
Application of the Pointer

State Subgraph to Static

Program Slicing

David W. Binkley

James R. Lyle

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

QC

100

.056

NO. 5799

1996

NIST

Vi

ii

S

I

I

Application of the Pointer

State Subgraph to Static

Program Slicing

David W. Binkley

James R. Lyle

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

March 1996

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Abstract

A new technique for performing static analysis of programs that contain unconstrained pointers is pre-

sented. The technique is based on the pointer state subgraph: a reduced control flow graph that takes

advantage of the fact that in any program there exists a smaller program that computes only the values

of pointer Vciriables. The pointer state subgraph is useful in building static analysis tools. As an example

the application of the pointer state subgraph to program slicing is considered. Finally, some experimental

results, obtained using the ANSI-C sheer Unravel, are reported. These results show a clear reduction in

the time taken to compute data-flow information from programs that contain pointers. They also shown a

substantial reduction in the space needed to store this information.

Key Words

control-flow graph; data-flow analysis; pointer-state subgraph; progrcim slicing; static analysis tools

1

1 Introduction

Static analysis tools help programmers understand software that must be enhanced or debugged. Unfortu-

nately, unconstrained pointers, as found in languages such as ANSI C[ANS89], make static analysis difficult.

Two reasons for this are the imprecision of this information and the use of dynamic storage allocation.

Imprecision comes from indirect references (assignments or uses) through pointer variables: if a pointer po-

tentially points to one of many objects, it is unknown which object is actually referenced. Dynamic storage

allocation poses two difficulties. First, an unbounded number of objects may be created. Second, since these

objects may contain pointers, an unbounded number of pointers may be created.

The pointer state subgraph introduced in this paper assists in performing program analysis of program

with pointers. It reduces the space required to represent the pointer state by using a subgraph of the

program’s control-flow graph. This graph is annotated with a function that describes the behavior of pointer

variables.

We show the usefulness of the pointer state subgraph by applying it to the problem of program slicing

in the presence of pointers[Wei8 2, Wei84, LB93]. The slice of a program, with respect to program point p

and variable x, consists of all statements and predicates of the program that may affect the value of x at

point p. Program slicing heis applications to program debugging[LW8 6, LW87, HDC88, JZR91], program

testing[BH93, Bin95], program integration[HPR89, BHR95], parallel program execution[Wei84], software

metrics[OT89], reverse engineering[Bec9 3], and software maintenance [GL91]. Frank Tip provides a survey

of program slicing including these uses [Tip95a, Tip95b].

Section 2 formalizes the pointer state subgraph. Section 3 demonstrates its usefulness in building static

analysis tools by applying it to the problem of program slicing in the presence of pointers. Section 4

presents experimental results collected using Unravel, an ANSI-C sheer that uses the pointer state sub-

graph [LWG‘'‘95]. Finally, Section 5 summarizes our work.

2 The Pointer State Subgraph

The pointer state subgraph is motivated by the observation that any program dealing with pointers contains

a program that computes the pointer state. That is, it is possible to project out of the original program an

embedded pointer state program that contains only those statements necessary to compute the values (z.e.,

addresses) held by pointer variables. This embedded pointer state program could, for example, be obtained

by taking the slice of the program with respect to all definitions of pointer variables in the program.

The pointer state subgraph (PSS) is much smaller than the full control-flow graph since only assignments

to pointer variables change the pointer state; thus, every program statement does not have to be analyzed to

determine this state. This section describes the PSS in three steps: first, it defines the PSS, then it describes

how the PSS is constructed, and, finally, it describes the construction of the pointer state function, which

annotates the PSS.

2

2.1 Definition

The pointer state subgraph is a reduced control-flow graph annotated with a pointer state function:

Definition (Control-Flow Graph). A control-flow graph is a directed graph whose nodes represent source

program components (e.^., assignment statements, or the predicate of an if or while statement). In ad-

dition, there are two special nodes labeled “entry” and “exit” that provide a “frame” for the other nodes.

Control-flow graph edges represent the flow of control through the program. For example, the node repre-

senting an if statement has two outgoing edges that represent the condition of the if statement being true

or false.

Definition (Pointer State Subgraph). The pointer-state subgraph (PSS) is a subgraph of the control-

flow. It contains those control-flow-graph nodes that modify the pointer state (e.^., p = fem, but not *p = 5,

which modifles an int not a pointer). The edges of the PSS are paths of edges from the control-flow graph:

an edge connects node n to node m if a path in the control-flow graph connects n to m and no node on this

path is in the PSS.

Each node of the PSS is annotated by a pointer state function, which describes the pointer state for each

pointer variable visible at the node in the current scope. This function maps Vciriables to objects: storage

locations allocated either statically by variable declarations or dynamically by calls to malloc (malloc is

used to represent any function that returns a newly allocated block of storage). FULL is one of the possible

objects.

Definition (Pointer State Function). For pointer variable v at node n, the pointer state function P(n, v)

contains the set of objects that v may point to (i.e., objects that v may dereference to). P{n,v) is broken

down “level-by-level;” thus Po{ti,v) is the value obtained starting with v and dereferencing zero times (i.e.

v)] Pi (n, v) is the value obtained starting with v and dereferencing one time (i.e., *v); and so on. More

formally

Po(n, v) = {u}

Pi(n, u) = {object o
\

v holds the address of o}

Pk(n, v) = {x
\

x e Pi(n, y) and y e Pk-iin, v)}.

Example. In the program shown in Figure 1 the pointer state changes three times (the pointer state

immediately after each statement is shown to the right of the statement). All three changes are for variable

min, which is initially undefined, and eventually contain eill of the formed parameters. The PSS for this

example includes the nodes for the statements on Lines 7-11.

In the absence of dynamically allocated objects, a pointer variable can take on a finite (and usually

small) number of values. Thus, it is possible to precisely identify non-heap objects. However, approximation

techniques are necessary for tracking dynamically allocated objects. The recison for this is illustrated by the

following example.

3

1 /* call: squarejmin (^a,izb,k.c)

2 return square of the minimum of a, b, and c *

3

4

5

int

{

squarejmin (int *z,

int *min, square, w;

int *y, int *z)

6 /* Pointer State for: z y z min */
7 min — z; A a b c V
8 if (*y < *min) A a b c a */
9 min = y; A a b c a */
10 if (*z < *min) A a b c a\b */
11 min = z; A a b c cji */
12 w = *min; A a b c al6|c */
13 square = w *w; A a b c a\b\c */

U
15 }

return square; A a b c a|i|c /

Figure 1: Pointer State Function Example

iypedef struct Liststruct

{

int value;

List-struct *next;

} List;

6 List *node;

7 node — (List *) malloc (sizeof(List));

1

2

3

4

5

Each time Line 7 is executed, node receives the address of a new block of memory from the heap. It

is not possible to statically determine how many blocks are allocated or to track individual blocks. This

implies that an approximation that summarizes dynamically allocated storage blocks must be introduced.

For example, the heap could be viewed as an array where assignments to individual members are treated as

both an assignment and a reference to the entire array.

The approximation used in annotating the PSS divides objects by allocation site (and thus by type): all

objects allocated by the same statement are summarized as one pseudo-variable. For pseudo-variables that

represent structures, additional pseudo-variables are created for each field of the structure. Pseudo-variables

4

are given special treatment when assigned. A definition of a pseudo-variable is also treated as a reference

to the pseudo-variable, because these variables represent more than one block of storage. (In the following

discussion, the address of a variable may refer to the address of a pseudo-variable and, thus, to a block of

memory returned by malloc.) Using this approximation, there are a finite number of possible values for a

pointer variable, because there are a finite number of allocation sites.

2.2 Constructing the PSS

Conceptually, for program P, the PSS is constructed from the embedded pointer state program of P. This

program contains all statements of P that modify the value (i.e., the address) contained in a pointer. It does

not contain the statements that compute the values contained in these addresses. The actual construction

begins with P’s control-flow graph and casts out nodes that do not change the pointer state. This is done

by applying the following three rules until none can be applied.

1. If node n has a single successor k, a single predecessor j, and does not change the

pointer state then eliminate n and connect j to k.

2. If node n has multiple successors, node j is where all the paths from n rejoin {j

dominates n), and all the nodes between n and j have been removed then remove

n and j and connect n’s predecessor to y’s successor.

3. The framing nodes “entry” and “exit” are never removed.

Example. The control-flow graph and PSS for the program in Figure 2 are shown in Figure 3. Nodes 2,

4, 11 and 12 in the control-flow graph do not change the pointer state and are eliminated by Rule 1. Since

node 4 is eliminated. Rule 2 eliminates the branch and join nodes (Nodes 3 and 5), and connects Node 1 to

Node 6. Note that the same PSS is obtained by slicing at Line 13 with respect to min.

2.3 Annotating the Pointer State Subgraph

After the PSS is constructed, each node is annotated with the pointer state function Pk{n,v). (Note that

in the implementation Pk for k > 1 is not recorded but rather is derived when needed from Pi.) Pi is

constructed by first identifying statements where object addresses are introduced and then tracking these

addresses as they are propagated along the edges of the PSS. Addresses are introduced into the pointer state

from two sources: taking the address of a, variable (i.e., by applying the C & operator) and obtaining storage

from the heap. Object addresses are propagated along the edges of the PSS using the rules in the following

table. In each rule, the pointer state output of a node is the pointer state input to the node with the entry

for Pi(n, a) (or Pi(n, y) in the case of the last two rules) replaced as shown. The rules are iterated until a

fixed point is reached. (The notation denoted h dereferenced k times.)

5

Figurt

Node
Numbi

2

3

4

6

7

8

10

11

12

Line

Number
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

/* call: squarejmin.var (&ca,&z,b,icc)

return the square of the minimum of a, b, and c */
int square-min-var (int *x, int *y, int *z)

{

int *min, square, w;

w = *z;

if (*y < w)

w = *y;

min = Hzw;

if (*z < *min)

mvn = zi

w = *min;

square = w *w;
return square;

Figure 2: An example program

6

entry

w = *x

if (*y < w)

w = *y;

min = &w;

if (*z < *min)

min = z;

10/ w = *min;

w sq = w*w

© return sq;

exit

Flowgraph PSS

Figure 3: Control-flow graph and PSS for the program shown in Figure 2.

7

Statement Propagation Rule

II Pi(n, a) = {x}

a = b Pi(7i, a) = Pi(n, b)

a =*b Pi(7i, a) = U Pi(n, s). Vs G Pi(n, b)

a =**b Pi(n, a) = U Pi(n, s). Vs € P2 (n, b)

a =*'‘b Pi(n, o) = U Pi(n, s). Vs 6 Pfc(n, b)

*a = icx Pi{n, y) = Pi(n, y) U {s}, Vy G Pi(n, a)

— &LX Pi(n, y) = Pi(n, y) U {s}, Vy £ Pk{n, a)

Example. In Figure 3, Pi(6, min) is assigned the value {iw} by the first rule. Further on, the pointer

state for min at Node 9, Pi(9, min), is the union of the pointer states on the incoming flow edges from Nodes

7 and 8. Thus, Pi(9, min) = Pi(7, min) U Pi(8, min) = {xu} U {c} = {u;, c}.

3 Applying the PSS to Program Slicing

This section discusses application of the PSS to static program slicing in the presence of pointer variables.

Before doing so, some definitions are introduced and a brief discussion of program slicing in the absence of

pointer variables is given.

Defs(n). The set of variables defined (assigned to) at statement n.

Idefs(n). The set of indirect definitions at statement n. Each element is a pair containing a variable and

a level of indirection. Level 0 indicates a direct assignment to the variable. Level 1 indicates that the

variable contains the address of the object assigned, and so on. (Note that defs(n) = {v
\

(v, 0) 6

idefs{n)}).

Irefs(n). The set of indirect references at statement n. Each element is a pair containing a variable and

the level of indirection. Level 0 indicates a direct reference to the variable. Level 1 indicates that the

variable contains the address of the object referenced, and so on. (Note that refs{n), defined below, is

{t>
I

{v, 0) e irefs{n)}.

Program Slice. P' is a slice of program P taken with respect to variable v at statement n (written 5’<n,t/>),

iff

1. P' is derived from P by deleting zero or more tokens from P, and

2. when P and P' are executed on the same input for which P terminates, the same values are

produced for v immediately before n by P and P'.

8

The slice taken with respect to a set of variables is defined eis the union of the slices taken with respect

to each variable in the set.

Refs(n). The set of variables referenced at statement n.

Slicing Criterion. A tuple <n, v> where n is a program statement and u is a variable or a set of variables.

Succ(n). The set of successor statements for statement n. This include all statements whose execution can

immediately follow n.

3.1 Program Slicing in the Absence of Pointer Variables

Program slicing is a program decomposition technique based on extracting statements relevant to some sub-

computation in a program. The relevant sub-computation is identified by a slicing criterion, which specifies

a set of program variables and a location in the program. A slice can be computed beginning from the slicing

criterion by including each predecessor that assigns a value to any variable within the slicing criterion, and

generating new slicing criterion for the predecessor by deleting any assigned variables from the original slicing

criterion and adding any referenced variables.

More formally, statement n is included in a slice if the slicing criteria for a successor of n includes a

variable in defs{n) (z.e., 5'<5ucc(n),u> include n if v € defs{n)). If n is included then the slice also includes

the slices taken with respect to the each variable in refs[n) (i.e.,
refs^n)>)

control statements

that directly control n’s execution (i.e.,
refs{c)>

each control statement c whose execution determines

whether or not n is executed.

3.2 Program Slicing in the Presence of Pointer Variables

This section considers simple pointers to non-structures and then pointers to structures. In each case, we

first describe the slices necessary to capture the execution behavior of a pointer reference that is included

in the slice and then the conditions under which a statement with an indirect assignment is included in the

slice.

Indirect Reference by Pointers

If a statement with an indirect reference is included in a slice, each variable that may be referenced, including

the pointer variable, is relevant to the computation and further slices for each must be generated. For the

simple case of a single level of indirection:

n: • • •*b- • •

the necessary slices are

5<n,Po(n,i)> U (5<„,p,(n,x)> where (x, 1) € irefs(n)).

9

For example, if the pointer state for b is Pi{n, b) = -{E, JP}, then the new slices for everything that *Vs value

may depend on are S<n,E>, 5’<n,F>i S'lid 5<n,i> (recall that Po(n, 6) = {6}).

Now consider a general reference having k levels of indirection:

n :
• • • b • •

If statement n is included in the slice then the following slices should also be included:

5<n,Pi(n,i)> where (s, k) G irefs{n) and 0 < i < fc.

Indirect Assignment by Pointers

To determine if an expression statement with an indirect assignment should be included in a slice, every

possible location that the assignment may modify must be known. This is complicated by the use of multiple

levels of indirection.

First, consider the special case of a statement n with an assignment through one level of indirection:

n: *a = • • •

For the slicing on criteria <succ{n), c>, statement n is included in the slice if Pi{n, a) includes c. In addition

to slices necessary to capture computation on the right hand side of n (t.e., those described above), slices

are generated to capture the statements that give a (not *a) its value. For example, if the statement a= he

had given o its value then the slice S<n,a> captures the assignment of he to o. If a may point to a variable

other then c then the slice is also included to capture the other assignments to c.

Now consider the general case for k levels of indirection. Here each intermediate level must be captured.

Thus, the statement

n: *^a = • • •

is included in the slice S^ 3^cc{n),v>i if is any of the variables to which *'‘a may point (z.e., n is included if

V € Pk{n,a) and (a, A) € idefs{n)).

The additional slices generated must include only relevant intermediate indirect references. This is

captured by the relevant intermediate indirect references function Ri^k{n,v,x), which returns the set of

intermediate pointers that may be used at level i of indirection for an assignment at statement n using k

levels of indirection through variable x to variable v. Function R effectively prunes away indirect pointers

in P that are not relevant to a particular slicing criterion. In other words, Pi{n,v) is the set of variables

that V may point to. However, only those members of Pi{n,v) that may dereference to x (after k — i levels

of indirection) are relevant.

Ri,k{n, u, a;) = {r
1

r € Pi{n,a) and v G Pk-i{n, r)}

10

ini w, X, y, z, *e, *f, *g, *h, *i, *j, **b, **c, **d,

a = cond() ? (cond() ? izb : izc) : &zd;

b = cond() ? ize : &/;

c = cond() ? izg : &zh;

d = cond() ? izi : izj;

e = cond() ? izw : izx;

f = izx; g = izy; h = &zz; i = izw;

j = cond() f izw : izz;

n = • • •

}

Figure 4: Pointer Code Fragment

Example. Figure 5 shows the pointer state represented as a directed graph for the variable a to three levels

of indirection for the program fragment in Figure 4. In Figure 5, an edge from node n to node m means that

n could point to m. Figure 5 also shows the pruned sets of indirect pointers for the criteria <stLCc{n),w>

and <succ{n), z>.

If S^juce(n),v> includes statement n then in addition to the slices used to capture the computation of the

right-hand side, the following slices are taken:

where 0 < i < A: and (a,k) e idefs(n)

This is sufficient if there is only one member of Pk{n,a) because the object referenced by the pointer is

unique and is definitely killed by the assignment. However, if there is more than one member of Pk{n,a),

then any analysis must account for the possibility that the object is only potentially modified. Thus, if

3{a,k) E idefs{n) such that |Pfc(n, a)| > 1 then the slice S<^n,v> must be included.

References to Structure Members via Pointer

This section, considers “pointer chain expressions, references to fields of structures accessed through pointer

variables. Pointer chain expressions are composed of a pointer variable p followed by one or more structure

field-names fi separated by (the dereference then field select operator). For pointer chains, it is necessary

11

R(n,w,a)
V,.

R(n,z,a)

Figure 5: Pruned Pointer State For * * *a

12

to identify the variables cissociated with a field of the pointer chain. This is done by the field function F:

F{v, f) = the variable that represents field / of variable

V (i.e., “v.f”).

First, consider the case of a length one pointer chain expression

n: ...p-yf...

If n is included in a slice, then slices on p and all the variables x.f where x is in Pi(n,p) must be included

(the entries of Pi(n,p) are assumed to be structures). These slices are S<n,v> and S^n,F{xj)>, where

X e Pi{n,p).

When a slice includes a statement with a general pointer chain expression, such as

n: /*)•••

then the slice must also included slices with respect to all the variables to which the end of the chain {fk)

may point, and all variables to which the intermediate links of the chain {p, fi,
- •

, fk-i) may point. An

example will help explain the need for these slices.

typedef struct

{

int c;

} alpha;

typedef struct

{

int value;

alpha *b;

} beta;

beta *a;

beta r,s,t,u;

alpha w,x,y,z;

foo()

{

n: . . -a —* b —y c- • •

}

13

Assume that at statement n the pointer state function is as follows:

3 II {s, t} F{s, b) = s.b F{yy c) = y.c

Pi{n,r.b) = {w,x,z} F{r, b) = r.b F{z,c) = z.c

II«>>e"cC {w,y} F{t, b) = t.b

Pi{n,t.b) = {y,z} F{u, b) = u.b

Pi{n,u.b) = {w, X, y} F{w,c) = w.c

If statement n is included in a slice, then slices on any variable pointed to by a —> 6 —» c must be included to

account for variables that the entire chain may reference. These slices are S<^ri,w.c>} S^n,y.c>, and S<^n,z.c>-

Slice 5<n,ii;.c>) for example, is included because a points to s (s € Pi(n, a)) and P(s, h) = s.h, which points

to ly (i£j e Pi{n, s.&)). This example chain has one intermediate link, a b. Slices for this link are S<n,i. 4>

and

In general, if statement n is included in the slice then the following slices are needed to capture the

relevant statements for each pointer chain expression

S<:n,wi>, where wq = {p},and

Wi = {F{z, fi)
\

ze Pi{n,r) and r € lOt-i}.

Assignment to Structure Members via Pointer

Consider first the case of a single field reference

n: f=...

Statement n is included in the slice S^gucc{n),v> if 'W is one of the variables identified by p —^ Thus, n is

included if

X G Pi(n,p) and v = F{x, f)

In the general case of a statement with k field references

n: p->/i-^ =

Statement n is included in the slice S^,^cc{n),v> if 'w is one of the variables identified by p —» /i —*•••—*
fk-

Thus, n is included if

V G Xky where Xq = {p}, and

Xi = {F{x,fi) |®GPi(n,Xi_i)}

Parallel to the absence of structures, in addition to slices necessary to capture computation on the right

hand side of n (described above), slices are generated to capture the statements that give p, p —* fi, • • •,

p —y fi —y • fk-i (but not p —y fi fk) their values.

14

1 main()

2 {

3 iTifi CLjbjSjTJLjZj

4 int *w,*y,**z;

5

6 s = 1;

7 a = 2;

8 b = 3;

9 scan/ (“%d %d”,8cx,8zu);

10

11 if (x) y = &a;

12 else y = icb;

13

U if (u) z = ky;

15 else z = kw;
16

n w = ks;

18 **z — 4>

19

20 prinif (“a %d b %d s %d\n”,a,b,s);

21 }

Figure 6: Missing Execution Example

3.3 Other Uses of the PSS in Program Slicing

A further example of the use of the PSS in program slicing is illustrated by Figure 6 where the PSS can reduce

the number of statements in a slice. Consider the slice on s at Line 20 in Figure 6. Weiser’s initial definition

of a slice required the slice to be executable. Later definitions relax this requirement. They define a slice to

contain all the statement that may affect the computation at a particular point in the program [HRB90].

The “relaxed” slice with respect to <20, s> consists of the following statements: {1, 2, 6, 9, 14, 15, 17,

18, 21}. However, by omitting Lines 11 and 12, the slice is not executable (*z may be undefined and cause a

run-time error when attempting to assign to **z on Line 18). The variable z could contain either the address

of w or the address of y. If z contains the ciddress of w then executing Line 18 sets the value of s since w
points to s. However, if z contains the address of y then executing Line 18 has no effect on the value of s.

Lines 11 and 12 are not relevant to the computation of s; einything could be executed so long as y is given

the address of a variable not used in the slice. Since only w contains the address of s. Line 18 is only needed

in the slice when the condition z points to w.

15

A program slicer producing executable slices has two possible solutions:

1. Add statements to the slice that are irrelevant to the slicing criterion but are required to keep the slice

executable.

2. Add conditions to guard against executing statements that would cause a run-time error when the slice

is executed.

Having the PSS available a slicer can determine that Line 18 has no effect on the variable s. A tool using

the PSS can alert the user of any indirect assignments that may be to more than one possible object. The

user could instruct the tool to assume assignment to a particular object and display the result.

4 Experimental Results

Table 1 illustrates the effectiveness of the PSS in computing pointer state information. The data was

collected using Unravel (an ANSI-C program slicer developed at NIST [LWG'''95]) on a Sun Sparc Station

2 with 64MB memory. The first group of programs were used by Pande et. al., to study def-use associations

for single level pointers (z.e., no pointers to pointers) [PLR94]. They include several UNIX library functions

and programs from the TACTIC [Ost90] test suite used to examine data-flow based test coverage for C

programs. The second group of programs contains multi-level pointers (i.e., pointers to pointers) and pointer

chains. They include the implementation of several abstract data-types (pdg is a program dependence graph

implementation [FOW87]) and two more UNIX library functions: qsort and strtod. The laist two programs

are part of the Unravel implementation itself: the analyzer program provides the XI 1 interface for Unravel;

the project program projects a source program given a set of nodes in a slice.

The data collected is summarized in Table 1. For reference this table includes the number of source lines

(non-blank lines after removing comments) and compile time (without optimization) for each program. Note

that the compile time should not be directly compared with the other times as it includes the time taken to

write the compiled code to disk.

The data in the table clearly demonstrate that the PSS reduces the time and space needed to compute

the pointer state. For the single-level pointer programs, the average size reduction is 75%; thus the PSS

is, on average, a quarter the size of the control-flow graph (CFG). The size reduction for the multi-level

pointer-programs, is smaller 56.4%, but still substantial. The reduction in size has significant impact on

the time taken to compute pointer state information. For both the single-level pointer programs and the

multi-level pointer program the average reduction is 54%.

16

name source

lines

CFG
nodes

Size

PSS
nodes

size

reduction

without

PSS

Time
with

PSS savings

compile

time

strcpy 11 10 3 70% <lms <lms - 800ms
strncat 18 23 3 87% <lms <lms - 800ms
crypt 235 236 17 93% 6ms <lms - 1600ms
random 180 172 79 54% 5ms 3ms 40% 1300ms
parser 874 640 41 94% 8ms 2ms 75% 3700ms
fixoutput 342 340 35 90% 4ms 1ms 75% 1800ms
weather 118 109 85 22% 3ms 2ms 33% 1000ms
pattern 116 93 27 71% 1ms < 1ms - 1000ms
jacobi 163 164 9 95% 2ms < 1ms - 1300ms

sor 166 168 16 90% 2ms < 1ms - 1400ms

ht 189 145 82 43% 5ms 3ms 40% 1400ms

Pdg 1143 704 55 92% 38ms 9ms 76% 5000ms
set 357 289 106 63% 9ms 4ms 56% 1700ms

qsort 171 302 197 35% 4ms 4ms 0% 1700ms
strtod 1664 1871 1241 34% 210ms 47ms 78% 8300ms

analyzer 3959 694 303 56% 48ms 15ms 69% 22300ms

project 407 305 85 72% 10ms 4ms 60% 2100ms

Table 1

5 Summary

This paper presented the pointer state subgraph. It is more efficient to annotate this graph with pointer

state information than the standard control-flow graph. Pointer state information is useful in building

static analysis tools. We demonstrate this by showing how the pointer state subgraph is used by Unravel

to compute program slices from programs that contain pointers. Finally, we reported results obtained by

running Unravel on a collection of C programs that contains pointers and pointer chains. The data clearly

illustrates the effectiveness of the pointer state subgraph in reducing the space need to compute pointer state

information and in reducing the time taken to compute this information.

Other uses of the PSS include providing an interactive static analysis tool where interesting subsets of

the pointer state can be selected by the user. This could be useful when debugging a program with pointers

where the user needs to understand how a given object is computed and manipulated.

Acknowledgments
We wish to thank Bill Landi for providing the single-level pointer code example.

17

References

[ANS89]

[Bec93]

[BH93]

[BHR95]

[Bin95]

[FOW87]

[GL91]

[HDC88]

[HPR89]

[HRB90]

[JZR91]

[LB93]

[LW86]

[LW87]

ANSI. American National Standard for Information Systems - Programming Language - C.

Technical Report ANSI X3.159-189/FIPS PUB 160, American National Standards Institute,

1430 Broadway New York, New York 10018, December 1989.

J. Beck. Program and interface slicing for reverse engineering. Proceeding of the Fifteenth Inter-

national Conference on Software Engineering, 1993.

S. Bates and S. Horwitz. Incremental program testing using program dependence graphs. Con-

ference Record of the Twentieth ACM Symposium on Principles of Programming Languages,

January 10-13 1993.

D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with procedure calls.

ACM Transactions on Software Engineering and Methodology, 4(l):3-35, January 1995.

D. Binkley. Reducing the cost of regression testing by semantics guided test case selection.

IEEE International Conference on Software Maintenance, pages 251-260, October 1995. IEEE
Computer Society Washington, DC.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in opti-

mization. ACM Transactions on Programming Languages and Systems, 9(3):319-349, July 1987.

K. B. Callagher and J. R. Lyle. Using program slicing in software maintenance. IEEE Transac-

tions on Software Engineering, 17(8):751-761, August 1991.

J. Hwang, M. Du, and C. Chou. Finding program slices for recursive procedures. Proceedings of

the Twelveth International Computer Software and Applications Conference (COMPSAC ‘88),

pages 220-227, October 1988.

S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. ACM
Transactions on Programming Languages and Systems, ll(3):345-387, July 1989.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems, 12(l):35-46, January 1990.

J. Jiang, X. Zhou, and D.J. Robson. Program slicing for C: The problems in implementation.

Proceedings of the Conference on Software Maintenance, 1991.

J. R. Lyle and D. W. Binkley. Program slicing in the presence of pointers. Proceedings of the

3RD Annual Software Engineering Research Forum, November 11-12 1993.

J. R. Lyle and M. D. Weiser. Experiments in Slicing-Based Debugging Aids. In Empirical Studies

of Programmers, Elliot Soloway and Sitharama Iyengar, eds. Ablex Publishing Corporation,

Norwood, New Jersey, 1986.

J. R. Lyle and M. D. Weiser. Automatic program bug location by program slicing. Proceeding of

the Second International Conference on Computers and Applications, pages 877-882, June 1987.

18

[LWG‘''95] J.R. Lyle, D.R. Wallace, J.R. Graham, K.B. Gallagher, J.P. Poole, and D.W. Binkley. A case tool

to evaluate functional diversity in high integrity software. Technical Report IR 5691, U.S. Depart-

ment of Commerce, Technology Administration, National Institute of Standards and Technology,

Computer Systems Laboratory, Gaithersburg, MD, 1995.

[Ost90] T.J. Ostrand. Data-flow testing with pointers and function calls. Proceedings of the Pacific

Northwest Software Quallity Conference, 1990.

[OT89] L. Ott and J. Thuss. The relationship between slices and module cohesion. International Con-

ference on Software Engineering, May 1989.

[PLR94] H. Pande, W. Landi, and B. Ryder. Interprocedurel def-use associations for c systems with single

level pointers. IEEE Transactions on Software Engineering, 20(5):385-403, May 1994.

[Tip95a] F. Tip. Generation of Program Analysis Tools. PhD thesis. University of Amsterdam, Plantage

Muidergracht 24, 1018 TV Amsterdam, 1995.

[Tip95b] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, September

1995.

[Wei82] M. Weiser. Programmers use slicing when debugging. CACM, 25(7):446—452, July 1982.

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352-357, July 1984.

19

I#

.4 a

m

\om

-rtftqa/J .3r.tf 'rin^a'hi
^'i!

alwtJi dim extfcjft^’y f'lIS ^„-:,

iKbr' .Sissla;^

' ^m;. -If*'-.'. iM'iS;.

»t fcwEli'^

[pjw. j

"iSIg^-

' ^j(je
i^i

']?>! M
1 ,p'

4^.3te!|W,

',t^’
5a

i> ';;

piii.

M-'

'’‘VlfE

3a.'4

,r’lW'

;

