,

Version 1.5a 12 June 27, 1996

MV.ColMat MV+H- Matrix/Vector Library MV-ColMat

Name MV.ColMat : column oriented (Fortran) templated dense matrix.

Description A two-dimensional version of MV_Vector<TYPE>. Storage is column oriented, com-
patible as an argument to Fortran libraries.

• uses (deep) copy semantics

• indexing via A(i, j) where i,j are either integers or MV.VecIndex indices.

• supports only contiguous submatrices

• utilizes Vector<TYPE> container class

• has basic BLAS-I—|- math functionality

• optimized to avoid memory copies when returning temporary MV.ColMat<TYPE>
results by value from functions

Declaration #include <mvvtp.h>

MV.ColMat<TYPE>()

Construct a null 0x0 matrix.

MV.ColMat<TYPE>(int m, int n)

Construct a column-major matrix of size m x n, [m,n > 0). Matrix elements are

UNINITIALIZED.

MV.ColMat<TYPE>(int m, int n, const TYPE& s)

Construct a column-major matrix of size m x n, [m,n > 0), and initialize matrix

elments to the scalar s.

MV.ColMat<TYPE>(TYPE * v, int m, int n)

Construct a m x n matrix by copying the values from a one-dimensional C/C-I--P

array of length mn.

MV.ColMat<TYPE>(TYPE * v, int m, int n, MV.ColMat.::ref)

Construct a m x n column-oriented matrix as a view of existing C array (length

m X n).

Version 1.5a 13 June 27, 1996

MV_ColMat MV+-I- Matrix/Vector Library MV.ColMat

MV.ColMat<TYPE> (const MV.ColMat<TYPE>& V)

Create a new n-length vector from an existing one by copying.

int newsize(int m, int n)

Resize to a new matrix of size m x n. The element values are UNINITIALIZED,
even if resizing to a smaller matrix.

~MV.ColMat<TYPE>()

Destroy matrix and reclaim vector memory space if this the only structure using

it.

Assignments

MV_ColMat<TYPE>&: operator=(const MV_ColMat<TYPE>&; M)

Release left-hand side (reclaiming memory space if possible) and construct a new
copy of V. Return reference to new copy.

MV_ColMat<TYPE>&: operator=(const TYPE&: s)

Set elements of left-hand size to the scalar value s. No new matrix is created, so

other matrices that reference this memory space will also be affected.

Access Functions

TYPE&: operator
(
)(int i, int j)

Return (z, j)th element of vector, with zero-based offset. Optional runtime bounds

checking (0 < z < m), (0 < j < n), set by compile time macro MV_MATRIX_BOUNDS_CHECK.

TYPE& operator
(
)(MV_VecIndex I, MV_VecIndex J)

Return submatrix view specified by indices I and J. (See MV.VecIndex class.) These

indices specify start and ending offsets, similar to index notation of Matlab or

Fortran 90 (except strides are always one). For example, in the following code

Version 1.5a 14 June 27, 1996

MV.ColMat MV++ Matrix/Vector Library MV.ColMat

MV_ColMat<TYPE> A =

then B(I,J) denotes the 2x2 matrix

-Bo,3 -Bo,

4

Bi,4 Bi^4

Information Functions

int size(int d)

Return the length, n, of the dth dimension, i.e. for an M x N matrix size(O)

returns M and size(l) returns N.

int lda()

Return the leading dimension of this matrix (>= M).

int ref()

Returns 1 if this matrix is a view to another C/C++ array.

Macros

MV_MATRIXJBOUNDS-CHECK

Compile time macro, either defined or undefined to perform bounds checking on

matrix indexing operations. The default is NOT to perform this check (this is

consistent with C/C++); however, it is highly recommended to utilize this check

- particularly during initial phases of development, testing, and debugging. There is

a performance penalty for this, (essentially a boolean test at each element reference)

so it can turned off for production runs, where performance may be critical.

I/O Functions

friend ostream& operator <C(ostream&: s, const MV_ColMat<TYPE>&: V)

Print matrix (one row perline), with elements separated by white space.

See also MV_Vector<TYPE>, MV.VecIndex

Version 1.5a 15 June 27, 1996

