
Interoperability Experiments with
CORBA and Persistent Object Base
Systems

Elizabeth Fong
Deyuan Yang

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Computer Systems Laboratory
Gaithersburg, MD 20899

I
QC

100

.056

NO. 5824

1996

NIST



I

i
I

s

k
i

i-

i



NISTIR 5824

Interoperability Experiments with

CORBA and Persistent Object Base
Systems

Elizabeth Fong
Deyuan Yang

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

April 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director



ii'
' '

’ ^ ‘ *• ^ "
"' .

””

!n: «* \c»»0#vw)».^M«vi .iwl^ i

S3?«w^« le.gtuma^i ,4»W.^*
“M'iV - - • i. - - •



PREFACE

The Computer Systems Laboratory (CSL) of the National
Institute of Standards and Technology (NIST) is assisting the
Advanced Research Projects Agency (ARPA) in a technology evaluation
of persistent object base system (POB) . POB systems, generally
referred to as Object Database Management Systems (ODBMSs) , are
database systems which provide storage and retrieval of data that
are not necessarily tabular (with rows and columns)

.

Two main activities are currently being performed:

(1) Design and develop a set of functional test suites to be
exercised on selected POB software, specifically those
prototype POB systems which are developed with ARPA funds

.

One such prototype system is the Open OODB developed by Texas
Instruments. This project is reported in [FONG95]

.

(2) Conduct interoperation experiments with Common Object Request
Broker Architecture (CORBA) as distributed communication
software using selected POB systems as database servers. This
report describes this activity.

Certain commercial software products and companies are
identified in this report for purposes of specific illustration.
Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the products identified are
necessarily the best ones available for the purpose.



ABSTRACT

This report describes the design and development of
interoperability experiments using the Common Object Request Broker
Architecture (CORBA) products. The experiments will focus on
establishing practical experiences for how to do "plug and play"
using CORBA products with Persistent Object Base (POB) systems such
as Texas Instruments' Open OODB and commercially available object
database systems (ODBMS) such as MATISSE. The experiments will
also investigate methodologies for integration of new or legacy
distributed applications through the CORBA middleware
infrastructure

.

KEYWORDS: Distributed computing; Client-server; common Object
Request Broker Architecture; CORBA; Object-oriented; Object
Databases; Persistent Object Bases.

ACKNOWLEDGEMENTS

The ARPA POB project was started in 1990 by Erik Mettala who
initially jump-started the POB evaluation and testing effort.

The major portion of the NIST contribution to the POB project is
managed under the direction of Dr. Gio Wiederhold and Dr. David
Gunning also of ARPA. We would like to acknowledge them for
providing us with valuable technical direction into the
interoperability experiments using OMG's CORBA technology.

We are very grateful for those vendors who donated their product
for this project. The company names and the products are as
follows

:

Digital Equipment Corporation - ACA Services
MITRE Corporation - DISCUS Package
Iona Technologies - ORBIX
ADB, Incorporated - MATISSE
Texas Instruments - Open OODB
ORACLE Corporation - ORACLE

We would like to thank Kathy Harvill of NIST who assisted in
maintaining the software and the scenarios for demonstration
purposes, and who produced the diagrams presented in this report.

ii



TABLE OF CONTENTS

1. INTRODUCTION 1

1 . 1 Purpose and Scope 1

1.2 Interoperability Issues 1

1.3 Models of Distributed Computing 2

1.4 The Role of Object Request Broker 3

1.5 The Outline of This Report 3

2 . OVERVIEW OF CORBA AND CORBA PRODUCTS 4

2.1 What is CORBA? 4

2.2 Features of Object Request Broker 5

2.3 Third Party CORBA- Compliant Products 6

3. OVERVIEW OF POBS AND POB PRODUCTS 8

3 . 1 Types of POB Systems 8

3.2 Persistent Programming Language Systems 8

3.3 Object Database Management Systems 9

3.4 Extended Relational DBMSs 9

4. CORBA TEST SCENARIOS 10

4.1 CORBA Setup 10
4.2 Registration of Server and Run Application. ... 11
4.3 Server Activation Policies . 12

4.3.1 Server Activation Policy of ACAS .11
4.3.2 Server Activation Policy of ORBIX 12

4.4 Test Scenarios 13
4.5 Test Results for ACAS and ORBIX 15

5. CORBA WITH PERSISTENT OBJECT BASE SYSTEMS 18

5.1 CORBA and POBs Architecture 18
5.2 Test Scenarios of CORBA Accessing POB Systems . . 19

6. CONCLUSIONS 2 6

REFERENCES 2 8

APPENDIX A
Environment for Interoperability Experiments 30

APPENDIX B
The Movie Application 31

iii



I

i

(

I

i

t



1 . INTRODUCTION

The need for interoperation between dissimilar systems is
becoming more evident as large data intensive projects are being
developed. These large applications include electronic commerce,
digital libraries, advanced manufacturing, environmental monitoring
and health. These applications require data from many sources and
integrated within appropriate models of distribution.

1 . 1 Purpose and Scope

This report summarizes the work conducted by the Computer
Systems Laboratory (CSL) of the National Institute of Standards and
Technology (NIST) in support of the Advanced Research Projects
Agency (ARPA) in the investigation of the integration of Persistent
Object Base (POB) systems using open architecture specifications.
The overall goal of the testing and evaluation of POB systems
performed under this project was to explore and evaluate various
techniques for the integration of existing POB systems or legacy
systems through the use of middleware software.

This project focuses on the design of different scenarios to
demonstrate the interoperability of software components. The goals
of the interoperability experiments are:

o to explore ways of achieving interoperability between
heterogeneous systems by using middleware, such as the Common
Object Request Broker Architecture (CORBA)

,

o to develop application systems that can "plug-and-play" with
the existing, commercial software components,

o to investigate and experiment with different ways of object
wrapping,

o to explore useful interfaces and architectures for potential
standardization in the areas of distributed computing and
methods for interoperation of reusable software components.

1.2 Interoperability Issues

The general notion of interoperability is the capability of
systems to communicate with one another, to potentially request
services and to exchange and use information including content,
format, and semantics. However, interoperability can be achieved
across different levels: across platforms, across operating
systems, across applications, and across communication networks.

From the perspective of computer systems users and application
developers, an interoperable computing environment should be based

1



on "open" systems architecture. The considerations of "openness"
considerations are:

o software component openness - a component is "open" if it
could be integrated with other software components in a
manner that is efficient and without the need for
modification to the executable components themselves.

o public interface specification - an interface
specification is public if it is based on interface
specifications that are easily available and published in
the public domain. Non-public or proprietary interface
specifications tend to prevent migration or integration
of components from other vendors.

o language bindings exist for interface standard - many
interface specifications will require an application
programming interface so that tool builders and
integrators can write programs that access the services.
Some standards specify such interfaces in a language

-

independent manner rather than in a particular
programming language. To meet goals for portability, the
interface specification should typically include language
bindings for the major programming languages.

The benefits of using an open systems architecture are that
these systems are generally not proprietary systems and users can
mix-and match components.

1.3 Models of Distributed Computing

Distributed systems are coming to be regarded as the
integration of distinct software components focusing on
standardized interfaces or application programming interfaces
(API) . Distributed systems are characterized by software
components and databases that are physically distributed, have
heterogeneous interconnection characteristics, and use diverse
mechanisms for cooperation. Many distributed models have been
created over the last decade [F0NG91] . The two prominent examples
are the client-server computing model and distributed database
systems. However, truly distributed, powerful systems that employ
all-embracing data models and languages to provide transparent
accesses to separate databases and computers are still not
available. Current practice still depends on single vendors to
supply the database management systems and communications products.
The increased use of standard-based products or languages such as
SQL will alleviate the vendor dependence problem to some extent.

The emergence of object-oriented technology has brought on a
new model of distributed computing. The main characteristics of
object computing are:

2



(1) objects are computational entities in which data and
procedures are bundled together internally and hidden from
external access and view, and

(2) communication with objects is accomplished through messages
which invoke or request specific object functions using a
well-specified public interface.

In a distributed object computing environment, the application
systems would be comprised of objects that have public interfaces,
with their private implementations hidden from external view.
Uniform service interfaces called Application Program Interfaces
(APIs) would be established that would go through a "middleware"
service that allows an application to locate, transparently across
the network, and to interact with another application or service.

The advantage of using the middleware concept is that the
applications can be logically separate from the underlying network
protocols. The applications can potentially change over time or be
moved to different machines. The many client programs would not
need to know about the change - only the registration facility in
the middleware would need to know.

1.4 The Role of the Object Request Broker

The Object Management Group (OMG) developed a reference model
architecture called Object Management Architecture (OMA) [SOLE90]

.

The primary goals of OMA are to solve the problem of improving
productivity by reusing existing software components, by providing
transparency over heterogeneous networks, and by allowing specific
tasks to be delegated to specific machines. The Object Request
Broker is the communications middleware of the OMG architecture.
It provides an infrastructure that allows objects to communicate
with each other independent of the specific platforms and
techniques used to implement the addressed objects.

1.5 The Outline of This Report

Section 2 of this report will provide a description of the
Common Object Request Broker Architecture (CORBA) and a review of
selected CORBA products. Section 3 provides an overview of POBs
and a review of POB products. Section 4 describes how to run CORBA
and the interoperability test scenarios to test the operations of
two CORBA products. Section 5 describes the interoperability
experiments with CORBA that were used to access three POB systems.
Section 6 summaries the results of the interoperability experiments
and provides a short conclusion.

3



2 . 0 OVERVIEW OF CORBA AND CORBA PRODUCTS

The object request broker (ORB) acting as the infrastructure,
or as the back-bone within the Object Management Architecture
(OMA) , is now known as the Common Object Request Broker
Architecture (CORBA) [OMG 91] . The purpose of the ORB is to
provide the mechanisms by which objects transparently make and
receive requests and responses. Thus, the ORB provides
interoperability between applications on different machines in
heterogeneous distributed environment, and seamlessly interconnects
multiple object systems.

2.1 What is CORBA?

The basic working of an ORB consists of a client, an ORB
demon, and object implementations^ which from this point on will be
referred to as servers. As shown in Figure 2.1 the client issues
a request for an object implementation. The object implementation
is the provider of service. The request is routed and processed
via the ORB. The ORB, searches through an implementation
repository, finds and activates the specific server object to be
executed, and then launches the server . Invocation of a server
involves specifying the object to be invoked, the operation to be
performed, and parameters to be given to the operation or returned
from it. The ORB demon manages the control transfer and data
transfer to the server and back to the client. In the event that
the ORB cannot complete the invocation, an error response or
exception is provided.

Figure 2 . 1 OMG ORB Model

^Object Implementation was one of the terminologies used in
the earlier OMA document. Currently, other terms such as "methods"
or "method server" or simply "server" are all being used.

4



The object implementations or servers must be defined to the
ORB through well - specif ied interfaces using the Interface
Definition Language (IDL) . This language provides detailed
information about the operations permitted, the arguments each such
operation expects, what it returns and what happens when errors
occur. The IDL is not a programming language, however, it provides
the mappings to many programming languages, the first of those are
C and C++

.

The structure of the ORB interfaces are shown in Figure 2.2
In order for the ORB to locate the appropriate server, one must
first define the server objects in IDL by specifying their
interfaces. The object interface definitions are compiled by the
IDL compiler resulting in the generation of the client stubs and
server skeletons. Client stubs and server skeletons are terms used
by the OMG to refer to fragments of code to be inserted with the
application program code to be written by the application
developer. The server name must also be registered in the ORB'S
interface repository.

Figure 2.2 Structure of ORB Interfaces

2.2 Features of Object Request Broker

Different ORBs may make different implementation choices, thus
providing a set of services to clients and implementations of
objects that have different properties and qualities. The
specification of CORBA is now progressed to version 2.0 which
promises to support cross -ORB interoperability. The CORBA 1.2
specification calls for the following generic features to be
supported to some degree:

5



o Name Services. Object names are used to locate the method to
perform the requested operation.

o Request Dispatch. This function determines which method to
invoke

.

o Parameter Encoding. The ORB must have facilities to convey
the local representation of parameter values in the
requester's environment to equivalent representations in the
recipient's environment, (i.e., from the client side to the
server side)

.

o Delivery. Requests and results must be delivered to the
proper location.

o Synchronization. Synchronization primarily deals with
handling the parallelism of the object making and processing
a request. Possible synchronization models include:
asynchronous or one-way request (request with no response)

,

synchronous (request where the client awaits the reply) , and
deferred synchronous (request sent without waiting for reply,
requestor claims the response later) . The CORBA specification
also allows for a client to send multiple requests without
waiting for the operations to finish.

o Activation. Activation is the housekeeping processing
necessary before a method can be invoked. Activation and
deactivation of objects is needed to obtain the object state
for use when the object is accessed, and to save the state
when it no longer needs to be accessed. When there are
multiple objects or implementations active, rules or
activation policies must be defined. Different ORB products
may have different activation policies.

o Exception Handling. The ORB must be able to handle various
failures in the process of object location, and to coordinate
recovery housekeeping activities.

o Security Mechanism. The ORB must provide security enforcement
mechanisms that support security policies. Also the ORB must
have protection mechanisms assuring the integrity of data
being conveyed, and assuring that the data being communicated
are accessible only to authorized parties.

2.3 Third Party CORBA- compliant Products

The above are features specified in the OMG's specification
for CORBA 1.2. There were several implementations of CORBA
products which claimed to be OMG's CORBA 1.2 compliant [OMG94]

.

6



The CORBA products directory published in March 1994 listed 19
vendors offering CORBA products.

The following three CORBA products^ were installed and
exercised at the Computer Systems Laboratory at NIST.

o Application Control Architecture System (ACAS) developed by
Digital Equipment Corporation (DEC) , is one of the oldest
CORBA products. DEC has already replaced ACAS with a newer
product called Object Request Broker. The ACAS product
evaluated at CSL was the middleware that came with the Data
Integration and Synergistic Collateral Usage Study (DISCUS)
package [FLEI93]

.

o Orbeline [POST94] , developed by PostModern Computing
Technologies, Inc. contains all of the features described
above plus a host of other features such as fault - tolerance

,

failure recovery and event handling.

o Orbix, developed by IONA Technologies Ltd. , is a full
implementation of the OMG's CORBA. In addition, ORBIX offers
support for C++ programming language binding.

^The commercial products and companies identified in this
report are for purposes of specific illustration. Such
identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply
that the products identified are necessarily the best available for
this purpose.

7



OVERVIEW OF FOB SYSTEMS AND FOB FRODUCTS3 .

Persistent object base systems, generally referred to as
Object Database Management Systems (ODBMSs) , are database systems
that provide storage and retrieval of data not necessarily kept in
a tabular form using rows and columns. A POB system typically
integrates database capabilities with object-oriented programming
language capabilities.

3 . 1 Types of FOB Systems

There is currently no consensus on a specific set of features
that can be identified as POB systems. There are many articles
found today in the open literature which identify some of the
existing and ongoing work in the definition of features needed to
support POB systems [DABR90, 00DB91, CATT94] . In general, the POB
systems combine the capabilities of conventional database
management systems and object-oriented programming languages such
as Smalltalk.

A review of the POB products in the marketplace reveals a wide
range of systems that might be called POB systems. In this report,
three types of POB systems are distinguished:

- persistent programming language systems

- object database management systems with object data model

- extended relational systems

3.2 Fersistent Frogramming Language Systems

with most programming languages, data in the program's address
space is transient, i.e., it exists only as long as the program
executes. To make data persist beyond the lifetime of a single
program execution the programmer must include explicit instructions
to save the data on stable storage, such as in a file on disk or by
using a database management system as an intermediary. At a later
time, when the data needs to be reused, the programmer must include
explicit instructions to fetch the data from stable storage or from
the database.

The design of persistent programming language systems are
motivated by the requirement that any instance of any programming
language data type should be allowed to persist. Some of these
systems also incorporated query facilities that allowed the
programmer to fetch sets of data objects from the databases, in
some cases following pointer-based data relationships, in one
access. Also, by allowing database operations to be bracketed in
transactions, they support the controlled sharing' of concurrently
accessed data objects.

8



An example of such a persistent programming language system is
Open OODB by Texas Instruments.

3.3 Object Database Management Systems

The ODBMS combines capabilities of conventional DBMS and
object-oriented programming technology. These types of systems
differ from relational DBMS as they generally support all of the
object model characteristics, such as subclassing, type
extensibility, complex objects, object identification, etc. ODBMSs
also support such concepts as inheritance, mechanisms to maintain
multiple versions of objects, and extensive predefined object class
libraries

.

These types of systems possess many of the facilities which
are currently in the relational DBMS model. These facilities
include the basic database engine that handles the basic DBMS
operations involving defining, storing, retrieving and updating
data, and also includes a query language facility, usually some
form of SQL facility. Other object features supported generally
consist of an object class or type definition facility, built-in
application programming interfaces (APIs) for defining the object
methods that form part of the class definitions, an object class
library, and a set of tools. An example of ODBMS is MATISSE by
ADB, Inc.

3.4 Extended Relational DBMSs

Recently, a new class of DBMS emerged which attempts to
combine features from an ODBMS with a relational DBMS. These types
of systems are referred to as obj ect/relational database management
system (ORDBMS) [BOWE95] . ORDBMSs are based on the idea of full
relational query support, with the addition of objects (abstract
data types) as additional data structure concepts that can be used
to generalize relational tables and types used within them.
Relational products are clearly not good at complex data, and
ORDBMS is build based upon the need to support complex data.
Complex data includes video, audio, compound documents, animation,
arrays, geographic data, and composite objects such as a CAD
drawing. An example of ORDBMS is UNISQL by UNISQL Inc.

9



4 . CORBA TEST SCENARIOS

In this section, we describe how a typical CORBA product can
be setup and run. The evaluation of the two CORBA products
revealed that there are fundamental differences in terms of how a
CORBA product selects its server . The server activation method of
ACAS and ORBIX are described here along with several generic test
scenarios

.

4 . 1 CORBA Setup

Most CORBA 1.1 products have very similar set up procedures.
The description below uses ORBIX with a C++ language binding of the
IDL.

Figure 4.1 describes the ORBIX application architecture. The
user first writes the IDL statements, referred to in the Figure as
Appl . idl . The Appl . idl statements are compiled by the ORBIX- IDL
compiler . The result of the IDL compiler consists of three
distinct files generated by the ORBIX:

- The application's header file, Appl.hh

- The client stub program, Apple. cc

- The server skeleton program, ApplS.ee

Figure 4.1 ORBIX Application Architecture

10



The user needs to write the following:

The object implementation or method's class definition as
Appl_i . h

.

The method code as Appl_i . cc

.

The server application code as Appl_Serv.cc

The client application code as Appl_Client . cc

All of these programs are compiled by the C++ compiler as the
client object program and as the server object program. These
programs are ready to be executed when the client receives the
appropriate request and invokes an object method server.

4.2 Registration of Server and Run Application

When the compiled client application code and the compiled
server code are ready, the server name must be registered with the
CORBA. The server name must be the interface name as defined in
the IDL statements. This is accomplished by issuing the
registration command of the CORBA product. The server name is now
included in the interface repository of the CORBA.

To run the application, the client program is executed which
will make a request for a particular server method. The needed
server is activated by the CORBA based upon the product's
activation policy. The server may be resident on the same machine
with the client or it could be resident on a remote machine. If
the server is on a remote machine, that remote machine must also
have a copy of the CORBA demon. The server is launched and the
result or exception message is returned to the client.

4 . 3 Server Activation Policies

Several experiments were conducted using two different CORBA
products. The scenarios were designed to test server activation
policies when the client calls a particular method server. The
calls for the test were static but it was determined that the
behavior would be the same if the calls were dynamically
constructed

.

The test scenarios include the following variables:

single machine and multiple machines,

server registered/not registered with the ORB product,

server in a state of active/not active.

11



4.3.1 Server Activation Policy of ACAS

The activation policy of ACAS is depicted in Figure 4.2. The
client first issues a request for a method server. ACAS will then
check whether this method server is active. Any server must be in
a state of either active or deactive. If the server is active,
then it is selected and invoked. If the local server not active,
ACAS will go to a remote node to check whether there is an active
requested method server available. If yes, then the remote server
is selected and invoked. If the remote server is not active, ACAS
will return to the caller node to check whether the method server
is registered in its interface repository. If yes, then it will
launch (activate and invoke) the server . If this server name is
not registered, than it will raise an exception message back to the
calling client.

Figure 4.2 Activation Policy of ACAS

4.3.2 Activation Policy of ORBIX

The Activation policy of ORBIX is depicted in Figure 4.3. The
client issues a request for a method server. ORBIX first checks
whether the needed server is registered in its interface
repository. If yes, then it will activate the method server by
either invoking, if the method server is in active state, or, if
the method server is deactivated, by launching the server for
execution. If the needed server is not registered in the local
node, it will go to find a remote node where this method server is
registered to be invoked and launched. If none is registered, it
will raise an exception message back to the calling client.

12



Figure 4.3 Activation Policy of ORBIX

4.4 Test Scenarios

In order to determine the activation policy with different
variabilities, several test scenarios were designed and exercised.
These tests were defined below and also illustrated with diagrams.
The tests were coded and ran individually with the two CORBA
products, ORBIX and ACAS . The only exception is in Scenario 4
where both ORB products participated in the same test. The test
results from ACAS and ORBIX are discussed in Section 4.5.

Scenario 1: Client, Server and the ORB demon all on the same
machine. (See Figure 4.4)

1.1: server registered and active
1.2: server registered but not active
1.3: server not registered

Figure 4.4 Single Machine Resident

13



Scenario 2: Client on Machine 1, Server and ORB demon on Machine 2.
(See Figure 4.5)

2.1: server registered and active
2.2: server registered but not active
2.3: server not registered

Figure 4 . 5 Two Machines

Scenario 3: Peer-to-peer ORB connection (same ORB on different
machines)

client, server, and demon on Machine 1,

client, server, and demon on Machine 2.
(See Figure 4.6)

3.1: Machine 1 server registered
3.2: Machine 1 server registered but not active
3.3: Machine 1 server not registered, go to machine 2

Figure 4.6 Peer to Peer

14



Scenario 4: Multiple ORB to ORB connections using different ORB
products. (See Figure 4.7)

4.1 Server from one ORB becomes the client to another ORB
through a gateway.

Figure 4 . 7 Gateway to Foreign ORB

4.5 Test Results for ACAS and ORBIX

Scenario 1: Client, server and ORB programs running on Machine 1.

1.1: server registered and active

ACAS Result: The matched server is invoked and executed.
ORBIX Result: The matched server is invoked and executed.

1.2: server registered but not active

ACAS Result: The matched server is first launched and then
executed

.

ORBIX Result: The matched server is first launched and then
executed

.

1.3: server not registered

ACAS Result: The matched server is not found.
ORBIX Result: The matched server is not found.

15



Scenario 2: Client on Machine 1, Server and demon on Machine 2

2.1: server registered and active

ACAS Result: The registered server is invoked and executed.
ORBIX Result: The registered server is invoked and executed.

2.2: server registered but not active

ACAS Result: The client fails to bind and an error message
resulted

.

ORBIX Result: The client will find the registered server,
which is then launched and executed.

2.3: server not registered

ACAS result: The server is not found.
ORBIX result: The server is not found.

Scenario 3: Peer-to-peer ORB connection with two (but same) ORBs
running on two separate machines, either through the same sub-
network or remotely to an external network.

3.1: Machine 1 server registered locally and active

ACAS and ORBIX Results: The local server is found and the
server is invoked and executed.

3.2: Machine 1 server registered locally but not active

ACAS result: When the local server was found not active, ACAS
will go to the remote server to check whether the remote
server is active. If found to be active, the remote server is
invoked and executed and results returned back to Machine 1.

If the remote server is found not active, ACAS will go back to
Machine I's server which will be launched and executed.

ORBIX result: The local server, when found not active, will be
automatically launched and executed.

3.3: Machine 1 server not registered (go to Machine 2)

ACAS result: If server not registered locally, ACAS will not
go to remote Machine 2, but will report a server not found
error message.

ORBIX result: If server not registered locally, ORBIX will go
to remote Machine 2 to find out whether the needed server is
registered remotely. If yes, remote server will be launched
and executed and results will be sent back to Machine 1. If
the remote server is also not registered, than an error
message will be issued.

16



Scenario 4: Multiple ORBs communication

4.1 Server from one ORB becomes the client to another ORB ' s server

Result: ACAS client sends a message to ACAS server, but the
ACAS server is the client for ORBIX, who in turn invokes a

matched ORBIX method server . This ORBIX method server could
be local or remote to another ORBIX demon.



CORBA WITH PERSISTENT OBJECT BASE SYSTEMS5 .

This section describes an open, distributed, object-based
architecture where plug-and-play of software components can be
achieved. Some of the software components which are used for this
interoperability experiment are POB systems. The common theme with
POB systems is that these systems can be modeled as large-grain,
reusable data servers. As data server objects, there is a
separation of an object's interface and its implementation. The
objects communicate with each other through their interfaces. The
interface of an object consists of the functions and data that have
been declared for that object. In the case of CORBA, the interface
definitions are expressed using IDL statements. The only way to
find out something about an object or to ask an object to perform
some action is through its interface. On the other hand, an
object's implementation is its specific way of carrying out
requests to its interface.

5 . 1 CORBA and POB Architecture

The "open" distributed object-based architecture, as defined
for this project, consisted of the following components:

o software which acts as clients (or front-ends) in the form of
user interface components,

o a number of persistent database software packages or other
form of data sources (or back-ends) , in the form of object
servers, relational or object DBMSs, legacy systems, and
files

.

o middle-ware which consists of a CORBA- compliant product that
acts as the "glue" for interoperability among different
clients and different distributed object servers.

The hardware and software environment for the interoperability
demonstration scenarios are presented in Appendix A of this report.
The key software components used consisted of two CORBA products:
ACAS from DEC and ORBIX from Iona, and three POB systems: Open OODB
from Texas Instruments, MATISSE from ADB, and ORACLE from ORACLE.

A set of demonstration script were developed using a simple
database application. The sample application, called the "Movie"
database, was a subset of the movie data collected by Dr. Gio
Wiederhold (formerly of ARPA) , The schema of the database is
described in Appendix B.

The demonstration scripts can be executed in the World Wide
Web using either Mosaic or Netscape. The current demonstration
uses the graphical user interface of a Netscape client with Common
Gateway Interface (CGI) invoked programs to the various

18



interoperability test scenarios.^

In the investigation of how CORBA can be integrated with FOB
systems, it was discovered that such integration depends on how
"open" the FOB modules are, and how FOB modules can be "wrapped."
For example, CORBA can be considered as an application program of
a FOB, or a FOB can be considered as a method server for CORBA.
Some FOB systems are designed to be "open" meaning that they expose
their internal interfaces so that connecting CORBA directly to
these interfaces is possible. On the other hand, some monolithic
FOB systems are "not open" and thus CORBA can only be connected
through their external or public interfaces.

The primary goal of choosing these different test scenarios
was to examine what happened when middleware was in various
locations in an open distributed object-based architecture. No
specific performance type evaluations were conducted for the
different test configurations.

5.2 Test Scenarios of CORBA Accessing FOB Systems

The interoperability test experiments defined here consists of
the following scenarios:

- Scenario 1

:

- Scenario 2

:

- Scenario 3

:

- Scenario 4

:

- Scenario 5

:

- Scenario 6

:

- Scenario 7

:

CORBA to access Exodus (kernel of Open OODB)
CORBA between Exodus client and Exodus server
CORBA to access TI OODB
CORBA to access MATISSE
CORBA to access ORACLE
CORBA accessing a distributed processing
server which in turn accesses 3 FOBS
CORBA accessing multiple FOBs

.

The first three scenarios were designed to show how CORBA can
be placed between three different locations by dividing Open OODB
into various open modules. Scenarios 4 and 5 were designed to show
how to wrap commercially available DBMS with legacy or existing
databases. Scenarios 6 and 7 were designed to demonstrate CORBA
accessing multiple FOB systems. Each of the scenarios will be
described and illustrated with diagrams.

The Open OODB developed by Texas Instruments is a prototype
FOB whose architecture is unique in that it consists of a

functional reference model defining a collection of loosely-coupled
software components [WELL91] . All of the software components are
"open" meaning that the components have public, well -documented

^ In order to exercise the CORBA test demonstration, the
server needs to be activated on first use. Therefore, the URL for
the demonstration is not published here.

19



interfaces and thus the components can be changed or replaced to
vary functionality or improve performance. The Open OODB can be
viewed as a database toolkit consisting of a number of software
components that each have an exposed application programming
interface and an encapsulated method procedure. For every
application, a different set of components can be assembled for
plugging and playing.

The kernel of Open OODB uses the storage manager called Exodus
which was developed at the University of Wisconsin by Michael Carey
and David DeWitt [CARESS] . Exodus was designed to be an extensible
database system such that user -added extensions can be supported.
The architecture of Exodus, itself, consists of a general-purpose
access method storage manager which can be considered as server,
and a client program providing query capabilities.

Scenario 1 is illustrated in Figure 5.1. In this scenario the
Exodus architecture itself consists of an Exodus client and an
Exodus server . Both Exodus client and Exodus server are considered
as a single data source. The CORBA is placed on top the Exodus
client and the Exodus client's interface is defined in the IDL
statements. After the IDL statements are compiled, a client stub
program and a server skeleton program are generated. The
application code for the CORBA client, which includes the generated
client stub, is than written. The application code for the CORBA
method server, which includes the generated server skeleton, is
also written. Our demonstration script consisted of the client
requesting data stored in an Exodus database.

Application Client

Method Server

Exodus Client

Exodus Server

EXODUS

Figure 5 . 1 CORBA to access Exodus

20



Scenario 2 is illustrated in Figure 5.2. In this scenario the
Exodus database software is split into two separate software
components. The Exodus server's interface is defined in the IDL
statement to be called by the CORBA's method server. The CORBA's
application client program accesses the Exodus client and together
they act as CORBA's client program. This scenario is possible
because Exodus exposes its server interface to the user.

Figure 5 . 2 CORBA between Exodus client and Exodus server

Scenario 3 is illustrated in Figure 5.3. In this scenario the
Open OODB is considered to be a large-grain, single data source,
although the Open OODB itself consists of multiple software
modules, including the Exodus client and the Exodus server. Our
demonstration script consisted of the client requesting data stored
in the Open OODB database, and a browse commend requesting multiple
data records from the Open OODB database.

Figure 5 . 3 CORBA to access open OODB

21



MATISSE is an object database management system commercially
available from ADB, Inc. Although MATISSE'S architecture has
client and server modules, the only interfaces exposed to the users
are the MATISSE commands. Therefore, MATISSE needs to be treated
as a large -grain data source to be accessed by the CORBA method
server

.

Scenario 4 is illustrated in Figure 5.4. In this scenarios
the MATISSE database management system and the populated database
are considered to be a single data source to be accessed by the
CORBA' s method server. Our demonstration script consisted of a
retrieval operation and a browse operation.

Figure 5 . 4 CORBA to access MATISSEE

ORACLE is a relational database management system commercially
available from the ORACLE Corporation. The ORACLE database and the
SQL retrieval application were pre-existing. This test scenario
was designed to investigate how legacy software can be "wrapped."
Wrapping services act as translators between legacy data sources
and other software components. The purpose for developing wrappers
is to be able to re-use pre-existing software without having to re-
code. In essence, a wrapping service takes a data source and
modifies its interface, its data, and/or its behavior so that it is
accessible by the outside world, which in our case will be the
CORBA method server

.

22



Scenario 5 is illustrated in Figure 5.5. In this scenario,
the CORBA's method server program provides the code for "wrapping"
the ORACLE DBMS. The wrapping program simply transforms the
interface of ORACLE, which in our demonstration script, consisted
of SQL retrieval commands to the CORBA's IDL interface statements.
In general, the transformation process are translating between
different data formats and also between different metadata formats
at the machine or file level.

Figure 5.5 CORBA to access ORACLE

To experiment with CORBA interoperability with heterogeneous
and multiple data sources, we designed two test scenarios: CORBA
accessing a distributed processing server which in turn access the
multiple FOB systems, and CORBA accessing multiple FOB systems
individually each having a its own method server. Those multiple
FOB systems can be on the same machine or can be remotely accessed.

The test database consisted of a uniform movie database schema
(see Appendix B) , but the data values populated in different FOBs
were all distinct. This permitted the test user to distinguish
where the data record was retrieved from, even if the user did not
know the location of the data to be retrieved at the start of the
retrieval

.

23



The test architecture consisted of client application programs
operating in a graphic user interface environment such as Mosaic or
Netscape. The client programs accepted user commands in simple
SQL- like query language. The request went to CORBA as the
middleware to access method servers which could accommodate
wrappers for heterogenous data sources.

Scenario 6 is illustrated in Figure 5.6. In this scenario,
all three FOB systems: Open OODB, MATISSE, and ORACLE were accessed
from the same CORBA 's method server. This method server contains
software which contains location information so that the query can
be analyzed and sent to invoke the appropriate FOB systems. These
three FOB systems could be in the same machine, or they may even be
residing on separate machines which could be geographically
dispersed. The CORBA itself could be residing in one machine or
could be going through peer-to-peer CORBA interconnection in
activating the particular CORBA method server such as shown in
Figure 5.6.

Figure 5 . 6 CORBA to access multiple POBs

24



Scenario 7 is illustrated in Figure 5.7. In this scenario,
there needs to be multiple CORBA demons, one for each FOB. Each
FOB had its own method server program which functioned as a wrapper
to its own database interface system. The user needed to know the
location of the data and had to tell the application client program
which FOB to access for the retrieval or browse of specific data.

User A User B

Figure 5.7 CORBA accessing multiple POBs

25



CONCLUSIONS6 .

In this report, we have reviewed the capabilities of object
request brokers through actual tests and case studies. We explored
a variety of configurations to demonstrate interoperability among
distributed, heterogeneous application systems.

The results obtained from these interoperability scenarios
reflect the following issues:

Distributed Object Computing Environment

Using "objects" and OMG's CORBA technology does provide a
tractable way of organizing the complexity of modern computing
systems and also serves as a way to simplify distributed
processing. In the 1970' s, a typical computing installation
was a centralized computing resource that housed data and
applications accessed by users and applications connected via
direct telecommunications links. Today, systems are designed
under the client/server paradigm consisting of data resources
on servers and client applications residing on local
processors that access the server-based data across a local or
wide area network. The CORBA technology, sitting between the
client and the servers, serves as middleware which permits an
application to send parameters and data to, and receive
results from, the server process. The job of the object
request broker is to manage the interaction between client and
server objects. This loose coupling of client and server
objects through the use of CORBA supports object reuse and
distributed processing architectures.

Interoperable Objects

There are two constraints that must be met for an object to be
viewed as "interoperable." The first constraint is that the
nature of object technology which calls for a separation of
the interface to the object from the implementation of the
object method (s) . The second constraint is that the object
provides the code and the data in a form that can be accessed
by multiple processors in a heterogeneous environment without
regard to physical location. This interoperability mechanism
is accomplished through an interface definition language (IDL)
which is a declarative language for writing object interfaces
only. The IDL expression includes ways of specifying the name
of the object, the input parameters and the result types. A
mapping between the IDL and whatever programming language is
used to implement the client and server objects must be
provided. The client implementation language need not be the
same as the server implementation language as long as the IDL
mapping to both is available. This facilitates the
interoperation between client and server applications which

26



can be across programming language boundaries and ultimately
across platform boundaries.

CORBA Prospects

Since the CORBA technology is maturing rapidly, the question
most frequently asked is "is it a standard?" Within the OMG
consortium CORBA is a standard description of an architecture,
but it is not a standard for implementation. This does allow
implementations to vary in their details. The result is that
each implementation of CORBA is a proprietary product.
Version 2.0 of the CORBA promises interoperability with
different ORB products. CORBA, as demonstrated by these
interoperability experiments, can be viewed as a viable
technology that enables cross platform, cross programming
language, and cross operating system interoperability.

The CORBA architecture appears to provide a useful environment
for building distributed application systems. The interoperability
experiments performed in this project revealed that, with the use
of CORBA, persistent object base systems and legacy systems can be
wrapped which allows objects written in any language to be shared
and reused. This allows objects based on various languages and
platforms to be utilized under the plug-and-play concpet of
interoperablility

.

27



REFERENCES

[BOWE95]

[CATT94]

[CARES 8]

[DABR90]

[F0NG91]

[FONG95]

[FLEI93]

[0MG91]

[0MG94]

[00DB91]

[POST94]

[SOLE90]

The Bowen Group Inc . , UniSOL's Obi ect-Relational Data
Management Technology . Enterprise Reengineering Product
Profiles, Available from The Bowen Group Inc. 6168
Evergreen Way, Ferndale, WA 98248-9686.

Cattell R.G.G. (Editor) The Object Database Standards:
ODMG - 93 . Morgan Kaufmann Publishers, 1994.

Carey, M. J. et al .

,

The EXODUS Extensible DBMS Project:
An Overview , Computer Sciences Technical Report #808,
University of Wisconsin, Madison, November 1988.

Dabrowski, C., Fong, E., and Yang, D. , Object Database
Management Systems: Concepts and Features . NIST Special
Publication 500-179, April 1990.

Fong, Elizabeth; Sheppard, Charles; and Harvill, Kathryn;
Guide to Design, Implementation and Management of
Distributed Databases . NIST Special Publication 500-185,
February 1991.

Fong, Elizabeth, Persistent Object Base System Testing
and Evaluation , NISTIR 5636, April 1995.

Fleisher, Jeff, "The DISCUS Initiative" Viewgraph
presentation at the DISCUS Symposium, August 1994.

Object Management Group, The Common Object Request
Broker: Architecture and Specification, OMG Document
Number 91.12.1, Revision 1.1, December 1991.

Object Management Group, CORBA products Directory,
Available from OMG, Inc. 492 Old Connecticut Path,
Framingham, MA 01701, March 1994.

Object-Oriented Database Task Group, Final Report of
X3/SPARC/DBSSG/OODBTG, Available from E. Fong, at
efong@nist.gov September 1991.

PostModern Computing Technologies, Inc., ORBeline User's
Guide, available from PostModern Computing Technologies,
Inc., 1897 Landings Drive, Mountain View, CA 94043, USA.

Soley, Richard M. Object Management Architecture Guide
1.0 , OMG TC Document 90.9.1, Available from OMG, Inc. 492
Old Connecticut Path, Framingham, MA 01701, Nov. 1990.

28



[WELL91] Wells,
^

David, DARPA Open Object-Oriented Database
Prelimina iry Airchitectuire Specification . Version 5 . 0 Texas
Instruments Inc. Dallas Texas September 4, 1991 .

29



APPENDIX A

ENVIRONMENT FOR INTEROPERABILITY EXPERIMENTS

The interoperability demonstration scenarios are based on the
following environment. Certain commercial software products and
vendors are identified in this report for purposes of specific
illustration. Such identification does not imply recommendation or
endorsement by NIST, nor does it imply that the products identified
are necessarily the best ones available for the purpose.

CORBA Products:

- ACA_Services (DEC)
- ORBIX (Iona)

Persistent Object Base Products:

- Open OODB (Texas Instruments)
- MATISSE (ADB)
- ORACLE (ORACLE)

Host Computers and Platforms:

- speckle.ncsl.nist.gov (Sun/Unix)
- Kirk.ncsl.nist.gov (Sun/Unix)
- brew.cme.nist.gov (Sun/Unix)
- titan.cme.nist.gov (Sun/Unix)

User Interface Tools:

- Mosaic
- Netscape
- Xwin/Openwin : command language

Programming Languages

:

- C/C++
- Interface Definition Language (CORBA IDL)
- APIs from different products
- Hypertext Markup Language (HTML)

30



APPENDIX B

THE MOVIE APPLICATION

The sample application schema used for the CORBA demonstration
scripts is from the data collected by Dr. Gio Wiederhold called the
"Movie" database (See diagram)

.

TI Open OODB Movie Classes

Legend:

Inheritance

Attribute

31



m






