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Abstract

We show that under equilibrium conditions, an anisotropic phase-held model of a

diffuse interface leads to the notion of a divergence-free tensor, whose components are

negligible away from the interface. Near the interface, it plays the role of a stress

tensor, and involves the phase-held generalisation of the Cahn-Hoffman elector. We
show that this tensor may be used to derive the equilibrium conditions for edges in

interfaces. We then extend these ideas from the phase-held model to a general class

of multiple-order-parameter models. In this broader context we demonstrate that it is

also possible to construct a ^-vector, and we use it to derive the three-dimensional form

of the Gibbs-Thomson equation in the sharp interface limit. We derive the associated

stress tensor for the multiple-order-parameter case, and show that it also leads to the

appropriate equilibrium conditions for edges in interfaces and multiple junctions in the

sharp-interface limit. This approach shows that both multiple-order-parameter models

and less physically-based phase-held models share a common framework, the former

providing a generalisation of the notion of the ^-vector for phase-held models as weU

as providing a connection to the classical ^-vector theory for a sharp interface. For the

special case of a phase-held model with non-convex surface energy, we show that edges

can be represented by weak shocks in which the spatial derivatives of the phase held

are not continuous, and we derive the associated jump conditions. In aU the situations

considered the notion of the ^-vector and the stress tensor play a central role.
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1. Introduction

In many continuum theories of phase change the interface separating distinct bulk phases

is considered to be diffuse, with a finite thickness over which properties vary smoothly

from one set of bulk values to another. Theories which treat inter-phase boundaries as

diffuse interfaces with characteristic thicknesses arise naturally in the description of critical

phenomena (Stanley 1971). Using an approach similar to that of the Model C of Halperin,

Hohenberg, and Ma (1974), J. S. Danger (unpublished, 1978) developed a model which

has become known as the phase-field model. In this type of model, an auxiliary variable,

the phase field </>, is appended to the usual set of thermodynamic variables in order to

provide an explicit indication of the thermodynamic phase of a non-uniform system at each

point in space (Danger 1986, Caginalp & Fife 1986). The free energy of the system, T

^

includes contributions from the bulk energies, described by the free energy density f[(l),T),

appropriate to the regions far from interphase boundaries, and terms involving the square of

the gradient of the order parameter, which contribute to the energy in the transition regions,

i.e.,

:f = J h(4',T) + ’^\v<fA dv,
(
1

)

where 77 is a constant, and T is the temperature. Dynamical equations for the evolution of

the system can then be derived using variational arguments in the manner of irreversible

thermodynamics (Penrose & Fife 1990, Wang et al. 1993).

The governing equation for the evolution of the phase field is devised so that for small

Tj smooth but thin transition layers of width proportional to rj form between the phases,

and the interface can be associated with a particular contour of the phase field, or more

generally with the finite region over which the gradient of the phase field is significant. In

the sharp-interface limit, 77 —> 0
,
in which the interface thickness tends to zero, it may be

shown that the appropriate sharp-interface boundary conditions can be recovered (Caginalp

1989).

Phase-field models can be particularly useful for numerical computation in situations in

which the interphase boundary is expected to be geometrically complicated. For example,

during the dendritic growth of a pure material into its undercooled melt (Glicksman &
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Marsh 1993), the generation and propagation of sidebranches along the primary branch of

the dendrite leads to a wide range of length and time scales, and phase-field models have been

employed to provide numerical tests of theories of tip selection (Wheeler et al. 1993, Karma

and Rappel 1996). During dendritic growth an important role is played by the crystalline

anisotropy of the growing solid phase, which selects the growth direction of the dendrite

and determines the symmetry of the sidebranch structure. For a phase-field model to be of

practical importance, it must include a description of the anisotropic nature of the crystal,

through such effects as the dependence of the solid-liquid surface energy on the interface

orientation with respect to the crystal lattice, and also the variation of the rate of attachment

kinetics with interface orientation. Such anisotropic effects have been modeled by allowing

the phenomenological phase-field parameters (such as the gradient energy coefficient, and

the mobility coefficient for temporal relaxation) to depend on the orientation of the contours

of the phase field (Kobayashi 1993). In this case the free energy of the system, in two

dimensions, may be represented as

r = J
|/(<^,T) + ^|V<^|4 dV,

(
2

)

where tan(^) = (t>y/<t>x- This approach successfully generalises the original isotropic phase-

field methodology to allow the computation of dendrites with the proper qualitative behavior,

and leads to the proper anisotropic version of the Gibbs-Thomson equation at the crystal-

melt interface in the sharp interface limit (McFadden et al. 1993; Wheeler & McFadden

1996). With this type of formulation, anisotropies with general symmetries can be treated

using a single order parameter; for example, two-dimensional dendrites with six-fold sym-

metry can be computed using finite differences on a rectangular mesh (Murray et al. 1994;

Warren and Boettinger 1995). On the other hand, with this approach the anisotropy is in-

troduced in a somewhat ad hoc manner, and the connection with the underlying crystalline

anisotropy is rather indirect.

An early attempt in the context of phase-field models to relate anisotropy to the crystal

lattice is due to Caginalp and Fife (1986) who used methods from statistical mechanics

applied to spins on a Bravais lattice to obtain a free-energy functional of the form

-3-
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where rji are constant coefficients.

A conceptual shortcoming with phase-field models lies in the physical interpretation of

the phase-field variable in the context of a solid/liquid phase transition to which they are

commonly applied. In this setting the phase field does not provide a realistic description of

the microscopic internal structure of the interface, and the utility of phase-field models rests

in the recovery of the correct free-boundary problem in the sharp interface limit.

Phase-field models are one example of gradient energy models which date back to work by

Rayleigh (1892) and van der Waals (1893), and are useful in a variety of contexts, including

the description of superconductivity by Landau-Ginzburg theory (Ginzburg and Landau

1950), models of nonlinear elasticity (see, e.g., Carr et al. 1985), and the structure of fluid

interfaces (see, e.g., Cahn and Hilliard 1958, Davis and Scriven 1982). In many cases gradient

energy models can be viewed as mean field approximations to models that provide atomic-

level descriptions, such as in the Landau theory of a second-order phase transition (Landau

1937) or in density functional theories (see, e.g., Evans 1979 or Oxtoby 1991).

For a binary alloy with an atomic lattice with N independent sublattices, N concentra-

tions are introduced which represent the concentration of one of the atomic species on each

sublattice. The thermodynamic state of the system is described by an average concentration

over the N sublattices, together with A^ — 1 order parameters, denoted by Xi, A’2 , . .

.

,XAr-i,

that describe how atoms are distributed between the different sublattices. A gradient energy

formulation is derived that gives rise to coupled evolution equations for the multiple order

parameters. The resulting model can be regarded as a generalisation of the analogous Cahn-

Allen model (Cahn & Allen 1977, Allen Sz Cahn 1979), for which a single order parameter

suffices to describe the state of order on the two independent sites in a bcc crystal. Such a

model involving a gradient energy formulation for three order parameters describing an fee

crystal was considered by Lai (1990) and Braun et al. (1996). In that situation with the

concentration fixed the free energy functional has the form

Jf = y |/(X.U 2) + 1 {Xl + + zf) + 1 {xl + xl + yj + y/ + zl + zf
) }

dv, (4)

where A, B are positive constants which represent the nearest neighbour and second near-

est neighbour interactions of atoms on the fee lattice; AT, Y, Z are the corresponding order

-4-
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parameters and f{X, Y, Z) is the bulk free energy.

In contrast to anisotropic phase-field models based on the free energy functional (2),

where the form of surface energy anisotropy is completely specified through 77 (
0 ), in multiple-

order-parameter models the surface energy anisotropy must in general be determined by

solving the underlying Euler-Lagrange equations. This reflects the fact that the latter models

inherit their surface energy anisotropy from the underlying lattice as well as provide a more

detailed and realistic description of the structure of the interface than phase-field models.

The form of the surface energy anisotropy determines the equilibrium conditions at the

interface. In the context of a sharp interface description, Hoffman and Cahn (Hoffman &

Cahn 1972, Cahn & Hoffman 1974) developed a ^-vector theory (briefly outlined below)

which provides an elegant and compact device for describing the associated anisotropic form

of the Gibbs-Thomson equation, the stresses acting in the interface, as well as treating the

force balance at corners and edges that can form in the equilibrium shape when the surface

energy anisotropy is sufficiently pronounced. Recently we showed that the <^-vector can be

applied to the above phase-field models and used it to show that the appropriate three-

dimensional Gibbs-Thomson equation is recovered in the sharp-interface limit (Wheeler &

McFadden 1996).

In this paper we consider a general class of anisotropic diffuse interface models which

include, as special cases, the various forms of anisotropic phase-field models, and multiple-

order-parameter models described above. We confine our attention to the case where, in

the sharp interface limit, the surface energy 'y{n) is a differentiable function of the the unit

normal vector to the interface (consideration of the nondifferentiable case is given by Taylor

and Cahn 1996). We show that it is possible, in the sharp interface limit, to define a ^-

vector which is equivalent to that given by Hoffman and Cahn, and show that it plays a

central role in the description of many aspects of the interface. We also show that we may

associate a stress tensor with the interfacial region which we use to analyse stationary edges

and line junctions. For the particular case of the phase-field model we show that edges are

represented by weak shocks and we derive the corresponding jump conditions.

For clarity we first develop the theory for the particular case of a phase-field model in

sections 2 and 3. Specifically, in section 2 we derive a stress tensor and use it to obtain the

-5-
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force acting in the interface in the sharp interface limit. In section 3 we use these results

to consider the situation when the surface energy anisotropy is so large that edges form.

In section 4 we consider the general multiple-order-parameter model and derive a ^-vector,

the corresponding three-dimensional form of the anisotropic Gibbs-Thomson equation in the

sharp interface limit, and extend the results in the previous two sections to the multiple-

order-parameter model.

1.1. Cahn-HofFman ^-vector

Hoffman and Cahn developed the (f-vector to describe surface energy anisotropy in a first

order phase transition represented by a sharp interface. The orientation of a surface element

can characterised in terms of its local normal vector, n, or equivalently by the spherical

coordinates 6 and
(f)

that define the radial unit vector f{6,4>) = n. If the surface energy is

then written in the form 7 = 7(0, 0), Hoffman and Cahn defined the ^-vector by

^ = 7^^+ 7e0 + V[r7(0, (^)]. (5)sm V

The unit vectors 6 and ^ are then tangent to the interface. In the isotropic case (constant

7 ), the ^-vector thus reduces to the form ( = 'yn. More generally, the (^-vector is in the

direction of of the normal to the 1 /7 (
0

, </>) plot defined by r = 1 /7 (
0

,
</>)• Hoffman and Cahn

showed that the interface satisfies the condition

-A/,
(
6

)

where Vs- is the surface divergence on the interface and A/ is the bulk free energy difference

across the interface. The corresponding Gibbs-Thomson equation for an anisotropic surface

energy may be written in the form

T = Tm- ~Vs f. (7)

where T is the local interface temperature, Tm is the melting point, and L is the latent

heat of fusion per unit volume. They went on to show that the equilibrium shapes are given

by X = ^/A/, i.e., the envelope of the ^-vectors, which is equivalent to the Gibbs-Wulff

construction (see, e.g., Taylor 1992). If the surface energy anisotropy is so pronounced that

-6-
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the 1 /7-plot is not convex, they showed that corners form in the equilibrium shape and,

in two space dimensions, they demonstrated that the ^-vector is continuous across corners.

Further, they showed that the force per unit length, /, acting on a line element in the

interface in the direction of the unit vector I is given by

f = (
8

)

Thus the continuity of the ^-vector at a two-dimensional corner represents a force balance.

They used the notion of a force balance to analyse the more complicated situation of several

interfaces intersecting at a point.

More recently Taylor (1992) stated an equivalent definition of the (^-vector by employing

a homogeneous extension of degree one of 7(n) to arbitrary non-zero vectors p,

l{v) = \^l{vl\v\), (9)

where n denotes a unit normal, and showed that the ^-vector may be defined by

• ^
<97(^

^ dv,

It follows from this definition that the (^-vector is a homogeneous function of degree zero,

and that

i{v) = V- iiv), (
11

)

a property of the ^-vector noted by Hoffman and Cahn for the case when p represents the

unit normal-to the interface.

Wheeler and McFadden (1996) extended the (^-vector theory to phase-field models with

anisotropy introduced in the manner suggested by Caginalp and Fife (1986) and Kobayashi

(1993). Both of these models employ free-energy functionals of the form (Taylor & Cahn

1994)

^ = /{^[7(V0)f + /W,T)} dl/, (12)

where /(0, T) is the bulk free energy per unit volume. The corresponding phase-field equation

is given by the gradient flow
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where here and henceforth the argument of 7 is unless explicitly indicated otherwise. In

contrast to the Cahn-Hoffmann theory for a sharp interface, the ^-vector is now a vector field

defined throughout the whole domain and not just on the interface. This ^-vector formulation

has been exploited to recover the appropriate three-dimensional form of the Gibbs-Thomson

equation (7) in the sharp interface limit (Wheeler & McFadden 1996).

2. Generalised Stress Tensor

The free energy functional (12) is a particular case of the more general expression

1 = J C{V(f>,(i),x)dV (14)

considered in variational treatments of continuous systems and fields (Goldstein 1980); X then

represents the action and C represents the Lagrangian energy density, which is assumed to

have explicit dependence on the scalar cf), its gradient V(^, and the position vector x. For

an isothermal system with no applied fields, the integrand of the free energy functional
(
12

)

is independent of x. In this case, energy-minimising equilibria admit an associated stress

tensor and conservation law that result from the translational invariance of the Lagrangian;

this is a simple consequence of Noether’s theorem [see Goldstein (1980)].

Equilibrium states for X satisfy the Euler-Lagrange equation

del) dxi

dC

d(f>,k

= 0 -

(15)

here we have employed the Einstein summation convention, and denotes d(f)ldxk-

A calculation gives

dC

dxj

dC
^

dC ^ dC

0(p^k UXj

4>,j

dC ^
d

V,jk + (P,j

dxi

d<t>,k

dC

dxi

dC

d(f>,k

+
dH

dxj

+
dC

so that

djT

dxj dxi
A r^jkd.

(16)

(17)

where 6jk is the Kronecker delta. Thus, if C has no explicit dependence on Xj, the stress

tensor S, with components

::: -A r

-8-
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satisfies

V-S = 0. (19)

Since we have

this gives

S = 7V0 0f-£J, (21)

where I is the unit tensor.

In general S is not symmetric, which generates an associated distributed body couple

distribution given by 7^ x V(^. This couple vanishes if the surface energy is isotropic (in

which case ^ is parallel to V(^). Thus we see that the presence of surface energy anisotropy

induces a body couple throughout the interface, indicating that the interface can reduce its

surface energy by local rotation as well as by the mechanism of curve shortening which is

only present in the isotropic case.

A simple calculation shows that is an eigenvector of S with eigenvalue
(
7^/2 — /),

and any vector orthogonal to ^ is also an eigenvector with eigenvalue —(7^/2 + /). Since

^ = 7 ^ 0
,
these sets are linearly independent.

2.1. The Sharp Interface Limit

Here our aim is to determine the force per unit length acting on a line element in the interface

in the sharp interface limit. It is well known that in this limit the leading order problem

corresponds to that of a flat interface (Caginalp 1989). In view of this, and for the purposes

of clarity we therefore conduct this analysis for the equivalent situation of the force acting on

an infinite plane A with unit normal a intersecting a flat diffuse interface. For this leading

order problem, 4> only depends on s, which measures distance in the direction of the unit

vector n that is normal to the contours of
(f),

so that V<^ = </>in and 7 (V(/>) = With

our choice of scaling the surface energy is defined in terms of the integral of with

flOO

/ (22)

-9-
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It is simple to show that the governing equation for
(f)
has a first integral

57(nf^?-/W.r) = o. (23)

where (f)s denotes the derivative of (j) with respect to s. It follows that the Lagrangian and

stress tensor may be written as

^ = ^s7(^) C — l{n)I (24)

The force per unit area, acting on A is then given by

F = S a = 4>l'){n) (f-a)n- 7(n)a = (f)lj{n) (f a)fi - (f • n)a

where we have employed (H). This may be written as

F = 4'h{n)(>i I,

(25)

(26)

where I = n x a.

We now take the surface A to be oriented perpendicular to the direction to the flat

interface, so that the normal vector a is a tangent vector of the contours of and the

intersection of A and the contours of (j) lie in the direction of 1. To leading order, the total

force per unit length, /, in the direction of I is then obtained by integrating through the

layer to give

f = l{n) /
+ 00

4>

-oo

\ds Cxi, (27)

or, using
(
22 ),

/ - ^ X /, (28)

which reproduces the result given by Hoffman and Cahn for a sharp interface.

3. Edges

When the surface energy anisotropy is so pronounced that the 1 /7-plot is not convex, the

Gibbs-Wulff construction gives that the equilibrium shapes of a sharp interface will include

edges corresponding to missing orientations (see, e.g., Taylor 1992). In this section we

consider the structure of edges in phase-field theory when the 1 /7-plot is not convex.

-10-
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Figure 1: A schematic diagram of an edge. The control surface S cuts the

diffuse interfaces at right angles. The vector I, in the direction of nj x 7^2 ,
points

into the page. The vector N is the unit normal to the surface of discontinuity,

S.

We consider the equilibrium situation where two stationary diffuse interfaces meet at an

edge. As discussed further below, a basic assumption is that the phase field is everywhere

continuous, although derivatives of 4> are allowed to have surfaces of discontinuity repre-

senting a diffuse edge solution. In the next subsection we use the stress tensor to consider

the far-field behaviour of the edge solution and, in particular, deduce the appropriate rela-

tion that determines the orientations of the two interfaces. In the subsequent subsection we

investigate the solution structure in the region where the two interfaces meet.

3.1. The Far-Field

We denote the two interfaces as 1 and 2 and we assume that far away from the junction

region they are planar with unit normals ni and n 2 as shown in Figure 1. Moreover we

assume that the solution is translationally invariant in the direction of the unit vector I

-11-
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directed into the plane of the figure. We construct a cylindrical control surface S which

contains the junction region and intersects the two interfaces far away from the junction

region; the contributions from the end caps of the cylinder can be disregarded. We assume

that S intersects the contours of (j) at right angles. The divergence theorem yields

where n is the outward normal to 5. In the bulk phases away, from the interfacial regions,

S is zero and so the only non-zero contributions are from the parts of S that intersect the

interfaces. We now take the sharp interface limit in which case the contribution from each

interface is the same as considered above and so we conclude that

This is the form deduced by Cahn and Hoffman and corresponds to a force balance for the

edge in the plane normal to 1.

3.2. The Edge Structure

When the 1 /7-plot is not convex the phase-field equation changes type from elliptic to hyper-

bolic [considered in two dimensions by Fife (1995), and in three dimensions by McFadden

and Wheeler (1995)]. This suggests that the structure of the edge solutions may involve

weak shocks. The variational principle for a diffuse interface can be used to deduce the

jump conditions when edges are present; the conditions naturally arise when solutions with

discontinuous derivatives are permitted.

We write the domain in the form V = Hi U V2 J
where the phase-field variable (j) is smooth

in Vi and W and may have jumps across the common boundary, which we denote by the

surface S; continuity of cj) is imposed explicitly by using a Lagrange multiplier A. The normal

to E is denoted by N and points into V2 . We minimise the free energy T subject to continuity

of
(f)
by writing

“ = ^ - L

where the subscripts ‘1’ and ‘2’ denote evaluation of the function on either side of S. To

-12-
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obtain equilibrium shapes, a volume constraint should also be imposed, but this constraint

does not effect the jump conditions which are our primary concern here.

Taking the variation gives

0 = / {-f( • + U54,) dV+ j (j(- ws<t, + USA dV+
f [hj - I7I]

6,^ dA

- J^X[6(f>i- 8(j)2]dA- d(f)i d(f)2

+ [(^1 — (^ 2]^^
du dA,

(
32

)dN dN

where 8v is the outward variation of the surface E along the normal direction, and /C is the

mean curvature of S. Integrating by parts the first two terms gives

0 = / (-V M + u) Hdv + f (-V (7f] + u) S4,dv
J Vi J V2

+ / [716 • N8 ^-^
- 726 • N8 (l)2]dA + /

»/ 2 J Y.

- J^X[8(f)i- 8 (f>2]dA- J^X

1 2 1 2 8vdA
(
33

)

d(t)i d(t>2

+ [^1 — <^ 2]^ f
8vdA,

dN dN

where we disregard any boundary terms other than those on S. The jump conditions across

S are therefore given by

716 N = X,
(
34

)

726 N = X,
(
35

)

5(^1 d(f)21 2 1 2 = A
dN dN + x[4>i — 4‘2\X8,

(
36

)

together with the continuity constraint

[(j)l
-

(f)2 ]

= 0,
(
37

)

which removes the curvature dependence of the latter expression. Eliminating A, the condi-

tions resemble a common tangent condition (Cahn & Carter 1996
),

716 • ^ = 726 • N =
12
7i 172

d4>i 5(^2

dN dN (
38

)

We emphasize that here 'jj is short for 7(V(/»j) as opposed to 7(n)); since ( is homogeneous

of degree zero, this distinction is unnecessary for

These jump conditions can be illustrated by the special case of a corner consisting of

two flat diffuse interfaces with normals ni and n2 joined together along a plane E, with

-13-
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normal vector iV, spanned by the orthogonal unit tangent vectors m and /, where I lies in

the direction of ni x n2. Points in S thus have the form Rq + Siin + S 2 I, where Rq is a fixed

point in E. It is convenient to write the one-dimensional solution ^(s) for a flat interface

in the form <^(s) = 9{^ [note that the scaling for the argument of g is apparent from

Eq. (23)]. Hence the solutions on either side of E can be written in the form

^ ^
([x-Ro\-n2\

=H l(n.) j’

Setting (f)i = ^2 at a point x = i2o + Sirh -)- 52/ in E and using fii I = n 2 I = 0 gives

m • rii m 712

7(ni) 7(^2)'
(40)

We have |V<^i| 9
'

etc., so that from homogeneity we obtain 7(V^i) = |V0i|7(ni) =

9
' — 4>2)] i-e., 7(V^) is continuous across E. The jump conditions (38) then imply

ii-N = 0, i2-N = 0.

Thus and ^2 both lie in the plane E, and we write

(41)

= aim -f /3i/, 6 = 0=27^4-/32^, (42)

for some ai, a2,/3i and (32- We then note that

7(^1) = 6 •

'^1 = oim ni, 7(^2) = 6 • ^2 = 0=27^ • n2 (43)

so that by using Eq. (40) we find ai =02- Hence we deduce that

(6 - 6) X ^ = 0, (44)

which is the form stated by Hoffman and Cahn. It follows that m is simply given by

7^ = 6 - [6 • Ai = 6 - [6 • AA (45)

i.e., the plane E is contained by I and the common component of the two 6vectors which is

orthogonal to 1.

-14-
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4. ^-vector Formulation of Multiple Order Parameter Models

We next consider a multiple order parameter description of an isothermal phase transition

which involves N order parameters, Xi,X2 ,
,Xj^. We assume that the underlying free-

energy functional can be expressed in the form

^ = X E[7.(vx.)]^ + /(X.r)| dv, (46)

where /(X, T) is the bulk free-energy density, X represents the A^-tuple (Xi,X2 , . .

.

jX^r),

T is temperature and the functions 7i(VXj) represent the gradient energy contributions to

the free energy of the system associated with each order parameter X^ and are assumed to

be homogeneous functions of degree one.

We further assume that the order parameters are nonconserved quantities and hence that

the dynamics of the system may be given by the gradient flow

dX,

dt
(47)

for i = 1, . .

.

W, where the are positive constants. Evaluating the variational derivatives

gives that the N governing equations may be written as

Mi dt dXi

where Xi will be called the ‘sub-^-vector’ associated with the order parameter Xi whose

contravariant components are defined by the relation

dx.y

it then follows from homogeneity that each sub-^-vector satisfies • p = liiv)- Here Xi^j

denotes the partial derivative of Xi with respect to the cartesian coordinate Xj. The func-

tion /(X,r) has multiple-well structure, with each corresponding minimum representing a

stable bulk phase; the gradient energy terms allow solutions wherein distinct bulk phases are

separated by a diffuse interface. We limit our attention to situations where the solution is

unique for a given orientation of the interface, and further assume that the interface has no

transverse structure. The governing equations are a system of phase-field equations that are
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coupled through the bulk free energy term. The class of diffuse interface theories which may

be represented by the free-energy functional given by Eq. (46) include phase-field models as

well as multiple-order parameter models such as the fee model discussed in the Introduction

(Braun et al. 1996). In this case an appropriate expression for the functions 7,, which are

homogeneous of degree one, is the quadratic form

'^i = {[VXiY (50)

where Ai are positive definite matrices with constant coefficients. For the fee model of Braun

et al. we have three order parameters; N = 3, and

00 ^500^ ^500^
Aj — 0 B 0

II 00 )
^3 — 0 5 0

^
0 0 B

^ ^
0 0 B

^
00

where A and B are positive constants.

4,1. The Sharp Interface Limit

Here we consider the situation where a thin, curved, moving interface separates two bulk

states, denoted by X = X+00 and X = X_oo, where f^XiO^+oo,Tc) = /,Xi(X_oo, Tc) = 0,

and Tc is the temperature at which the phase transition occurs, so that /(X+oo,Tc) =

/(X_oo,Tc) = 0 as well. We consider the temperature to be close to so that to a good

approximation we may assume that the bulk free-energy density is linearly dependent on the

temperature. We non-dimensionalise so that the phase transition occurs at a value of the

dimensionless temperature of unity, and represent the dimensionless free energy as

^ = /,|jE[r.(vx.)p + /(x,r)|<iT/. (52)

where

/(X, T) = I/<-'>(X) - (T - l)s<°>(X). (53)

Here e characterises the thickness of the interface, ri(VXi) is the dimensionless form of

ji, 5 ^°^ is an entropy density, and all quantities here and henceforth in this subsection are

dimensionless.
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The dimensionless governing equations are then

= .V
.

[r.(vx.K-:-] - (54)

We introduce a surface-fitted curvilinear coordinate system {u^,u^,u^} located within

the interface (see, e.g., Wheeler & McFadden 1996). To this end we may, without loss of

generality, define a surface within the interface, denoted by S, by the level set x^, x^) =

constant (the average of its bulk values, say) given by

X = R[u^ ,u^) + u^n[u^ ,u^), (55)

where x = R[u^,u^) represents 5, and are surface coordinates of S, and is

its unit normal.

To proceed with our asymptotic analysis in the limit e 0, we rescale distance through

the interface with respect to the interfacial thickness and so put = ep. We expand the

field variables as regular perturbation series in e

X. = + 0{^), (56)

T= 1 + + 0{e^). (57)

The asymptotic representation of ri(VXi) and the sub-^-vector in the layer are given by

r.(VV.) = lr.(n)V<°> + r,(n)4V + (,{n) VsXP + 0(e), (58)

= r.(n) + O(e^), (59)

[see Wheeler and McFadden (1996), where they were derived for the case of a scalar anisotropic

phase-field model.]

4.1.1. The Leading Order Problem

The leading order problem is

a/(-»(x('»)
[^^( 7^)] ^^[7

— = (60)
dp^ dX,

with the far field boundary conditions > X±oo as ^ > ±oo; we write the solution in

the form = X|°^(p;n) to emphasize the dependence of the solution on the unit normal

vector n.
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We note there is a first integral

N
ix:[r.(n)inx}“;i^=/'-'>(xW). (

61
)

1=1

The surface energy, 7 (
7?) ,

which depends on the orientation of the surface, is given by

7(n) = /_7 + /<-'>(X"‘>)| dp, (62)

which, on using the first integral, may be written as

N
7(^) = 5I[^^(n)]^X,(n),

where we define

1=1

Ii{n)= r’°[xf;)(p-,n)fdp.
J —00

(63)

(64)

Unlike the scalar case, the surface energy cannot be determined explicitly, but requires

knowledge of the leading order solution to evaluate the integrals Zi{n) (see also Barroso

& Fonseca 1994). However, we next show that we may nevertheless determine a formal

expression for the appropriate ^-vector.

To this end we first make a homogeneous first order extension of the surface energy. This

may be done in a natural manner by extending the leading order solution to Eq. (60), in the

following way;

For an arbitrary non-zero vector p, let x\^\p\p) = X|°^(p/|^; p/1^); by using the homo-

geneity of ri(p), the function then satisfies the equation

with the same far-held boundary conditions as the original leading-order problem.

We now extend the dehnition of the surface energy given by Eq. (62) as

N

(65)

7(p) = EFiW1^7i(p).

where we dehne

4=1

Uv)= r’°[xf;)(p-,p)fdp.
J — 00

(
66

)

(67)
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It is straightforward to show that this definition is the homogeneous extension of order one

of the surface energy to non-unit vectors. Using Eq. (61) it may also be written as

'•-1-00

7(p-) = 2/
J — OO

(68)

Employing the definition of the ^-vector, Eq. (10), and the form for the surface energy

given by Eq. (68) we find

a7(p) _o
dp, h'l dxP dpj

dp. (69)

Taking the scalar product of the governing equations (65) for X-°\p;p) with gives that

i=l dpj dxj°'> dpj

in which case we find that

N

c1=1 -OO dp'^ dpj

(70)

(71)

Integrating by parts then yields that

N

e = -2 E[r.(p)]^£1=1

(0) P) 2 xr{ 0 )+- dxr> d^X

which may be expressed as
N

e = -E[r.(pl

dp dpdpj

:dJ,{p)

f—dp, (72)

(73)
.=1 %

Using the alternative representation of the surface energy given by Eq. (66) in the defi-

nition of the ^-vector, Eq. (10), we find

e = = 2f;^’r.(p)i.(p) + ^(r.(pi^^
^Pj 1-1 t-1 ^Pj

(74)

Using Eq. (73) and rearranging we find that

N

i = E6r.(p)J.(p). (75)
i=l

We observe that the (^-vector is linear combination of the sub-(^-vectors. Using Eq. (66) and

the homogeneity of Vi{p), we also have that the ^-vector satisfies i p = l{p)- We next show

that this definition of the ^-vector is consistent with the Gibbs-Thomson equation that is

recovered in the sharp-interface limit.
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4.1.2. The First Order Problem

The first order problem is (see Wheeler and McFadden 1996)

dp^ hi SXiXt ^ dXi

- - r.(n)^i(n) • VsX'c: - Vs [r.(n)^.(n)X^;,
'(0 ) (0 )

(76)

where Vn is the nroaml velocity of S. The left-hand side is self-adjoint with homogeneous

solution given by . .
.

,

The solvability condition, formed from the inner

product of the adjoint solution with the right-hand side, is

^
1 C+ /„\ .

^
-» /"-l-OO

Z= 1 1=1
ijxl^dp = r(‘)A. + £r.(n)5(n)

. J XiysX'^^dp

r.(n)|:(n)4“;] dp, (77)+ E /
“ x\ys

x=l

where As = s^°^(X+oo) — 5(°^(X_oo) is the entropy density difference between the two bulk

phases. We now consider in detail the latter two terms on the right-hand side that involve

V 5 . They may be written as

f; fh.(n)5(n) . Vsl. + I.Vs • [ri(5)g(n)] + 4“>r.(n)g(n) • ^sX^^p]
, (78)

t=l

where we have expanded the Vs operator in the second term of the right-hand side of Eq. (77)

to obtain the last two terms in the above expression. The above expression may be written

as
N r

E |lr.(7j)6(7i) Xsi, + 1.Vs • [TiinMn)] + iri(7;)^*(n) VsZ.
t= l

Noting the first and last terms are identical this simplifies to

f2Vs-[li{n)Ti{n)i.{n)
1-1

(79)

(80)

i.e.. Vs • on using Eq. (75). Hence the solvability condition, Eq. (77), may be written

as

T<‘) = -Tvs . {(ri) -
As fi{n)

where

1 _
1 .^I;(n)

p{n) As M,

(81)

(82)
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4.2. Generalised Stress Tensor

We next consider the form of the generalised stress tensor for the multiple-order parameter

case. The appropriate dimensional Lagrangian density has the form

=N
£(X. VX) = + f{X,T),

1=1

(83)

which is again translationally invariant. A calculation analogous to that done above for the

scalar case shows that the corresponding stress tensor has the form

N
2 = 5^7.VX.-®6-£I, (84)

1= 1

and satisfies V • S = 0.

Considering as before the force acting on an infinite plane A, with unit normal a, in-

tersecting at right angles a fiat diffuse interface with normal vector n, a straight-forward

calculation gives that the integrated force per unit length / in the direction I = n x a is

given by the analogous expression

/ = f X T (85)

in the multiple-order-parameter case as well.

We now consider a diffuse stationary n-junction which corresponds in the sharp interface

limit to a straight line (denoted by I, say) at which n stable bulk phases and their n planar

interfaces meet. Let the n bulk phases be denoted by X/, X/;, etc., indexed in an anticlock-

wise fashion about the junction and let the n ^-vectors associated with each diffuse interface

be denoted by ^/j, etc., where denotes the (^-vector between the bulk phases X/ and

X//, etc. Then a calculation similar to that given above for the scalar case, based on the

divergence theorem for a suitable control volume, gives the result

^ X (^/ + ^/ + • •

•)
=0- (86)

This is the same result as given by Hoffman and Cahn. It determines the equilibrium angles

of the n-junction and represents a force balance.
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5. Discussion

For the phase-field model [N = 1) the surface energy is directly related to the gradient

energy coefficient, so that a desired anisotropic surface energy can be obtained a priori by

selecting the gradient energy appropriately. For the general case [N > 1) involving multiple

order parameters this is no longer true; the surface energy is proportional to a weighted

sum of the gradient energy coefficients, with weights that depend on the specific form taken

by the solution of the leading order problem Eq. (60). In this approach the surface energy

is inherited from the model, which may reflect the underlying crystallographic symmetries

of the atomic lattice of the material in question, as in the case of the fee model developed

by Braun et al. (1996). In contrast to the phase-field model in which the surface energy

anisotropy is specified a priori^ multiple order parameter models seek to provide a more

detailed description of the structure of the interface and as a result predict the surface

energy anisotropy.

This difference of methodology between phase-field models and multiple order parameter

models is also reflected in the ^-vector. For the phase-field case [N = 1), in the same way

that the surface energy anisotropy is specified a priori^ so is the ^-vector. In contrast, in the

case of multiple order parameter models [N >1) this is not so. Although for each order

parameter a sub-^-vector may be defined which is a vector field independent of the value

of the e, the ^-vector for the whole system only emerges in the sharp interface limit as a

linear combination of the sub-(^-vectors whose coefficients depend on the functionals Xj and

so, like the surface energy, requires the leading order contributions to the order parameters.

In contrast the stress tensor is defined independently of taking the sharp interface limit.

We observe that, although we have taken the dynamics of the system to be a simple

gradient flow with rate constants Mi that are independent of the orientation of the level sets

of the order parameters, the dynamics of the interface in the sharp interface limit involves a

mobility /x(n) which depends on the orientation of the interface. Comparing the expression

for //(n), Eq. (82), with that for 7 (fi), Eq. (63), we note that the form of the kinetic anisotropy

generally differs from that of the surface energy anisotropy.

We may also determine the form of the stress tensor associated with a conserved order
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parameter, such as the concentration, which for example occurs in the Cahn- Hilliard theory

of spinodal decomposition (Cahn & Hilliard 1958). In this case the associated stress tensor

is

Tc = (^^Vc (gi Vc — s ^ cV^cd- -|Vc'"
2

+ f{c) - ^^(c)} I, (87)

where, c is the concentration, /(c) is the bulk free-energy density and is the gradient

energy coefficient.

For the case of isotropic surface energy the stress tensor S for the phase-field model has

the form 7V/ 0 V/ — Cl. Both this tensor and the stress tensor for a conserved order

parameter are similar to the Korteweg stress tensor Tk (see. e.g., Truesdell and Noll 1965)

that occurs in the theory of fluids near close to their critical point (Anderson and McFadden

1996),

Tk = -Vp 0V^+ (pV7+l|V,>|^)7. (88)

where in this situation the density of the fluid, p, provides the natural order parameter. They

are also similar in form to the Maxwell stress tensor Tm associated with a electromagnetic

field, which has the form (Jackson 1975)

Tm=-^[e(SE + BS>B~ + B"]/)
, (89)

where E and B are the electric field and magnetic induction, respectively, and [E'^ + S^]/2

represents the energy density. The tensors Tc, Tk, and Tm are all symmetric, which is a

consequence of the isotropic form of the associated Lagrangians; in contrast, S is generally

nonsymmetric, which results from the anisotropic nature of the free energy functional.

In general it may be shown that the phase-field stress tensor derived above does not

contribute to the local entropy production. A more complete theory would incorporate

deformation of matter which would in general provide additional dissipative contributions

to the stress tensor (such as a viscous stress), and would also provide a possible means of

balancing the distributed body couple associated with anisotropic surface energy.

The recovery of the equilibrium configuration of line junctions in the sharp interface

limit of diffuse interface models has previously been limited to situations in which the surface

energy is isotropic (see, e.g., Owen et al. 1990, Bronsard & Reitich 1993, Wheeler et al. 1996,

and Novick-Cohen Sz Cahn 1996). These treatments employed identities that are equivalent
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to the conservation law, V • S = 0, but without explicitly identifying the stress tensor S

or the physical basis of the conservation law, as we have done in this paper for the more

general anisotropic case.

6. Conclusion

In conclusion, the approach adopted demonstrates that both multiple order parameter mod-

els and less physically-based phase-field models share a common framework, the former

providing a generalisation of the notion of the ^-vector for phase-field models as well as

providing a connection to the classical ^-vector theory for a sharp interface. Moreover, we

have identified an associated stress tensor, S, which gives the stress throughout the inter-

facial layer and may be used to make a connection, in the sharp interface limit, with the

forces acting in the interface, through the notion of the (^-vector. It enables us to derive

the equilibrium conditions for edges and n-junctions in terms of a force balance. Lastly, we

have shown that edge formation in a phase-field model is characterised by the formation of a

weak shock across which the components of the (^-vector normal to the direction of the edge

are continuous, which again may be interpreted as a force balance. In all of the aspects of

the interface that we have considered, the notion of the ^-vector and the stress tensor play

a central role.
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