
Distributed Communication Methods
and Role*Based Access Controi

for Use in Heaith Care Applications

Joseph Poole
John Barkley

Kevin Brady
Anthony Cincotta

Wayne Salamon

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.U56

NO. 5820

1996

NIST

if

1

•t

r

i
I

i

j

•?

f

Distributed Communication Methods
and Roie-Based Access Controi

for Use in Health Care Appiications

Joseph Poole
John Barkley

Kevin Brady
Anthony Cincotta

Wayne Salamon

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

April 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Abstract

The use of software in the health care industry is becoming of increasing importance.

One of the major roadblocks to efficient health care is the fact that important information is

distributed across many sites. These sites can be located across a significant area. The problem

is to provide a uniform mechanism to integrate this information. This paper documents the

results of an investigation into the suitability of several different distributed access mechanisms.

Five methods were examined: the Common Object Request Broker (CORBA), Object Linking

and Embedding (OLE), remote procedure call (RPC), remote database access (SQL/RDA) and

Protocol Independent Interfaces (PH, we specifically examined sockets). These mechanisms

were compared with regard for use in health care applications. In particular, the following

capabilities were compared:

• Ease of use by the developer

• Class of applications for which the technology is particularly effective in developing

• Security capabilities

• Protocols utilized

• Performance of the transport mechanism.

A second goal was to explore the use of role-based access control (RBAC). RBAC is a

security mechanism that is more flexible than Mandatory Access Control, but easier to use than

just plain access control lists. Every user is assigned to one or more roles. Each role can perform

some operations but not others.

A demonstration application was constructed that used the distributed communication

methods to implement a patient record database. This report discusses how these mechanisms

were used in the demonstration project and the results found. Not unsurprisingly, we discovered

that each of the mechanisms were effective for different purposes. These findings are discussed

in detail in this report. One component of the demonstration project also implemented role-based

access control and is detailed in this report.

2

Keywords : access control, CORBA, distributed, health care, OLE, PE, RBAC, role-based, RPC,

security, SQL/RDA, transport

Trademarks
Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Microsoft and Windows are registered trademarks of Microsoft Corporation. Microsoft Visual

Basic is a trademark of Microsoft Corporation. Borland is a registered trademark of Borland

Eitemational, Eic. Unix is a registered trademark of Novell, Eic.

Certain commercial products are identifled in this report. Such identification does

not imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the product, publication or service identified is

necessarily the best avaUable for the purpose.

3

Acronyms

API - Application Program Interface

BOA - Basic Object Adapter

CDR - Common Data Representation

COM - Component/Common Object Model

CORBA - Common Object Request Broker

DAC - Discretionary Access Control

DCE - Distributed Computing Environment

GUED - Globally Unique Identifier

HTML - Hyper-text Markup Language

IDL - Interface Definition Language

nOP - Internet Inter-ORB Bridges

MAC - Mandatory Access Control

NCS - Network Computing System

NDR - Network Data Representation

NIS - Network Information Service

OA - Object Adapter

ODBC - Open Database Connectivity

OLE - Object Linking and Embedding

ONC - Open Network Computing

ORB - Object Request Broker

OSF - Open Software Foundation

Pn - Portable Independent Interfaces

POSIX - Portable Operating System Interface for Computer Environments

RBAC - Role-based Access Control

RDA - Remote Database Access

RPC - Remote Procedure Call

RPCL - Remote Procedure Call Language

TCP/IP - Transmission and Control Protocol / Internet Protocol

XDR - External Data Representation

4

Table of Contents

1. INTRODUCTION 7

2. TECHNICAL OVERVIEW OF TRANSPORT MECHANISMS 8

2.1 COREA 8

2.2 OLE 12

2.3 SQL/RDA 15

2.4 Sockets 19

2.5 RPC 21

3. TECHNICAL OVERVIEW OF ROLE BASED ACCESS CONTROL 24

3.1 Implementing Role Based Access Control Using Object Technology 24

4. DEMONSTRATION APPLICATIONS 30

4.1 POSIX Demo 33

4.1.1 Operation of the server object methods 35

4.1.2 Role-Based Access Control in the Server 35

4.2 The PC Demo 37

4.2.1 OLE Objects Used in the Viewer 37

4.3 Other Distributed Communication Methods 40

5. CONCLUSIONS 41

6.

APPENDIX A - CODE FOR ROLE-BASED ACCESS CONTROL USING OBJECT TECHNOLOGY43

7. APPENDIX B - IDL DESCRIPTION OF PATIENT RECORD OBJECT 49

8. GLOSSARY 56

9.

REFERENCES, .58

Table of Figures

Figure 1. CORBA Block Diagram 9

Figure 2. Components of OLE and COM 13

Figure 3. Illustration of Multi-vendor Database Environment 17

Figure 4. SQL/RDA using an API 18

Figure 5. Source Code for Writing to a Socket 20

Figure 6. RPC Function Call over a Network 22

Figure 7. Implementing RBAC with Layered Objects 25

Figure 8. Source Code for RBAC Example 28

Figure 9. Patient Record Database Object Entity Relationships 32

Figure 10. Block Diagram of Distributed Health Care Project 32

Figure 1 1. PC Demonstration Application Block Diagram 38

Figure 12. Source Code to link OLE COM Object 39

6

1. Introduction

Software is becoming of increasing importance in many industries, including the health

care industry. An important characteristic of health care applications is that the data can be

distributed across a wide area. Creating a comprehensive patient record can involve collecting

information from many widely dispersed host machines. There are concerns about how fast large

medical images can be transferred. There are also issues of how secure the data is when being

transferred over a private network.

The purpose of this report is to examine different transport mechanisms and to evaluate

their effectiveness in performing health care related tasks. We selected five different transport

mechanisms to examine: CORBA (Common Object Request Broker), OLE (Object Linking and

Embedding), PE (Portable Independent Interfaces, specifically sockets), SQL/RDA (Remote

Database Access) and RPC (Remote Procedure Call). Each of these were evaluated using five

criteria:

• How easy is it to use the product to develop applications?

• What is the class of applications that the product is best suited to develop?

• What are the security capabilities of the product?

• What network transport protocols can be utilized?

• What is the performance of the transport mechanism?

A demonstration project was created in conjunction with this report. The goal of the

demonstration project was to give an example of how the various communication technologies

can be used in an actual application. We built two viewers of patient record data. One viewer

was a POSIX (Portable Operating System Interface for Computer Environments, see

[IEEE 1003.1c] and others) client that used a Hyper Text Markup Language (HTML) browser to

examine patient data. The HTML browser found its data through a CORBA interface. The

CORBA interface determined where the data of interest was located and queried the remote

database using SQL/RDA.
The second viewer used OLE. Since OLE is not yet a distributed mechanism, this viewer

had a different function. The viewer was used to contain patient data that has already been

collected from other sites into a patient report. Additional documents created by other

applications could also be added to the patient report. For example, an article concerning new

treatment taken from a medical journal could be incorporated. The viewer also had limited

database querying ability. Local databases which support the ODBC (Open Database

Connectivity) protocol could be queried. This viewer was more limited than the previous viewer

in the sense that it had to know the exact host on which the data resided.

In this section of the report we have presented a general project overview. The next

section will review each of the distributed communication methods and apply the evaluation

criteria to each. After that is the section presenting a technical overview of role-based access

control. The following section covers the demonstration project. Finally, we will present our

conclusions.

7

2. Technical Overview of Transport Mechanisms

2.1 CORBA
CORBA, the Common Object Request Broker, provides integration of object systems

within a client/server framework. Clients issue requests for services on objects and the server

performs the requested service. The CORBA server is termed the "object implementation". The

clients are isolated from the object implementation through commonly defined interfaces which

specify the makeup and operations associated with each object and how the operations on the

object are provided. Clients seamlessly access the object implementation wherever that object

implementation may reside, i.e., in a library on the same host as the client, in another process on

the same host as the client, or on a different host from the client where the two hosts are

connected by a network.

IDL is the language used for defining interfaces. IDL is programming language

independent. When IDL is compiled, the output is programming language source code. Using

IDL, the programmer describes the interfaces to the objects. The IDL compiler then takes the

descriptions and outputs language in the target language. This code is a skeleton which the

programmer then fills in. CORBA provides the Dynamic Invocation Interface which allows

applications to generate requests at run-time. Target Language bindings are provided for C, C-M-,

Ada and SmallTalk. The interfaces and methods of the IDL are mapped into programming

constructs of the target language. For example, when DDL is mapped into C-H-, interfaces are

mapped into classes and methods are mapped into functions, which perform the services of the

interface. IDL does not specify how an interface is implemented. IDL does provide detailed

information about the operations permitted on each object, the arguments expected, what is

returned, and what happens when errors occur.

Running an IDL script containing an interface definition through an IDL compiler

generates the code for the client stubs and the implementation skeleton. Every possible operation

on an object defined in the IDL generates a client stub. The client stubs bind the client to the

object, i.e. translate between local and standard data representations, and marshal the method call

parameters to and from the object. The implementation skeleton marshals the method call

parameters to and from the client. The CORBA components and flow of information is shown in

figure 1.

CORBA includes

1. an object model;

2. the Object Request Broker (ORB);

3. an object-oriented Interface Definition Language (IDL);

4. language mappings to the DDL (e.g., C
,
C++, Smalltalk, Ada);

5. the mechanisms necessary for interoperability between clients and object

implementations; and

6. standard services whose interfaces are defined in CORBA IDL.

8

Figure 1 . COREA Block Diagram

These standard services are used by clients and object implementations when interacting

with the CORBA environment. Examples of standard services include the Interface Repository

which permits applications to get information about objects and their methods and Dynamic

Invocation which permits applications to make requests to object implementations without

having to be recompiled.

CORBA is specified in three documents available from the Object Management Group

(OMG): The Common Object Request Broker: Architecture and Specification (CORBA)
[CORBASPEC], CORBAservices, and CORBAfacilities. The CORBA specification includes

the object model, the semantics of the ORB, the DDL, the language mappings, interoperability,

and basic object services. The CORBAservices specification includes additional services useful

for realizing and maintaining objects within a distributed computing environment. These

services include naming, events, lifecycle, persistence, transactions, concurrency, extemalization,

and relationships. The CORBAfacilities specification includes both higher level services

applicable across all application domains and higher level services targeted to specific

application domains, such as manufacturing or healthcare.

As new capabilities are developed, they are added to these documents. Currently under

development in the OMG are the following specifications:

• CORBA Security: a security model and architecture; object services for CORBA
object security designed for application developers, administrators, and CORBA
Security implementers; and interoperability.

• COM/CORBA Interworking: a capability for CORBA to interwork with Microsoft's

COM (Component Object Model) (see section on OLE) including a mapping between

COM and CORBA IDEs, the ability for CORBA clients to use OLE automation

servers, and a protocol bridge.

• Asynchronous Messaging: an object service which would permit CORBA object

requests and responses to take advantage of messaging technology featuring

connectionless communication, message store and forward, message prioritization,

and application triggering based on message events.

9

At a minimum, a COREA implementation includes the ORB, the DDL, the standard

services in the CORBA specification, and one language mapping. Optionally, a CORBA
implementation may include additional language mappings. Interoperability, and additional

services from the CORBAservices specification. Note that all of the components of a CORBA
Implementation need not come from a single producer. In particular, services from the

CORBAservices specification may come from a producer different from the one that provides the

ORB.
CORBA can be viewed as the technological successor to Remote Procedure Calls (RPC).

While CORBA provides a means for implementing applications using the client/server paradigm,

CORBA has the following capabilities not found in RPCs:

• DDL is object oriented.

• Interoperability supports the concept of bridging (i.e., gateways) between different

protocols.

• The Interface Repository Service which in addition to providing a directory service

for interface names, also stores parameter names so that with the Dynamic Invocation

Service, an application can dynamically discover objects and obtain all the

information it needs to invoke those objects.

• An object implementation may be implemented as a library. Thus, for those

applications which require high performance, existing objects and methods can be

recompiled in a non-networked environment and achieve high performance.

• It supports multiple server policies for an object implementation, i.e., shared (all

clients connect to a single server process which implements the methods of the object;

server process exist only when there are clients), persistent (same as shared except

server exists all the time), unshared (each client has its own server process), or server-

per-method (each request creates a server process which terminates upon servicing the

request). RPCs typically support only persistent and unshared server policies.

The purpose of the ORB is to direct object service requests from the client to the server

and return server output values back to the client. The client and object implementation can exist

in the same process, on different processes on the same or different hosts on the same or different

networks. The ORB, based on the availability of the object implementation to the client,

facilitates the transfer of object service requests from the client to the server and the results back

to the client. These ORB facilities: transparency of object location, activation, and

communication, are completely transparent to the client.

Because CORBA supports various types and styles of object implementations, the details

for supporting speciahzed object implementations must be handled by the host of the object

implementation requiring these objects. The OA (Object Adapter) provides an interface for this

purpose. It assists the ORB with providing services such as activation, deactivation, object

creation, and object reference management, such as generation and interpretation of object

references and marshaling. A CORBA implementation may have many OAs. Each object

implementation determines the OA it will use. CORBA expects each ORB to provide a general

OA, the BOA (Basic Object Adapter). The BOA is intended to support objects implemented as

separate programs. It is expected that most object implementations can work with the BOA.

10

The client operates on an object by issuing requests to the object. From the client's

viewpoint, issuing a request is similar to a method invocation in a conventional C-h- program.

Most of the work is done by the client stubs and implementation skeleton generated by the IDL
compiler. The steps associated with processing a client request, assuming the object

implementation has registered its services with the ORB, are:

1 . The object reference is obtained from an API provided by the ORB Interface.

2. The client generates an operation request using the object reference, explicit

parameters, and an implicit invocation context.

3. The client request for an object service is marshaled by the client stub and sent to the

ORB who delivers it to the object adapter.

4. The object implementation operates on the client request.

5. The results from the object implementation are passed through the skeleton which

marshal the results to the ORB. The ORB returns them back to the client.

The object reference, which is opaque, identifies and locates a particular object. A client

of an object has access to the object reference for that object. An object implementation may
also be a client of other objects. To facilitate an efficient means for obtaining the object

reference, the ORB services can make the opaque object reference persistent by converting it to a

string. This string can then be stored and later retrieved and changed back to its object reference.

CORBA provides for interoperability between client and object implementations when

the client and object implementations are located on different hosts connected by a network. This

capability has two dimensions. The ORB provides the means for a client application to locate the

object implementation even if the object implementation migrates to another host. The ORB also

provides the means by which the client application can transmit a request to an object

implementation and receive the response from that object implementation.

There are two protocols which provide interoperability in CORBA: the General Inter-

ORB Protocol (GIOP) and the DCE Common Inter-ORB Protocol (DCE-CIOP). Support for the

GIOP is mandatory for all implementations. The GIOP specifies protocols that are supported by

the TCP/IP protocol suite. The DCE-CIOP is optional and is designed to work within an OSF
DCE environment. In that environment, applications may make use of DCE security and

management services. A CORBA implementation which provides the optional DCE-CIOP must

also provide either the GIOP in addition to the DCE-CIOP or a bridge (CORBA terminology for

gateway) to implementations that provide the GIOP. It is by means of either direct GIOP support

by the DCE-CIOP implementation or this bridge that object systems within a DCE-CIOP
environment can interoperate with object systems in a GIOP environment.

11

2.2 OLE
OLE 2.0 is a set of operating system extensions to Microsoft Windows used to facilitate

application integration. It provides mechanisms that allow various application to exchange data

without the applications having to understand the internals of the other application. The first

version of OLE was much more limited than OLE 2.0; therefore when the report refers to OLE,

OLE 2.0 is implied unless otherwise specified. OLE is intended to support the concept of the

document-centered environment instead of a file-centered one. The user will work with

documents which will invoke the applications required to edit themselves rather than the user

first starting the application, then loading the file to be edited. This will allow the user to group

work together by overall project organization rather than by application.

OLE is based on an object oriented model, so several definitions have to be covered first.

There are many different definitions for object, for example “An encapsulation of data and

services that manipulate that data”[IEEE610], and Grady Booch's “something you can do things

to”[BOOCH94]. Methods are the services that manipulate the data or provide access to the

object's data. The signature of a method is the data type of the method's return value and its

parameters.

OLE is built on the Component Object Model (COM), which provides the basic

infrastructure for OLE. There are two basic constructs in COM, COM Objects and interfaces.

An COM Object is an object that can only be accessed through its interfaces. An interface is a

set of methods which are used to access an object. An interface is usually implemented as a

pointer to an array of function pointers. Interfaces can inherit the method signatures, but not the

implementation of the methods. Each COM Object must support the IUnknown interface or an

interface inherited from IUnknown.

The IUnknown interface provides three methods: Queryinterface, AddRef and Release.

Objects use another object's Queryinterface method to inquire if the object supports a particular

interface. If the interface is supported, Queryinterface returns a pointer to the supported

interface, otherwise it returns a NULL pointer. AddRef and Release modify the objects reference

count. Objects use the reference count to keep track of how many external objects are using

them. AddRef increments the count, while Release decrements the count. When the reference

count goes to 0, the object destroys itself. Interfaces are distinguished from each other by a

unique GUID (Globally Unique IDentifier). This number is a 128 bit integer which can be

assigned in blocks to vendors.

There are three basic services supplied by COM: persistent storage, intelligent names and

Uniform Data Transfer. Persistent Storage is the ability to store the state data of COM Objects

so that they can be deleted and later restored. Intelligent names not only name a COM Object,

but also contain information on how to reference the contents of the object. Uniform data

transfer allows two applications to exchange data without the applications understanding the

internals of each other.

12

Figure 2. Components of OLE and COM

The services provided by COM are used as building blocks for OLE proper. The

structures in OLE are more complex and at a higher level. One key concept is the idea of

compound documents. For example, a word processing document can contain a spreadsheet

created from a different application. A compound document is a document made up of other

documents. An application which can store other documents inside of its data files is called a

container. The application which creates the objects that are inside containers are known as

servers. An object can be both a container and a server at the same time. The contained

document can be either stored as a part of the top level document, in which case it is an

embedded object, or the document can be stored externally and only a link stored in the enclosing

document, in which case it is a linked object. When a contained object is activated for editing,

the menus and toolbars of the application which created the contained object will merge with the

controls of the container object. This is called menu merging. For example, assume that a

spreadsheet is embedded inside a word processing document. The user can select the spreadsheet

to be edited which will invoke the spreadsheet program. The menus and toolbars of the

spreadsheet program will merge with the controls of the word processing program. Once the

spreadsheet object is deselected, the original controls of the word processor will be restored.

Automation allows a program to control and send instructions to another program. The

program that is being controlled is called an automation server. The program doing the

controlling is the automation controller. A common automation server is a database program. A
controller can invoke the server to supply data and to update the database.

OLE can not yet be used to build distributed applications. Many of the mechanisms are

in place but not yet completed. The inter-machine communication will be Microsoft RPC which

is based on DCE RPC. If the communicating processes are located on the same machine, then a

special lightweight Remote Procedure Call protocol will be used. This protocol will bypass the

13

overhead of converting formats for network transmission. Network OLE is intended to be part of

Microsoft Windows NT 4.0 which is currently targeted for 1997 or 1998.

OLE can be used at many different levels. There is a C language API defined. This level

is very powerful but complicated to use. There are C-H- frameworks that encapsulate the C
functions that greatly simplify programming. There is also an DDL supplied similar to that of

CORBA. The DDL has not yet attracted much use so far. A third method to program OLE is

through Microsoft Visual Basic or with one of the programming languages associated with

various Microsoft products, such as Microsoft Access. These are not as flexible as working with

a C or C++ API, but they are much simpler.

No security is built directly into OLE. Since OLE is document based, file level security

will serve to protect objects that are either embedded or linked into other objects.

14

2.3 SQURDA
SQL is a popular relational database language first standardized in 1986 by the American

National Standards Institute (ANSI). Since then, it has been formally adopted as an International

Standard by the International Organization for Standardization (ISO) and the International

Electrotechnical Commission (IEC)[ISO9075]. It has also been adopted as a Federal Information

Processing Standard (FIPS) for the U.S. government.

The SQL standard is very popular with a large and increasing number of conforming

implementations. It is, or soon will be, the basis of definition for a majority of Federal databases

and database applications involving structured data.

The basic structure of the relational model is a table, consisting of rows and columns.

Data definition includes declaring the name of each table to be included in a database, the names

and datatypes of all columns of each table, constraints on the values in and among columns, and

the granting of table manipulation privileges to prospective users. Tables can be accessed by

inserting new rows, deleting or updating existing rows, or selecting rows that satisfy a given

search condition for output. Tables can be manipulated to produce new tables by Cartesian

products, unions, intersections, joins on matching columns, or projections on given columns.

The purpose of the SQL language standard is to provide portability of database

definitions and database application programs among conforming implementations. Use of the

SQL language standard is appropriate in all cases where there is to be some interchange of

database information between systems. The SQL definition language may be used to interchange

database definitions and application specific views. The SQL data manipulation language

provides the data operations that make it possible to interchange complete application programs.

RDA (Remote Database Access) is a communications protocol for remote database

access that has been adopted as an ISO/IEC. This standard is in two parts:

1. Generic RDAANSI/ISO/IEC 9579-l:1993[IS09579-l]

2. SQL Specialization ANSI/ISO/IEC 9579-2.T993[IS09579-2].

Part 1 specifies the generic model, service, and protocol for arbitrary database connection and

Part 2 specifies additional protocols for connecting databases conforming to the Database

Language SQL.

RDA provides standard protocols for establishing a remote connection between a

database client and a database server. The client is acting on behalf of an application program

while the server is interfacing to a process that controls data transfers to and from a database.

The goal is to promote the interconnection of database applications in a multivendor

environment.

RDA is appropriate for remote access to a database in any context where lower layer

transport protocols have already been established. RDA protocols have been shown to work

properly in both OSI and Internet communications environments. The Internet RFC 1006 is the

guide used for executing RDA over a TCP/IP connection.

15

The RDA Service Interface consists of service elements for association control, for

transfer of database operations and parameters from client to server, for transfer of resulting data

from server to client, and for transaction management. Association control includes establishing

an association between the client and server remote sites and managing connections to specific

databases at the server site. Database operations are sent as character strings conforming to the

SQL language. Resulting data and/or errors and exceptions are described and represented using

the ISO ASN. 1 standard. Transaction management includes capabilities for both one-phase and

two-phase commit protocols.

RDA is appropriate in situations where it is not desirable, or possible, to run the same

vendor's software at both ends of a communication line. Interconnection among database

products from the same vendor will likely continue to use vendor specific communication and

interchange forms.

Security work for RDA has been on-going. The RDA protocol maintains the security

already inherent in a relational database with regard to access control. And the standard itself has

left ‘placeholders’ for added security needs in the area of authentication. As with any standard

for interoperability, the algorithms and methods must be agreed upon by all potential users.

Figure 3 depicts how SQL/RDA can be used in a multivendor network environment. The

RDA protocol is used to communicate between three different SQL databases, manufactured by

three different vendors, on three different hardware platforms. This configuration demonstrates

the viability of the RDA standard with SQL databases in a heterogeneous environment.

The application program accesses each database server by means of a standard

application program interface (API). The attached sample program in figure 4 provides an

example of how this API may be used. The client application makes a connection to the server

by specifying the server name (machine name in this case) and the data resource to be opened

(the username on the database). The client can then initiate transactions on the database by

sending an SQL string, and get back a table of results.

Work to standardize this interface will soon be completed, and is currently being

prototyped at NIST. The Call Level Interface(CLI) (ISO/IEC 9075-3:1995) will provide a

standard API to the RDA protocol. The CLI is a super-set of the familiar and very popular

ODBC (Open Database Connectivity) defacto standard. By adding RDA to an ODBC/CLI API,

the need for numerous drivers on both the client and server will disappear.

16

Figure 3. Illustration of Multi-vendor Database Environment

17

// assume the following are already defined

// hostname - char*, name of host where RDA server is running

// server - char*, name of the RDA server

// mame - char*, name of the resource

// password - char*, password to server

// status - int, return value

// dia_id - int, dialogue id

// rsc_id - int, resource id

// cole - int, column count

// colv - char**, pointer to array of column names

// rowc - int, row count

// rowv - char**, pointer to array of row values

// sqlcmd - char*, ASCII string of the SQL command to execute

// errorcode - int, error code

// errortext - char*, error message string

/* init a dialogue */

rda_setup();

status = rda_init(&dia_id, hostname, server, password, 0);

if(rda_error(status)) rda_signal(status, 0);

/* Open the data resource */

status = rda_open(did, &rsc_id, mame, password, RDA_C_UPDATE);
if(rda_error(status)) rda_signal(status, 0);

/* start the transaction */

status = rda_begin(dia_id);

if(rda_error(status)) rda_signal(status, 0);

/* perform the transaction */

status = rda_execSQL(dia_id, rsc_id, sqlcmd, &colc, &colv,

&rowc, &rowv, &errorcode, &errortext);

/* commit the transaction */

status = rda_commit(dia_id);

rda_signal(status, 0);

Figure 4. SQL/RDA using an API

18

2.4 Sockets

Sockets is an inter-process communication mechanism that was introduced in 1981 as

part of BSD 4.2, the Berkeley distribution of Unix. It is the standard method of inter-machine

communication. Sockets is not tied to any particular transport mechanism, although the most

popular inter-machine protocol is TCP/IP. Communication between machines can either be

connection oriented with reliably delivery (TCP) or connectionless with unreliable

delivery(UDP). Some systems also support reliable connectionless connections. Winsock is a

PC adaptation of POSIX sockets [IEEE 1003. Ig] with some changes and extensions. The

extensions are mainly for asynchronous communication to allow socket programming to better

interact with the Microsoft Windows operating system.

A number of support routines are included. There are functions to convert hostnames to

IP (Internet Protocol) addresses and other network nameserver services. There are routines

provided for simple conversions of integers to a network format for inter-machine

communication. Conversions of more complex data types to a machine neutral format can be

done with the XDR (external data representation) library.

Sockets is a low level mechanism with a correspondingly low level API. This allows for

a large amount of control, but it also means that a large number of steps are needed to perform

operations. The procedure required to send a message using TCP is

1 . create a socket using the socket function;

2. find the IP address on the host using the gethostbyname function;

3. copy over the required datafields, being sure to convert to network format;

4. connect to the correct port number on the server machine;

5. convert the data to a machine independent format using XDR; and

6. send the message.

The code to perform this procedure is shown in figure 5. Notice that error checking has to be

performed at all steps of the process to ensure that the program does not terminate.

Sockets is best used for high performance bulk transfer applications. The only language

binding commonly used is C although some of the scripting languages, such as Perl, encapsulate

some of the features of sockets.

There is no standard security mechanism built into sockets at this time although

the SSL (Socket Security Layer) proposal [SSL] is gaining wide support. SSL was originally

developed for use inWWW browsers to allow secure money transactions.

19

// client-cpp

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <streaiii.h>

#include <rpc/types.h>

#include <rpc/xdr.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

struct hostent* host;

struct sockaddrjn addr;

int value, svalue;

char buffi 32];

int sock;

XDR xdr;

if(argc != 3) {

cerr« "usage: client host value\n";

return 1; }

sock = socket! AF_INET, SOCK_STREAM, 0);

if(sock= -1) {

cerr« "client can not create socketXn";

return 1; }

// create the socket

addr.sin_fainily = AF_INET;

host = gethostbynamef argv[l]);

if(!host) {

cerr« "can not find host " « argv[l]« endl;

close! sock);

return 1; }

// get the host address

memcpy! !char*) &addr.sin_addr, !char*) host->h_addr, host->h_length);

addr.sin_port = htons! 2000);

if! connect! sock, !struct sockaddr*) &addr, sizeof addr)= -1) {

cerr« "client can not connect to serverXn";

close! sock);

return 1; }

// fill in the address

// fill in the destination port

// make a TCP connection

value = atoi! argv[2]);

svalue = value * value;

// create the data for a simple packet

xdrmem_create! &xdr, buff, 32, XDR_ENCODE);
xdr_int! &xdr, &value);

xdr_int! &xdr, &svalue);

write! sock, buff, 32);

close! sock);

return 0;

}

// create the XDR stream

// encode the data

// send the data packet

// clean up

Figure 5. Source Code for Writing to a Socket

20

2.5 RPC
RPC, Remote Procedure Call, provides an application the ability to request services from

other processes, usually remote, by means of a function call. The RPC concept is based on a

client/server framework. The client application can execute a procedure on a local/remote

machine, pass data to it and retrieve the result. When the machine is remote, RPC uses the

communication resources of the underlying network.

The two most widely used RPC implementations are ONC (Open Network Computing)

RPC and DCE (Distributed Computing Environment) RPC. ONC/RPC, sometimes referred to as

Sun/RPC, was developed by Sun Microsystems. ONC/RPC was one of the first commercial

implementations of RPC. The success of ONC/RPC is in some measure related to the widespread

use of NFS which is implemented using ONC/RPC. NFS has been implemented in many diverse

environments, e.g., IBM MVS, DEC VMS, and Novell Netware.

DCE/RPC was developed by the Open Software Foundation (OSF). The DCE/RPC
protocol is used as an optional protocol in CORBA (see section 2.0). DCE/RPC is also the

protocol used by COM to extend COM functionality over a network (see section 2.1).

The basic operation of RPC is illustrated in figure 6. The paradigm of RPC is based on

the concept of a function call in a programming language. The semantics of RPC are almost

identical to the semantics of the traditional function call. The major difference is that while a

normal procedure call takes place between procedures of a single process in the same memory

space on a single system, RPC takes place between a client process on one system and a server

process on another system where both the client system and the server system are connected to a

network.

A client application issues a normal function call to a client stub. The client stub receives

arguments from and returns arguments to the calling function. An argument may instantiate an

input parameter, an output parameter or an input/output parameter.

The client stub converts the input arguments from the local data representation to a

common data representation, creates a message containing the input arguments in their common
data representation, and calls the client runtime, usually a library of routines that supports the

functioning of the client stub. The client runtime transmits the message with the input arguments

to the server runtime which is usually an object library that supports the functioning of the server

stub. The server runtime issues a call to the server stub which takes the input arguments from the

message, converts them from the common data representation to the local data representation of

the server, and calls the server application which does the processing.

When the server application has completed, it returns results to the server stub in the

output arguments. The server stub converts the output arguments from the data representation of

the server to the common data representation for transmission on the network and encapsulates

the output arguments into a message which is passed to the server runtime. The server runtime

transmits the message to the client runtime which passes the message to the client stub. Finally,

the client stub extracts the arguments from the message and returns them to the calling procedure

in the required local data representation.

21

Figure 6. RPC Function Call over a Network

Applications which use RPC programs are developed by using an IDL similar to the

approach used by CORBA. The only language binding supported is C. RPCs support persistent

servers, which is where a single server exists all the time, and unshared server policies, where a

server is created for each call.

The transport protocols supported by ONC/RPC are TCP and UDP. DCE/RPC also

supports DECNET. The reliability of delivery under ONC/RPC is that of the underlying

transport layer, DCE/RPC, on the other hand, guarantees delivery independently of the transport

used.

ONC/RPC uses the XDR protocol to communicate data between heterogeneous hosts.

XDR uses a single basic format for transferring data where both sender and receiver perform data

translation. NDR, the format used by DCE/RPC, has a list of sixteen formats. The sender

specifies the format sent and the receiver of the message is responsible for data translation, if

needed. The sending host specifies within the protocol which data format was used

Security in ONC/RPC, called secure RPC, is provided by NIS+. NIS+ provides both

authorization and authentication. Every object in the namespace specifies the type of object it

accepts and from whom. For each access request on the namespace, the originator is identified

and a determination is made whether to provide access. There are three levels of authentication

available:

1 . no security

2. traditional process permission: uid, gid, supplementary groups, and machine name are

provided

3. verification of identification provided (based on Diffie/Hellman key distribution DES
encryption techniques).

22

Security in DCE/RPC is provided by kerberos. DCE/RPC provides authentication,

authorization and access control services. Both client and servers can be authenticated.

Authorization services enable a user, host, or server to determine the rights of other users, hosts,

or servers.

ONC/RPC uses NIS+ to handle a global name service. NIS+ is used to associate a

service with the service name and the domain where it is located. NIS+ tables are administered

through NIS+ administration commands. The namespace is arranged into configurations called

domains. Domains contain directories, tables, and groups (which are denoted as "objects").

Every domain is supported by a set of NIS+ servers, which handle the NIS+ client requests for

the domain. NIS+ maintains an RPC table containing the RPC program name, program number,

and its aliases.

DCE/PRC uses a global directory service based on X.500 Directory Services (XDS).

CDS offers the opportunity for access to worldwide resources. GDS provides a lookup service

for all the networked services and machines that work together. Servers export their bindings

(RPC protocol type, host network address, and transport endpoint) and the objects they manage

to an entry in the GDS. A server that can accept multiple RPC protocols, will export a binding

for each protocol it supports. Clients, employing automatic binding, locate the compatible server

via IDL generated stubs that search the CDS. The appropriate RPC protocol binding is the only

binding provided to the client.

23

3. Technical Overview of Role Based Access Control

There are two basic types of access control mechanisms used to protect information from

unauthorized access: discretionary access controls (DAC) and mandatory access controls (MAC).

Because DAC places the decision of who can access information at the discretion of the creator

of the information, DAC is not applicable to the majority of health care information. Because

MAC requires all those who create, access, and maintain information to follow rules set by

administrators, MAC is the kind of access control mechanism required of health care

information.

The most commonly used MAC is the multi-level security mechanism used by the

Department of Defense (DOD). This is the mechanism which associates information with such

labels as TOP SECRET, SECRET, and CONFIDENTIAL. It has become apparent that this type

of MAC is not sufficiently flexible for industry use. This type of MAC is also not adequate for

the needs of health care.

Role Based Access Control (RBAC)[RBAC] is a MAC which has been developed at

NIST to meet the needs of industry. Rather than labeling information, it associates roles with

each individual who might have a need to access information. Each role defines a specific set of

operations that the individual acting in that role may perform. The operations may be broad or

very specific, e.g., when a diagnosis is entered into a patient record, the symptoms leading to that

diagnosis must also be entered. Once an individual has been properly identified and that

identification authenticated, the individual chooses a role that has been assigned and accesses

information according to the operations assigned to the role.

This project determines the applicability of RBAC to health care information. While it is

generally accepted that RBAC is more suited to health care than others, the question remains as

to whether RBAC meets all of the requirements for the security of health care information.

Moreover, there are several variations on the RBAC model and there is the question of which

variations are most suitable for health care information.

In order to illustrate the usefulness of RBAC to health care, this project also produces a

demonstration of the use of RBAC with patient records. The demonstration suggests different

roles that are appropriate with patient records and defines sample operations associated with

those roles.

A sample RBAC policy related to clinical and administrative patient data has been

identified. This draft specification [GREW], represents some degree of consensus on a policy

for patient information access. The UK policy is RBAC with the addition of the capability of

labeling information that is only available to the patient and the doctor. It specifies roles and the

level of access permitted by each role.

3.1 Implementing Role Based Access Control Using Object Technology

With Role Based Access Control (RBAC), each role is associated with a set of

operations which a user in that role may perform. The power of RBAC as an access control

mechanism is the concept that an operation may theoretically be anything. This is contrasted to

other access control mechanisms where bits or labels are associated with information blocks.

These bits or labels indicate relatively simple operations, such as, read or write, which can be

24

performed on an information block. Operations in RBAC may be arbitrarily complex, e.g., “a

night surgical nurse can only append surgical information to a patient record from a workstation

in the operating theater while on duty in that operating theater from midnight to 8 AM." A goal

for implementing RBAC is to allow operations associated with roles to be as general as possible

while not adversely impacting the administrative flexibility or the behavior of applications.

Consider the possible activities associated with defining and modifying

roles:

• Add a role and its associated operations.*

• Remove a role and its associated operations.

• Modify an existing role:

0 Add an operation.

0 Remove an operation.

0 Modify an existing operation.

Information is usually accessed by applications based on a fixed set of operations defined

by the mechanism or processor which is used to access the information. Applications are built

based on a fixed set of operations which they routinely perform. For example, Unix files are

accessed by the operations defined by the procedures: open(), close(), read(), write(),fseek(), etc.;

tables in a relational data base are accessed by the operations defined by SQL.

Modifying the operations available to an application can have a great impact on an

existing application. Removing an operation or modifying the semantics of an operation

seriously affects an application's functioning and can produce very unpredictable results.

One approach which can be used to maintain flexible administration, minimize impact on

applications, and maintain a significant capability for defining complex role operations is to use

Object Technology as in figure 7.

Figure 7. Implementing RBAC with Layered Objects

* Some operations may be available to more than one role, e.g., a credit account may be read by

both a bank teller and a bank supervisor

25

A complete set of operations based on access methods associated with the information

storage mechanism is defined and held fixed. These are the operations that are made available to

an application. These operations become the methods in a basic access methods class. Access

control for the basic access methods class is provided by role classes, one for each defined role.

The methods of the role classes have the same names, types and parameters as the methods of the

basic access methods class. Access control to the information accessed by the basic access

methods class is located exclusively in the role classes and not in any other part of the

application. The bodies of the methods in the role classes are restricted to conditionals which

determine access for the role associated with that role class and/or filters which constrict the flow

of information between the application interface and the basic access methods.

If access is permitted for a role, the methods of the role class then invoke the

corresponding methods of the basic access methods class. If not all information obtained by the

basic access methods is permitted to a role, then the parts of the information not permitted can be

filtered out. Filtering may be more desirable in an application rather than generating an access

violation for the entire information block.

The methods of the application interface class also have the same names, types and

parameters as the methods of the basic access methods class. The methods of the application

interface class invoke the corresponding methods of the role classes. It is the methods of an

application interface object which the application invokes. Given the current role associated with

the application, the methods of the application interface object select the appropriate role object.

This approach has several advantages. One advantage is that applications need not

change when access conditions for roles are changed. Applications use the methods of the

application interface class whose methods have the same names, types, and parameters as the

methods in the basic access methods class. The methods of the application interface class and the

methods of the basic access methods class are fixed and remain constant over time. When access

conditions for roles change, applications fail only because of access violations. This type of

failure is comparable to the failures that typically occur when information protection bits or

labels are changed. Applications are normally implemented to be able to handle access

violations.

Another advantage of this approach is that access conditions for roles are easily changed.

Access conditions for roles are located exclusively within the role classes. Consequently, role

policy changes do not require modifications to the applications themselves. One can conceive of

a simple language, suitable for use by data and security administrators, for expressing access

conditions restricted to conditionals and filters. A processor for such a language could generate

the role objects and place them in the libraries used by applications. Most environments today

support dynamically linked libraries which link when an application is loaded into memory for

execution. Thus, applications do not need to be relinked when role classes are changed. This

ability to easily change access conditions associated with roles permits rapid response to policy

changes.

Figure 8 gives an illustration of this approach using C++. The complete source code

which can be compiled and run is given in Appendix 1. In actual practice, RBAC roles,

operations, and policy can be numerous and complex. In order to simplify this example, only a

small subset of the roles, operations, and policy that would normally be required are illustrated.

26

This example has the following operations which can be performed by applications on a

patient record database:

• Get patient ID list This operation obtains a complete list of patient names and their

IDs

• Get patient record This operation obtains the patient record given the patient ID.

The basic access methods class Access_PRDBO which has methods GetIDinfo() and

GetPRO for performing these operations. Also shown are the role classes associated with a

patient Pat_PRDBO and doctor role Doc_PRDBO. These role classes inherit from an abstract

base class Role_PRDBO which defines the names, types, and parameters for the methods which

correspond to the methods in the basic access methods class.

The patient and doctor role classes together implement the following RBAC policy:

• Only Doctors are permitted to read the list of patient names and IDs.

• Doctors are permitted to read the records for all patients.

• Patients are only permitted to read their own record.

In order to ensure that patients only access their own records, the patient role object PatJPRDBO
calls a system procedure which returns the patient ID for the user.

The application interface class PRDBO is used by applications. When an object of this

class is instantiated and a method of that object is called, that method first calls a system

procedure get_role(

)

which returns the user's current role. The method then calls another system

procedure get_role_obj() which returns a pointer to the role object for that role. Finally, the

method calls its corresponding method in the role object passing its input arguments to the role

object method.

27

class Access_PRDBO{

public:

Idlist GetIdinfoO;

Patrec GetPR(Patid pid); }

;

class Role_PRDBO{
public:

virtual Idlist GetIdinfo()=0;

virtual Patrec GetPR(Patid patid)=0; }

;

class Pat_PRDBO:public Role_PRDBO{

public:

virtual Idlist GetIdinfo(){

retumC'ERROR: patient cannot access patient id list\n");

};

virtual Patrec GetPR(Patid pid){

if (pid == get_user_pid())

retum(access_prdbo.GetPR(pid))

;

else

retumC'ERROR: patients cannot get other's records\n");

}; };

class Doc_PRDBO:public Role_PRDBO{

public:

virtual Idlist GetIdinfoO {

retum(access_prdbo.GetIdinfo());

};

virtual Patrec GetPR(Patid pid){

retum(access_prdbo.GetPR(pid))

;

}; };

Figure 8. Source Code for RBAC Example

28

class PRDBO{
public:

Idlist GetIdinfo(){

char * role_name;

Role_PRDBO *roleobj;

role_name = get_role();

roleobj = get_role_obj(role_name);

if (roleobj = (Role.PRDBO *)NULL)

retumC'ERROR: no such role\n");

retum(roleobj->GetIdinfo());

};

Patrec GetPR(Patid patid){

char * role_name;

Role_PRDBO *roleobj;

role_name = get_role();

roleobj = get_role_obj(role_name);

if (roleobj == (Role_PRDBO *)NULL)

retumC'ERROR: no such role\n");

retum(roleobj->GetPR(patid))

;

};};

Role_PRDBO *get_role_obj(char *role_name){

stmct{

char role_name[ROLE_NAME_LENGTH];
Role_PRDBO *role_object;

} role_tab[NUMBER_OF_ROLES] =

{

{ "patient" , &pat_prdbo }

,

{"doctor", &doc_prdbo}

};

for(int i=0; i<NUMBER_OF_ROLES; i++)

if (strcmp(role_name, role_tab[i].role_name) == 0)

retum(role_tab[i] .role_object)

;

retum((Role_PRDBO *) NULL);

Source Code for RBAC Example(continued)

29

4. Demonstration Applications

The demonstration illustrating the capabilities of each technology studied in the project

consists of a distributed application for clinical and administrative patient data access. For this

demo, a patient record data base object (PRDBO) is defined. This object provides a consistent

view of the patient information. The concept is to access patient data through this object whose

methods provide a consistent specification for accessing the data. How the data is actually stored

is independent of how the object client accesses the data. The methods in the object

implementation access the data however and wherever the data is actually stored. CORBA is

being used as a means of implementing the PRDBO.
The PRDBO organizes patient information into groups. Figure 9 shows the information

groups of the PRDBO and how they relate to each other. The Identification Information Group

contains information like name, address, and patient ID. The Demographic Information Group

contains information like birth date and sex. The Encounter Information Group contains

information like encounter date, physician seen, symptoms, and diagnosis. The Encounter Notes

Group contains physician notes on the encounter. The Diagnostic Data Group contains the results

of diagnostic procedures (e.g.. X-rays) associated with the encounter. The Data Annotations

Group contains annotations to the diagnostic data, such as, notations on an X-ray highlighting

abnormalities. The Diagnostic Data and Data Annotations Groups usually contain multimedia

information such as images and sound.

Pieces of information within a group have a one-to-one relationship to each other. For

example, within the Demographic Information Group, each patient has only one birth date and is

of only one sex.

The information groups can relate to each other in either a one-to-one relationship or a

one-to-N relationship. For example, the Identification Information Group and the Demographic

Information Group have a one-to-one relationship. Each patient has only one group of

identification and demographic information. However, for each patient, there may be several

visits to a physician. Consequently, there may be several Encounter Information Groups

associated with each patient.

The information groups may be thought of as elements of sets. The PRDBO is a set

whose elements are information groups or sets of information groups for each patient. Each

element of the PRDBO set has as elements: the Identification Information Group, the

Demographic Information Group, and a set of information about each encounter.

Figure 10 shows the architecture of the distributed application. Two clients of the

PRDBO are being developed. One illustrates access from within the organization that created the

information. This client is being developed using Object Linking and Embedding (OLE) on the

PC. The other illustrates access from outside of the organization that created the data. This client

is being developed for use with World Wide Web browsers. The arrows indicate the direction of

patient information flow. The OLE application is capable of both reading and writing

information to the data repositories within the organization which created the information.

WWW browsers are capable only of reading information and they provide access to information

created within an organization to those external to that organization.

30

The data repositories contain data suitable for traditional relational databases and

multimedia data. The PRDBO Implementation and the OLE client are capable of performing

SQL queries on relational databases. Where these databases are remote, the Remote Database

Access (RDA) protocol with the SQL specialization (RDA/SQL) is used.

Multimedia data is best transmitted by means of the sockets interface of the Protocol

Independent Interfaces IEEE Standard (PH/sockets). The PE/sockets interface is derived from the

Berkeley sockets interface and is useful for transmitting large amounts of data.

The following sections will cover each of the two demonstration projects in more detail.

31

/ N

Identification

Information
\ /

Demographic

Information
j

Figure 9. Patient Record Database Object Entity Relationships

Figure 10. Block Diagram of Distributed Health Care Project

32

4.1 POSIXDemo
The health care demonstration system follows a distributed, client-server model. Clients

send messages containing requests to server objects. The server objects verify the request, and

send results back to the client in messages.

The model used for client-server communication is object-based. Clients send messages

to these objects in order to retrieve data from the patient record database. From the perspective

of the client, these objects are local; the client is unaware that the actual object implementation is

running across the network, possibly on a different machine.

The server objects retain no state. These objects only provide an abstract interface to the

patient record database. Each method call is independent, and there is no prescribed ordering to

the calling sequence. The server objects encapsulate the access to the patient record database.

The goal is to maintain the same interface, independent of changes in databases, systems, or

networks.

Because the server objects are stateless, all access controls are enforced by each method.

A different model would use the concept of sessions between the client and server objects. This

can be accomplished by having the server objects retain some state, such as the user id if the

requester. Each method then checks the state for the proper access being granted. This technique

would require that one method be called before any others. This method would establish the

access privileges based on the role of the requester. (This could be done by the object's

constructor) Further method calls would assume that the access has been granted.

By using the idea of a session between client and server object, we have two choices for

server objects to maintain the session. One choice is to have one server object, which maintain

lists of sessions in its state data. The other choice is to have the server object dedicated to one

session only. The first option would require that the server object implementation mn
continuously, accepting requests and establishing sessions. In the second option, the lifetime of

the server object is limited to the session lifetime.

The Common Object Request Broker Architecture (CORBA) provides a means to specify

the interface for a server object independent of the server's implementation. The advantages

include allowing the client programs to be independent of changes in the server, and a consistent

means of interfacing to servers is provided. We have used a CORBA compliant product in the

development of the health care demonstration.

Client programs (such as the CGIBIN scripts for HTTP) do not communicate directly

with the patient record database. The interface to the database is specified in CORBA IDL
(interface definition language). A server program implements the operations specified in the DDL
for the database server.

The objects developed for the server provide a wrapper to the underlying patient record

database. The DDL language used is presented in Appendix B. There are two levels of wrappers

provided in the demonstration project. The first level provides a basic interface to each of the

database tables. This interface is named the patient_record_server_type. This interface provides

methods to retrieve a piece of the patient record, as implemented by the underlying database.

Each method provides controls on the access to the information based on the role of the

requester.

33

Methods GetIdRecordList, GetAdministrativeList, GetEncounterList,

GetEncounterNotesList, GetDiagnosticList, and GetAnnotationList perform query-by-example.

An input parameter, of the same type as the objects returned in the list, contains the criteria for

performing the query on the patient record database. For example, for method GetIdRecordList,

to search on last name of "Smith," the criteria's record must have last_name set to "Smith."

Table 1 provides a description of the methods provided by the patient record server

object.

The higher-level interfaces provided are patient_role_server_type and

doctor_role_server_type. These interfaces provide the methods unique to their respective roles.

For example, the patient role server provides a method GetPatientRecord that retrieves the entire

patient record for a given patient id. Both the patient and doctor servers rely on the lower-level

patient record server interface to implement the operations. Table 2 gives the description of the

patient server, and Table 3 gives the description for the doctor server.

Method Name Description

GetAccessInfo

Getidinfo

GetIdRecordList

GetAdministrativeList

GetEncounterList

GetEncounterNot

GetDiagnosticList

GetAnnotationList

Returns access control information for a user name if access

is verified for given name and password

Returns a patient ID record for a specific patient ID

Returns a list of patient ID records

Returns a list of administrative records

Returns a list of encounter records

Returns a list of encounter notes

Returns a list of diagnostic records

Returns a list of annotations

Table 1. Methods of the patient record server objectesList

Method Name Description

GetPatientRecord
Returns the entire patient record for a given patient ID; the

requester’s role must be patient

Table 2. Methods for patient role server object

Method Name Description

GetIdRecords

GetPatientRecord

Returns a list of ID records for all patients

Returns the entire patient record for a given patient ID

Table 3. Methods for doctor role server object

34

4.1.1 Operation of the server object methods

Each of the server methods has several responsibilities. The access controls are described

below. Besides access control, the server methods must communicate with the patient record

database. This communication is done via the Remote Database Access (RDA) architecture.

The use of RDA allows for the server objects to connect to the database, no matter on what

machine the database is located.

We now have two levels of independence in the demonstration project. The server

objects do not depend on the location of the database, and the database access procedures. The

interface to the database handles all necessary connections, such as locating the database on the

network, and supplying commands and returning data.

The other level of independence is client to server. The server objects can be running on

any machine on the network (presuming the existence of an object request broker). Client

programs send messages to the server objects, and the underlying object request broker (ORB)

delivers the messages to the appropriate server implementation. Furthermore, if there is no

server implementation running, the ORB can be directed to start one. To the client, the only

visible interface is that of method calls. There is no need for the client to know the machine

name, port numbers, or other communication level information. In this way, the methods are

more than remote procedure calls, and provide a higher abstraction for the clients.

4.1.2 Role-Based Access Control in the Server

The assumption made by the server programs is that the clients are unable to do any form

of role-based access control. Therefore, all access control is done by the servers. Access control

is enforced by each method in the patient record server object. The user name, role, and

password (encrypted) is sent to each method, along with the request for data. The user

name/password combination is verified in the method. If the access check fails, no data is

returned to the caller, and an error message is written into the access control block, which is

returned.

If the access check is successful, the query on the database is performed. Before data is

returned, any data items that are not accessible to the requester are eliminated from the data.

This control allows pieces of the database tables to be accessed, while other pieces are

suppressed. The server method uses a table-driven approach to remove any data not accessible

because of the requester’s role.

In the case of a patient requesting the entire patient record, the patient role server

performs another form of verification. The request to the patient record server is made using the

patient id as the criteria. The actual value of the id is retrieved from the verification database

when the user-name/password check is made. The id value passed by the requester is not trusted,

and is therefore not used.

The UK policy was incorporated into the POSIX demonstration project. At this point in

the development of the demo, the UK policy has been somewhat simplified by eliminating the

labeling and limiting the number of roles. We have defined seven roles for the health care

demonstration. Table 4 gives the roles and the accessible data for each. In order to change the

35

roles, or change the access for a role, all that is needed is to change a table that the server

methods use to control access. The operation of the methods is to replace any inaccessible data

with blank strings before returning the data.

Role ID Access Extent

Patient All information for the patient

Doctor All information

Voluntary Caring Agency Name, address, clinical data

Researcher Age, sex, cUnical data

Epidemiologist Age, sex, clinical data

Environmental Health Officer Name, ID, address

Organization Staff Name and ID

Table 4. Roles and Access Extents

Every requester, on entry to the "Patient Record Health Care Demonstration Project,"

must first be identified and take on a role. This is accomplished by requiring the requester to

specify a name, password, and to select a role for the entire session. The information provided is

verified before access to any patient records is allowed. If the information provided is found to

be in error, the requester may correct and resubmit the information.

Once a requester is verified, the ID type associated with the specific requester is provided

to all of the access requests initiated along with the requester’s name, encoded requester’s

password, and role.

36

4.2 The PC Demo
The PC component of the demonstration was built on OLE. Since distributed OLE is not

yet available the PC demonstration emphasized the use of OLE in interacting with other

applications.

The program manipulates patient record files. These are simple OLE container

documents that have no contents except other OLE objects. The user can insert objects by one of

two ways. The first way is the usual method of selecting insert object from the menu. The

dialog box is a standard system dialog that allows either embedded or linked objects to be added.

The second way to insert an object is to query the database. Selecting query from the menu of

the main window brings up a dialog box with buttons for queries on identification number or

diagnostic information. The dialog also tracks the currently selected patient identification

number. Each button brings up a dialog box specific for each query.

The dialog boxes have editable textboxes for the fields of the database. The queries are

performed by simple QBE (Query By Example) forms. The buttons at the bottom of the dialog

boxes allow the user to perform a query on the database, scroll through the database records in

the current view or select the current record. Selecting a record on the Id dialog makes the id of

the current record become the currently selected patient identification number on the main dialog.

This number will be automatically entered in the text field for id on the Diagnostic Query box.

Pushing select on the Diagnostic Query box will embed the file associated with that record into

the main view. The button controls, text fields and several invisible controls are all VBX
controls. The database communication is performed using the ODBC protocol.

A block diagram of the components of the PC demonstration is shown in figure 8. The

program was compiled with Borland C++ 4.5 1 using vendor and third party libraries, targeted for

Windows 3.1/3.11. OCF (Object Component Frameworks) is an object oriented encapsulation

of the OLE library. OWL (Object Windows Library) is an object oriented GUI (Graphical User

Interface) library for Microsoft Windows. The VBX control interfaces with a local database over

a ODBC connection.

4.2.1 OLE Objects Used in the Viewer

The viewer was developed using the Multiple Document Interface (MDI). MDI is a

standard method that allows an application to edit several documents of the same type

simultaneously. Each document has its own main window that is enclosed by the main window

of the application. Each document window can be minimized or have its size changed

independently. The viewer also uses the Doc/View model where the contents of the document

are separated from the way the contents are displayed. This makes the display of embedded OLE
objects easier. The document controls the storage of the patient record as an OLE compound

document. The document is implemented as the C++ class HealthDocument. The display of the

data is done by the class HealthView that encapsulates the view. An external data record from

the database is inserted using the code in figure 9. All redrawing of the window and other GUI
activities are handled by the OWL and OCF library code.

37

ODBC

Application

VBX OWL

T

UCF

Windows OLE

Figure 1 1 . PC Demonstration Application Block Diagram

38

void HealthView::insert_file(const char* fname)
(

static int x = 0;

static int y = 0;

// OcView is an object of type TOcView which manages presentation of compound documents

// iwFile means take the data from a file; ihLink means link rather than embedded
TOcInitInfo initInfo(ihLink, iwFile, OcView);

// space out the inserted objects

TRect rect(10 + x * 100, 10 + y * 100, (x + 1) * 100, (y + 1) * 100);

if(X == 5) { X = 0; ++y; }

else -H-x;

initInfo.HIcon = 0; // no icon

initInfo.Path = (LPOLESTR) fname; // file where the data is

// create the new part for the document and make it the currently selected item

SetSelection(new TOcPart(*GetOcDoc(), initinfo, rect));

// tell the view something has be added and redraw the view

OcView->Rename()

;

InvalidatePart(invView)

;

}

Figure 12. Source Code to link OLE COM Object

39

4.3 Other Distributed Communication Methods

Sockets were not implemented in the demo projects. A possible use was determined for

them. Sockets are most useful for bulk communication while CORBA does poorly. The best use

would be for large transfers, such as bitmaps, to be performed by connection oriented sockets.

CORBA would be used to transmit the location of the bitmap to the CORBA client. The

CORBA client would then make a connection to a file server on the host with the bitmap and

retrieve the bitmap to the local machine. That way the CORBA layer is not responsible for

transmission of the bitmap data itself.

RPC was not implemented in the demo. CORBA used RPC as a transport mechanism

and supersedes it.

40

5. Conclusions

In this report we have examined five distributed communication mechanisms. Table 5

presents our conclusions in tabular form. Each of the transport methods have different

advantages and are best suited for different situations. Some are very specialized and are only

good for certain tasks. SQL/RDA is an example of this type of method. It was designed to allow

queries of remote databases. It does this task well but it does not support general

communication. OLE does support communication between application, but best support is only

provided in the Microsoft Windows environment. By limiting the environment this way, OLE
can provide integration at the level of the user interface. Distributed COM will most likely be at

the same level as CORBA.
The three general mechanisms trade efficiency for ease of use. The lowest level is the

socket interface, which is very fast and efficient, but must be programmed at the lowest level.

RPC is a higher level transport that also supplies a programming language independent IDL. The

highest support is supplied by CORBA. A CORBA user can ask for an object and let the

CORBA implementation worry about where the object can be found. The tradeoff is that

communication using CORBA is inefficient.

In the demonstration viewers we attempted to show a way to use the various mechanisms

to their best advantage. By combining the transport methods, we were able to get support when

needed and efficiency when that was needed. Using each of the distributed transport

mechanisms where it was most effective allowed us to achieve the best overall performance for

the entire system. This is more complicated in terms of program development, but the payoffs

can be quite high.

41

CORBA OLE SQL/RDA sockets RPC
ease of use higher level

Object Oriented

API; Interface

Definition

Language

low level API

encapsulating

Object Oriented

frameworks

exist; Interface

Definition

Language

only requires

knowledge of

SQL

low level

API

large

amount of

work to use,

but very

flexible

higher level

Interface

Definition

Language

language

bindings

C, C-H-,

Smalltalk, Ada
C, C++, Visual

Basic, various

product control

languages

ASCn text

using SQL
C C

class of

application

distributed object

systems

Microsoft

Windows

application

integration

distributed

database

operations

high

performance

bulk

transport

distributed

client/server

security under

development

based on

security

available at the

file level

Access

Control Lists

at item level;

authentication

strings

none (some

research

efforts)

kerebos

secure RPC

protocols

supported

TCP/IP; work on

Interoperability

not yet

distributed

TCP/IP TCP/IP TCP/IP

performance

of transport

service

slow, still under

development

N/A fast fastest slow

Table 5. Project Conclusions

42

6. Appendix A - Code for Role-based Access

Control using Object Technology

//

// C-M- Example of Role Based Access Control

// Implementation Using Object Technology

//

// John Barkley

// (barkley@sst.ncsl.nist.gov)

//

// This C++ program illustrates the implementation of RBAC using Object

// Technology. In this example, there are two methods which provide

// a healthcare apphcation with access to patient records:

// GetIdinfoO - provides a hst of patient names and their IDs

// GetPR(pid) - given a patient ID, returns the patient record

// These two methods are associated with several classes:

// Access_PRDBO - this class provides the basic access methods

// to patient information

// Role_PRDBO - the abstract role class

// Pat_PRDBO - the patient role class

// Doc_PRDBO - the doctor role class

// PRDBO - the application programming interface class

//

// For each role, there is a role class for that role derived from the

// abstract role class. The methods in each role class contain the

// conditions under which a user in that role may perform the

// corresponding methods in a basic access methods class (Access_PRDBO in

// this example). The methods in the basic access methods class perform

// actions on the information. The methods in each role class are invoked

// by corresponding methods in the application programming interface

// class (PRDBO in this example).

//

43

// This approach permits much of the generality of the RBAC concept of

// "action" to be realized, i.e., once the basic actions on information

// have been established, any conditions permitting actions on information

// specified in an RBAC policy may be implemented. In addition,

// this approach permits roles to be created, removed, and modified

// without having to recompile either the application or the basic access

// methods class. When a role is added, removed, or modified in the

// policy, a role class is added, removed, or modified.

//

// This example was compiled using the GNU C-H- compiler.

//

#include <stdio.h>

#include <iostream.h>

#include <strstream.h>

const int ROLE_NAME_LENGTH = 50;

const int NUMBER_OF_ROLES = 2;

typedef char *Idlist;

typedef char *Patrec;

typedef int Patid;

extern char * get_role();

extern int get_user_pid();

extern "C" void exit(int);

// basic access methods class

class Access_PRDBO{
public:

Idlist GetIdinfo(){ retum("Here's the list of patients and their IDs\n"); };

Patrec GetPR(Patid pid){

const int BUFLEN =128;

static char buffBUFLEN];

static ostrstream oss(buf, BUFLEN, ios::out);

oss.seekp(ios::beg);

OSS« "Here's the patient record for patient ID:
"

« pid« endl« ends;

retum(buf);

};};

Access_PRDBO access_prdbo;

44

/

// role classes:

// one for each role derived from the abstract class Role_PRDBO
class Role_PRDBO{

public:

virtual Idlist GetIdinfo()=0;

virtual Patrec GetPR(Patid patid)=0;

};

class Pat_PRDBO:public Role_PRDBO{
public:

// the policy does not permit patients to access

// the list of patient names and their IDs

virtual Idhst GetIdinfo(){

retumC'ERROR: patient cannot access patient id list\n");

};

// the policy only permits a patient to have access

// to his own patient information

virtual Patrec GetPR(Patid pid) {

if (pid == get_user_pid())

return(access_prdbo.GetPR(pid));

else

retumC'ERROR: patients cannot get other's records\n");

};

};

static Pat_PRDBO pat_prdbo;

45

class Doc_PRDBO:public Role_PRDBO{

public:

// the policy permits doctors to have access

// to all information on any patient

virtual Idlist GetIdinfo() {

retum(access_prdbo.GetIdinfo())

;

};

virtual Patrec GetPR(Patid pid){

retum(access_prdbo.GetPR(pid))

;

};

};

static Doc_PRDBO doc_prdbo;

// this procedure, which must be changed when roles are added or deleted,

// would be a system call which finds the the role object given the

// user's role

Role_PRDBO *get_role_obj(char *role_name){

struct {

char role_name[ROLE_NAME_LENGTH];
Role_PRDBO *role_object;

} role_tab[NUMBER_OF_ROLES] =

{

{"patient", &pat_prdbo},

("doctor", &doc_prdbo}

};

for(int i=0; i<NUMBER_OF_ROLES; i++)

if (strcmp(role_name, role_tab[i].role_name) == 0)

retum(role_tab[i] .role_object)

;

retum((Role_PRDBO *) NULL);

};

46

// application interface class

class PRDBO{
public:

Idlist GetIdinfo(){

char * role_name;

Role_PRDBO *roleobj;

role_name = get_role();

roleobj = get_role_obj(role_name);

if (roleobj == (Role_PRDBO *)NULL)

retumC'ERROR; no such role\n");

retum(roleobj->GetIdinfo());

};

Patrec GetPR(Patid patid){

char * role_name;

Role_PRDBO *roleobj;

role_name = get_role();

roleobj = get_role_obj(role_name);

if (roleobj == (Role_PRDBO *)NULL)

retumC'ERROR: no such role\n");

retum(roleobj->GetPR(patid));

};

};

PRDBO prdbo;

// this procedure would be a system call to return the user's current role

char * get_role(){

static char role_name[ROLE_NAME_LENGTH];
cout« "Enter role name:

cin» role_name;

retum(role_name)

;

};

// this procedure would be a system call to return the user's patient ED

int get_user_pid(){

int pid;

cout« "Enter user's patient id:

cin» pid;

retum(pid);

47

main(){

char opt;

Patid pid;

wliile(l){

cout« "Enter i-GetIdlist, r-GetPR: "
;

cin» opt;

if (!cin) {cout« endl; exit(O); };

switch (opt) {

case 'i' : cout« prdbo.GetIdinfoO« endl;

break;

case 'r' : cout« "Enter patient id: ";

cin» pid;

cout« prdbo.GetPR(pid)« endl;

break;

};

};

48

7. Appendix B - IDL Description of Patient Record Object

//

// hc_types.idl

//

// IDL declarations for the patient record structures

//

// First, define the basic data types used in terms of CORBA types

//

typedef string name_type;

typedef string login_type;

typedef string<9> id_type;

typedef string<2> state_type;

typedef string<10> zipcode_type;

typedef string complaint_type;

typedef string symptom_type;

typedef string<255> URL_type;

typedef string treatment_type;

typedef char sex_type;

typedef string role_type;

typedef string<10> password_type;

typedef string<10> date_type;

typedef string<16> date_time_type;

typedef string name_address_type;

typedef string<3> time_zone_type;

//

// string of keywords

// string of keywords

// string to hold Universal Resource Locator

// unstructured text for storing treatment information

// Male, Female

// type for storing the role identifier

// type for storing passwords

// date in mm/dd/yyyy format

// date and time in "mm/dd/yyyy hhimm" format

// used for storing name and address of companies, etc.

// type for time zone indicator

49

// Next, define the compund data types in terms of the basic data

// types. These definitions form the basic patient record information

// structure.

//

struct address_type {

string street;

string city;

state_type state;

zipcode_type zipcode;

);

enum date_data_format {SINGLE, RANGE};
struct date_data_type

{

date_data_format format;

time_zone_type time_zone;

date_type begin_date;

date_type end_date;

};

struct date_time_data_type

{

date_data_format format;

time_zone_type time_zone;

date_time_type begin_date_time;

date_time_type end_date_time;

// set to SINGLE or RANGE to indicate

// whether a single date or a date range

// stores the time zone indicator

// set to SINGLE or RANGE to indicate

// whether a single date or a date range

// stores the time zone indicator

};

struct patient_record_id_type {

id_type patient_id;

name_type last_name;

name_type middle_name;

name_type first_name;

address_type address;

};

struct patient_record_administrative_type
{

id_type patient_id;

sex_type sex;

date_data_type date_of_birth;

date_data_type date_of_death;

};

50

struct patient_record_encounter_type
{

id_type patient_id;

date_time_data_type encounter_date;

complaint_type complaint;

symptom_type symptoms;

id_type doctor_id;

treatment_type treatment;

};

struct patient_record_encounter_notes_type {

id_type patient_id;

date_time_data_type encounter_date;

date_time_data_type notes_date;

id_type doctor_id;

URL_type notes_URL;

);

struct patient_record_diagnostic_type {

id_type patient_id;

date_time_data_type encounter_date

;

date_time_data_type diagnostic_date

;

name_address_type diagnostic_center;

URL_type diagnostic_URL;

};

struct patient_record_annotation_type {

id_type patient_id;

date_time_data_type encounter_date

;

date_time_data_type diagnostic_date

;

date_time_data_type annotation_date

;

id_type doctor_id;

URL_type annotation_URL;

};

//

// doctor notes are stored in a file and the

// URL to the file is given to the client

// diagnostic data is stored in a file and the

// URL to the file is given to the client

// annotation data is stored in a file and the

// URL to the file is given to the client

51

// Next, define a record type to hold the information required

// for access control on the server. A record of this type

// is passed to each server method. The methods verify the

// role access before providing data.

//

struct access_control_information_type {

id_type requestor_id;

login_type requestor_login;

role_type requestor_role;

password_type requestor_password;

string access_result; // contains string which indicates result of access

// verification when there is an error

// this is null when no error.

};

//

// Next, define some sequences which are used to store the lists

// of objects being returned by the server

//

typedef sequence<id_type> patient_id_list_type;

// a list of patient identifiers;

typedef sequence<patient_record_id_type> patient_record_id_list_type

;

// a list of patient id records

typedef sequence<patient_record_administrative_type>

patient_record_administrative_list_type;

// a list of administrative records

typedef sequence<patient_record_encounter_type> patient_encounter_list_type;

// a list of patient encounters

typedef sequence<patient_record_encounter_notes_type>

patient_encounter_notes_list_type;

// a hst of patient encounter notes

typedef sequence<patient_record_diagnostic_type> patient_diagnostic_list_type;

// a list of diagnostic data records

typedef sequence<patient_record_annotation_type> patient_record_annotation_hst_type

;

// a list of annotation data records

52

//

//

// Define the structure to hold the complete patient record

//

struct patient_record_type {

patient_record_id_type id_record;

patient_record_administrative_type adinin_record;

patient_encounter_list_type encounter_list;

// a list of patient encounters

patient_encounter_notes_list_type encounter_notes_list;

// a hst of patient encounter notes

patient_diagnostic_list_type diagnostic_list;

// a list of diagnostic data records

patient_record_annotation_list_type annotation_list;

// a list of annotation data records

};

53

//

// hc.idl

//

#include "hc_types.idl"

// IDL declarations for interface to patient record server objects

//

interface patient_record_server_type
{

// returns an entire patient record

patient_record_type GetPatientRecord(inout access_control_information_type

role_access_info, in id_type patient_id);

// returns a list of patient id records that have matches to the

// criteria specified in the input parameter

patient_record_id_list_type GetIdRecordList

(in patient_record_id_type id_criteria,

inout access_control_information_type role_access_info);

// return a list of administrative records based on matching fields

// in the criteria record

patient_record_administrative_list_type GetAdministrativeList

(in patient_record_administrative_type admin_criteria,

inout access_control_information_type role_access_info);

// returns a list of encounters based on matching fields

// in the criteria record

patient_encounter_list_type GetEncounterList

(in patient_record_encounter_type encounter_criteria,

inout access_control_information_type role_access_info);

54

// returns a list of encounter notes based on matching fields

// in the criteria record

patient_encounter_notes_list_type GetEncounterNotesList

(in patient_record_encounter_notes_type encounter_notes_criteria,

inout access_control_information_type role_access_info);

// returns a list of diagnostic records based on matching fields

// in the criteria record

patient_diagnostic_list_type GetDiagnosticList

(in patient_record_diagnostic_type diagnostic_criteria,

inout access_control_information_type role_access_info);

// returns a list of annotation records based on matching fields

// in the criteria record

patient_record_annotation_list_type GetAnnotationList

(in patient_record_annotation_type annotation_criteria,

inout access_control_information_type role_access_info);

55

8. Glossary

access control policy - Specifies which users are or are not entitled to an application's services,

authentication - Clients and servers capable of proving their identities to each other,

authorization - Means of access to information managed based on identity of the user,

automation - OLE mechanism to allow an application to control another application directly,

binding - The act of associating a server with a socket. Logical association between a client and

a server.

bridging - A mapping between two domains.

broker or binding service - An intermediary between clients and servers designated to assist in

network resource communications.

cUent application - A user-written program that performs function calls to be executed by a

server application.

cUent process - A process that executes the client application.

cUent/server model - Processing environment where one set of entities requests work to be done

and another set actually performs the work.

client stub - Code module that is generated by the special Newark interface compiler. A client

stub provides:

• filters to encode and marshal the IN arguments

• a call to the requested server

• filters to unmarshal and decode the reply OUT arguments

• time-out of the operation if needed

CORBA2/Interoperable - CORBA2/Core and the CORBA2/Intemet lOP

domain - A set of objects sharing a common characteristic or abiding by common rules,

embedding - OLE technique that allows a container document to completely hold another COM
object.

interface - The collection of remote procedures that a client and server share.

linking - OLE technique that allows a container document to hold a reference to another COM
object. The object itself is extenal to the container document.

marshaling - Packaging the input parameters and sending them to the remote process.

NIS - Stores network information on servers and provides it to any workstation that asks for it.

OSF - A consortium of DEC, IBM, HP/Apollo, and other major UNIX
hardware vendors.

port - a logical network communication channel.

server application - A user-written program that handles and replies to request(s) from a client

apphcation.

server process - A process that executes the server application.

server stub - Code module that is generated by the special network interface compiler. A server

stub provides:

• registration of the service with the proper lookup utility

• filters to unmarshal and decode the IN arguments

56

• invocation of service routine requested

• filters to encode and marshal the OUT arguments

• results back to client

unmarshaling - Unpacking the input parameters and calling the requested procedure using the

unpacked arguments.

57

9. References

BOOCH94
G. Booch, Object-Oriented Analysis and Design with Applications . Benjamin/Cunmiings

Publishing Company, Inc., 1994.

CHINITZ94
J. Chinitz, “It's Not Your Father's RPC”, SunExpert, June 1994.

CORBABOP
OMG TC Document 95.3.xx [REVISED 1.8 jm], CORBA 2.0/Interoperabilitv Universal

Networked Objects , March 20, 1995.

CORBASPEC
OMG Document Number 93.12.43, Revision 1.2, The Common Object Request Broker:

Architecture and Specification . Draft 29 December 1993.

CORBATOUR
OMG, “A Tour of CORBA”, ftp://omg.org/pub/presentations/corba.ps.

GREW
A. Griew, “A Strategy for Security of the Clinical Record and its Transfer”, Institute for

Health Informatics, Aberystwyth, DRAFT.
IEEE1003.1C

EEE Std 1003.1c- 1995, “Portable Operating System Interface for Computer

Environments (POSDC) - Part 1: System Application Program Interface (API) [C

language]” ,
The Institute of Electrical and Electronics Engineers, Inc., June, 1990.

IEEE1003.1g

EEE Std 1003.1g-1995, “Information Technology - Portable Operating System Interface

(POSIX) - part xx: Protocol Independent Interfaces (PH)”, The Institute of Electrical and

Electronics Engineers, Inc., December, 1995.

IEEE1003.6

EEE Std 1003.6.1, “Draft Standard for Information Technology - Portable System

Interface (POSDC) - Part 1: System Application Program Interface (API) - Protection,

Audit and Control Interfaces [C language]” , The Institute of Electrical and Electronics

Engineers, Inc., Novemember, 1992.

IEEE610

ANSI/IEEE Std 610.12-1990, "Glossary of Software Engineering Terminology", The

Institute of Electrical and Electronics Engineers, Inc., February, 1991.

ISO9075-3

ISO/IEC 9075-2:1995, “Database Language SQL - Part 3: Call Level Interface

(SQL/CLI)”, International Organization for Standardization, 1995.

IS09579-1

ISO/IEC 9579-1:1993, "Information Technology - Open Systems Interconnection -

Remote Database Access - Part 1: Generic Model, Service and Protocol",. International

Organization for Standardization, 1993.

58

IS09579-2

ISO/IEC 9579-2:1993, "Information Technology - Open Systems Interconnection -

Remote Database Access - Part 2: SQL specialization",. International Organization for

Standardization, 1993.

RBAC
“An Introduction to Role-Based Access Control”, CSL Bulletin, National Institute of

Standards and Technology, December, 1995.

ROSENBERRY
W. Rosenberry, D. Kennedy and G. Fisher, Understanding DCE , O'Reilly & Associates,

Inc, October, 1992.

SSL
“THE SSL Protocol”-, Internet Draft (Working Document), unpublished document located

at http://home.netscape.coni/newsref/std/SSL.html.

SUNADMIN
SunOS 5.3 Administering NIS-t- and DNS, SunSoft.

SUNNET
SunOS 5.3 Network Interfaces Programmer's Guide, SunSoft.

VINOSKI93
S. Vinoski, “Distributed Object Computing With CORBA”, C-h- Report, July/August

1993.

VINOSKI95
S. Vinoski, “Object Connections”, C-h- Report, September 1995.

A Note on WWW References:

As the World Wide Web (WWW) gains in size, it has to be considered as an increasingly

important mechanism for research. This is especially true since the turnaround time on the

WWW is faster than it is for printed material

59

i

t
Ij

•

i
i

i

