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PREPRINT

This paper has been submitted to Workshop 10, Computer Arithmetic, Euro-

Par’96, August 27-29, 1996, Lyon, France. From the Workshop 10 Announcement:

This workshop aims at exploring the aspects of computer arith-

metic related to the design of globally parallel architectures. The
arceis in which contributions are sought include number systems,

error analysis, floating-point and level-index arithmetic, high-per-

formance architectures (adders, multipliers, dividers, etc.), appli-

cation-specific architectures, hardware and software arithmetic al-

gorithms, fault-tolerant arithmetic, GCD and other operations on

integers, error detection and correction, and physical design of pro-

cessing units (FPGA to full custom implementation, optimal latch

insertion, wave pipelining, delay optimization, etc.).

The program committee consists of Jean-Marc Delosme, Yale

University (Chair); Luigi Dadda, Politecnico di Milano, Italy (Vice-

Chair); Peter Kornerup, Odense University, Denmark (Vice-Chair);

Jean-Michel Muller, Ecole Normale Superieure de Lyon, France

(Local Chair).

All accepted papers will appear in the proceedings of Euro-

Par’96, to be published by Springer-Verlag in the Lecture Notes in

Computer Science series.

The paper is subject to revision for compliance with the recommendations and

requirements of referees and editors.
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BASIC LINEAR ALGEBRA OPERATIONS IN SLI ARITHMETIC

MICHAEL A. ANUTA, DANIEL W. LOZIER,
NICOLAS SCHABANEL, AND PETER R. TURNER

Abstract. Symmetric level-index arithmetic was introduced to overcome rec-

ognized limitations of floating-point systems, most notably overflow and un-

derflow. The original recursive algorithms for arithmetic operations could be

parallelized to some extent, particularly when applied to extended sums or

products, and a SIMD software implementation of some of these algorithms is

described. The main purpose of this paper is to present parallel SLI algorithms

for arithmetic and basic linear algebra operations.

1. Introduction

This paper reports on a continuing project to develop, implement and apply

parallel algorithms for SLI (symmetric level-index) arithmetic. The algorithms are

being developed with a view toward a possible future implementation in hardware

but at this stage they are being coded for a particular SIMD (single instruction,

multiple data) computer system, a DEC MasPar MP-1^. The algorithms cover

individual arithmetic operations and extensions to the BLAs (basic linear algebra

operations) such as the product of a scalar times a vector, the scalar product of

two vectors, and the ‘saxpy’ operation [7] consisting of a scalar times a vector plus

cinother vector. All these operations, especially the BLAs, can benefit from the

parallel execution of appropriate algorithms.

A parallel implementation of individual SLI arithmetic operations for the MP-1
was developed in 1995 by Schabanel under the direction of Turner [11]. This is part

of an envisioned ‘computer arithmetic laboratory’ which will use the MP-1 to im-

plement different kinds of computer arithmetic and compare them on representative

numerical problems; see Anuta, Lozier and Turner [l].

This paper has been submitted to Workshop 10, Computer Arithmetic, Euro-Par’96, August

27-29, 1996, Lyon, Prance.

Cray Reseetrch Inc., Suite 600, 4041 Powder Mill Road, Calverton, MD 20705, e-mail;

mike.anuta@cray.com, voice: 1-301-595-2692, fax: 1-301-595-2647.

Applied and Computational Mathematics Division, National Institute of Standaurds and Tech-

nology, Gaithersburg, MD 20899, e-mail: dlozier@nist.gov, voice: 1-301-975-2706, fax: 1-301-990-

4127.

Ecole Normale Superieure de Lyon, Lyon, Prance, e-mail: Nicolas.Schabanel@ens.ens-lyon.fr.

Mathematics Department, United States Naval Academy, Annapolis, MD 21402, e-mail:

prt@sma.usna.navy.nul, voice: 1-410-293-6732, fax: 1-410-293-4883.

*^This computer system is identified in this paper to foster understanding. Such identification

does not imply recommendation or endorsement by any of the institutions represented by the

authors, nor does it imply that the MP-1 is necessarily the best available for the purpose.
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The MP-1 is located at the U. S. Naval Academy. Its processor array has a

4-bit architecture with 4096 processors connected in a 64 x 64 square array. The
communication network consists of a 4-bit bus connecting the rows and columns

of the array with toroidal wraparound to provide edge as well as interior elements

with exactly four nearest neighbors. Each processor executes instructions on 4-

bit operands using its own registers and memory. In typical SIMD fashion, the

processors are separated at any instant into an active set and an inactive set, and

an instruction stream issued from a special control processor called the ACU (array

control unit) is executed simultaneously on all processors in the active set.

The MP-1 is programmed using a version of ANSI C called MPL^. MPL pro-

grams are compiled on a DEC (Digital Equipment Corporation) workstation that is

connected directly to the ACU and processor array. Arithmetic on integer operands

consisting of 8, 16, 32 or 64 bits, or FLP (floating-point) operands consisting of 32

or 64 bits, is built up in each active processor using 4-bit operations according

to instructions issued by the ACU. The MPL data types corresponding to these

operand types are char, short, long, long long, float and double. Since

one MPL operation or 4096 take the same time, the power of MP-1 computing de-

pends on algorithms with high data parallelism. This is typical of SIMD computing

in general.

The paper is organized as follows. After a review of the SLI representation in

Section 2, we review the original arithmetic algorithms and our MasPar implemen-

tation in Section 3. This implementation simulates individual SLI operations with

a modest degree of parallelism using the MPL data type long long. In Section

4 we present modified algorithms that are more parallelizable, particularly in a

SIMD architecture. The original and modified algorithms can all be executed in

finite-precision fixed-point arithmetic. However, it should be noted here that error

analyses of the original algorithms in earlier papers provide an accurate determina-

tion of the number of guard bits needed to support a specified precision, at least for

individual operations. The number of guard bits is modest. Corresponding error

analyses of the modified algorithms will be the subject of future work. In the final

section of this paper the BLAs needed for Gauss elimination will be developed.

2. The SLI Computer Arithmetic System

The LI (level-index) representation of real numbers, its application to computer

arithmetic, and recursive algorithms for arithmetic operations, were introduced in

1984 and 1987 by Clenshaw and Olver [3, 4]. The symmetric form of the LI system

was developed in 1988 by Clenshaw and Turner [6]. See also the survey [5].

Define the infinite sequence

(
1
)

= =

If X is an arbitrary real number, define

(2) level(X)=^ Ei <\X\ < Ei+ul= Q, 1,2, .. ..

ll I = level(X), define

(3) index(X) = In^^^ \X\

^High Performance Fortran is present also but only MPL is of interest in tins paper.
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where

(4) 1X| = |X1, = 1X1,^ =0,1,2,....

The generalized logarithm, defined as

(5) V’('X’) = level(X) + index(X),

maps [0, oo) onto itself monotonically and so it is invertible on this interval. The
inverse, a generalized exponential function, is defined recursively by

(
6

)

if 0 < X < 1,

if X > 1;

compare (1). Properties of generalized exponential and logarithmic functions are

given in [2]. For example, <^, V* € C^(0,oo).

For computer arithmetic with w bits per word, LI representations are stored in

two fields: (sign bit, generalized logarithm). That is, for an arbitrary nonzero X,

(7) X = sx<f>ix), x = V’(X),

and X is stored in ordinary {w — l)-bit fixed-point format. The sequence (1) grows

very quickly. The first few terms are

Eq = 0, E\ = 1, E2 = e ~ 2.72, =: e* ~ 15.2,

Ei = e"' « 3, 810, 000 « 10®'®® «

Es w 20^’®®°’°°° ~ 2®’®°®’°°° ~ 2
^^^ ^

^ 1^1,660,000 06, 600, 000

Ee « 10 ^° « 2 ^
.

As a consequence of this growth, Lozier and Olver proved [8] that the finite set of

LI representations with level not more than 6, and w (the word length) not more

than 5.5 million or so, is closed under individual arithmetic operations (excluding,

of course, division by zero). Therefore, taking 3 bits in the integer and w — A bits

in the fractional part of x always suffices in practice.

The ri;-bit LI representation has, in effect, an ‘accumulation point’ at infinity,

but not at zero. The lo-bit SLI representation

(
8

)

(
9

)

(
10

)

(
11

)

(12) X = sx<i>{xy^

,

X = V'(max(X, X"')) = ./.(X’’^ ),

where X 91^ 0 and x is stored in {w — 2)-bit fixed-point format, allows for an

‘accumulation point’ at both infinity and zero. As a consequence of the closure

property cited above, the SLI system is free of both overflow and underflow.

Figures 1 and 2, taken from [10], compare SLI and typical FLP representations

for w = 32, 64, 128; see also [8]. The FLP overflow limits for these word lengths are

10®®, 10®®® and 10^®®^, approximately, eissuming significand lengths of 23, 52 and

112 bits. The SLI index lengths are 27, 59 and 123 bits. The vertical axis in each

figure measures ‘significance’

- logic
X+ -X
X
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Figure 1. SLI vs. FLP Figure 2. SLI vs. FLP
for w = 32 bits. for w = 32, 64, 128 bits.

where X"*" is the successor ofX in a particular computer arithmetic. The horizontal

axis measures log^gX. As expected, the FLP significance is constant ‘on average’

but exhibits an oscillation due to binary normalization. The SLI significance ex-

hibits no such oscillation. The SLI significance is better at first but it decreases

slowly and crosses over the FLP significance. The FLP systems fail beyond their

overflow limits while the SLI systems retain useful significance far beyond the limits

of the graphs. The initial superiority of the SLI significance is due to the index

having a greater number of bits than the FLP significand for a given word length.

The LI and SLI arithmetic algorithms apply not only to individual operations

but, through appropriate adaptations, to expressions of the form

Xi±X2±---±X;i,,

These adaptations reduce the number of recursive steps in comparison to building

up the expressions by individual arithmetic operations. Further, the computations

can be arranged to take advantage of parallel computing facilities since the algo-

rithms generate N sequences which are completely independent of one another.

The interest in SLI arithmetic stems from its potential for simplifying computer

programming. Because of its ability to represent extremely large numbers and their

reciprocals in a small number of bits, the vexing overflow and underflow problems of

FLP systems are avoided completely. Software engineering experience shows that

defensive coding artifices which have been developed to guard against overflow and

underflow, such as the ones described in [9], add significantly to the cost of creating

and maintaining robust software.

3. A MasPar Implementation of SLI Arithmetic

In this section we review the original recursive algorithms given in [6]. Then we
describe our recent implementation on the DEC MasPar MP-1.
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3.1. The Original SLI Algorithms. The problem is to solve the equation

(13) Z = sz<j>{zy^ = sx(i>{xy^ o SY<t>{yy^ =XoY

for sz, Tz, z given sx,sy, rx, ry, x, y, o. For simplicity of presentation we restrict^

(14) Sz = sx = sy = 1, X >Y > 0, o G {+, — , , /}. .

We confine our attention here to the additive operations, for which there are three

cases:

(16) large 4>{zy=^ = ^{x) ± <i>{y),

(16) mixed 4>{zy- = (t>{x) ± (?i(y)"\

(17) small 4>{zy^

In all cases rz — rx except possibly in large subtraction, mixed subtraction, or small

addition. These exceptional cases have been called flipover cases.

Let £x = level(A’), /x = index(X) and similarly for iy ,£z, fr, fz- The algo-

rithm generates the a- and c-sequences

(18) aj = l/<j){x - j), Cj = (f){z - j)/<i>{x - j),

the appropriate form of the 6-sequence

(19)

4>{y
- - j) (large),

i/^(y-;) (mixed).

^(t>{x - i)/<i>{y - j) (small),

and in some situations the /i.-sequence

(20)
'

* hj = <i>{z - j).

The a- and 6-sequences are generated by

(21) - e
,

a I II Oi
1

II ix --1,.. -.1)

and

(22) large b,-l = U = iY - 1,- .,1),

(23) mixed hr-i fei-1 = u = iY -1,. .,1),

(24) small ^lx -1
11

II ^^,6,_i = {j = ix - 1,. ..,1).

Then the starting value for the c-sequence LS

1 ± 60 (large).

(25) c = < 1 ± aobo (mixed).

^
1 ± 60 (small).

® All these restrictions are removable by basic properties of the SLI representation without any

need for additional rectrrsive algorithms.
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In the small case, c is the reciprocal of Cq as defined in (18). Observe that, to a

considerable extent, the o and 6-sequences are independent, and that a recurrence

like (21) can be used to compute exp(— <^(y
— -^x)) in (24).

With the observation that

(26) = c<f>{xY^ =. cjaYY

we see that flipover occurs when c < oq in the large and mixed cases, and when

aoc > 1 in the small case. Then in the small case, z = 1 -I- In aoc and the algorithm

is complete. In the other two cases we generate the /i-sequence from

(27) /ii = — Inc/oo, /ij=lnh.j_i (j = 2,3, ...)

until hj € [0, 1), then we set z = j + hj and the algorithm is complete.

Now suppose flipover does not occur. If = 1 then we generate the h-sequence

and z as above, but with the starting value hi = fx+'^x Inc. If ix > I we generate

the c-sequence from

(28) Cl = 1 -h r-xci In c, Cj+i = 1 + aj+i\ncj (>=1,2,...)

until either

(1) Cj < aj and j < ix — f, which implies z = j + Cj/aj and the algorithm is

complete, or

(2) j = ix — 1 and Cj > aj, which requires the generation of the /i-sequence

and z as above, but with the starting value hi^ = fx + lnc^_,j._i.

A linearized error analysis in [6] considers the ‘working precisions’ needed to limit

the rounding errors in the algorithms presented above to the size of the inherent

errors; see also [4]. The analysis shows, for a word length w = 32 bits, it suffices to

compute and store all sequences to 6 bits before and 36 bits after the binary point.

3.2. A MasPar Implementation. An early decision to be made in designing

an arithmetic unit, whether in software or hardware, is how the exp and In func-

tions should be computed. The utility of the CORDIC (coordinate rotation digital

computer) approach has been proven in handheld calculators [12]. Therefore this

technique was chosen and programmed using the 64-bit integer data type long

long even though use of 64-bit FLP library routines present in the MP-1 would

have saved some effort. It will be seen that CORDIC algorithms make effective use

of SIMD parallel architecture.

CORDIC algorithms generate a sequence of real triples {xj, yj, Zj) from a linear

flrst-order recurrence relation that is defined in terms of a prespecified real sequence

€j. As one component converges to zero, the other components converge to specific

function values as determined by the sequence €j and initial conditions {xo,yo, zq).

Our implementation provides the functions A exp(±t), exp((t — 1)/A) and Alnt

for special and restricted ranges of the arguments. For the first of these functions,

A enters only into the initial condition, and the parallel capability of the MP-1 is

not applicable. For the second and third, our CORDIC algorithm multiplies every

term of the sequence €j by A. A certain number of processors, say, is

allocated to perform this tcisk. This is called a CORDIC cluster.

Since the a- and 6-sequences are independent, and each requires a CORDIC
evaluation, an individual SLI additive or multiplicative operation is programmed
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to use two CORDIC clusters. The remainder of the processor array is used to repli-

cate this structure, so that SLI arithmetic operations can be executed

simultaneously.

Our MasPar implementation, accordingly, provides the C functions sli_add,

sli_sub, sli_mul, slijdiv, sli_op in which the first four accept scalar argu-

ments, and the last accepts vector arguments and an operation symbol. Compari-

son, type conversion, input and output operations are provided also.

The effect of varying the number of processors per CORDIC cluster was studied

in [11]. For single operations, allowing Ncokdic to be nonintegral, the minimum
execution time occurred with 20 processors. For vector operations, assuming the

vector length fits the array exactly, the minimum time occurred at the maximum
vector length, which corresponds to only one processor per CORDIC cluster. The
compromise IVcordic = 3 was recommended for the MP-1 because interprocessor

communication within groups of 16 processors is especially efficient.

The MasPar ‘computer arithmetic laboratory’ [1] is intended to be somewhat

indicative of tradeoffs that could be expected in hardware implementations of novel

computer arithmetic systems. Although communication between neighboring SIMD
processors is not directly comparable to communication in hardware, the results de-

scribed above show that parallel techniques can be used to speed up SLI arithmetic

operations.

4. Modified SLI Arithmetic Algorithms

In this section we describe modifications of the previous algorithms which are

well-suited to SIMD parallel implementation. The modified algorithms can also

be used to advantage in a serial implementation. The modified algorithms for SLI

addition and subtraction were first presented in [l]. They are reviewed briefly here

for completeness and ease of reference and then extended to multiplication, division

and several basic linear algebra operations.

4.1. The Addition and Subtraction Algorithms. We retain the restrictions

(14) of the preceding section. Then the basic problem of SLI addition or subtraction

is to find z and its associated sign = ±1 such that

(29) Z = <f>{zY^ = <f>{xy^ ± =X±Y.

We must consider the cases (15-17).

The algorithm begins in the same way for all cases. As before, we denote the

level and index of X,Y by lx, fx]W, fr respectively so that lx = [x],Iy =
[y],

fx,fY e [0, 1) and

(30) X = lx + fx, y = Iy + fy

In addition to the o-sequence in (18), which we now denote as aj(x), we define

“j(y) = l/^(y - i) by

(31) ojy_i (y) = e aj-i (y) = exp(-l/aj {y)) (j = ly - 1, . .
. , 1);
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compare (21). Then the starting value for computing the c-sequence can be ex-

pressed as

(32) c =
'l± ao{x)/ao{y)

< 1 ± ao{x)ao{y)

1 ± ao{y)/ao{x)

(large),

(mixed),

(small).

This definition is equivalent in all mathematical, but not numerical, respects to

(25).

Some implementation details are omitted here. For example, the division in

the large case of (32) could, for fixed finite precision arithmetic, take the form of

0/0. However, under our assumptions 00 (
1

)
< 00 ( 2/) so that if ao{x) = 0 then

one of c = 0, 1 or 2 is appropriate. Such considerations were dealt with, for the

various cases, in [4] and [6] and can be similarly treated here. The remainder of

the addition and subtraction algorithm is performed as described in Section 3 of

this paper, with the understanding that the o-sequence in (26-28) is CLj{x). The
complete modified algorithm for SLI addition and subtraction is summarized for

reference and comparison as Algorithm 1.

Algorithm 1. Modified SLI Addition and Subtraction of Positive Arguments

Input {rx,x), {rY,y), and Sop = -1-1 (for addition) or Sop = —1 (for subtraction)

Initialize Booleans large, mixed, small, and = rx
Compute o-sequence = aj(x) and ao(y)

j = 1

If large then c = 1 -f Sop^o/ao(3/)

if c < ^0 then rz = —rx, h = — In c/^o, go to h-step

If mixed then c = 1 -f So-ptoOK){y)

if c < ^0 then rz = —rx, h = — Inc/^o, go to h-step

If small then c = 1 -H Sop“o(y)/^o

if c^o > 1 then rz = —rx, z = 1 -1- Inc^Oj go to Output

If £x = ^ then h = fx -I- r-jr la c, go to h-step

else c = 1 -H rx^i In c

While j < ix — f and c > (j

j = j + l,c = 1 + Inc

If c < then z = j + c/^j, go to Output

j = £x,h = fx -I- Inc

h-step While h> 1

j = j + 1, h = Ink

z = j + h

Output {rz,z)

The stopping conditions for the c-sequence are simpler than they appear. For

rx = -|-1) for example, the first condition governs addition; the second governs

subtraction. At most one step of the /t-sequence is needed for addition. More are

needed only for the most severe cases of cancellation.

The overall structure of Algorithm 1 is simpler than the original SLI algorithm

in that the special forms of the 6-sequence (22) and (24) are not needed. Of course

the error analysis of the algorithm is different but that is not the subject of the
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present work. The complexity of the algorithm in terms of its use of special expo-

nential and logarithmic functions is not significantly different but there is a more
natural parallelism in the computation of the two a-sequences that facilitates SIMD
computation, and perhaps also computation in hardware.

Extension of Algorithm 1 to extended summation similar to that described in [14]

for the original algorithm is readily achieved. This is summarized in Algorithm 2

for the computation of

N N
z = sz4> ^ s^<t){xiy' = Xj

i=0 1=0

where we cissume that 4>{xoy° > (p{xiY' for all i and that sq = -hi.

Algorithm 2. Modified SLI Summation of N Arguments

(si, r,, Xt)i^o ^0 = +1 and |Xo| > |Xt| for z > 1

Booleans large, small, and rz = tq

o-sequence = 0^(20 )
and ao(xi) for i > 1

j = 1

If large then c= 1 , ^z = sgnc, c= |c|

if c < ^0 then rz = — t’o, h = — Inc/^o, go to h-step

If small then c =: 1 -h X] sz = sgn c,c= |c|

if c^o > 1 then rz — — rg, h — Inc^Oj go to h-step

If ixa = 1 then h = fxo + la c, go to h-step

else c = \ + ro^i Inc

Complete the algorithm exactly as in Algorithm 1

For serial computation, Algorithm 2 represents a saving of approximately 66%
since the repeated serial application of Algorithm 1 requires N such operations

which typically entail 2N a-sequences and N c-sequences. A serial implementation

of Algorithm 2 needs just [N -hi) a-sequences and just a single c-sequence. In

a parallel environment. Algorithm 2 heis essentially the same complexity as Algo-

rithm 1: all the a-sequences can be computed simultaneously and the completion

of the algorithm is unchanged. The only extra work is the fixed-point summation

to obtain c which can use an efficient reduction algorithm. Even for terms of mixed

sign it is unnecessary to exercise special care over the arrangement of this internal

summation because all internal arithmetic to the SLI algorithms is fixed-point in

nature.

4.2. Multiplication and Division. Again we adopt the restrictions (14), using

Y/X = (X/Y)~^ where necessary. Let o denote either multiplication or division,

and consider (15-17) with o in place of ±. The only cases of flipover occur for mixed

multiplication with (f>{x) < and for small division, but even these do not need

special treatment in the algorithm. The following table shows that it suffices to

consider only computations of the form

Input

Initialize

Compute

(33)

where u> v > 1:

4>{z) = (^(u) o (f>{v)
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Original operands Multiplication

large rz = +1, (t>{z) = 4>{x) * <i>{y)

mixed 0(x) > ^{y) rz = +1, (i>{z) = (f>{x)/4>{y)

mixed ^(x) < 4>{y) t'z — -1, <i>{z) = (f>{y)/<f>{x)

small rz = -1, <p{z) = <f>{y) * <f>{x)

Division

rz = + 1
, (f>{z) = 4>{x)/(t>{y)

rz = + 1
, ^(2 )

= (i>{x) * 4>{y)

rz = + 1
, (t>{z) = (i>{y) * (f>{x)

rz = + 1
, <f>{z) = 4>{y)l(f>{x)

In all four cases we have z > 1 and either u = x,v = y or u = y,v = x. By
analogy with (18), (25) and (26) we can write

(34) c = ao{v)

where cq = for multiplication and cq = for division. Then Algorithm 3

proceeds as the large case of Algorithm 1 with simplifications because flipover is

impossible. The initialization (34) has the merit of being universally applicable. For

a SIMD or potential hardware design, this may be preferable to the initialization

that was used in the original serial algorithm.

Algorithm 3. Modified SLI Multiplication and Division of Positive Arguments

Input u,v, and r = —1 (for multiplication) or r* = +1 (for division)

Compute o-sequence = o,j{u) and c = ao('y)

j=l
Complete the algorithm exactly as in Algorithm 1,

but with £x = ^u, fx = fu and rx = r

5. Parallel SLI Algorithms for Basic Linear Algebra Operations

Two of the more important low level BLAs (basic linear algebra operations) are

the scalar product and saxpy. The scalar product is easily performed by the si-

multaneous SLI elementwise multiplication of the components using Algorithm 3,

followed by the summation Algorithm 2. This idea generalizes in the obvious man-

ner to all the standard vector norms. This has been discussed using the original

SLI arithmetic algorithms in [9] and [13].

It is possible to design an SLI dot-product operation which does not complete all

the elementwise products but instead uses the information from the o-sequences to

obtain those for the summands and therefore to reduce the complete scalar product

operation to just one extended SLI operation. The saxpy operation is a fundamental

operation of the Gauss elimination algorithm; it is treated similarly in Section 5.2.

5.1. Dot Product. Our objective here is to obtain

sz4>{zy^ =X^Y

where the components of the iV-vectors X,Y are stored in SLI form:

and = (y,),^, = (^yXy^rOili

The first step is to rearrange the data so that each elementwise product is of the

form (33).
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Simultaneously for each i we set

Si = SXi • SYi

Pi = rxi rYi

/ggx Ui = max(ii,yi)
' Ui = min(xi,yi)

r = I
* \ I’Yi otherwise

Then the required dot product given by

N

(36) sz<t>{zy^ = y^.Si {<t>{ui) • (f>{viY'Y'

1=1

where each of the internal operations is in the desired form. Our objective is

however to compute the sum without completing these internal multiplications and

divisions explicitly.

Although we do not compute these component products, it will be useful to

denote them by Wi. That is, for each i = 1,2, . .
.
,N

(37) <f){wi) = 4>{ui) <i>{viY^

For the extended summation Algorithm 2, the o-sequence of each component was

required. Strictly, the full sequence is required only for the largest component of

the sum; for the others just ao(u;i) suffices. Using (37), we have

(38) a.o{wi) = ao(ui) • ao{viY'

.

To generate the initial value for the c-sequence of the final summation without

completing these products, it only remains to identify the largest component of

the sum. In order to complete the summation, we shall also need to obtain the

complete o-sequence for this term.

The first of these tcisks is simply achieved. The function oo(x) is monotone

decreasing, and the largest term in the sum corresponds to min{ao(iOi) : Vi = +1}
assuming this set is nonempty and to max{ao(tOi)} otherwise. This extreme value

can be obtained by the usual reduction process. Let tt; denote this largest term:

's(f>{wY = 7 [(f>{u)(p{v)p)

and let Aj = cij[w) and aj = aj(u). Also, we shall denote by Cj the c-sequence of

the summation and by Cj that for (f){u)4>{yY The sequence aj is already known.

Also Aq is given by (38) for the appropriate i. From (34), we have c = ao{v) and

modifying the definition in the summation algorithm to this situation

_ N
(39) C = 5 - Aq Sj • ao{wi)~'^'

i=l

with the various terms given by (38).

It remains only to obtain the rest of the sequence Aj . The rest of the algorithm

can then be completed just as for the regular summation using the recurrence

Cl — 1 -|- rAi In C, Cj — 1 -p Aj InCj — i
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and any terms of the /i-sequence which may be needed.

By definition, Aj = j) Cj = (p{w — j)/<f>{u — j). We
already have, as usual, Cj = 1 + aj lncj_i. Multiplying the first two of these, we

get AjCj = \/4>{u — j) = a.

j

from which we deduce that

^ 1 4- aj In Cj _ 1

which can be computed in parallel with Cj. It follows therefore that the required

sequences can be computed in (staggered) parallel so that (cj, Aj,Cj-i) are all

obtained simultaneously which effectively adds just one step to the c-sequence.

The overall effect of this algorithm for the SLI dot product is that the complete

operation becomes equivalent to just an extended summation (Algorithm 2) which

we have already seen has essentially the same complexity as a single SLI operation.

Of course we would anticipate that it is necessary to use a greater fixed-point

wordlength for the reduction summation in (39) due to the fact that each summand
is obtained from its factors (38).

5.2. Saxpy. In this section we turn to the vector operation

Z = aX + Y

where X, Y, Z are W-vectors and a is a scalar with all components given in their

SLI representations. This of course includes, as an important special case, multi-

plying or dividing a vector by a constant. The parallelism of the operations for

the individual components of Z is apparent and so we concentrate on the single

multiply-accumulate operation

(40) sz(f>{zY^ = Sa(f>{aY‘‘ sx<P{xY^ +sy<^(2/)’’''

Although we can concentrate on just one such operation, it is necessary to observe

that we cannot insist on any particular (magnitude) ordering among the operands

or the partial results since all possible combinations may be encountered within a

single SLI saxpy operation.

The signs Sa and Sx can be immediately combined to yield the sign s-^j of the

product term which we denote temporarily by

swHwY'^ = {sccsx) (t>{aY"‘ <l>{xY^

The two factors of the product can also be arranged as for SLI multiplication so

that (cf. (33))

(/)(w) = (f){u) o 4>{v)

with It > ^; > 1:

Original operands x>a^u=x, v = a x<a=>u = a, v = x

large, rx = Xa = -|-1 rw = +1, o = * rw = +1, o = *

mixed, rx = + 1
, Ta = -1 rw = +1, o = / rw = -l, o = /

mixed, rx = — 1
, 7’a = +1 rw = — 1

,
o = / rw = + 1

,
o = /

small, rx = ra = —1 rw = — 1
,
o = * rw = — 1

,
o = *
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Now, in a similar manner to that used for the dot product, we have

(41) ao(w) = ao(u) ao(vy

where, as in Algorithm 3, r = ^1 for multiplication and division respectively. In

order to define c for this combined operation we must determine which is the larger

operand for the addition. Again the decreasing nature of the function ao(») is used

help decide this as follows:

Operands sz c definition

large aQ{w) < ao(y) sw aj{w) c = 1 + ao{w)/ao[y)

Vw = Ty = -hi aoiw) > ao{y) Sy “i(2/) c = 1 -h ao{y)laQ{w)

mixed rw = +1) = —1 aj{w) 0=1-1- ao(tu) • ao(2/)

T'w = — 1) T’y = +1 Sy o-i{y) c = 1 -t- ao(u;) • ao(3/)

small ao{w) < ao{y) sy “j(y) c = 1 + ao(u;)/ao(y)

— Ty = -1 oo(iu) > ao{y) Sw aj{w) c = 1 -h ao{y)/ao{w)

In the cases where = aj(y) the algorithm can now be completed exactly as

in the standard SLI addition Algorithm 1. For the other cases, the quantities

= aj(w) are not readily available and must be computed from the sequences

aj(u),aj(v). It is on these ceises that we concentrate. The details here are similar

to those of the dot product algorithm in that again the o-sequence which is needed

must be obtained on-the-fly and this entails the simultaneous computation of two

related c-sequences.

At the beginning of this phase of the algorithm, for the cases where = aj{w),

we have, summarizing the above table,

c = 1 + ao{wY'^ ao(y)“’'^

where = ao(’U') is given by (41). We also have available the o-sequence aj{u) and

the initial value of the c-sequence for the multiplication given by b = 00
(
1;). The

first step then consists of (simultaneously) computing

61 = 1 -f 7'ai(u) • In 6
, 6

Qi(^)

1 + rai{u) In b

while the subsequent steps require three simultaneous (and very similar) computa-

tions:

except Cl = 1 -(- riv’^ilnc. These steps can be completed as far as obtaining

and cx,_i where L = [o] is the level of u. At this stage, if further steps

are needed the algorithm may be completed in a similar fashion to Algorithm 1.

By definition,

(i>{z — L 1
)

(t>{w - L + 1)

from which it follows that

Hl = <t>{z — L) = — L + 1) = ln(^(u; — i -t- 1) -i- lncx,_i

Now, since ln^(io — i -I- 1) = In 4){u — Z -f 1) -f In this yields

(42) hi = /u -I- ln6i_i -I- IncL-i
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where = u — L is the index of u.

Finally, ii hi > 1, the algorithm is completed by computing as many additional

terms of the h-sequence as necessary. Since each of the underlying operations can

increase the level by at most one, no more than two such steps are required. When
= aj[y), at most one step of the corresponding h-sequence is needed.

In a serial computing environment, each component of the resulting vector is

computed using three o-sequences and two c-sequences which represents only a

relatively small (approximately 17%) saving relative to performing the SLI multi-

plication and then the addition each requiring two a-sequences and a c-sequence.

In a SIMD parallel environment (with sufficient processors) all the a-sequences are

computable simultaneously as are all the c-sequences so that the complete paral-

lel saxpy operation has similar parallel complexity to Algorithm 1 for scalar SLI

addition.

6. Conclusions

In this paper we have demonstrated that fundamental vector and scalar processes

in SLI arithmetic have essentially the same computational complexity through ef-

fective use of parallel recursive algorithms. The main source of this parallelism is in

the simultaneous computation of sequences which are independent of one another,

essentially one for each component of the vector operands. This kind of parallelism,

which is unavailable in floating-point arithmetic, makes SLI especially attractive for

numerical linear algebra.

We discussed also a software implementation that is being developed on a 4096-

processor SIMD parallel computer system. This system is ideal for demonstrating

the parallel advantages of SLI algorithms with a view toward a possible future

hardware design. Currently the software implementation includes individual SLI

arithmetic operations on scalar and vector operands. It is being extended to include

all the algorithms discussed in this paper. Ultimately it will be used to solve linear

algebraic systems in SLI arithmetic for demonstration and comparison purposes.

All SLI algorithms can be executed in fixed-point arithmetic. A suitable number
of guard digits is needed, as determined by appropriate error analysis. Results

have been obtained by a priori error analysis for individual arithmetic operations

in earlier papers, and these were incorporated into our software implementation.

Further work in error analysis will be the subject of future papers.
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