
X.500 Directory Schema
Design Handbook

Carol A. Warnar
Advanced Networking Technologies Division

John Tebbutt
Information Access and User Interfaces Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

This work is a contribution of the Nationai Institute of Stanilards

and Technology, and is not subject to copyri^t.

QC

100

.056

NO. 5819

1996

NIST



»



NISTIR 5819

X.500 Directory Schema
Design Handbook

Carol A. Warnar
Advanced Networking Technologies Division

John Tebbutt
Information Access and User Interfaces Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

April 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director



i

I



Table of Contents

1. Introduction 1

2. Schema Design 1

2.1 Directory Schema Components 1

2.2 Selecting and Tailoring Schema Components 4

2.2.1 Name Forms 4

2.2.2 Object Classes 4

2.2.3 Attribute Types 6

2.2.4 Directory Information Tree (DIT) Content Rules 7

2.2.5 Matching Rule Definitions 8

2.2.6 Directory Information Tree Structure Rules 9

2.3 Local Schema Components 10

3. Directory Pilots and Projects 12

3.1 The Electronic Mail Program Management Office (PMO) Directory

Guidelines 13

3.2 National Institute of Standards and Technology (NIST)/General

Services Administration (GSA) PUot Project 15

3.3 The PSI White Pages Pilot Schema 18

4. Conclusion 20

REFERENCES 21

iii



IV



1. Introduction

This document contains a high level schema description including a description of the schema

components, the storage of schema information in the Directory Information Tree (DIT), and the

tailoring of the schema components to meet an organization's needs. Pilot projects and other

work in the area of schema design are reviewed and summarized.

For more detailed information related to X.500 Directory products, please see the National

Institute of Standards and Technology Special PubHcation 500-228, Guidelines for the

Evaluation of X.500 Directory Products [1], or the ITU-T X.500 Series of Recommendations,

[2-5].

The hardest decision has been made, and a Directory system has been acquired by the

organization. Now what should be done? Therein hes the second most difficult task related to a

Directory system - designing the schema. What information wiU be kept in the Directory? Is it

primarily for personnel data i.e., name, mailing address, telephone? Is the Directory intended to

be used internally i.e., only available to the different branches of the organization? Will the

Directory be distributed or centralized? Will it contain property information, device information,

customer information, or product information? The answers to these and similar questions are

necessary in designing a Directory schema.

This document, specifically Chapter 2, will explain the process of designing a Directory schema.

A review of the basic schema components is provided. The details of the schema design process

are then discussed. Finally, Chapter 3 reviews several pilot projects to show by example what can

be done in designing a Directory schema.

2. Schema Design

This chapter concentrates on Directory schema design. Section 2.1 describes the Directory

schema components. The description emphasis is on why the elements are necessary and how
they can be used. Section 2.2 provides information on storage of schema information in the

Directory Information Tree (DIT). Finally, Section 2.3 describes some of the schema components

defined by the Directory standards [2-5] and the process of tailoring these components to meet

the needs of a particular organization.

2.1 Directory Schema Components

The Directory Schema constitutes the framework within which Directory information is stored. It

consists of a set of rules and definitions which define the naming of entries, the content of

attributes and entries, the structure of the Directory as a whole, and the hierarchical relationships

between entries. The reasons for a Directory schema include:

1



providing a description of the structure of the data in the Directory,

describing the relationships between classes of Directory objects, and

providing efficient access to and use of the Directory.

The schema enables the Directory system to prevent such things as:

creating subordinate entries which are of the wrong class (e.g., a country name as a

subordinate of an organization),

adding an entry containing attribute types inconsistent with the entries object class (e.g., a

generational qualifier added to a device's entry), and

adding an attribute value with a syntax not matching the syntax defined for the attribute-

type (e.g., a bit string to a printable string).

The Schema comprises the following components (in accordance with ITU-T Recommendation

X.501 Clause 12.2 [2]):

Name Form definitions which describe how Directory entries should be named.

The definition of a name form is accomphshed by 1) specifying the named object class,

2) identifying mandatory attributes to be used for Relative Distinguished Names (RDNs),

3) indicating the optional attributes, if any, that may be used for RDNs and 4) assigning

an object identifier for the name form.

Attribute Type definitions which identify the object identifiers by which the attribute is

known.

Defining an attribute type includes identifying the syntax and associated matching rules,

specifying whether the attribute is an operational attribute and, if so, what the type is,

specifying whether the attribute is a collective attribute, designating single or multiple

values for the attribute and indicating whether the attribute is derived from another

attribute type. The assignment of an object identifier for the attribute type is part of the

definition of an attribute type.

Object Class definitions which delineate the mandatory and optional attributes which are

members of a given object class and indicate the kind of object class being defined.

The assignment of an object identifier for the object class is part of object class definitions.

Directory Information Tree Content Rule definitions which allow for the inclusion of

attributes into entries not indicated in the entries' stmctural object classes.

Every entry in the DIT is governed by at most one DIT content rule, which can be

2



identified by looking at the value of the entries structuralObjectCIass attribute. If no

DIT content rule is defined for a structural object class, then the entries of that class shall

contain only the attributes specified by the structural object class definition.

Structure rules which define the allowable form of the Directory Information Tree (DIT)

hierarchy in terms of object classes and specify the mandatory naming attributes for each

object class.

Each object and ahas entry is regulated by a single DIT structure rule. A DIT structure

rule definition consists of a 1) unique integer identifier which is unique within the scope of

the subschema, 2) the specification of the name form for entries regulated by the DIT
structure mle, and 3) the set of the permissible superior structure rules, if necessary.

Please note that one of the mandatory naming attributes must be part of the relative

distinguished name (RDM), but may be augmented with other attribute types. According

to the X.500 Directory standard [2]. An entry will frequently contain a single

distinguished value. This means that the RDN will be conposed of a single type and value

pair. However under some circumstances (in order to differentiate), additional values may
be used. It is the responsibihty of the relevant naming authority to ensure that RDNs of all

the entries with a particular immediate superior are distinct by appropriately assigning

distinguished attribute values.

Matching Rule definitions which define the matching mles to be applied to attributes.

This includes defining the syntax of an assertion or claim of the matching rule, specifying

the different types of matches that the mle supports, defining the appropriate mles for

evaluating a given assertion with respect to the target attribute values held in the Directory

Information Base. Basic matching mles include equality
,

ordering, and substring

matching.

Designing a Directory schema is an important part of implementing a Directory Service, but it is

not a one-time task. The schema document is a "living document" that needs procedures for

allowing submission of requests for new attributes and object classes to be added into the

schema;

allowing groups of object classes and attribute types defined elsewhere to be integrated

into the schema; and

checking for the redundancy of any previously defined attribute types and object classes.

One method which aids in the administration of the Directory is storage of the schema information

in the Directory Information Tree. Storing the local schema information in subentries in the DIT

enables schema information to be retrieved by remote DUAs and DSAs. Handling local schema

information in this manner allows DUAs and DSAs to properly interpret and manipulate

3



information from a given part of the Directory by reading the schema first.

The storage of local schema information is accomplished through the use of subentries; a subentry

is a special kind of entry which is immediately subordinate to an administrative point. A subentry

contains attributes that relate to a subtree or subtree refinement associated with its administrative

point. A subentry does not have subordinates and it may also contain operational attributes using

the appropriate semantics. Subentries must have the attributes of commonName,
subtreeSpecification, and objectClass. The objectClass attribute indicates the purpose of the

subentry in Directory operation.

2.2 Selecting and Tailoring Schema Components

In defining a schema for an organization, it may be appropriate to use some of the schema

con:ponents already defined within the Directory standard. The ISO standard, ISO 9594 part 7

[5] contains selected schema components which can be used by organizations as part of their

directory schema. This section lists the selected schema components defined in the Directory

standard and provides some practical examples of their use.

2.2.1 Name Forms

A name form specifies which attribute types within an object class may form part of the Relative

Distinguished Name (RDN) of entries belonging to that class. The Directory standard defines a

name form for each object class mentioned below with the exception of

strongAuthenticationUser and certificationAuthority. Each name form definition specifies

how entries of a given object class may be named. For exarrq)le, here is the name form definition

for the country object class:

countryNameForm NAME-FORM ::= {

NAMES country

WITH ATTRIBUTES {countryName}

ID {id-nf-countryNameForm}}

Most of the name forms for people or object related object classes such as person,

organizationalPerson, organizationalRole, groupOfNames, residentialPerson,

applicationProcess, applicationEntitiy, dSA, and device specify the attribute Common Name.

See ITU-T Recommendation X.521 [5] for the name form definitions provided by the Directory

standard.

2.2.2 Object Classes

The object classes provided by the Directory standard are listed below. Each of these object class

definitions can be found in the Directory Standard - ITU-T Recommendation X.521 [5]. The

object class definition for the country object class is included below to show what is contained in

an object class definition.

4



country - the country object class is used to define country entries in the Directory Information

Tree. The standard definition looks like this

OBJECT-CLASScountry

SUBCLASS OF
MUST CONTAIN
MAY CONTAIN
ID

top

{countryName}
{description {searchGuide}

{id-oc-country}}

locality - the locality object class is used to define locahty in the Directory Information Tree.

The locality object class must contain at least one of (Locality Name or State or Province Name).

organization - this object class is used to define organization entries in the Directory

Information Tree.

organizationalUnit - this object class is used to define entries which represent subdivisions or

organizations.

person - the person object class is used to define entries representing people in the generic

sense.

organizationalPerson - this object class is used to define entries representing people who are

associated with an organization, i.e., employed by the organization or important to the

organization.

organizationalRole - the organizational role object class is used to define entries which

represent an organizational role, i.e., a position or role within an organization.

groupOfNames - this object class is used to define a unordered set of names. This set of names

may represent individual objects or other groups of names. The membership of a group is static;

it is explicitly modified by administrative action.

GroupOfUniqueNames - the group of unique names object class, like the group of names

object class, defines an unordered set of names. The only difference between these two object

classes is that the group of unique names object class represents a set of names whose integrity

can be assured.

residentialPerson - this object class is used to define entries which represent individuals in a

residential environment.

appIicationProcess - the application process object class is used to define entries representing

apphcation processes. An apphcation process is defined as an element within a real open system

which performs information processing for a given application.

5



applicationEntity - this object class is used to define entries which represent application

entities. An application entity consists of those items of an application process pertinent to OSI.

dSA - the DSA object class is used to define entries representing Directory Service Agents. A
DSA is an OSI application-process which is part of the Directory. The DSA provides access to

the Directory Information Base (DIB) to Directory User Agents (DUAs) and to other DSAs.

device - this object class is used to define entries representing devices, i.e. any physical unit

which can communicate, e.g., a modem, tape unit, disk drive, etc.

strongAuthenticationUser - the strong authentication user object class is used in defining

entries for objects which participate in strong authentication. Strong authentication, defined in

the ITU-T Recommendation X.509 [3], is authentication by means of cryptographically derived

credentials and is part of the security definitions for the Directory.

certificationAuthority - the certification authority object class is used in defining entries which

perform the fimctions of certification authorities, as defined in ITU-T Recommendation X.509

[3]. A certification authority is a third party trusted by one or more users to create and assign

certificates. Optionally, the certification authority may create the users’ keys. A certificate is the

public key of a user, together with some other information, which is rendered unforgeable by

encipherment with the secret key held by the certification authority which issued it. Certification

authorities are also part of the procedures for security as it relates to the Directory and

applications which use the Directory, e.g., electronic mail applications based on the ITU-T X.400

Series of Recommendations.

Most organizations use some, if not all, of these object classes when designing their Directory

schema. The applicationProcess and applicationEntity object classes are extremely useful to

maintain information needed to establish remote connections. The strongAuthenticationUser

and certificationAuthority object classes are needed if the organization plans to provide for

digital signatures and other security related procedures.

2.2.3 Attribute Types

Part 6 of the Directory standard [4] defines a set of standard attributes which must be supported

by all X.500 implementations and which can be used to develop a Directory schema. These

attribute types are organized into broad categories. Listed below are the categories and the

attributes contained in each:

Labeling Attributes - name, conunonName, surname, givenName, initials,

generationQualifier, uniqueldentifier, dnQualifier, and serialNumber;

Geographical Attributes - countryName, localityName, collectiveLocalityName,

stateOrProvinceName, collectiveStateOrProvinceName, streetAddress,

6



collectiveStreetAddress, and houseldentifier;

Organizational Attributes - organizationName, collectiveOrganizationName,

organizationalUnitName, coUectiveOrganizationalUnitName, and title;

Explanatory Attributes - description, searchGuide, enhancedSearchGuide, and

businessCategory;

Postal Addressing Attributes - postalAddress, coUectivePostalAddress, postalCode,

coUectivePostalCode, postOfficeBox, collectivePostOfficeBox, physicalDeliveryOfficeName,

and coUectivePhysicalDeliveryOfficeName;

Telecommunications Addressing Attributes - telephoneNumber, collectiveTelephoneNumber,

telexNumber, coUectiveTelexNumber, teletexTerminalldentifier,

collectiveTeletexTerminalldentifier, facsimilieTelephoneNumber,

coUectiveFacsimilieTelephoneNumber, X.121Address, internationallSDNNumber,

coUectivelnternationallSDlVNumber, registeredAddress, and destinationindicator;

OSI Application Attributes - presentationAddress, supportedApplicationContext, and

Protocolinformation;

Relational Attributes - distinguishedName, member, uniqueMember, owner, roleOccupant,

and seeAlso;

Preferences Attributes - The Directory Standard defines another category of attribute types

known as the preferences attribute types. These attribute types are concerned with the

preferences of an object. The only preference attribute type defined at this time is the

preferredDeliveryMethod. This attribute type specifies the object's priority order regarding the

method to be used for communicating with it. The possible dehvery methods which can be

specified by this attribute are; any method, mhs, physical, telex, teletex, g3 facsimile, g4

facsimile, ia5 terminal, videotex, and telephone delivery.

2.2.4 Directory Information Tree (DIT) Content Rules

A DIT Content Rule specifies the allowable content of entries of a given structural object class

through the specification of an optional set of auxiliary object classes and mandatory, optional and

precluded attributes. If an entry permits collective attributes, these must be included in the DIT

content rules. The abstract syntax of a DIT content rule is expressed by the following ASN. 1

type:

7



DITConentRule SEQUENCE

{

structuralObjectClass

auxiliaries

mandatory

optional

precluded

OBJECT-CLASS.&id,
SET OF OBJECTCLASS.&id OPTIONAL,

[1] SET OFATTRIBUTE.&id OPTIONAL,
[2] SET OFATTRIBUTE.&id OPTIONAL,
[3] SET OFATTRIBUTE.&id OPTIONAL }

The structural object class to which the DIT content rule appHes is specified in

structuralObjectClass. The auxiliaries con^onent represents the auxiliary object class allowed

for an entry. The mandatory component species user attribute types which an entry shall contain

in addition to those which it shall contain according to structuralObjectClass and auxiliary.

The optional component indicates user attribute types which an entry may contain in addition to

those which it may contain according to structuralObjectClass and auxiliary. Finally, the

precluded component specifies a subset of the optional user attribute types of

structuralObjectClass and auxiliary which are precluded from an entry. Each of the above

components apply for entries to which the DIT content rule applies.

2.2.5 Matching Rule Definitions

Matching rules are used to evaluate attribute value assertions. The syntax used in the attribute

value assertion (i.e., the assertion component of the attribute value assertion) is the matching

rule’s assertion syntax. Matching rules may apply to different types of attributes with different

attribute syntaxes. It is important that a matching rule definition contain both the specification of

the syntax of an assertion of the matching rule and the way in which values of this s>Titax are used

to perform a match. A matching rule definition which is to be used with attributes with different

ASN. 1 syntaxes must specify how matches are to be performed. Matching rules are defined as

values of the MATCHING-RULE information object class:

MATCHING-RULE ::= CLASS {

&AssertionType OPTIONAL
OBJECT IDENTIFIER UNIQUE }&id

WITH SYNTAX {

&AssertionType
]

&id}
[SYNTAX
H)

For matching rules defined using the above information object class;

a) &AssertionType is the syntax for an assertion using this matching mle; if it is absent,

the assertion syntax is the same syntax as that of the attribute the rule is applied to;

b) &id is the object identifier assigned to it.

The definition for the objectidentifierMatch matching rule is as follows:

8



objectIdentifierMatch MATCHING-RULE ::= {

OBJECT niENTIFIER
id-mr-objectIdentifierMatch

}

SYNTAX
m

The objectIdentifierMatch matching rule is an equality matching rule. This means that a

presented value of type object identifier must match a target value of type object identifier in the

number of integral conponents and each integral component of the first is equal to the

corresponding component of the second.

The basic matching rule definition types provided are equahty and partial matching rules. Within

this break-down there are then several categories of matching rules - string, syntax-based, time,

first component and word matching rules. The string matching rules, for example, include such

definitions as:

1) Case ignore

2) Case ignore ordering

3) Case ignore substring

4) Case exact match

5) Case exact ordering

6) Case exact substrings

7) Numeric string

8) Numeric string ordering

9) Numeric string substring

10) Case ignore list

1 1) Case ignore list substrings

In string matching rules spaces are ignored; this includes leading spaces, trailing spaces and

multiple consecutive internal spaces. Therefore, strings to be matched are matched as if the

insignificant spaces were not present in the string.

For more information on matching rule definitions, particularly definitions provided by the

Directory standard, please refer to the Directory standard, part 6 [4].

2.2.6 Directory Information Tree Structure Rules

A Directory Information Tree (DIT) structure rule is a mechanism provided by the subschema

administrative authority which the Directory uses to control the placement and naming of entries

within the subschema. It is common for the subschema governing a subtree of the DIT to contain

several DIT structure rules permitting several types of entries within the subtree.

The abstract syntax of a DIT structure mle is expressed by the following ASN. 1 type:

9



DITStructureRuIe ::= SEQUENCE {

ruleldentifier Ruleldentifier,

— must be unique within the scope ofthe subschema

nameForm NAME-FORM.&id,
superiorStructureRules SET OF Ruleldentifier OPTIONAL

}

Ruleldentifier ::= INTEGER

The ruleldentifier component of the DIT structure rule identifies the DIT structure rule uniquely

within a subschema. The nameForm component specifies the name form for entries governed by

the DIT structure rule. The superiorStructureRules element identifies permitted superior

structure rules for entries governed by the rule. It the superiorStructureRules component is

absent, the DIT structure rule applies to an autonomous administrative point.

The Directory standard provides a definition for the STRUCTURE-RULE information object

class to facilitate the documentation of DIT structure rules. The definition ofthe STRUCTURE-
RULE information object class is as follows:

STRUCTURE-RULE ::=

&nameForm
&SuperiorStructureRules

&id
WITH SYNTAX {

[
NAME FORM

[
SUPERIOR RULES

ID

2.3 Local Schema Components

CLASS

{

NAME-FORM
STRUCTURE-RULE OPTIONAL,
Ruleldentifier UNIQUE

}

&nameForm ]

&SuperiorStructureRules
]

&ruleldentifier

}

From the previous sections, it can be seen that the Directory standard provides a wide variety of

object classes, name forms and attribute types which nmy be used in defining a schema.

Directory schema elements can be augmented by various implementers bodies, by vendors, or by

users. While it is essential that organizations be able to extend the Directory schema to meet their

specific needs, problems with interoperabihty and duplication of effort are likely to arise if such

extensions are carried out independently. Some coordination of effort is necessary.

This section addresses the subject of tailoring Directory schema elements to meet the

organization's needs and consists of several examples which should provide insight into how an

organization might determine that it needs to augment the schema elements provided by the

Directory.

When tailoring schema elements, new elements like object classes and attribute types are derived

from the standard provided definitions or more generic definitions. An object class (subclass), for

10



example, may be derived from an object class (direct superclass) which itselfmay be derived from

an even more generic object class. In such a case, the subclass "inherits" the mandatory and

optional attribute specifications of its superclass. An object class derived from 2 or more direct

superclasses displays the principle of multiple inheritance, because the derived object class

"inherits" the mandatory and optional attribute specifications of all of the direct superclasses.

New attribute types may be derived in the same manner, i.e., when defining a new attribute type,

it is possible and often desirable to derive the attribute using the characteristics of some more

generic attribute type. The new attribute type is then a "direct subtype" of the more generic

attribute type or the "supertype" from which it is derived.

Tailoring of schema elements should be done anytime the organization chooses to place

organization-specific information in the directory. For exanple, the "Cartoons Axe US"
company is installing a Directory service. The directory will maintain all the usual information

such as name, address, telephone number, etc. for most of the employees. But, the company

decides to create an object class cartoonist to capture information specific to those employees

who are cartoonists. Once again, all the normal information is there (name, address, telephone

number, etc.), but a new attribute type has been created as well, cartoonCharacter. The

attribute type, cartoonCharacter, holds the name of the cartoon character for which the

cartoonist is responsible. For example, cartoonist Don Jones is responsible for the cartoon

character, "Tiffany Termite".

Tailoring is necessary if the organization chooses to place information into the directory which

originally was not thought of as apphcable to a Directory service. For example, the PSI White

Pages project, mentioned in Chapter 3, decided to store information about pubhcations. Two
object classes were created, documentSeries and document. The object class, documentSeries,

was used to describe a series of documents. The information stored was the name, description, a

reference to another place, the telephone number and other contact information related to the

location of the document series. The object class, document, was used to describe a specific

document. Information stored included the document number, location, document title, version

number, author's name, key words, abstract, subject and information about whether this document

replaced a previous document or was an update to an existing document.

A pilot X.500 project, the X.500 Integration Pilot, organized by the Corporation of Open Systems

(COS) recently pubhshed information related to the pilot [10-13]. The pilot was based on

implementing an X.500 Directory service for the Southern Corrq)any. The Southern Company is

the parent firm of one the nation's largest electric utihty groups and includes five utihty

companies. In addition, there are several subsidiaries and facilities involved. The X.500

Directory Service was chosen as a means to exchange information between the proprietary mail

and directories used by the Southern Con^any. The use of X.500 also allowed the Southern

Company to share additional information with other utilities and business partners by allowing

access to each other's corporate directories.

11



The pilot utilized all of the object classes and attributes defined by the Directory standard.

Several additional object classes were defined. One of the object classes defined,

southernCompanyPerson, was derived from the Directory standard object classes of person

and organizationalPerson. The Electric Power Research Institute (EPRI) also used these object

classes to define a company-specific object class, eprinetPerson. This object class contained the

following attributes;

distinguishedName

commonName
surname

title

description

telephoneNumber

facsimilieXelephoneNumber

postalAddress

mhs-or-address

The object class groupOfNames was used by pilot participants to store information about the

Disaster Recovery Team at each of the participating companies. The groupOfNames object

class contained the attribute types of commonName, member, description, and seeAlso. The

EPRI also created an attribute type, jpegPhoto, to store peoples pictures.

Tailoring schema components is a common practice and quite easy to do. As noted above, the

definitions for most of the tailored object classes were modeled after the standard. This is also

true of two of the pilots reviewed later in Chapter 3. In one of the pilots, The National Institute

of Standards and Technology (NIST)/General Services Administration (GSA) X.500 pilot, object

classes were customized to be more appropriate for a government organization. For exaiifjle,

the object class govOrganization is similar to the standard defined organization object class, but

govOrganization adds three attributes to its definition, mhs-or-addresses, rfc822Mailbox, and

proprietaryMailbox. The additions were made because of the increasing use and dependence on

electronic mail. The proprietaryMailbox attribute type is a new attribute type created using the

definitions of mhs-or-addresses and rfc822Mailbox, but it is used to hold the address for a

proprietary electronic mail system.

3. Directory Pilots and Projects

This section describes a selection of X.500 pilot projects and other Directory related efforts

which may be helpful to organizations interested in implementing the Directory and developing a

Directory schema. Some of the projects are ongoing, while others have been con5)leted and the

status of others is unknown. Whatever the status of the pilot or project, each provides valuable

insights into the development of Directory schemas.

12



3.1 The Electronic Mail Program Management Office (PMO) Directory Guidelines

In July 1993, the Office of Management and Budget (0MB) chartered an Electronic Mail Task

Force (EMTF) to examine the state of electronic messaging among Federal agencies and to make
recommendations on what should be done to provide interoperable business-quahty electronic

mail throughout all Federal government agencies.

In April 1 994, the EMTF issued its final report defined business-quality E-mail as "a service that

appears to the user to be a single, unified electronic postal system that offers robust and
trustworthy capabilities with legally-sufficient controls for moving all forms of electronic

information among employees at all levels ofgovernment, and with the public we serve; and, like

the nation's telephone network, is affordable, ubiquitous, efficient, accessible, easy-to-use,

reliable, cost-effective and supported by an effective directory service." The recommendations

of the EMTF included the following;

1 . require Government-wide E-mail connectivity,

2. establish a Government-wide E-mail Directory,

3. establish an E-mail Program Office.

The EMTF report recommended that the Department of Defense (DoD) Defense Messaging

System (DMS) operational characteristics specifications be an important source of information to

be used when defining the operational characteristics of business-quahty Government-wide E-

mail. The EMTF recognized however that Federal Agencies outside of the DoD may have

different requirements for business-class messaging than the Department of Defense. The EMTF
recommended that an Electronic Mail Program Office (PMO) be estabhshed to coordinate, shape

and implement pohcies that would provide electronic interoperabihty among Federal agencies and

between each Federal agency and the outside community that it serves. The OMB chartered and

funded a group within the General Services Administration (GSA) to perform this task.

The GSA E-mail PMO has developed a two-year plan to provide business quaUty messaging to

Federal agencies by 1997. Government-wide business quahty messaging however will not happen

without the active participation of experts from all Federal agencies. The GSA E-mail PMO wiU

act as coordinator and catalyst to bring Federal agency experts together to develop the detailed

functional documents that specify Federal agency electronic mail and directory service

requirements. The GSA E-mail PMO will also be responsible for removing all barriers that would

inhibit the implementation of that strategy.

Directory services, as currently envisioned by the GSA E-mail PMO, will be provided by

implementations based on the ITU-T X.500 Series of Recommendations. It is in the interest of

each Federal agency to ahgn their requirements for business quahty messaging with those of other

agencies. The E-mail PMO has estabhshed the means by which the necessary inter-agency

interaction can occur. The E-mail PMO has set up two on-hne forums to facihtate

13



communication among Federal agencies for the purpose of achieving a consensus on required E-

mail services. Federal agency personnel can subscribe to one or both on-line forums by sending

an e-mail message to listproc@etc.fed.gov with

SUBSCRIBE email- 1 NAME OF SUBSCRIBER
and/or

SUBSCRIBE X.500-1 NAME OF SUBSCRIBER

in the body of the message. To receive a hst of additional on-line groups that deal with related

issues, put LIST in the body of the message. In addition, a volunteer working group called the

Electronic Messaging and Directory Working Group (EMADWG) has been formed to address a

large range of messaging issues at the working level. For further information about E-mail PMO
sponsored activities, contact Jack Finley at Jack.Finley@gsa.gov.

Each Federal agency should work with other Federal agencies to develop a directory service

schema to support business quahty messaging. The E-mail PMO is working with independent

contractors to develop a directory services schema that can be used by all Federal agencies. The

Directory Services schema that is being developed by the E-mail PMO will be available in draft

form for comment and approval by Federal agencies. Federal agencies should ensure that all

requirements that they have in common with other agencies are incorporated into the final

version. The previously mentioned X.500 on-line forum and the EMADWG will play an

important role in the review of the draft document. Agencies should understand that the schema

that is being developed will allow them to add object classes and attribute types of particular

interest to their agency.

Each Federal agency must determine how the directory service will be administered within the

agency. The DIT can be broken up into subtrees. The E-mail PMO will administer the portion

of the DIT dealing with the U.S. Government. The E-mail PMO, under its authority to administer

the portion of the DIT under country = US, organization = U.S. Government, will assign

organizational unit names to requesting government organizations and implement a knowledge

reference DSA which will contain the address of aU DSAs that inclement the Directory Service at

the organizational unit level of the Directory Information Tree.

Each organization that requests an organizational unit name from the E-mail PMO must decide

how to structure and administer the subtree in the DIT that contains the assigned organizational

unit as its root entry. The requesting organization must know the extent of its administration

authority. For example, does the Department of Treasury have the authority to administer the

name space for the Internal Revenue Service? If so, then the Internal Revenue Service becomes a

subordinate organizational unit under the Department of Treasury. Does the Internal Revenue

Service have the authority to request and administer its own organizational unit subtree? There

is no correct answer but pohcy must be determined before a request for the assignment of an

organizational unit name is made.

14



Once the extent of the administration authority of an organization is determined, the next issue to

be determined is how the administrative authority is to be partitioned within the organization.

Each agency must determine how many DSAs will provide users with transparent access to the

data stored in their portion of the DIT and what part of the DIT, or what naming context, is the

responsibility of each DSA.

3.2 National Institute of Standards and Technology (NIST)/General Services

Administration (GSA) Pilot Project

In July 1991, the National Institute of Standards and Technology (NIST) issued a report entitled

DRAFT NIST/GSA X.500 Pilot Project: Schema Definition [6], The report detailed the schema

to be used for the NIST/GSA pilot directory project. This section will describe some of the

schema components selected or developed for the NIST/GSA pilot. The schema was composed

of four parts: object class definitions, structure rule definitions, attribute type definitions and

attribute syntax definitions. (Note; the NIST/GSA pilot was based on the 1988 Directory

Standard.)

This particular project illustrated the concept of selecting and tailoring schema definitions to meet

the needs of an organization. The NIST/GSA Pilot schema includes all the object classes defined

in the Directory standard. In addition, several were derived from the standard object classes. A
description of the derived object classes follows:

govOrganization - this object class adds MHS and RFC822 electronic mail addresses to the

organization object class, as well as an attribute for a proprietary mail system,

proprietaryMailbox

.

govOrganizationalUnit - this object class adds MHS and RFC822 electronic mail addresses to

the organizationalUnit object class, as well as an attribute for a proprietary mail system,

proprietaryMailbox

.

govOrganizationalPerson - this object class adds MHS and RFC822 electronic mail addresses to

the organizationalPerson object class, as well as an attribute for a proprietary mail system,

proprietaryMailbox.

govOrganizationalRole - this object class adds MHS and RFC822 electronic mail addresses to

the organizationalRole object class, as well as an attribute for a proprietary mail system,

proprietaryMailbox

.

service - the service object class is used to define entries representing offered Open System

Interconnection (OSI) data communications service. The entry contains information about where

a service is offered (i.e., the presentation address and the computer) and details about the service

capabilities.

15



computer - the computer object class is used to define entries representing real computers. This

object class contains the name assigned to the computer, the identity of the contact point and may

optionally contain information such as its operating system, serial number, and supported services.

modem - the modem object class is used to define entries representing modems. This object

class contams a contact point for the modem and contains information about the host computer,

the telephone number and the physical location.

printer - the printer object class is used to define entries representing printers. This object class

once again has a contact point designated and contains information on the hosting conputer, the

printer speed, supported fonts, supported character sets, physical location, and the page

description language.

The next paragraph describes the structure rules and naming guidelines used by the NIST/GSA
pilot project. It is important to understand that the NIST/GSA pilot was based on the 1988

Directory standard. The current Directory standard, 1994, has different procedures for structure

rules, etc.

The 1988 Directory standard suggests a set of structure rules and naming guidelines. The

NIST/GSA pilot adopted these suggestions. Therefore, most of the subordinate data for the

object classes can be found in the 1988 Directory standard. The exceptions are the object classes

created to represent organization specific needs. This is true both for object classes considered as

subordinates of other object classes and in the specification of their subordinates. Below is the

subordinate information for the tailored object classes;

country has govOrganization as a subordinate

the subordinates of govOrganization are govOrganizationalUnit,

govOrganizationalPerson, govOrganizationalRole, locality, groupOfNames,

applicationProcess, computer, device, dSA, modem, printer, and service

locality has govOrganization, govOrganizationalUnit, govOrganizationalPerson,

govOrganizationalRole as subordinates

the subordinates of govOrganizationalUnit are govOrganizationalUnit,

govOrganizationalPerson, govOrganizationalRole, locality, groupOfNames,

applicationProcess, dSA, computer, device, modem, printer, and service

the subordinates of govOrganizationalPerson are computer, device, modem, printer,

and service

the subordinates of govOrganizationalRole are locality govOrganizationalUnit,

computer, device, modem, printer, service, and dSA
the subordinates of computer are device, modem, printer, and service

the subordinates ofmodem are common name
the subordinates of printer are common name

4 the subordinates of service are common name

16



The third schema component of the NIST/GSA pilot consists of attribute type definitions. The

NIST/GSA X.500 pilot schema includes all the attributes defined in the Directory standard.

Additionally, some attributes were defined in order to support the pilot schema object classes

defined above. Below is the list of attribute types created for the pilot:

supportedProfiles - this attribute specifies the profiles supported by the service, e.g.,

supportedProfiles = TELNET, TRANSPORT.

supportedAbstractSyntaxes - this attribute specifies the abstract syntaxes supported by the

service, e.g., supportedAbstractSyntaxes = FTAM-FADU, FTAM-PCI

hostingComputer - this attribute denotes the distinguished name of the computer system that is

hosting the service. This attribute may not be needed if an entry is immediately subordinate to an

entry of object class computer; in this case, the relationship is derived from the relative positions

of the entries in the tree. For example, hostingComputer =

/C="US"/0="GOV"/OU="Commerce" /cornmonName='Admin?"/

operatingSystem - this attribute identifies the operating system running on a particular computer,

e.g., operatingSystem = "4.4 BSD UNIX"

supportedServices - this attribute denotes the set of services available on the computer. Note

that the set of services available on a computer system can be identified two ways. First,

reference can be made to them using this attribute type. Alternatively, the entry for the service

can be placed directly under the entry for the computer in the DIB, in which case this attribute

would not need to be used. For example, supportedServices =

/C="US"/0="GOV"/OU="Commerce"/OU="NIST" /commonName="ftam-responder"/

contactPoint - this attribute identifies the entries of those responsible for equipment, e.g.,

corr5)uters, printers, and modems. This could be; for example, the owner, a system administrator,

or a property officer. For example, contactPoint =

/C="US"/0="GOV"/OU="Commerce"/OU="NIST" /CN="Smith"/

printerSpeed - this attribute identifies the speeds at which a printer operates, e.g., printerSpeed
= "600 1pm"

supportedFonts - this attribute identifies the fonts supported by a printer, e.g., supportedFonts
= "computer modem", "american modem", "CM", "AM"

supportedCharacterSets - this attribute identifies the character sets supported by a printer, e.g.,

supportedCharacterSets = "ASCII"

physicalLocation - this attribute specifies the location of an object. It is the name of a place

which is commonly known in some limited scope, e.g., physicalLocation = "Building 225",

17



'225", "Technology/B217

pageDescriptionLanguage - this attribute specifies the page description language supported by

the object (printer) whose entry contains this attribute, e.g., pageDescriptionLanguage =

"PostScript", "OUIC", "CAT"

proprietaryMailbox - this attribute is used to store electronic mail addresses other than those

that would be put into the rfc822MaUbox and mhs-or-addresses attributes. These mailboxes

will be on specific networks operating proprietary mail protocols. Thus, in addition to the

mailbox name, the network name and protocol are also needed. Values of the attribute are strings

ha\dng, by convention, an internal structure comprising '$'-separated fields. For example, the

structure would be <network name> <mail protocol> '$' <mailbox name> and possible values

might be proprietaryMailbox = "NISTnet $ IBM Profs $ rcolella"

The NIST/GSA X.500 pilot schema also imported attribute types from other sources. These

included the mhs-or-addresses and rfc822MaUbox attribute types. The mhs-or-addresses

attribute type is imported from the Message Handling Service standard (MHS). This attribute

specifies the MHS Originator/Recipient (O/R) address to use when sending mail to the object

denoted by the entry which contains this attribute. The rfc822Mailbox is the electronic mail

address in the form used by the Internet. This attribute is provided for support of the Simple Mail

Transfer Protocol (SMTP) in the Internet community by X.500.

The NIST/GSA X.500 pilot schema includes all of the attribute syntaxes defined in the 1988

Directory standard. No new attribute syntaxes were defined for the pilot, but a two were

imported, namely the syntaxes for mhs-or-addresses and rfc822Maabox.

3.3 The PSI White Pages Pilot Schema

In July 1989, NYSERNet, Inc., a non-profit company running a regional network on the Internet,

started a Directory pilot [7-9]. Since that time the pilot has been continued by Performance

Systems International (PSI). The PSI has been extending and evaluating the service in response

to experience gained during the operation of the PSI White Pages project. The goals of the pilot

were

to provide a large distributed information service involving administration by multiple

organizations,

to conduct the first production-quahty field test of the Open Systems Interconnection

(OSI) Directory, and

to estabhsh the first large-scale production application of OSI technology on top of the

Internet suite of protocol.

The pilot used THe Obviously Required Nameservice (THORN) architecture as the basis for its

schema. The THORN architecture defines additional object classes and attribute types to be used

18



for the pilot. Listed here are some of the new object classes and attributes types recommended by

THORN - friendly_CountryName, homePhone, homePostalAddress, manager, masterDSA,
slaveDSA, mobileXelephoneNumber, pagerTelephoneNumber and secretary.

The object class, friendlyCountry, for example, provides a user-friendly identification of

sovereign nations and this object class is subordinate to the country class. Possible values for the

attribute firiendlyCountryName which is part of the friendlyCountry object class are for

country = CH, "Switzerland" or "CH".

Below are some of the new attribute types defined for the pilot:

favoriteDrink - a string describing the user's favorite drink, e.g., favoriteDrink = "Iced Tea"

homePhone - a string giving the user's phone number using the international notation,

e.g., "+1 401-555-1212"

homePostalAddress - a string providing the mailing address of the person's home
info - a string containing additional, textual information about the person, e.g., "Trekker, Good

Cook"

mobileXelephoneNumber - a string describing the user's mobile telephone number (e.g., for a

cellular phone)

otherMaObox - a string containing the user's computer mail address in various domains

photo - facsimile bitmap of the user's face

rfc822Mailbox - a string containing the user's computer mail address in the Internet

secretary - a string which provides the Distinguished Name of the user's administrative support

userClass - a string describing the user's classification, e.g., "staff

userid - a string containing the user's login name, e.g., "jsmith"

Several of the object classes defined in the architecture and for the pilot are interesting and may
provide insight into the process of schema design. A very fiindamental object class defined is

thornObject. This object class is used as a superclass to define several other object classes to

model THORN objects. One of the most relevant object classes defined is thornPerson which is

a subclass of thornObject and contains the attributes userid, textEncodedORAddress,

rfc822Mailbox, favoriteDrink, roomNumber, userClass, homePhone, homePostalAddress,

secretary, and personalTitle. The object class, thornPerson, is also a subclass of person and

therefore displays the property of multiple inheritance.

Another object class defined for the Directory pilot is pilotPerson. The pUotPerson object class

was created to aid the administrators of the pilot who wanted a few more attributes to capture

information about persons in the Internet. The pilotPerson object class is a subclass of

thornPerson. This object class may contain the localAttributeSet, postalAttributeSet,

telecommunicationsAttributeSet, businessCategory, title, otherMailbox,

mobileXelephoneNumber, and pagerXelephoneNumber.

19



From these three object classes it is possible to see a progression:

from thornObject which captures information about a class of objects

to thornPerson which merges that information with generic personal information; and

finally,

to pilotPerson which merges all of that information with additional information specific to

people in the pilot.

This shows how the extensibility facilities in the Directory's information framework can be used.

This project is also interested in experimenting with document identification and retrieval using

the Directory.

The pilot defined two object classes to help with this aspect: documentSeries and document.

The documentSeries object class describes a series of documents under a common
administration. The object class is a subclass of TOP and must contain a commonName. The

attributes which may be included are description, seeAlso, telephoneNumber, localityName,

organizationName, and organizationalUnitName.

The document object class is intended to describe an individual document. It is a subclass of

thornObject and it must contain a documentidentifier. The document object class may contain

any of the following attributes: commonName, description, seeAlso, localityName,

organizationName, organizationalUnitName, documentTitle, documeetVersion,

documentAuthor, documentLocation, obsoletesDocument, obsoletesByDocument,

updatesDocument, updatesByDocument, keywords, subject, abstract, authorCN,

authorSN, and documentStore.

This project is an excellent exanple of tailoring the X.500 Directory schema components to meet

the needs of the organization. More information on this project and the THORN X.500 Naming

Architecture can be obtained from the North American Directory Forum (NADF) at +1 202-342-

2727 or see References [7-9].

4. Conclusion

This paper presents a high level description of X.500 Directory schema design which should be

helpful to organizations preparing to utilize a Directory service. The exanples presented here

provide information on both standard-defined schema elements and tailored or organisation-

defined schema elements. This should aid organizations as they attempt to define the schema for

their Directory service. For more information, please refer to the references provided. These

should provide the additional detail schema designers require.

20



REFERENCES

1. Guidelines for the Evaluation ofX.500 Directory Products, National Institute of Standards

and Technology, Special Publication 500-228, May 1995.

2. ITU-T Recommendation X.501 (1993)
|
ISO/IEC 9594-2; 1993, Information Technology -

Open Systems Interconnection - The Directory: Models.

3. ITU-T Recommendation X.509 (1993)
|
ISO/IEC 9594-8: 1993, Information Technology -

Open Systems Interconnection - The Directory: Authentication Framework.

4. ITU-T Recommendation X.520 (1993)
1
ISO/IEC 9594-6: 1993, Information Technology -

Open Systems Interconnection - The Directory: Selected Attribute Types.

5. ITU-T Recommendation X.521 (1993)
|
ISO/IEC 9594-7: 1993, Information Technology -

Open Systems Interconnection - Die Directory: Selected Object Classes.

6. Draft NIST/GSA X.500 Pilot Project Schema Definition, The National Institute of Standards

and Technology, July 1991.

7. Rose, Marshall T., The Little Black Book - Mail Bonding with OSI Directory Services.

Prentice Hall, 1992.

8. KiUe, Stephen E., The THORN X.500 Naming Architecture. THORN Project Internal Report

UCL-45, University College London, January 1989.

9. The THORN and RARE X.500 Naming Architecture. Report of Computer Science Research

Notes 89/48, University College London, May 1989.

10. Directory Services: A Transition and Co-existence Approach, X.500 Integration Pilot

Project, Phase I Implementation Report, The Corporation for Open Systems, October 1993.

11. Directory Services: A Transition and Co-existence Approach, X.500 Integration Pilot

Project, Phase II, Stage 1 Implementation Report, The Corporation for Open Systems, June

1994.

12. Directory Services: A Transition and Co-existence Approach, X.500 Integration Pilot

Project, Phase II, Stage 2 Inplementation Report, The Corporation for Open Systems,

September 1994.

13. Directory Services: A Transition and Co-existence Approach, X.500 Integration Pilot

Project, Phase n. Stage 3 Inplementation Report, The Corporation for Open Systems,

March 1995.

21



1 s;

4 ^
ibl' 4 ,

'IM.

(i(t

' 1^^ If i^li^.lltftifci'''ih i'lr
•

TOWpfpCstH^^

•r

wv?

i^v' ii \ <f '>

jrti;;;'

M:
P^n'i

'

,1', ;
,^.'

'''fV'

'

im'

.'I

;5l,^1

.m’f
M'

\4h\

SA'T'lpi?*

i
fevM

n



J

V

i
t,

3
i:

!•




