
PIECS - A Software Program for

Machine Tool Process-Intermittent

Error Compensation

Herbert T. Bandy
David E. Gilsinn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.056

NO. 5797

1996

NIST

NISTIR 5797

PIECS - A Software Program for

Machine Tool Process-Intermittent

Error Compensation

Herbert T. Bandy
David E. Gilsinn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

March 1996

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Abstract

This report documents software, called PIECS, that performs process-intermittent error

compensation for a turning center. The program is a part of a larger three loop control

architecture that includes a real-time geometric-thermal error compensation loop and a post-

process loop. In process-intermittent error compensation, a part is measured by on-machine

gauging after a semifinish cut which uses the same cutting parameters (speed, feed, and depth of

cut) as are used in the finish cut, to reproduce process-dependent errors such as cutting-force

induced tool or part deflection. During gauging a touch-trigger probe signal indicates that the

part surface has been contacted. The coordinates of the points are then transformed to the part

coordinate system and compared to the corresponding nominal coordinates so that errors may be

determined. The error vector is defined as having its head at the measured coordinates of the

gauged point and its tail at the nominal coordinate for that point. Since the philosophy chosen in

this program is to compensate process-intermittent errors by changing the position and

orientation of features, least squares curve fitting through the ends of the error vectors is used to

determine the adjusted tool path curve. The compensation curve becomes the tool path for the

corresponding feature for the finish cut. The adjusted position and orientation of the feature are

thus determined. Based on this information, errors may be compensated using either oftwo

options: (1) an error specification file may be used to compensate the detected errors in real time

by adjusting the machine-tool servo commands or (2) an adjustment of the programmed tool path

can be made by changing the part program. The report includes a description of the program

algorithm, the input and output data sets as well as descriptions of each of the C-programming

language functions that compose PIECS. A listing of the program is included in the appendix.

Key Words: error; error compensation; machine tool; part; part program; process-intermittent

inspection; quality control; real-time; tool path

2

V;'

< »

w
il.Vfr^:.

|J5L,.

iilNS

¥i
TUi>i

,"x’^

i^

•wTO:}(ii»l!«!Ma^M»<nq2jm<3toSq«ri!„^3^

Itntafei i|00i 98»* T98?ri'»

4V^|iS(g^pSD^

fit tW! WJBSilwl la^^wiGii? ‘sisgi’^'iJiju} b
*^'

lOT aib.-o* faenrKitS«v''(»i| 9W Aifiq »flj
,

ai bQ8w lfe:;fei3<i^

^ TSfi |Bfl*l loot

-»iii »dtV-floi^B»noi^

^ ,
-.' lOi’:., It' '1 i' j. .. ^A..t.'^^^—^•'^sLif V^'jSrf'Al-Si i ‘*'<tortrtIIIWM*k‘liii

Table of Contents

Abstract 2

1 .0 Introduction 5

2.0 The Real-Time Error Corrector 6

3.0 On-Machine Process-Intermittent Gauging 9

4.0 Implementation of Process-Intermittent Error Compensation 10

4.1 NC Part-Program Segmentation 10

4.2 Development of Dimensional Probing Procedures 11

4.3 Preparation of Part-Probing Data Files 12

4.4 Analysis of Gauging Data

14

4.5 Modification of Part Programs 16

4.6

Creating A Tool-Path Adjustment File For The RTEC 17

5.0 The PIECS Logical Flow 17

6.0 Summary 19

REFERENCES 20

APPENDIX A
Input Data Files 21

A.1GAUGING.K 24

A.2 PRAMNNVO.REF 25

A.3PTNN0021.NC 26

A.4 PTNN0021.IN 28

A.5 PATHNN00.2 30

A.6 ATTRNNVO.I 31

A.7 CUTNNVV.REF 35

A.8 COLDVALS.REF 36

A.9 INITVALS.REF 37

APPENDIX B
Output Files 38

B. l REPORT.TXT 39

B.2 PTNN0021.DNC 41

3

B.3 ERRSPEC.DAT 42

APPENDIX C
Program Function Description and Listings 43

C.l Program Function Calling Sequence 44

C.2 Program Initializations 44

C.2.1 Defined Constants 44

C.2.2 Defined Data Structures 45

C.2.3 Global Variables 46

C.3 PIECS Support Functions and Listings 54

C.3.2 get_part_no 54

C.3.3 normalize vector 56

C.3.4 read_cut_attributes 58

C.3.5 rtec_to_part 62

C.3.6 read rtec 66

C.3.7 skipped_points_test 74

C.3.8 calculate_errors 77

C.3.9 write report 80

C.3. 10 read_toolpath_data 83

C.3. 11 classify_errors 87

C.3. 12 untrue_curve 89

C .3 . 1 3 max value 91

C.3. 14 min_value 93

C.3. 15 smallest_magnitude 95

C .3 . 1 6 offset_change 97

C.3. 17 Constant_error 100

C.3. 18 straight_line 103

C .3 . 1 9 calculate_coefficients 107

C.3.20 solve_equations Ill

C.3.2 1 untrue_planar 114

C.3.22 write_segment 117

C.3.23 errspec 120

C.3.1 piecs 126

APPENDIX D
Introduction to NCMAKE 131

APPENDIX E
Procedure for Generating Part Data 136

4

1.0 Introduction

Over the past several years the Quality in Automation (QIA) project at the National Institute of

Standards and Technology (NIST) has developed a quality control and assurance system that

exploits deterministic manufacturing principles in small-batch automated manufacturing using

commercially available and affordable equipment. The premise behind deterministic

manufacturing principles is that most errors in the manufacturing process are repeatable and

predictable, and, therefore, can be compensated. The foundation of the project is a quality-control

architecture that uses multiple feed-back loops to control the process. The three contol loops that

are involved in this architecture are: real-time control, process-intermittent control, and post-

process control.

This report documents the software that is the principal component of the process-intermittent

control loop. The program is called the Process-Intermittent Error Compensation Software

(PIECS) and is part of a larger architecture that encompasses the real-time control loop and the

post-process control loop. PIECS seeks to perform corrections for complex part dimension and

form errors introduced during the semifinish machining of a part. The errors corrected are

process-related errors, such as inaccurate tool dimensions, tool wear, tool and/or part deflection,

etc. PIECS supports rapid process-intermittent measurements of the machined part by replacing

the tool \vith a touch trigger probe, thereby, transforming the machine tool into a coordinate

measuring machine. Compensation is achieved by part program modification or real-time

compensation.

The function of the real-time control loop is to monitor the machine tool and the cutting process

and to modify the tool path in real-time to achieve higher dimensional and form accuracy, and

surface quality. The real-time loop modifies the tool-path through the Real-Time Error Corrector

(RTEC), explained in Section 2.0, compensating errors predicted by Geometric-Thermal (G-T)

error models of the machine-tool. The models are derived from the structure of the machine and

pre-process characterization of the machine. These characterization procedures measure such

motion related errors as axis positional errors, axis straightness errors, roll, pitch and yaw errors

of the carriages along the axis slideways, and the squareness and parallelism errors. These errors

are machine axes position and temperature dependent.

The post-process control loop is used primarily to verify and optimize the performance of the

other two control loops. A finished batch of parts is measured on, for example, a coordinate

measuring machine (CMM) to determine residual errors in part features. Systematic errors in

specific features are used to modify the algorithms used in the process-intermittent loop, or, in

the long term, to modify the parameters in the G-T model. This control loop can also be used to

adjust the pre-process characterization of the machine to take into accoimt the effects of process

related machine functions such as the use of coolant.

The PIECS software described in this report compensates for the process-related errors by

automatically modifying the tool-path specifications (such as coordinates, tool offsets, etc.).

These modifications are made to a file of tool-path adjustment data that is used by the RTEC

5

during the machining of the finish cuts.The software also provides a modified NC part program

for the finish cuts for those machining centers that do not have the capability of the RTEC. The

procedures supporting the modifications depend on establishing the nominal geometry of the

desired part, usually through a computer aided design (CAD) of the part. Design feature

information, on-machine inspection points, inspection probe information are all automatically

stored in files that are passed to the architecture of PIECS. The differences between the part

dimensions gauged by a touch-trigger probe between machining passes, and the corresponding

nominal dimensions, are analyzed and weighted to produce tool-path adjustments for the

subsequent machining pass. The NC controller uses coordinates that are modified on the basis of

error patterns observed from on-machine probing in order to make the tool traverse a path

significantly closer to the ideal path.

Although the methodology detailed in this report is described relative to turning processes,

nearly all of the principles apply as well to milling. The prototype software documented here has

been developed for a turning center and has been designed to accomodate machine-gauge-

machine iterations. However, the principles employed in the software are quite general. The

program is written in the C programming language.

This report is structured in the following manner. Sections 2 through 5 present the general

background necessary to understand the PIECS strategy. The program input files are described in

APPENDIX A and the output files in APPENDIX B. The individual program functions are

described in APPENDIX C and program listings are given there. A brief description of the

software NCMAKE that is used to develop the supporting NC part-probing programs for PIECS
is given in APPENDIX D. Finally, the general procedures for developing part data from CAD
output are provided in APPENDIX E.

2.0 The Real-Time Error Corrector

Since the RTEC plays an integral part in both the real-time and process-intermittent control

loops, this section briefly describes its features. A more detailed description can be foimd in

references 3 and 4.

The RTEC is a generic smart interface that is inserted between the position feedback element of

the axes of a machine tool, and the machine-tool controller. The device counts the signals from

the feedback element to determine the machine position and sends this position data to a

controlling PC computer, called the Quality Controller in the rest of this report, which records

the data. There is a quadrature decoder and microprocessor for each axis.

When performing corrections, the RTEC alters the tool-path by modifying the square-wave

signals from "encoder-type" feedback devices before they go to the machine tool controller.

Additional pulses are added causing the machine axis to go to a slightly different position to

compensate for the predicted errors. The correction counts to be added are determined by the

Quality Controller using the G-T model along with the current machine temperatures and axis

positions. For the machine tool in use, a two-axis turning center (Figure 1), the position is

6

Ballscrew

housing

38

7

Figure

1
-

A

schematic

of

the

turning

center

with

thermocouple

locations

altered by 2 |j.m for each correction count. The figure also shows thermocouple locations used in

developing the G-T model. These are identified more precisely in Table 1.

Thermocouple

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Table 1

Locations on the Turning Center

Location

Bottom of X-(Glass) Scale

Top of X-Scale

Coolant Tank

Not Used

Not Used

Not Used

Not Used

Right of Z-Scale

Right Center of Z-Scale

Left Center of Z-Scale

Left of Z-Scale

Top ofX-Way
Bottom ofX-Way
Top ofX-Head

Bottom ofX-Head

Bottom Left of Z-Slide

Top Left of Z-Slide

Bottom Right of Z-Slide

Top Right of Z-Slide

Hydraulic Tank

Left End ofLower Z-Way
Left End of Upper Z-Way
Right End of Lower Z-Way
Right End of Upper Z-Way
Lower Front of Spindle Head

Lower Rear of Spindle Head

Upper Front of Spindle Head

Upper Rear of Spindle Head

Left of Top of Spindle Head

Middle of Top of Spindle Head

Right of Top of Spindle Head

Bottom Left of Bed
Top Left of Bed

Bottom Right ofBed

Top Right ofBed

Near X-Drive Motor Shaft Bearing

Left Z-Ballscrew Bearing

Right Z-Ballscrew Bearing

X-Ballscrew Housing

Z-Ballscrew Nut

8

3.0 On-Machine Process-Intermittent Gauging

Two types of part inspection are used in the overall quality control strategy. The first uses on-

machine gauging and the second uses a coordinate measuring machine (CMM). Since the

inspection technique used in the process-intermittent loop is on-machine gauging, this section

will only describe this method.

Most geometric and probably thermal errors that occur during machining will be reproduced

during the probing operation and will not be "seen" (i.e., the same incorrect path is traced by the

tool and the measuring probe). Therefore, only process-induced errors, caused by tool

dimension, tool wear, tool and/or part deflection, etc., can normally be detected. The part

probing operation takes place after a semifmish cut, which uses the same cutting parameters

(speed, feed, and depth of cut) as are used in the finish cut.

The on-machine gauging used in the process-intermittent error compensation is called fast-

probing. Fast-probing is rapid on-machine gauging using a touch-trigger probe. In fast-probing,

the RTEC captures the axis positions in response to the probe trip and sends them to the PC. The

coordinates of the point of contact are then calculated with respect to the part coordinate system

so that they may be compared to the corresponding nominal part geometry. At the 2.5 m/min

feed rate used for probing, the position must be captured within about 25 ps to avoid introducing

a position error greater than the position resolution of the turning machine used in this study,

which is 1 pm. Most machine tool controllers are not designed to respond to probe trips rapidly

enough to allow fast probing, but it is possible using the RTEC.

The RTEC is capable of two modes of operation. It is not operated in its correction mode during

process-intermittent gauging, since the RTEC microcomputer is not capable of doing both error

compensation and fast probing simultaneously. At each trip of the probe, the RTEC reports the

current machine position, but unlike the operation during machining, that position is not

corrected by the RTEC according to the G-T model. Therefore, in order to compare the actual

location of a surface on the part with the location that was intended as a result of the last

machining pass, each position that is registered during gauging must first be adjusted by the

model. The error is the difference between the ideal dimension and the dimension measurement

obtained with the probe.

Touch-trigger probing is not the only process-intermittent gauging method investigated. On-

machine gauging by ultrasonic probing has also been used for surface roughness measurement

[5]. For the purposes of this report, however, touch-trigger probing for error compensation is the

only process-intermittent gauging method discussed.

9

4.0 Implementation of Process-Intermittent Error

Compensation

The implementation of process-intermittent error compensation requires several steps. The

PIECS software requires adaptation of part programs, collection of data during dimensional

inspection, and advance preparation of process data. Once this data is prepared the PIECS

software analyzes the gauging data, modifies part programs and prepares the tool path adjustment

file for the RTEC. These steps will be outlined here and expanded on in the sections below.

The part data preparation begins with the development of an archival part program. An initial NC
part-program is segmented. An archival part program is the version of the NC part program with

which the QIA system starts each time a part is made. It functions as a template and consists of

special adaptations of the NC part-program segments that are generated by replacing certain tool-

path coordinates with variables, and by adding tool-offset commands near the beginning of the

finish cut program segment. They are used by PIECS, in conjunction with special data files, to

generate usable NC part programs.

In the next step, probe and part information are prepared. The X - and Z -lengths and probe

diameter are calibrated. A schematic of the turning center used is shown in Figure 1 where the

axes directions are given. Table 1 gives the locations of thermal sensors. A cut is defined as the

portion of part geometry which is produced by a machining pass of the tool from a position

specified in a block ofNC code to the next position, specified in the next block. Those blocks are

called the "initial block" and "final block", respectively, for that cut. Cuts, as well as the nominal

coordinates of the gauging points located along the cut, are defined using a CAD system. The

data generated also includes such information as the order in which the gauging points will be

measured, the point whose Z-coordinate is to be used as a reference location on the part, the tool-

path specifications that are to be compensated, and the nominal shape of each cut and its

important relationships to other cuts.

After a process-intermittent gauging session is finished the probed data points are converted to

part coordinates. Error vectors are then created from the nominal coordinates of the gauged

points to the measured data in the part coordinate system. Interpolating polynomials are fit

through these error vectors by least-squares and the polynomials are then used to compensate the

errors for each cut feature during the finish cut of the part.

4.1 NC Part-Program Segmentation

In order to insert on-machine inspection routines after both of the semifinish and finish

machining, a typical NC part-program is divided into segments. For a sample of a segmented

part-program see Section A.3.

The NC part-program is divided into segments in order to provide opportunities for certain

logistical requirements of error compensation. The segmentation simplifies such tasks as setup

10

procedures, running gauging segments multiple times to study error repeatability or for

experimental purposes to cut multiple copies of semifinish parts. Within a segment, sequential

NC part-program blocks are executed without interruption, but between segments execution is

temporarily suspended. Since roughing a part is not of critical interest, the groups of consecutive

blocks ofNC code pertaining to roughing comprise a single segment. In some cases, semifinish

code is contained in the same segment. Otherwise, code for semi-finish and finish machining is

contained in independent segments.

If part gauging were not performed, semi-finish and finish maching could be performed in the

same segment. However, to insert a part gauging segment, a part programmer locates an

instruction in the part program after which gauging is performed. The segment boundary is

selected to make sure that this instruction occurs at the end of the semi-finish portion of the NC
part-program.

The program NCMAKE, described in APPENDIX D, is a software routine that assists in part-

program segmentation. The first step in applying NCMAKE to the segmentation process is to

identify convenient places in the part program where execution may be safely interrupted. Since

segments are executed one at a time, header and footer blocks are added to each segment as

appropriate. The end of each segment is marked by an M30 NC command, which will cause the

spindle, coolant and feed to stop. However, the segmentation decisions remain tentative until the

requirements of the dimensional and surface inspection sequences, to be inserted as independent

segments, are finally defined.

4.2 Development of Dimensional Probing Procedures

In preparation for developing gauging instructions to be sequenced with other segments of the

part program, each part surface needing dimensional measurements must be identified as a cut.

Figure 2 shows a sample part with cuts and gauging points identified on it. In this figure, cuts 1

and 7 are "hypothetical cuts". They do not represent actual surfaces on the part, but are defined

such that their intersections with real cuts are start-points and end-points of tool paths.

Cuts
Cut 4

Cuti
Cute

Cuts

4 X
A Part

• • • # .

1 2 3 4 J

i

i

5

6

7

ft

Cut 5

1 ^ .Z

!••••.
9 10 11 12

J

«

13

14

15

Cut 7

Figure 2 - Sample Part

11

The following outline describes the steps required to prepare NC part-probing routine segments.

CAD-interactive programs facilitate this task.

1 . On the basis of the part geometry, one determines the measurement points that will be

taken on the specified surfaces and develops a file with the nominal coordinates of each of

these points.

2. One next defines the NC part-program segments for making the necessary measurements.

The program NCMAKE performs this automatically based on files created with the CAD
program. Although the target coordinates of the probe paths are based on the nominal

coordinates, one must take into consideration the machine-tool acceleration distance,

overtravel limits of the touch-trigger probe stylus and the workholding devices.

3. To complete the part-probing segments, the part programmer adds header and footer blocks

to each part-probing segment in order to form independent part-program segments.

NCMAKE simplifies this task.

4. Finally, each complete part-probing segment is inserted into its designated place in the

sequence of part-program segments. However, instead of actually being concatenated, the

sequence is implied by the part program ID numbers assigned to the independent segments.

4.3 Preparation of Part-Probing Data Files

After the machining and gauging NC part-programs have been segmented, part-probing data files

are prepared as input to PIECS. This section gives an overview of the tasks involved. A more

detailed description of the files is given in APPENDIX A.

The file names are linked to machined parts by a part identification number. Each part is

identified by a four digit number NNVV, called the part ID. The first two digits, NN, represent

the part number and the last two digits, VV, represent different versions of the part. In particular,

the first V of the version number represents the material and inspection point patterns and the last

V denotes a multiple of the part. The digit 0 is used in place of a version digit for references

which are independent of the pertinent type of version. Therefore, if a file name is specified to

contain the four consecutive digits ««00, the file applies to any and every version of part nn. If

the digits are specified as nnvO, the file applies to every nominally identical copy of part nn

which is made with the particular material and inspection point pattern implied by the value of

the first version digit. This convention allows producing as many as nine copies (having the

second version digit numbered 1 through 9) of a part having the same first three ID digits. This

limit has not been a problem for this experimental project.

Once the NC part program for part nnvv is tentatively segmented, tool-offset update commands

are inserted to create a file PT««0021 .NC, where 21 is a code referring to the finish machining

process. (Further elaboration on the part and process nonmenclature would exceed the scope of

12

this report.) Preserving the ".nc" versions of the machining segments as master versions, the

QIA archival versions, having symbols for variables in place of tool path specifications, are

produced next as input files ptNN0021.in. Then segments containing dimensional gauging

instructions are developed and inserted as explained in sections 4. 1 and 4.2.

The part-probing data file is then prepared. The X and Z-lengths and diameter of the probing tool

are measured and the nominal coordinates of the gauging points are located along cuts. The order

in which the gauging points will be measured is established. Finally, the point whose Z-

coordinate is to be used as a reference location on the part is identified. These are entered into a

file called pramNNVO.ref Only the first three digits of the part number NNV are significant in

this file name. 0 only marks a character position in the file name. The radius of the probe stylus

is also a parameter that is entered into the file pramNNVO.ref. It is used ,
along with the surface

normal vector at each gauging point, for an accurate determination of the location where the

stylus contacts the part (See Figure 3).

Figure 3 - Determining the Coordinates of a Point Gauged

13

The tool-path file is next generated. The tool-path specifications that are to be variable are

designated in a file pathNNOO.2, where the extension 2 refers to the finish cut. The ideal shape

of each surface is recorded and the position and orientation of each surface to the other surfaces

are also stored as surface attribute data.

Among data to be entered into each file attrNNVO.I (where I = 1 or 2 for the semifinish and

finish part respectively) are information concerning each cut containing gauging points,

including (1) the direction of the last pass; (2) the surface normal vector at each gauging point;

and (3) codes associating part program instructions with particular gauging results.

4.4 Analysis of Gauging Data

After each process-intermittent gauging routine, error terms for all gauging points are calculated.

The vector from the nominal coordinates of a gauging point to the measured coordinates of the

same point is defined as the error vector. This vector is decomposed into its components along

the surface normal and the surface tangent. The term error is defined as the signed magnitude

(positive or negative) of the component of the error vector that lies in the direction of the surface

normal of the gauging point. It is the only component used in the calculations for analyzing the

gauging data and for compensation. Although the parallel component of the error vector is also

calculated, it is only used as an indicator of gauging problems if it is found to be of significant

magnitude.

Error calculations are carried out in several steps. First, using the machine-tool temperatures at

the time of the gauging process, the measured coordinates are adjusted by the G-T model. These

adjusted gauging coordinates are then converted fi-om the machine-tool coordinate system to the

part coordinate system. Figure 3 illustrates the determination of the part coordinates for the

probe points. Referring to Figure 3, Xp^ and are coordinates of a gauging point in the part

coordinate system which are calculated using the following equations:

X
,
^ X .

part mach

z - z
part mach

+ r(l - sin(0)) - X
+ r(l - cos(0)) -

- AX
- AZ (4.1)

where in the current program -AX^yg is called MACHINE_HOME_X (see section C.3.5). It

represents the distance in the X-coordinate direction from the part origin to the machine home

origin. Since the current turning center controller, upon which PIECS has been implemented,

requires that the diameter rather than radius be given, the actual part coordinate is twice the radial

value and is designated here by a superscript d. Therefore, for the current turning center:

X,i, = 2.0 + r(l - sin(0)) - + MACHINE_HOMEJC) (4.2)

A known z-coordinate on the part is used to locate the part coordinate system with respect to the

machine system. This enables and AZgyg to be combined into one constant, z^j^. From

14

(4. 1) one can write:

= Az
dtff sys

+ z
probe

= z
mack ^par,

+ '(1 COS0)
(4.3)

Note that is calculated for a specific point but the resulting constant is applied generally.

For each gauging point, the error is next calculated as the difference between an adjusted

measured coordinate and the target (nominal) coordinate. The magnitude (positive or negative) of

the component of the error vector which lies in the direction of the surface normal of the point of

interest is computed. The error vector is equal to the gauged coordinates minus the nominal

coordinates (of the semifinish segment).

The compensation vector at a gauging point for the finish part is then generated. This value is

computed as the nominal coordinates of a gauge point for the finish machining segment plus the

product of the unit normal vector, the negative of the error scalar, and the percent correction.

A correction curve is then fit to the adjusted coordinates for the finish machining segment which

creates an adjusted tool path for the finish cut. The equation form is given below as equation

(4.4). The fit is accomplished by a least-squares technique and ensures smoothness. Thus, the

actual position and the orientation of the measured feature are determined relative to those of the

ideal feature.

According to the nominal shape of the surface of interest appropriate coefficients are assigned to

the following general polynomial. The correction curve represented by the polynomial becomes

the tool path for the corresponding cut in the finish machining segment. The general form for the

correction curve polynomial used in PIECS is:

+ C3za: + + C^z - C,x - C, = 0 (4.4)

In the table below an explicit quadratic or cubic function means a quadratic or cubic function

with Z only. The general quadratic includes X terms.

15

Nominal Curve Coefficients

* = VALUES TO BE DETERMINED FOR SPECIFIC CASES

Co Cl C2 C3 C4 C5 C6

Line * 0 0 0 0 *
1

Circle * 0 1 0 1
* =f:

Explicit

Quadratic

* 0 * 0 0 *
1

General

Quadratic

* 0 * * * * *

Explicit

Cubic

* * * 0 0 1

4.5 Modification of Part Programs

The tool-path adjustment, as calculated above, is used as input to correction functions to

calculate new tool-path specifications. There are three cases to consider.

If all features are found to be translated with respect to the ideal one by the same amount, which

is indicated by a nearly constant offset error along an axis, a tool offset change in the part

program is adequate. If tool offsets are to be adjusted, the calculated X and Z increments are

substituted into the UPDate commands in the pertinent part-program segment.

If the measured feature is found to be translated, rotated, and/or deformed without changing its

rigid body characteristics (as in a length change, for example) compensation is done by

modifying selected end coordinates related to these features. For cases in which the endpoint of

one cut also serves as the start point of the next cut, the adjusted coordinates for that point are

calculated as the intersection of the two correction curves for the cuts. The new coordinates are

substituted for the nominal coordinates in the pertinent part-program segment.

If circles, arcs or contours are not true because of tool wear or deflections, then the contour or

circular interpolation codes in the part program could be converted into explicit linear point-to-

point paths. This process would involve breaking the features into smaller linear sections and

modifying the end coordinates of these linear sections accordingly. The end result would be a

large output file for running real-time compensation on the finish part. This feature is not

included in the current version of PIECS given in APPENDIX C since more efficient algorithms

based on splines are being investigated.

16

4.6 Creating A Tool-Path Adjustment File For The RTEC

In addition to an adjusted NC program for the finish cut in the machining process, a file

containing error profiles for different coordinate ranges is prepared. For a more precise

description of the meaning of coordinate ranges see the description of the output file

ERRSPEC.DAT in Section B.3. This file is used by the QIA control program, running on the

Quality Monitor, to interpolate the errors along each cut, during machining, and pass the

resulting correction counts to the RTEC. The RTEC converts these to compensation counts and

adds these counts to the feedback position and sends the result to the machine tool controller in

order to produce a current machine position adjusted to compensate feature error.

5.0 The PIECS Logical Flow

The following outline describes the flow of program control.

1 . When it is called PIECS initially gets the following data items from the QIA control program:

Gauging file sequence number

Gauging time machine temperature state vector

Machine home-to-part origin distance

2. PIECS then tests for improperly read gauge points, which are skipped. It then iterates through

the input files each time a gauge point is skipped so that cut attributes can be reinterpreted to

match only the points which did register. Only three skipped points are allowed otherwise

PIECS terminates. A gauge point is selected to be skipped if the component of the probed

value parallel to the part surface is larger than some preselected tolerance. This precaution is

taken in order to select only those gauge points for which the probe approaches the surface in a

normal direction.

3. In the process of reading input files PIECS first reads in attributes of each cut to be affected by

the gauging session for the current part. The data read include nominal coordinates for the

gauging points, and nominal "go-to" coordinates for the finish cut as well as the curvature of

the cuts (i.e. whether the cuts are linear or arcs). Two cut attribute files are read, one for the

semifinish cut and one for the finish cut.

4. Semifinish probing data are read, adjusted for G-T errors and transformed to the part

coordinate frame. Since the G-T model functions are not included in the program given in

APPENDIX C the function calls to the G-T model have been commented out.

5.

The PIECS function next calculates deviations of actual from nominal gauging coordinates in

the part coordinate frame. During the first pass through the input files, no skipped points are

17

assumed. However, after all skipped points, if any, have been accounted for, the function

computes the scalar errors in the direction of the normal vectors at the gauge points of the

semifinish cut.

6. A report file is written displaying the computed errors at the nominal gauging points for all of

the cuts. The computed errors are also stored for further examination. This terminates the

processing of the semifinish data. The next steps develop the appropriate corrections for the

finished part.

7.

The nominal cut endpoints for the finish part are read from an externally prepared file. This file

is usually generated with the assistance of a CAD system.

8. Each cut of the finish part is adjusted one at a time. Since the adjustments to the finish part

cuts depend on the form of the cut, the errors computed from the semifinish part are classified

as errors leading to untrue curves, constant offsets or untrue planar cuts, where untrue means

deviating from normal.

9. An analysis of the semifinish part errors determines whether a constant offset is sufficient to

compensate the errors for either axis. If so, then PIECS inserts the appropriate values in the

tool offset UPDate command in the NC program segment for the finish cut, and leaves all

coordinates at their nominal values. As an alternative means of compensating the errors,

PIECS also 'Writes the axis offsets to a file which is used for real-time compensation using the

RTEC.

10. Otherwise, PIECS continues to adjust the finish part cuts for untrue curves or untrue planar

cuts.

1 1 . The current version ofPIECS does not correct for curved cuts as such and provides an error

message for this. However, with the current version of PIECS curved cuts could be corrected

by applying a large number of untrue planar adjustments as described in the next step. More

efficient techniques that involve spline interpolation are being developed.

12. Untrue planar cuts are adjusted by fitting linear functions through the error vectors computed

at the gauge points for each cut of the finish part. The intersection of these linear equations

with the comparable linear error equations for the two neighboring cuts gives the errors at the

endpoints of the cuts. These endpoint errors are used to adjust the "go-to" endpoints for the

finish part. These adjusted points are then entered into the NC program for the finish cut and

are written to a file that is used to provide data to the RTEC to generate real-time cut

adjustments. PIECS then returns to the calling function.

18

6.0 Summary

This report has documented the software that is the principal component of the process-

intermittent control loop of a quality-control architecture used to control manufacturing

processes on a turning center. Although the specific implementation is for a turning center the

principles involved are generalizeable.

The software compensates the process-related errors by modifying tool-path specifications. This

adjusted data can be used by either a Real-Time Error Corrector (RTEC) to machine finish parts

or an NC part program for the finish cuts when an RTEC is not available. The program first uses

on-machine probing data and previously developed nominal part specification files to estimate

machining errors along each feature of a part. These feature errors are then converted to

compensation vectors applied to the nominal finish cut specifications. Curves are fit through the

ends of these vectors and the intersection points of these curves for adjacent features are finally

used to produce modified tool-path specifications for the machining of the finish part.

This software program is made available so that those wishing to implement process-intermittent

error compensation have model software with which to begin their development. The authors

understand that modifications will have to be made for specific implementations. They feel,

however, that having working source code available for at least one implementation makes future

software development for other implementations an easier task.

19

REFERENCES

1. Donmez, M.A. (Ed.) Progress Report of the Quality in Automation Project for FY90. NISTIR

4536, National Institute of Standards and Technology, Gaithersburg, MD, March, 1991.

2. Lovett, C.D. (Ed.) Progress Report of the Quality in Automation Project for FY88. NISTIR

89-4045, National Institute of Standards and Technology, Gaithersburg, MD, April, 1989.

3. Vorburger, T.V., Scace, B., (Ed.yProgress Report of the Quality in Automation Project for

FY89. NISTIR 4322, National Institute of Standards and Technology, Gaithersburg, MD,
May, 1990.

4. Yee, K.W.; Gavin, R.J. Implementing Fast Part Probing and Error Compensation on Machine

Tools. NISTIR 4447, National Institute of Standards and Technology, Gaithersburg, MD,
October, 1990.

5. Blessing, G.V.; Slotwinski, J.A.; Eitzen, D.G.; Ryan, H.M. Ultrasonic Measurements of

Surface Roughness, Appl. Op. 32(19): 3433-3437; July 1993.

20

APPENDIX A
Input Data Files

\

21

There are a number of files involved with PIECS both as input and output. Figure A.l shows the

sources of information for each file and the destination of the data in the PIECS scheme. This

section describes in detail the data they must contain. Some file names contain numbers

referring to part identification, the pertinent part-program segment, or the pertinent machining or

gauging session. Except as noted, data fields in a record are delimited by one or more spaces.

Each file is terminated by a record containing only a character.

A part is first designed on a CAD system (see Figure A.l). There must also be an NC machine

available that can machine the part and a kinematic model of the machine. From the CAD design

certain part-program files are developed, tool path files are prepared and finally the feature

attributes of the part are precisely defined in files for semi-finish and finish machining. Apart

from the CAD related files two other sets of files are prepared, one set specific to the NC
machine and the other to the definition of the kinematic model of the NC machine. Of these files

the kinematic model coordinate offset file, the initial machine state file and the cutting speed file

are primarily used by the G-T model when PIECS adjusts the contact probe coordinates before

converting them to part coordinates. The other files are individual machine specific and contain,

for example, machine structural offsets. The part gauging file is created each time a part is

probed on-line. Finally the probe parameter file gives PIECS the necessary information about the

probe length and width offsets and probe stylus radius of the on-machine probe.

The current turning center uses English units. Therefore some of the units used in the input and

output files of PIECS as well as within the PIECS program are constrained to English units. The

conversion of the turning center controller and the PIECS program to SI units is prohibitively

expensive and requires a major conversion effort. Since the object of this program documentation

is to provide the reader with the essential methodology and sample code for implementing

process-intermittent error compensation, the authors felt that it was acceptable to leave the units

in a form consistent with the current controller. Those wishing to implement similar procedures

on new turning center controllers using SI units can make the appropriate unit conversions.

22

Figure A.l - Data Flow for PIECS

23

A.1 GAUGING.K

This file contains dimensional gauging results. The value A: is a sequence number for the file,

and is used by a supporting database as a pointer. The sequence number is updated every time

there is a gauging session and represents an index number for a gauging session. The first record

in the file may be up to eighty characters in length. All fields in this record are interpreted as

comments, except the second field, which contains the part ID, a decimal integer. The entire

second record is interpreted as a comment. The remainder of the file contains three fields per

record. The first is a decimal integer indicating the data record count (starting with 1). Next is

an X coordinate, then a Z coordinate. Each coordinate is a decimal integer value (a micrometer

count), exactly as reported from the RTEC.

Part 0611 METALIST Wed Mar 15 10:06:24 1995
PT X_RTEC Z_RTEC
1 -182640 662609
2 -172479 662632
3 -162320 662661
4 -156717 657686
5 -156722 644139
6 -156727 630600
7 -156731 617049
8 -148349 611959
9 -136497 611924
10 -124642 611888
11 -112790 611851
12 -107203 606886
13 -107207 593339
14 -107213 579799
15 -107218 566249

24

A.2 PRAMNNVO.REF

This file contains dimensional probing parameters for a part ID having nnv as the first three

digits. It contains one data value per record. The individual values are: (1) the decimal integer

identifying the gauging point whose measured Z-coordinate is defined to have zero error; (2) the

floating point absolute value of the X-length of the probing tool, in inches; (3) the floating point

absolute value of the Z-length of the probing tool, in inches; (4) a character— either "s" or "r"

—

indicating whether the sequence in which the gauging points will be measured is to be the same

as or the reverse of the order of points in the attributes file; (5) the floating point threshold, in

inches, with respect to the part coordinate system, which the probe stylus must cross before the

program reports probe trips; and (6) the floating point radius of the probe, in inches.

3

8 . 03

10 .

8

r

4 .

. 0985

25

A.3 PTNN0021.NC

The machining and probing of a part is broken into several parts. There are three sessions

indexed by 0 for roughing, 1 for semifinish and 2 for finish. Each session can have up to two NC
program segments, one for machining and one for probing. Roughing usually has only one

segment for machining.The file described in this section is the master version of the NC
machining segment for the finish cut (i.e.. Session 2 Segment 1) for a part ID having nn as the

first two digits. It is not actually an input file. However, it is the master file ofwhich a modified

copy is converted into the actual input file pt««0021,in. The part program ID number in the first

block of the file is set to ««0021 to identify it with part number nn.

Before it is modified for use with PIECS two adjustments are made. First of all, UPDate

commands— one for X, then one for Z— for incrementing the tool offsets by zero are inserted

before any machining instructions. The zeros in these commands will be replaced by values

calculated during the processing of gauging data. For example, the following command specifies

a zero increment for the z-offset for tool number 5, and assumes that a block number of 0160 is

an appropriate insertion location in the part program.

N0160 (UPD, 5, TOV(Z), 0.0)

The second adjustment made to this segment involves blocks containing coordinates. Any
machining block containing a coordinate that specifies only an X-coordinate or only a Z-

coordinate is changed to specify both, even if this is redundant to the controller.

For testing purposes the NC segment below has two parameters in blocks 250 and 270, called

P44 and P45 respectively. These have been included in order to allow the operator to introduce

significant taper errors in the part as a means of testing PIECS ’s capability of correcting large

errors. The results of the testing will be published elsewhere.

26

NOOlO
N0020
N0030
N0040
N0050
N0060
N0080
N0090
NOlOO
NOllO
N0120
N0130
N0140
N0150
N0160
N0170
N0180
N0190
N0200
N0205
N0210
N0220
N0230
N0240
N0250
N0260
N0270
N0280
N0290
N0300
N0310
N0320
N0330
N0340
N0350
N9999

(ID, PROG, 060021, Finish Cutting of FACETST)
PIECS test part -- Aluminum 6061-T6
January 21, 1995, Neil Wilkin , mod H.B. 1/26/95, mod K.Y. 2/17/95
TOOL 1 K68, 35 DEG., LENGTH X-5 . 96875 ., Z-1 . 21875
...Using Center of tool, and OFFSET X+0.128, ZO

START MACHINE AT XO , ZIO.

Finish Feed Rate=0.005 IN/REV
SEMI CUTS ARE 0.01 (0.02D) INCH OVERSIZE

02 (0.04D) INCH OVERSIZE
Inches mode
Select Finishing Tool at start position of machine
Remove tool data from controller
In. /min., dir. rpm, no tool offsets, hi hdstk range
Spindle on forward, set speed to 1600 rpm
Move to Zstart-semi-f in

RUFF CUTS ARE
G70
TOlOO
TO
G94 G97 TO M53
M03 S1600
GOO XO Z(P42)

G92 X30.4 Z2.0 S3000 Set Part zero and max spindle speed
TOlOO
GOO X6.2625 Z-3. 96875 TOlOl M08
(UPD, 1, TOV(X) , 0.00000)

Include Finishing tool length in registers
! Add tool offsets, and Coolant ON

(UPD, 1, TOV(Z)

G04 X5.0
G95

0 . 00000)

! Delay For Coolant And Spindle
! Inch per rev mode

GOl F.005 X5.9625 Z-3. 96875
GOl X05.9625 Z-1. 96875
GOl X02.0625 Z (-1 . 96875+P44)
GOl X02.0625 ZOO. 03125
GOl X-0.1000 Z (00 . 03125+P45)

!5.9 inch "face" with taper

12 inch face with taper
GOl ZOO. 13125
GOO X6.2625
G94
GOl FIOO.O X30.

G92 XO Z(P42)

GOO XO ZIO

P42= (P42-0 . 02)

M30
(END, PROG)

! To move away from the part safely
I

! Inch per minute mode
4 Z2 .

0

TOO M05 M09 ! Return to register position
! Reset register to Zstart
Return to machine start positionI

! Decrement Zstart-semi-fin for next cut

! Rewind

27

A.4 PTNN0021.IN

This is the input file for Session 2, Segment 1 (finish machining) for a part ID having nn as the

first two digits. It is essentially identical to pt««0021.nc except that symbols have replaced each

value (e.g. coordinate offsets or coordinate values of a machining paths) and the second line has

been changed. These symbols represent values that will be refined to reduce errors detected by

the process-intermittent gauging. Each symbol consists of a dollar sign immediately followed by

an integer. The symbols $1 and $2 replace the zero values in the X and Z tool offset UPDate

commands, respectively. The remaining symbols are numbered in order as the file proceeds

from the beginning to the end, starting with $3. Currently this file is prepared by hand after

deciding on the key coordinates that will be refined for the finish cut.

28

NOOlO
N0020
N0030
N0040
N0050
N0060
N0080
N0090
NOlOO
NOllO
N0120
N0130
N0140
N0150
N0160
N0170
N0180
N0190
N0200
N0205
N0210
N0220
N0230
N0240
N0250
N0260
N0270
N0280
N0290
N0300
N0310
N0320
N0330
N0340
N0350
N9999

(ID, PROG, 060021, Finish Cutting of FACETST)
PIECS test part -- Aluminum 6061-T6
February 19, 1995, Herbert T. Bandy
TOOL 1 K68, 35 DEG., LENGTH X-5 . 96875 ., Z-1 . 21875
...Using Center of tool, and OFFSET X+0.128, ZO
START MACHINE AT XO , ZIO.

Finish Feed Rate=0.005 IN/REV
SEMI CUTS ARE 0.01 (0.02D) INCH OVERSIZE

0.02 (0.04D) INCH OVERSIZE
! Inches mode
! Select Finishing Tool at start position of machine
! Remove tool data from controller
! In. /min., dir. rpm, no tool offsets, hi hdstk range
! Spindle on forward, set speed to 1600 rpm
1 Move to Zstart- semi- fin

RUFF CUTS ARE
G70
TOlOO
TO
G94 G97 TO M53
M03 S1600
GOO XO Z(P42)

G92 X30.4 Z2.0 S3000 Set Part zero and max spindle speed
TOlOO
GOO X6.2625 Z-3

(UPD, 1, TOV(X)

(UPD, 1, TOV(Z)

G04 X5 .

0

I

G95 1

GOl F.005 X$3 Z$4

GOl X$5 Z$6

GOl X$7 Z$8 ! 5.9

GOl X$9 Z$10
GOl X$ll Z$12 12

GOl ZOO . 13125 I

GOO X6 . 2625 I

G94 1

GOl FIOO.O X30 .4

G92 XO Z(P42) 1

GOO XO ZIO !

! Include Finishing tool length in registers
96875 TOlOl M08 ! Add tool offsets, and Coolant ON

$ 1)

$ 2)

Delay For Coolant And Spindle
Inch per rev mode

P42= (P42-0

.

02 ;

M3 0

(END, PROG)

inch "face" with taper

! 2 inch face with taper
To move away from the part safely

Inch per minute mode
Z2 .

0

TOO M05 M09 ! Return to register position
Reset register to Zstart
Return to machine start position
IDecrement Zstart-semi-fin for next cut

! Rewind

29

A.5 PATHNN00.2

This file contains the nominal tool path specifications (or coordinates) which have been replaced

by symbols in pp7«0021.in and the corresponding cut numbers. A "cut" has been defined

previously as the portion of part geometry which is produced by a machining pass of the tool

from a position specified in the next block ofNC code to the next position, specified in another

block. Those blocks are called the "initial block" and "final block", respectively, for that cut.

This file is required for only finish machining (Session 2 Segment 1) for a part ID having nn as

the first two digits. It must be created with a text editor after pt««0021 .in is developed.

Each record in patlm«00.2 contains four fields. The first two columns contain the nominal X and

Z-coordinates (or other tool path specifications, if applicable) for a block. Each pair of decimal

floating point coordinates is taken from a block ofNC code, which may, for example, be the

initial block for a cut, say Cut P; and the final block for another, Cut Q. The third and fourth

fields in each record contain the integer cut numbers, P and Q, respectively, which correspond to

the coordinate pair appearing in the same record. If a cut number is not applicable, zero is

entered instead. The x-coordinates are in diameter mode.

The first record is special. It represents both blocks for the tool offset increments. All four

values in the first record are zeros, since they refer to the dummy increments of tool offsets,

which are not associated with cuts.

In addition to being used by PIECS, this file is used by the CAD Part Definition Module to

determine the initial and final blocks for each cut, and enter them in the PARTFEAT table of the

database (see APPENDIX D). The blocks are identified by the numbers of the symbols they

contain, which are implied by the sequence in pathn«00.2.

0 . 00000 0 . 00000 0 0

5 . 96250 - 3 . 96875 3 2

5 . 96250 - 1.96875 4 3

2 . 06250 - 1.96875 5 4

2 . 06250 0 . 03125 6 5

- 0 . 10000 0 . 03125 7 6

30

A.6 ATTRNNVO.I

These files contain attributes of each cut concerned with the I-th session for a part ID having nnv

as the first three digits, where I = 1 for semifinish and I = 2 for finish. Each of the files contains

a series of records, associated with each cut, in the order of cut number. The format of the

series of records for the L-th cut is as follows.

The first record in the series for the L-th cut consists of fourteen fields, delimited by spaces. The

first field contains a single decimal integer specifying how many points that are to be gauged

along the surface produced by the L-th cut. If this value is zero then the series of records

associated with the L-th cut contains only one record.

The second and third fields each contain a single character to indicate the direction oftool motion

for the X and Z-axes, respectively, during the L-th cut. The valid characters are "0", and

For example, if the first field indicated that there were no gauging points for the L-th cut, then it

is assumed that this may be a hypothetical cut. Hypothetical cuts are parallel to axes. The

purpose of this imaginary cut is explained below. If this is an actual cut instead, but with no

gauging points, it is treated the same as a hypothetical cut.If the imaginary cut is parallel to the X
axis, then the second and third fields contain "+" (or "-") and "0" respectively to indicate vertical

motion, or for the Z axis, "0" and "+" (or "-") respectively to indicate horizontal motion. In these

cases the fourteenth field in the record then contains a coordinate— a Z-coordinate in the case of

an imaginary cut parallel to the X axis, or an X-coordinate (diameter mode) in the case of an

imaginary axis parallel to the Z axis. See the first two records of the example files below.

The fourth field contains an integer code representing the intersecting cut, the cut which is

starting just as the L-th cut concludes (a clockwise direction is assumed from the machine Z
axis). For the case in which no other actual cut intersects the endpoint of the L-th cut, a

hypothetical cut is defined to serve the purpose, except for the final cut (necessarily

hypothetical), for which a code of zero is used because there actually is no cut intersecting its

endpoint.

The fifth and sixth fields indicate which toolpath coordinate in the next machining segment is to

be affected by adjusting the coordinates of the endpoint (not to be confused wdth the start-point)

of the L-th cut. The fifth field contains a single character to denote the type of specification.

Valid characters are "X" (for X-coordinate), "Z" (for Z-coordinate), "O" (i.e., the letter, not zero,

for a type of specification "other" than an X- or Z-specification), and "N" (for no specification).

The sixth field contains a decimal integer corresponding to the pertinent coordinate.

The seventh and eighth fields are similar to the fifth and sixth, allowing for an additional tool

path specification (such as a "go-to" coordinate). In most cases, these four fields will specify X
and Z coordinates.

The ninth field contains a floating point decimal value from which the type ofthe curve produced

31

by the L-th cut is known. Any (arbitrary) negative value indicates a straight line. Otherwise, the

curve is a circular arc, and the value is the nominal X-coordinate of its center point with respect

to the coordinate system of the part. It is possible for an arc to have a negative X coordinate for a

center, but a positive X coordinate for the center covers most arcs of significance.

If the curve is an arc, the tenth field is similar to the ninth, except that it contains the Z-

coordinate of the arc center. In the case of a straight line, the tenth field contains an arbitrary

number.

The eleventh field contains an integer that identifies a cut (the same as the cut number for that

surface) which lies at some angle (often two hundred seventy degrees) with respect to the surface

produced by the L-th cut. The angle will be specified in the next field. Note that the plane

referred to can be a theoretical tangent at the endpoint of an actual surface.

The twelfth field contains the decimal floating point angle, in degrees, which exists between the

plane of the L-th cut and the plane indicated in the eleventh field. By convention the angle

between normal vectors is assumed to lie between the exposed sides of the surfaces, measured in

a coimterclockwise direction from the positive Z axis to the positive X axis in the part coordinate

system. The vertex is located between the feature boundaries. For example, in the third record

below there is an angle between the third cut and the second cut of 90 degrees, which means the

second cut is vertically down and the third cut is horizontal.

The thirteenth and fourteenth fields are for an additional planar relationship, such as a previous

cut specification, just as for the eleventh and twelfth fields. If the first field in this record

contains a zero, then the thirteenth field contains a dummy value, and the fourteenth field

contains the plane coordinate mentioned in the explanation of the second and third fields. In the

case of the third record below there is an angle of 270 degrees with the fourth cut. This implies

that cut three, which is horizontal, then goes into cut four, which is vertically down. Note that the

exposed angle between cut four and cut three is 270 degrees counterclockwise.

If the first field contains a positive integer, say N, then there are N more records in the series,

each associated with a gauging point. These records consist of four fields, each containing a

number. The first two numbers are the nominalXand Z-coordinates of a gauging point along

the surface produced by the L-th cut. The X-coordinate is a diameter mode value. The next two

numbers are the unit vector i and k components of a surface normal vector originating at that

gauging point. The X (in diameter mode) and Z specifications are floating point decimal values

representing inches, and are relative to the coordinate system of the part.

The remaining records in the series for the L-th cut are similar to the second record in the series,

each associated sequentially with a gauging point along the surface produced by the cut.

32

00+2X0Z0-100 0.000000 0 6.000000

0 - 0 3 X

4 0 + 4 X
5 . 920000
5 . 920000
5 . 920000
5 . 920000

4 - 0 5 X
5 . 700000
4 . 766666
3.833334
2 . 900000

4 0 + 6 X
2 . 020000
2 . 020000
2 . 020000
2 . 020000

3 - 0 7 X
1.800000
1 . 000000
0.200000

0 0 + 0 N
"z

3 Z 4 -1 0 0 0.000000 0 -3.990000

5 Z 6 -1

-3 . 700000
-3 . 166667
-2 . 633333
- 2 . 100000

0 2 90.000000 4 270.0000001.000000

0.0000001.000000

0.000000
1.000000

0.000000
1.000000

0.000000

7 Z 8 -1

-1.990000
-1.990000
-1.990000
-1 . 990000

0 3 270.000000 5 90.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000

9 Z 10 -1 0 4 90.000000 6 270.000000
-1.700000 1.000000 0.000000
-1.166667 1.000000 0.000000
-0.633333 1.000000 0.000000
- 0.100000 1.000000 0.000000

11 Z 12 -1 0 5 270.000000 0 0.000000
0.010000 0.000000 1.000000
0.010000 0.000000 1.000000
0.010000 0.000000 1.000000

ONO -1000.00 -0.100000

33

The next sample file is for the finish cut and would have an extension of I = 2 in the file name.

00+2X0Z0-1 0 0.000000 0 6.000000

0 03X3Z4-100 0.000000 0 -4.000000

40+4X5Z6-1
5.900000 -3.700000
5.900000 -3.166667
5.900000 -2.633333
5.900000 -2.100000

0 2 90.000000 4 270.000000
1.000000

0.000000
1.000000

0.000000
1.000000

0.000000
1.000000

0.000000

4-05X7Z8-1
5.700000 -2.000000
4.766666 -2.000000
3.833334 -2.000000
2.900000 -2.000000

0 3 270.000000 5 90.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000

40+6X9Z10-104 90.000000 6 270.000000

2.000000

-1.700000 1.000000 0.000000

2.000000

-1.166667 1.000000 0.000000

2.000000

-0.633333 1.000000 0.000000

2.000000

- 0.100000 1.000000 0.000000

3 - 0 7 X 11 Z 12 -1 0 5 270.000000 0 0.000000
1.800000 0.000000 0.000000 1.000000

1.000000

0.000000 0.000000 1.000000
0.200000 0.000000 0.000000 1.000000

OO+ONONO-100 0.0 0 -0.100000
^z

34

A.7 CUTNNW.REF

This file contains machining data required for tool setting, process-intermittent compensation,

and real-time compensation, for part ID nnvv. The first record contains a decimal floating point

value, in inches, which is the signed Z-distance from the part origin to the machine origin. This

is determined using a tool locating point. That value is equal to Zp^ minus Z^ngchine- Following

that value in the first record is the decimal integer tool specification (no tool changes are allowed

in the current version of PIECS). The second record contains two decimal floating point values

that represent the X and Z-coordinates of the tool nose center at the dwell point specified in the

finish cut NC program, before the first machining pass. The coordinates for the semifmish NC
program are close enough not to need to be specified separately. The coordinates are in the part

coordinate system and in diameter mode. Next, there is a record for each spindle speed specified

in the NC program. Each record contains a decimal integer spindle speed, followed by the

minimum Z-coordinate (a decimal floating point value in inches, with respect to the part

coordinate system) of the range within which that speed is in effect.

2 . 76364 4

.2625 - 3 . 96875
000 - 1 . 8

000 - 4 . 55

000 - 5 . 5

000 - 6 . 5

35

A.8 COLDVALS.REF

This file contains reference values used in a tool setting operation and in the G-T model. The

values obtained using the tool setting station are taken on a cold (room temperature) machine.

The first record contains a comment which may be up to eighty characters long. The second and

third records each contain a single decimal integer value, in micrometers, for the X and Z-

coordinates of the turning center carriage relative to the machine home. These coordinates are

obtained when the tool setting station is touched with the “golden tool”. This tool is special in

that its length and width are measured on a CMM. The fourth and fifth records each contain a

single decimal floating point value, in millimeters, for the X and Z-displacement error at the time

of contact with the tool setting station. The sixth record contains forty decimal floating point

values for the machine temperatures, in degrees Celsius, in the same order in which the

thermocouples are numbered, at the time of contact with the tool setting station.

METALIST Thu Oct 14 15:31:19 1993
-28234

39798
-0.002307
-0.001130
23.84 24.19 22.38 24.52 27.39 27.96 23.54

36

A.9 INITVALS.REF

This file contains nominal locations of the kinematic components of the turning center. The

location of a component is expressed as an offset of its coordinate system from that of another

component. The first record contains a comment which may be up to eighty characters long.

The second and third records each contain a single decimal floating point value, in millimeters,

for the X and Z-offsets of the tool setting station from the absolute reference system of the

machine tool. Each remaining data record contains a single decimal integer value. Each pair of

these records refer to an X and Z-offset, respectively, in micrometers. The fourth and fifth

records are the offsets of the spindle from the absolute reference; the sixth and seventh the turret

from the cross slide; the eighth and ninth the cross slide from the carriage; and the tenth and

eleventh the carriage from the absolute reference. The offsets are used in the G-T model.

METALIST Fri Oct 29 13:42:30 1993

124 . 081243
71.479497
-384407
-150112
0

0

88900
-36510
-198450
-31750

"Z

37

APPENDIX B
Output Files

38

B.l REPORT.TXT

This file is a summary of error history for a completed part. The units are in inches. Below is a

sample output.

Record of Measured Errors
From Manufacture of Part 0611 on

Wed Mar 15 10:07:02 1995

ic'k'k’kic'k’k'k'k'k’k'k-k'k’k'k'k

Gauging
Sess ion - > 1

Point 1 -0.002047

Point 2 -0 . 001142

Point 3 0 . 000000

Point 4 -0 . 009961

Point 5 -0 . 010157

Point 6 -0 . 010354

Point 7 -0 . 010512

Point 8 0 . 003858

Point 9 0 .002480

Point 10 0 . 001063

Point 11 -0 . 000394

Point 12 -0 . 010591

Point 13 -0 . 010748

Point 14 -0 . 010984

Point 15 -0 . 011181

39

!

40

B.2 PTNN0021.DNC

This is the output NC program file for Session 2, Segment 1 (finish machining) for a part ID

having NN as the first two digits. This file is identical to PTNN0021 .IN except now the symbols

have been replaced by refined values in order to reduce error detected by the process-intermittent

gauging.

NOOIO
N0020
N0030
N0040
N0050
N0060
N0080
N0090
NOlOO
NOllO
N0120
N0130
N0140
N0150
N0160
N0170
N0180
N0190
N0200
N0205
N0210
N0220
N0230
N0240
N0250
N0260
N0270
N0280
N0290
N0300
N0310
N0320
N0330
/N0340
N0350
N9999

ID, PROG, 060021, Finish Cutting of FACETST)
PIECS test part -- Aluminum 6061-T6
February 19, 1995, Herbert T. Bandy
TOOL 1 K68, 35 DEG., LENGTH X-5 . 96875 ., Z-1 . 21875
...Using Center of tool, and OFFSET X+0.128, ZO

START MACHINE AT XO , ZIO

.

Finish Feed Rate=0.005 IN/REV
SEMI CUTS ARE 0.01 (0.02D) INCH OVERSIZE

02 (0.04D) INCH OVERSIZE
Inches mode
Select Finishing Tool at start position of machine
Remove tool data from controller
In. /min., dir. rpm, no tool offsets, hi hdstk range
Spindle on forward, set speed to 1600 rpm
Move to Zstart-semi-f in

RUFF CUTS ARE
G70
TOlOO
TO

G94 G97 TO M53
M03 S1600
GOO XO Z(P42)

G92 X30.4 Z2.0 S3000 Set Part zero and max spindle speed
TOlOO
GOO X6.2625 Z-3

(UPD, 1, TOV{X)

(UPD, 1, TOV(Z)

G04 X5.0
G95
GOl F.005 5

GOl 5.93092 -2.00002
GOl 2.03120 -2.00515
GOl 2.03141 -0.00030
GOl -0.05000 0

GOl ZOO. 13125
GOO X6.2625
G94
GOl FIOO.O X30.^

G92 XO Z(P42)

GOO XO ZIO
P42= (P42-0

.

02 :

M3 0

(END, PROG)

! Include Finishing tool length in registers
96875 TOlOl M08 ! Add tool offsets, and Coolant ON
0 . 00000)

0 . 00000)

! Delay For Coolant And Spindle
! Inch per rev mode

93063 -4.00000

!5.9 inch "face" with taper

00274 12 inch face with taper
To move away from the part safely

Inch per minute mode
Z2 .

0

TOO M05 M09 ! Return to register position
Reset register to Zstart
Return to machine start position
! Decrement Zstart-semi-f in for next cut

Rewind

41

B.3 ERRSPEC.DAT

For the process-intermittent compensation this file is an error profile for a part. The first field in

the file contains the floating point version number of the PIECS software which was used to

produce the file. The remainder of that same record is interpreted as a comment field of up to

eighty characters in length. The second record consists of two fields containing the decimal

floating point constant errors for the X and Z-axes, respectively. If the constant error for an axis

is nonzero, it supersedes any subsequent errors the file may specify for that axis. If nonzero

constant errors are specified for both axes, there will be no more data records in the file.

Otherwise, for the rest of the file, each record represents a coordinate range specified in the part

coordinate system for a given axis. This range is used by the RTEC controller program that reads

the errspec.dat file. The first field in the record contains a character (either "X" or "Z")

indicating whether the range is in terms of X-coordinates or Z-coordinates. The controller

program monitors this axis from the beginning of the range to the end of the range. Next are six

fields, each containing a decimal floating point value: the beginning (in terms of cut direction)

coordinate in the range, followed by the corresponding errors, first X, then Z; then the ending

coordinate and its X and Z errors. The X and Z errors at the extremities of the range are used by

the controller program to linearly interpolate the errors in the range. These interpolated values are

passed to the RTEC which automatically converts the interpolated error value to a compensation

value by attaching a negative sign. All units are inches

1.00 (version); axis, start_coord, x_err, z_err, end_coord, x_err, z_err
0.00000 0.00000
X 15.20000 0 . 00000 0.00000 2.98125 0 . 00000 0 . 00000
z - 3 . 96875 - 0 . 01531 0 . 00000 - 1.96875 - 0.01546 - 0 . 00007
x 2.98125 - 0 . 01546 - 0 . 00007 1 . 03125 - 0 . 01560 0 . 00507
z - 1.96875 - 0 . 01560 0 . 00507 0 . 03125 - 0.01571 0.00039
X 1.03125 - 0 . 01571 0 . 00039 - 0 . 05000 0 . 00000 - 0 . 00281

42

APPENDIX C
Program Function Description and Listings

43

C.l Program Function Calling Sequence

The hierarchy of function calls within the program is outlined below.

piecs

get_part_no

read_cut_attributes

normalize_vector

read_rtec

thermal_adjust

rtec_to_part

calculate_errors

skipped_points_test

write_report

read_toolpath_data

classify_errors

untrue_curve

constant_error

offset_change

max_value

min_value

smallest_magnitude

untrue_planar

calculate_coefficients

straight_line

solve_equations

writesegment

errspec

C.2 Program Initializations

The program initialization portion declares the standard C program headers used along with

defined constants, declared structures and global variables. These will be described in the next

sections.

C.2.1 Defined Constants

Several constants are defined that are used throughout the program. These can be changed and

the program recompiled. The units for some of the constants are inches since the NC programs

for the turning center were written in the English units.

A program VERSION number is first given. This is to be changed when updates are made. A
section is provided at the beginning of the program to record the date and by whom changes are

44

made. Notes can also be supplied. The machine tool servo resolution {servo_res) is 0.000039 in

(Ipm). The next constants are percentage tolerances used for program control. The first, called

tolerancel, is the greatest value assumed to be approximately equal to zero in the calculations.

The next, tolerance2, set to 0.2, is the fractional error variation acceptable for offset

compensation. The third, correction, set to 1 .0, is the percent correction to apply to the total

error. This constant is provided so that a user can choose to apply only a selected percentage of

the corrections. The final set of constants are limit values used in defining arrays. The overall

maximum number of gauging points {maxj?oints) is set to 25. The maximum number of cuts per

part {maxjcuts) is set to 10. The maximum number of gauge points per cut {pts_per_cut) is set to

10 but could be set higher if desired. Finally the maximum number of machining + gauging

sessions {max_sessions) is set to 2. These settings of course could be changed, but for the current

program these have been found adequate.

C.2.2 Defined Data Structures

Two principal data structures are defined. The first is a structure that identifies attributes of cuts.

The following is the list of attributes that are stored in the cut attribute data structure.

howjnany_points\ The actual number of points to be gauged along a surface produced by the cut

of interest.

cut_direction: This indicates the direction of tool motion during a cut. The symbols are "0"

or for each axis (x and z).

intersect_cut: This is a code indicating what other cut is starting just as the cut of current interest

concludes.

endpoint_spec\ A code indicating whether a variable used in the next NC block is an x or z "go-

to" coordinate or another kind of specification; and a code indicating which particular variable.

This variable will be refined for in the program for better machining accuracy on the basis of the

analysis of current gauging data.

type_of_curve\ Codes indicating whether the pertinent feature is an arc or a line. If the first

value is negative, then the feature is a line. Otherwise, the two values are the x and z-

coordinates, respectively, in terms of the part coordinate system, of the center of an arc. This

data comes from the attribute files.

other_planes: The code for a plane (identified by the number of the cut having produced the

surface), and the angle the plane makes with the surface produced by the cut of current interest.

A plane can be a hypothetical tangent plane.

nominaljcoord: The nominal x and z-coordinates of a gauging point, in terms of the part

coordinate system, in the diameter mode used by the controller. In any particular attributes file

or data structure, nominal_coord pertains to coordinates specified in the part coordinate frame of

45

the current session; i.e. the machining segment before the current gauging segment.

normal_vector: The i and k vector components of a surface normal vector originating at a

gauging point.

gauged_coord: The measured x and z coordinates of a gauging point, in terms of the coordinate

system of the part, in diameter mode for the NC controller.

error_scalar: The magnitude (positive or negative) of the component of the error vector which

lies in the direction of the surface normal of the point of interest. The error vector is equal to the

gauged_coord minus the nominal_coord (of the last machining segment; i.e. of the current

session). This is a computed value.

adjusted_coord\ This value is computed as the nominal_coord of a gauge point for the finish

machining segment plus the product of the unit normal vector, the negative of the error scalar,

and the percent correction. This is a computed value and generates the compensation vector at a

gauging point for the finish part..

poly_coejf\ The coefficients in the correction curve polynomial. The correction curve fits the

adjusted_coord's for the finish machining segment and thus creates an adjusted tool path for the

finish cut. The equation form is given in Section 5.4 of this report. These are computed values.

The second principal data structure is called toolpath_data and is used to point to cut coordinates.

C.2.3 Global Variables

This section defines those program variables that are accessible to all function modules of the

program.

segmentjio\ The next segment of the NC program that ’will be executed. There is a machining

segment (1), probing segment (2) and scanning segment (3) for each session.

part_no\ The part number of the current part.

total_cuts[]\ The number of cuts for each session, including hypothetical cuts defined to locate

intersections with actual cuts.

sessions: The total number of machining plus gauging sessions for the current part. Session 0 is

for rough cutting with no analysis, session 1 is for semifinish cutting and includes machining

plus gauging, session 2 is for finished cutting and includes machining plus gauging. However,

sessions is always equal to 1 or 2 in the current program version since it applies only to the

semifinish and finish sessions.

46

z_difference\ This is equal to the machine z-coordinate of a point, minus the z-coordinate in

terms of the part coordinate system.

xjsrror: The x-direction component of the error at a point.

zjerror: The z-direction component of the error at a point.

toolpath_spec[i]\ Are specifications for the part program, where i = 0 and 1 for the z and x tool

offset increments. Subscripts greater than 1 refer to specifications such as z and x "go-to"

coordinates that are explicitly numbered accordingly (except that each number is one higher than

the corresponding number in toolpath_spec) in the file attmnvO.i.

probe_rad\ Is the radius of the gauging probe.

nn, w: Is temporary storage for part number components. These represent portions of the

PARTID. The nn represents the two digit part number and thew represents the two digit

version number of the part.

mach_offsetjc, mach_offset_y\ These are offsets of the machine axis system caused by thermal

distortions. In the current program version these are considered small and set to 0.

spindle_sp: Spindle speed used during cuts. This is used in the G-T model and is read from the

cutimw.ref file.

direction: This is the direction of approach by the probe for each gauging point. It is used by the

G-T model to select the appropriate adjustment for a gauged point. Adjustments can be

directionally dependent due, for example, to backlash.

x_coord_offset, z_coord_ojfset\ These are offsets between the various coordinate sytems used in

the kinematic model that computes the G-T error correction equations. Since these offsets appear

in the equations they must be supplied to the G-T model by PIECS.

47

C.2.4 Program Initialization Listing

/**
*

*

*

*

*

PIECS : The QIA Process- Intermittent Error Compensation Software *

--A program to produce two means of compensating errors *

measured by on-machine dimensional gauging: *

a modified part program and an RTEC-oriented toolpath error profile *

*

Designer: Herbert T. Bandy Programmer: Herbert T. Bandy *

*

The official version number of this software is recorded here as
a global parameter whose value is returned by the fimction piecs */

#define VERSION 1.00 /* 18 J\in 95 */

/***
* *

* MODIFICATION HISTORY
*

* DATE PROGRAMMER COMMENTS
"k

*

*

* *

•kicie'kickrieific'k'k'kie’kieie'k'kieicicieie'kieic'k'kickicieieieie'kie'k'kifkkieieieie'kiek'k'k'k’kieie'k’k'k'kif'k'k'kieicic'k'k’kieieiririr'k’k

INPUT FILE NAMES:
\qia\probing\gauging .

k

\qia\probing\attrNNVO .N

\qia\probing\pramNNVO . ref
\qia\cutting\pathNN00 .

2

\qia\cutting\ptNN0021 . in

\qia\toolset\coldvals . ref
\qia\toolset\initvals . ref
\qia\cutting\cutNNNN . ref

OUTPUT FILE NAMES:
\qia\piecs\report . txt
\qia\cutting\ptNN0021 . dnc
\qia\cutting\errspec . dat

LINKED FILES:
\qia\thermal\gtmodel . cpp

PREPROCESSOR DATA

#include
#include
#include
#include
#include

<dos . h>
<math.h>
<time .h>

<stdio . h>
<conio . h>

*/

48

#include <stdlib . h>

#include <string . h>

#define servo res .000039 /* Machine tool servo resolution */

#define tolerancel l.OE-10 /* Max value considered approximately zero. */

#define toleranceC .2 /* % error variation correctable by offset */

#define correction 1.0 /* % correction to apply to total error */

#define max_points 25 /* Overall maximum number of gauging points */

#define max_cuts 10 /* Max no. of "cuts" (see below) per part */

#define pts_per_cut 10 /* Maximum number of points per cut */

#define max sessions 2 /* Two machining/gauging sessions:
semifinish and finish */

/* TERMINOLOGY AND GLOBAL VARIABLES

A "cut" is defined as the portion of part geometry which is produced
by a machining pass of the tool from a position specified in a block
of NC code to the next position, specified in another block

"part" is composed of one or more "cuts"

The attributes of each cut and the resulting surface are defined as
follows

:

how_many_jpoints : The number of points to be gauged along the
surface produced by the cut of interest. This number can be 0.

Input from attributes file.

cut_direction : "+", "0", or for each axis (X and Z)

,

indicating the direction of tool motion during a cut. Input
from attributes file.

intersect_cut : Numeric code indicating what other cut is starting
just as the cut of current interest concludes. Input from
attributes file.

endpoint_spec : A code indicating whether a variable used in the
next part program segment is an X or Z "go-to" coordinate or
another kind of specification; and a code indicating which
particular variable. Such a variable is to be refined for

better machining accuracy on the basis of the analysis of

current gauging data. Input from attributes file.

type_of_curve : Codes indicating whether the pertinent feature is

an arc or a line. If the first value is negative, then the

feature is a line. Otherwise, the two values are the X and Z

coordinates, respectively, in terms of the part coordinate
system, of the center of an arc. Input from attributes file.

other_planes : The code for a plane (identified by the number of

the cut having produced the surface) , and the angle the plane

49

makes with the surface produced by the cut of current interest

.

Then, a second code and angle, referring to a second plane. A
plane can be a hypothetical tangent plane . Input from
attributes file.

nominal_coord : The nominal X and Z coordinates of a gauging point,
in terms of the part coordinate system, but not in diameter
mode. In any particular attributes file or data structure,
nominal_coord pertains to specifications attemped in the
machining segment of the current session; i.e., the machining
segment before the current gauging segment . Input from
attributes file.

normal_vector : The X and Z (actually, i and k) components of a

surface normal vector originating at a gauging point . Input
from attributes file.

gauged_coord : The measured X and Z coordinates of a gauging point,
in terms of the coordinate system of the part, and in diameter
mode. Input from RTEC data file.

error_scalar : The magnitude (positive or negative) of the
component of the error vector which is in the direction of the
surface normal of the point of interest . The error vector is

equal to the gauged_coord minus the nominal_coord (of the last
machining segment; i.e., of the current session) . Computed
value

.

adjusted_coord : The nominal_coord of the machining segment of the
NEXT session, plus the product of the unit normal vector, the
negative of the error scalar, and the percent correction.
Computed value

.

poly_coeff: The coefficients in the correction curve polynomial.
The correction curve fits the adjusted_coord ' s , and is the tool
path for the corresponding cut in the next machining segment.
The equation of the curve is

Clz**3 + C2z**2 + C3zx + C4x**2 + C5z + C6x = CO.

The following coefficients are given for the curves
indicated:

Cl C2 C3 C4 C6

Line 0

Circle 0

Explicit Quadratic 0

General Quadratic 0

Explicit Cubic

0

1

0 0

0 1

0 0

0 0

1

1

1

/* FUNCTION PROTOTYPES */

50

void prnwin(char *, int, int)

;

/* GLOBAL VTmiABLES

**** Define the cut attributes data structure *****

First, define simple dependent data structures and dummy data-
storage assignments. Then build to form the more complex
attributes structure.

struct sign

{

char X

;

char z

;

};

*/

struct part_prog_spec

{

char coord;
int spec

;

In-

struct part_prog_spec dummy_endpoint_spec [max_sessions] [max_cuts] [2]

;

struct plane_angle

{

int plane;
double angle;

};

struct plane_angle dummy_other_planes [max_sessions] [max_cuts] [2]

;

struct coord_values

{

double x;

double z;

In-

struct coord_values
dummy_nominal_coord [max_sessions] [max_cuts] [pts_per_cut]

,

dummy_normal_vector [max_sessions] [max_cuts] [pts_per_cut]

,

dummy_gauged_coord [max_sessions] [max_cuts] [pts_per_cut]

,

dummy_adjusted_coord [max_sessions] [max_cuts] [pts_per_cut]

;

struct cut_attributes

{

int how_many__points ;

struct sign cut_direction;
int intersect_cut

;

struct part_prog_spec *endpoint_spec

;

double *type_of_curve;
struct plane_angle *other_planes

;

struct coord_values *nominal_coord;
struct coord_values *normal_vector

;

struct coord_values *gauged_coord;

51

double *error_scalar

;

struct coord_values *adjusted_coord;
double *poly_coef f

;

In-

struct cut_attributes attrib [max_sessions] [max_cuts] , *cut_no;

/* Establish a structure to contain cut coordinates. */

struct toolpath_data

{

double *startpoint

;

double *endpoint;

};

/* Define some dummy arrays */

doiible dummy_error_scalar [max_sessions] [max_cuts] [pts_per_cut] ,

dummy_type_of_curve [max_sessions] [max_cuts] [2],

dummyj)oly_coeff [max_sessions] [max_cuts] [7]

;

/* OTHER GLOBAL VARIABLES

segment_no : refers to the next segment of the NO program that is

to be executed. Set in main.

part_no : is the number of the current part . Read in from the
command line.

total_cuts : is the number of "cut"s for each session, including
hypothetical cuts defined to locate intersections with actual
cuts . Computed in read_cut_attributes

.

total_points : is the total number of gauge points for all cuts.
Computed in read_cut_attributes

.

sessions: is the total number of machining/gauging sessions for
the current part . Computed in read_cut_attributes

.

z_dif ference : is equal to the RTEC decimal value corresponding to
the Z- coordinate of a point, minus the Z- coordinate in terms
of the part coordinate system. Computed in read_rtec

.

x_error, z_error: are X- and Z- direction components of the error
at a point. Computed in constant_error

.

toolpath_spec [i] : are specifications for the part program, where
i = 0 and 1 for the Z and X tool offset increments,
respectively; and higher siibscripts refer to specifications
such as Z and X "go- to" coordinates which are explicitly
numbered accordingly (except that each number is one higher
than the corresponding number in "toolpath_spec") in the file
pathNNOO.2, the version of the part program used by this

52

program

.

*/

int spindle_sp, direction, nn[2], w[2], segment_no,
total_cuts [max_sessions] , sessions, total_points

;

char gauge_file [13] ,
part_no[5];

long x_coord_of fset [6] , z_coord_of fset [6]

;

double z_dif ference ,
x_error [max_points] , z_error [max^points]

,

toolpath_spec [max_cuts*2]
,
probe_rad, mach_of fset_x, mach_of fset_z

;

// extern unsigned _stklen = 65519; // Stack size increase

/**/

53

C.3 PIECS Support Functions and Listings

This section includes a brief description of the functions and calling sequences for the various

functions that comprise the PIECS code. Not all of the functions have been implemented in this

version but calling sequences have been included to mark the places for future enhancements.

The interested reader is urged to follow the code listings below while reading the general

descriptions.

C.3.2 getjpart_no

This function extracts the part number from the gauging file and is the first function in the

program listing. All the other functions below now follow in sequence in the listing.

Function Prototype Declaration:

int get_part_no (char seq[])

Inputs:

seq - character array representing the extension sequence number for the gauging data file.

Outputs:

The program determines the current part number from the gauging file.

Function Procedures:

The program opens the gauging file with the extension given by the seq array and extracts the

current part number from the first record. The part number is the second field of that record.

54

/**

Fianction to extract the part number from the gauging file
***/

int get_part_no (char seq[])

{

char gauge_file [35]

;

FILE *in_file;
static char gauge[]="\\qia-\\probing\\gauging.";

strcpy (gauge_file, gauge)

;

strncat (gauge_file , seq, 7)

;

in_file = fopen (gauge_f ile, "r");

fscanf {in_file, "%*s %s", part_no) ,-

fclose (in_file)

;

return 0

;

}

/* end of get_part_no */

55

C.3.3 normalize vector

This function normalizes surface normal vectors and produces a unit normal_vector at the

current gauge point for a specified cut.

Function Prototype Declaration:

void normalize_vector (int point)

Inputs:

point - The index of the current gauge point to be normalized.

Outputs:

The normalized normal vector indexed by point.

Function Procedures:

The function computes the magnitude of the normal vector as the square root of the sum of the

squares of the normal vector components. It then divides the components by this magnitude.

56

/**+*********************

Function to normalize surface normal vectors to unit value. This function
produces a iinit normal_vector at the current gauge point for a

specified cut_no.
***/

void normalize_vector (int point)

/**
*

* Global variables

:

* normal_vector - component of cut attributes structure
*

* Parameter input

:

* point - index of current gauge point
*

* Parameter output

:

* none

* Non-System Fimction calls:
* none
*

***/

Descriptions of global variables used are at the

beginning of this file.

dovible i_squared, k_squared, magnitude;

Find the magnitude of the vector, and then divide
each, the i and k components, by the magnitude.

i_squared =

*

k_squared =

cut_no- >normal_vector [point] .x

cut_no- >normal_vector [point] .x;

cut_no- >normal_vector [point] .z

cut_no->normal_vector [point] . z

;

magnitude = sqrt (i_squared

cut_no- >normal_vector [point]

cut_no- >normal_vector [point]

+ k_squared)

;

.X /= magnitude;

. z /= magnitude

;

return;

}

/* end of normal ize_vector */

57

C.3.4read cut attributes

This function stores the attributes of individual cut instructions read from files attrNNVO.l for

semifinish machining and attrNNVO.2 for finish machining.

Function Prototype Declaration:

void read_cut_attributes (int skipped[])

Inputs:

skipped - An array of indices for those gauge points that have been skipped.

Outputs:

Data from the semifinish and finish attributes files are entered into the appropriate data

structures.

Function Procedures:

The function first opens the file attrNNVO.l where NNV are the first three characters of the part

number prepared by the function get_part_no. It then reads data from this semifinish attributes

file. The values read in from each attribute file are: The number of gauge points on a cut, the cut

direction in x, the cut direction in z, the next intersecting cut number, the end point specification

coordinate (usually X), the end point coordinate number (usually an odd number), end point

specification coordinate (usually Z), the end point coordinate number (usually even), the type of

curve, the number of the prior cut, the angle (counterclockwise) it makes with current cut, the

number of the next cut and the angle it makes with the current cut. In the case of no gauge points

on a cut these last entries are special. In that cas the previous cut and angle are set to 0 and the

next cut is set to 0 but the angle is set to the coordinate of the plane. That is, if it is a cut parallel

to x-axis it is a z-coordinate, if it is parallel to the z-axis it is an x-coordinate. The only cuts that

can have 0 or 1 gauge points are vertical or horizontal cuts. Therefore each cut is tested for this.

If there are gauge points for a given cut then the coordinates and normal vectors at these gauge

points are read. Once all of the data in attrNNVO.l is read the function opens attrNNVO.2, the

attributes for the finished part, and repeats the previous data entry.

58

/**+*****************

Function to record attributes of individual cut instructions.
+**************************/

void read_cut_attributes (int skipped [])

y/******************-*-***
*

* Global variables

:

* attrib - cut attributes structure
*

* Parameter input

:

* skipped - array of skipped point indices (max 3)

"k

* Parameter output

:

* none
*

* Non-system Function calls:
* normalize_vector
*

kk-kk-kk-k'kkkkkkkkkkkkk'kkkkkkk/

{

/* Descriptions of global variables used are at the
beginning of this file.

The variable "overall_point_no" counts all the
points expected to be gauged. The variable
"total_points" counts only the points actually
gauged, skipping those missed by the probe. */

int i, j, point, overall_point_no

;

char dummy [81]

;

FILE *in_file;
static char digit [11] = "0123456789";
static char attrib_file [] = " \\qia\\probing\\attrNNVO .N"

;

/* Set up loop to read entire attrNNVO.N file series. */

attrib_file [22]

attrib_file [17]

attrib_file [18]

attrib file [19]

digit [1]

;

part_no [0] ;

part_no [1]

;

part_no [2]

;

if ((in_file = fopen (attrib_f ile, "r")) == NULL)

{

sprintf (dummy,

"\nNo attributes file exists for Part %s.\n", part_no)

;

prnwin (dummy , LIGHTRED, 1)

;

delay (5000)

;

exit (2) ;

}

59

0 ;

/* Loop over semifinish and finish sessions. A file
required for each session. */

/* Associate pointers with data storage assignments. */

for

{

}

(j = 0 ; j < max_cuts; ++j)

attrib [i]

attrib [i]

attrib [i]

attrib [i]

attrib [i]

attrib [i]

attrib [i]

attrib [i]

attrib [i]

[j] . endpoint_spec = dummy_endpoint_spec [i] [j]

;

[j] . type_of_curve = dummy_type_of_curve [i] [j]

;

[j] . other_planes = dummy_otherj)lanes [i] [j] ;

[j] . nominal_coord = dummy_nominal_coord [i] [j]

;

[j] .normal_vector = dummy_normal_vector [i] [j];

[j] .
gauged_coord = dummy_gauged_coord [i] [j]

;

[j] . error_scalar = dummy_error_scalar [i] [j];

[j] . adjusted_coord = dummy_adjusted_coord [i] [j]

;

[j] .poly_coeff = dummy_j)oly_coeff [i] [j] ;

/* Read data into structures from file. Note that the
cut number is being incremented within each
session. The values read in from each attributes
file are: The number of gauge points on a cut, the
cut direction in x, the cut direction in z, the
next intersecting cut number, the end point spec
coord (usually X) , the end point coord number (odd

number) , end point spec coord (usually Z) , the
endpoint coord number (usually even) , degree of x
curve, degree of z curve, number of prior cut,

angle (counterclockwise) it makes with current cut,

number of next cut, angle it makes with current
cut. NOTE: In the case of no gauge points on a

cut these last entries are special. The previous
cut and angle are set to 0 and the next cut is set
to 0 but the angle is set to the coordinate of the
plane; i.e., if it is a cut parallel to x axis it

is a z coord, if it is parallel to the z axis it is

an X coord. */

total_points = 0

;

overall_point_no = 0

;

for (cut_no = attrib [i]; ! (feof (in_file)) ; ++cut_no)

{

fscanf (in_file,

"%d %ls %ls %d %ls %d %ls %d %lf %lf %d %lf %d %lf\n",

& (cut_no->how_many_points)

,

& (cut_no- >cut_direction . x) , & (cut_no->cut_direction. z)

,

& (cut_no- >intersect_cut)

,

& (cut_no- >endpoint_spec [0] .coord)

,

& (cut_no- >endpoint_spec [0] .spec)

,

& (cut_no- >endpoint_spec [1] .coord)

,

60

& (cut_no- >endpoint_spec [1] .spec)

,

& (cut_no- >type_of_curve [0]) , & (cut_no- >type_of_curve [1])

,

& (cut_no- >other_planes [0] .plane)

,

& (cut_no->other_planes [0] .angle)

,

& (cut_no- >other_jplanes [1] .plane) ,

& (cut_no- >other_planes [1] .angle))

;

/* For cuts with no gauge points and a z cut direction
the X coordinate must be converted to radius mode */

if { cut_no- >how_many_points == 0 &&

cut_no->cut_direction.x == '
0

' &&
cut_no- >cut_direction . z != 'O')

cut_no- >other_jplanes [1] . angle /= 2.0;

/* The only cuts that can have 0 or 1 gauge points are
vertical or horizontal cuts. All others must have
two or more . *

/

if ((cut_no- >how_many_points == 0
] |

cut_no- >how_many_points == 1) &&

(cut_no->cut_direction.x != 'O' &&
cut_no- >cut_direction . z != '0')

)

{

sprintf (dummy, "There must be 2 or more gauge points "

"on a taper or dome cut .

")

;

prnwin (dummy , L IGHTRED , 1);

delay (5000)

;

exit (1) ;

}

/* If there are gauge points then the coordinates and
components of the normal vector at the points are
read in. The x coordinate is a diameter value
to suit the NC program. Note that the nominal
coordinates are for the part surface, not the tool
nose center. */

for (point = 0; point < cut_no- >how_many_points ; ++point)

{

fscanf (in_file, "%lf %lf %lf %lf",

& (cut_no- >nominal_coord [point] .x)

,

& (cut_no- >nominal_coord [point] .z)

,

& (cut_no- >normal_vector [point] .x)

,

& (cut_no- >normal_vector [point] .z))

;

/* Make radius mode */

cut_no- >nominal_coord [point] . X /= 2

;

/* Make unit normal vectors */

normalize_vector (point)

;

61

/* Adjust counts for skipped points

}

for (j = 0; j < 3; ++j)

{

if (overall_point_no == skipped[j]

{

-- {cut_no->how_many_points)

;

- -point

;

}

}

++overall_point_no;

)

total_points += cut_no- >how_many_points

;

}

fclose (in_file)

;

total_cuts [i] = cut_no - attrib[i];

/* Set up file name for the next file to be read

attrib_file [22] = digit [(++i) +1]

;

sessions = i

;

}

while ((in_file = fopen (attrib_file , "r")) != NULL);

return;

}

/* end of read_cut attributes */

*/

*/

C.3.5 rtec_to_part

This function converts RTEC output to part program coordinates. The coordinates are adjusted to

take into account the probe stylus radius.

Function Prototype Declaration;

double rtec_to_part (double rtec_value, char axis, double

theta,double probe_x_length, double

MACHINE_HOME_X)

Inputs:

rtec_value - gauged value of the coordinate specified in axis

passed through in inches.

axis - character identifying axis of gauged point, either

X or z.

62

theta - angle measured counterclockwise in radians of the

surface normal at the gauged point with respect to

the z-axis on the NC lathe. Note: z-axis parallel to

the spindle axis.

probe_x_length - vertical length of the probe in inches.

MACHINE_HOME_X - x-distance from the machine "home" to the part

origin.

Outputs:

The function returns a value for the current part-program coordinate in inches for the specified

axis in the calling parameters.

Function procedures:

If the axis selected is the "x" axis then the value returned is computed as

^part
= "

-^probe
* MACHINE_HOME_X) (8 . 1)

If the axis selected is the "z" axis then the value returned is computed as

Vr =
^mach

^ '•(1 - (8.2)

where is represented in the program by the global variable z_difference and is computed in

the function read rtec.

63

/**

Function to convert RTEC output to part program coordinates . The
coordinates are adjusted to take into account the probe radius.

y

doiible rtec_to_part (double rtec_value, char axis, doiible theta,
double probe_x_length, double MACHINE_HOME_X)

^**
* For each coordinate at a time, this f\mction first
* adjusts the RTEC value to the actual point of contact
* between the part surface and the probe stylus. (This
* adjustment depends on theta, the angle of the surface
* normal vector.)

*

*

*

*

*

*

*

k

k

k

*

•*

"k

Global variable

:

z_difference - is equal to the RTEC
value corresponding to the z-coordinate of a point,
minus the z-coordinate in terms of the part
coordinate system. The value of z_difference was
calculated the function read rtec

.

Parameter Input

:

rtec_value - gauged value of the coordinate specified in axis
passed through in inches

.

axis - character identifying axis of gauged point, either
X or Z.

theta - angle measured counterclockwise in radians of the
surface normal at the gauged point with respect to

the Z axis on the NC lathe. Note: Z-axis parallel to
the spindle axis

.

* probe_x_length - vertical length of the probe in inches

.

*

* Parameter output

:

* rtec_to_part - value of RTEC gauged point in machine coordinates to
* parts coordinates.
*

* Non-system Function calls:
* none
*

**/

{

double part_prog_coord;

if (axis == 'X' II axis == 'X')

/* Double coordinates because of diameter mode. That
is the RTEC uses x coordinates in the radius mode
relative to the machine coordinate system. They
need to be converted to diameter mode when sending
them to the CNC controller. */

64

}

{

rtec_value += (probe_rad * (1. - sin (theta)))

;

part_prog_coord =

2 . * (rtec_value - probe_x_length + MACHINE_HOME_X)

;

}

else /* (axis == 'Z')

{

rtec_value += (probe_rad * (1. - cos (theta)));

part_prog_coord = rtec_value - z_dif ference

;

}

return part_prog_coord;

/* end of rtec_to_jpart */

*/

65

C.3.6read rtec

This function reads the file ofRTEC data and an associated parameter file. The RTEC file

contains x and z-coordinates of gauged points in the machine coordinate system in units of

micrometers. It produces the value for z_difference used in rtec_to_part as well as the gauged

coordinate vector in the part coordinate frame for each gauged point on each cut.

Function Prototype Declaration:

char read_rtec (char seq[],double temp[], double MACHINE_HOME_X, int *tool)

Inputs:

seq[] - A string representing the gauging sequence number.

temp[] - array of temperatures, in Celsius, representing the temperature state ofthe machine at

the time of gauging.

MACHINE_HOME_X - distance from machine "home" to part origin.

*tool - pointer to the tool number.

Outputs:

The function directly returns a character for the order in which the gauging points are to be

measured. An "s" is returned if the order is the same as the order of the cut direction and an "r" is

returned if in reverse order. Indirectly, the function converts the gauged points from machine

coordinates to part coordinates.

Function Procedures:

The function first reads the RTEC values from the file GAUGING.K, where K is the numeric

value of seq[], into a two dimensional array, xz_rtec[max_points][2], after converting from

micrometers to inches. A total count of all coordinate points read is computed andstored in the

variable total_single_coords. The parameter file PRAMNINVO.REF is then opened where NNV
are the first three characters of the part ID. The following values are read for the probed points:

refjjoint - an integer indicating which point in the list of gauged points is to be used as the

reference point, probejcjength - x length of probe in inches, order - a character r or s

indicating the order in which the gauged points were taken relative to the cuts made, r for

reverse, s for same, and finally probe_rad - the probe radius in inches. For an example of this file

see Sections 6.1 and 6.2.

For whatever segment number, if the order is "r" then the points in xz_rtec are reversed. A

66

reference subscript, ref_subscript, is set for the reference point, ref_point. For example, if the

reference point was the first point, ref_point = 1, and refjpoint subscript = 0. Suppose 23 pairs

of points had been read, then if the order is "r" the reference point subscript would be 22 and if

the points are read in "s" the reference point subscript would be 0.

The program loops through each cut and points-per-cut to find the index of the point designated

as the part reference point. Once found the x and z part coordinate values for this point are

stored and the angle of the normal vector at that point is calculated relative to the z-axis.

As soon as the part reference z is known the quantity z_difference, used in the rtec_to_part, is

computed. It is computed as the difference between the machine z-coordinate for the reference

point and the part coordinate z value for the reference point plus an adjustment for the probe

radius.

If the probe length is entered as 0 in the parameter file then the program computes the x-length of

the probe. Otherwise the program continues to the next step.

The program next makes G-T adjustments to the x and z machine coordinates at the current

gauge point. It then computes the angle of the normal vector at that point, which is needed to

convert a machine coordinate to a part coordinate. Then the program calls the function

rtec_to_part to compute the x and z part coordinates adjusted for geometric-thermal error. These

are stored in the gauged coordinates portion of the cut attributes structure for the cut of interest.

67

/**

F\inction to read the file of RTEC data and the associated parameter file.
The RTEC file contains x, z coordinates of gauged points in the machine
coordinate system in units of micrometers . The x values are in radius
mode. This function produces the value for z_difference used in
rtec_to_part as well as the gauged_coord vector for each gauged point
on each cut_no

.

^

char read_rtec (char seq[], double temp[], double MACHINE_HOME_X , int *tool)

^**

* Global variables

:

* attrib
* cut_no
*

* probe_rad
•k

* Parameter input

:

* none
*

* Parameter output

:

* read_rtec
*

•k

global attributes structure for each cut
pointer used to point to each apprpriate
attributes structure.
probe radius in inches . See DEFINE statements

.

character indicating order in which points were probed
relative to the order in which cuts were made

* Non- system Function calls:
* thermal_adjust , rtec_to_part

***/

{

/* Function prototype */

float thermal_adjust (long x_coord_offset [] , long z_coord_offset []

,

long x_machine, long z_machine, long x_previous, long z_previous,
long therm_error [] , double temperature [] , doiible temp_init[],
double mach_of fset_x, double mach_of fset_z , int spindle_sp)

;

/* Descriptions of global variables used are at the
beginning of this file.

RTEC data contained in xz_rtec are machine
coordinates, but with the offset used by the RTEC.
Subscripts are: [point no.] [coordinate axis] . */

int ref_subscript , i, j, total_single_coords , k_int;
char dummy [81], gauge_file [35]

;

long therm_error [2]

,

curr_x, curr_z, old_x, old_z, xz [2] ;

FILE *in_file;
double xz_rtec [max_points] [2], dummy_xz_rtec [max_points] [2], *pointr,

theta, part_ref_x, part_ref_z, tempinit [40] , mach_x_of fset

,

68

mach_z_of fset

;

static int ref_point

;

static char order;
static char gauge [] = " \\qia\\probing\\gauging .

"

;

static char param_file [] = " \\qia\\probing\\pranUsrNVO . ref "
;

static double probe_x_length, probe_z_length;

/* Read in all the coordinate data from the file
gauging. K, where K is a sequence number. The
number of coordinate pairs which should be found in
the file is half of "total_single_coords " , the
integer passed to this fiinction as a parameter. In
the case of gauging data, there should be as many
coordinate pairs in the file as there were gauging
points. */

strcpy (gauge_file
,
gauge);

strncat (gauge_file , seq, 7)

;

in_file = fopen (gauge_file, "r") ;

total_single_coords = 0;

/* Skip the two leading lines from the gauging file.
Note that there will be a blank line before them.
Part_no was picked off earlier. */

fgets (dummy. 80, in file)

fgets (dummy. 80, in file)

fgets (dummy. 80, in_f ile)

/* Read coordinate index and coordinates for each
probe point in micrometers . Convert to inches . The
coordinates are in absolute machine coordinates. */

i = 0;

k_int = 0

;

while (! feof (in_file))

{

fscanf (in_f ile, "%d %ld %ld" , &j , &xz [0] , Sxz [1]) ;

if (j != k_int+l)

break; /* This is a test to make sure the loop terminates. */

k_int = j

;

xz_rtec [i] [0] = xz [0] ;

xz_rtec [i] [1] = xz [1] ;

xz_rtec [i] [0] /= 25400;
xz_rtec [i] [1] /= 25400;
total_single_coords += 2;

+ + i;

}

fclose (in file)

;

/* Read in the parameter file for the probed points:
ref_point - integer indicating which point in the

list of gauged points is to be used as the

69

reference point probe_x_length - X length of probe
in inches order - character r or s indicating the
order in which the gauged points were taken
relative to the cuts made, r for reverse, s for
same. */

param_file [17] = part_no[0];
param_file [18] = part_no[l];
param_file [19] = part_no[2];

in_file = fopen (param_file, "r");

fscanf (in_file, "%d %lf %lf %ls %*f %lf",

&ref_point, &;probe_x_length, &probe_z_length, border, &probe_rad) ;

fclose (in_file)

;

/* If the order of measurements is the reverse of the
point number sequence used here then reverse order.
That is if the points probed are opposite to the
their order in the direction of cut then they are
reversed. */

if (order == 'r'
| |

order == 'R')

{

}

direction = -1;

ref_siibscript = (total_single_coords / 2) - ref_point;
for (i = 0; i < (total_single_coords / 2) ; ++i)

{

}

for

{

}

dummy_xz_rtec [i] [0] = xz_rtec [i] [0]

;

dummy_xz_rtec [i] [1] = xz_rtec [i] [1]

;

(i = 0; i < (total_single_coords / 2) ; ++i)

xz_rtec [i] [0] =

dummy_xz_rtec [total_single_coords/2
xz_rtec [i] [1] =

dummy_xz_rtec [total_single_coords/2

else

{

direction = 1;

ref_subscript = ref_point - 1;

}

1 - i] [0] ;

1 - i] [1] ;

/* Calculate z_difference for later use. Also
calculate the X- length of the probe if it was not
provided in the file pramNNV.ref. */

j = 0;

for (cut_no = attrib[0]
; j <= ref_subscript ; ++cut_no)

for (i = 0; i < cut_no- >how_many_points ; ++i)

if (j++ == ref_suibscript)

{

70

part_ref_x = cut_no->nominal_coord [i] .x;

part_ref_z = cut_no- >nominal_coord [i] . z

;

theta = atan2 (cut_no->normal_vector [i] .x,

cut no->normal vector [i]

break

;

};

z difference xz_rtec [ref_subscript] [1] - part_ref_z +

(probe_rad * (1. - cos (theta)

. z)

))

/* Calculate X- length of probe if not read in from
file

.

if (fabs (probe_x_length) < .001)

probe_x_length = MACHINE_HOME_X + xz_rtec [ref_STibscript] [0] +

(probe_rad * (1. - sin (theta))) - part_ref_x

/* Read in the temperatures for a cold machine.

if ((in_file = fopen (" \\qia\\toolset\\coldvals . ref " , "r")) == NULL)

{

sprint f (dummy, "Cold machine temperatures not found in file "

"\\QIA\\TOOLSET\\COLDVALS .REF"

)

prnwin (dummy, LIGHTRED, 1);

delay (5000)

;

return 1

;

}

fgets (dummy, 80, in_file)

;

for (j = 0; j < 4; ++j) fscanf (in_file , "%*s");

for (j = 0 ; j < 40; ++j) fscanf (in_f ile , "%lf", &tempinit
[j])

;

fclose (in_file)

;

/* Read in coordinate system offsets

if ((in_file = fopen (" \\qia\\toolset\\initvals . ref " , "r")) == NULL)

{

sprintf (dummy, "Offset array may not be determined without file "

" \ \QIA\ \TOOLSET\ \ INITV/^IS . REF "
)

prnwin (dummy, LIGHTRED, 1);

delay (5000)

;

return 1

;

}

fgets (dummy, 80, in_file);
fscanf (in_file, "%*lf %*lf %ld %ld %ld %ld" , &x_coord_offset [5]

,

S:Z_coord_of fset [5] , &x_coord_offset [4] , &;Z_coord_offset [4])

for (j=2; j>0; --j)
fscanf (in_f ile, "%ld %ld" , &x_coord_of f set [j] , &z_coord_of fset

[j]

)

fclose(in file)

;

/* Read in the spindle speeds.

sprintf (dummy, " \\QIA\\CUTTING\\CUT%s . REF"
,
part_no)

;

//

if ((in_file = fopen (dummy, "r")) == NULL)

{

sprintf (dummy, "Part coordinates may not be determined without "

"file \\QIA\\CUTTING\\CUT%s.REF"
,
part_no)

;

prnwin (dummy, LIGHTRED, 1)

;

delay (5000)

;

return 1

;

}

fscanf (in_f ile, "%*lf %d", tool)

;

fgets (dummy, 20, in_file);
fscanf (in_f ile, "%*lf %d" , &;spindle_sp) ;

fclose (in_f ile)

;

/* Compute machine offsets */

mach_x_of fset = 0.0;

mach_z_of fset = 0.0;

/* Now make geometric -thermal adjustments to gauged
coordinates, transform them to the part coordinate
system, and then load them into the cut_attributes
data structure, attrib for the semi-finished cut.

In the following loops, i counts points within a

specific cut, while j counts the points overall.
Theta is the angle that the surface normal of a

point makes with the +Z axis

.

The current code does not correct for geometric-
thermal errors although lines are included to show
locations for future inclusion */

j = 0;

for (cut_no = attrib [0]

;

(cut_no - attrib [0-]) < total_cuts [0] ; ++cut_no)

{

for (i = 0; i < cut_no- >how_many_points ; ++i)

{

theta = atan2 (cut_no->normal_vector [i] .x,

cut_no- >normal_vector [i] .z)

;

curr_x = /* (long) */ (xz_rtec [j] [0] * 25400); /* inch to micron */

old_x = curr_x + direction*3; /* create a previous x in um */

curr_z = /* (long) */ (xz_rtec
[j] [1] * 25400); /* inch to micron */

old_z = curr_z - direction*3; /* create a previous z in um */

/* Compute the thermal errors at the current probe
point. */

therm_error [0] = 0;

therm_error [1] = 0;

thermal_adjust (x_coord_of fset , z_coord_of fset , curr_x, curr_z.

72

//

//

old_x, old_z, therm_error
, temp, tempinit, mach_x_of fset

,

mach_z_offset , spindle_sp)

;

xz_rtec
[j] [0] =

xz_rtec[j] [0] + (doiible) (therm_error [0]) /25400 . ;

xz_rtec [j] [1] =

xz_rtec[j] [1] + (doiible) (therm_error [1]) /2 54 00 . ;

/* Convert thermally adjusted gauge points to part
coord.

This call puts the x coordinate of a gauge point
into diameter mode. */

cut_no- >gauged_coord [i] .x = rtec_to_part (xz_rtec[j] [0] , 'x',

theta, probe_x_length, MACHINE_HOME_X)

;

cut_no- >gauged_coord [i] . z = rtec_to_part (xz_rtec[j] [1], 'z',

theta, probe_x_length, MACHINE_HOME_X)

;

}

if (++j >= total_single_coords/2) break;

}

}
/* The above "break" is okay */

/* because the next execution of */

return order; /* the function will be proper. */

/* end of read_rtec */

73

C.3.7 skipped_points_test

This function tests whether any expected probe points were missed during the probing process of

a session.

Function prototype declaration:

int skipped_points_test (double i_component, double k_component,

double normal_component, int skipped[],

int point)

Inputs:

i_component - x component of the error at point.

k_component - z component of the error at point.

normal_component - projection of the error vector on the normal

vector.

skipped - array of skipped points indices (max 3).

point - index of the current gauge point.

Outputs:

Subscript of the array skipped[] if the current gauge point was skipped.

Function procedures:

The function first adjusts the point count to correct for any prior adjustments to the skipped []

array. The calling function does not adjust this point count if a gauge point is found to be

skipped. It is only done when skipped_points_test is called.

In the next step the function computes the magnitude of the error vector and uses this to compute

the tangent component to the surface of the error vector at the gauge point.

The subscript of the skipped [] array is set. If no points are skipped it is left at 0. Otherwise it is

incremented and if it becomes greater than 3 an error message is sent to the console that too

many gauge points have been skipped and the program aborts.

74

/**

Fxmction to test whether any expected points were missed during probing.
***/

int skipped_points_test (double i_component, double k_component

,

double normal_component , int skipped [], int point)
/**
*

*

*

•k

k

k

k

k

Global variables

:

none

Parameter inputs

:

i_component - x component of the error

k_component - z component of the error

normal_component -

projection of the error

at point

at point

vector on the normal vector
*

* skipped - array of skipped points indices (max 3)

*

* point - index of current gauge point
*

* Parameter output

:

* skipped_jpoints_test - siibscript of skipped point if any
Jr

* Non-system Function calls:
* none
•Jr

***/

{

/* Descriptions of global variables used are at the
beginning of this file.

The variable "count" will count how many gauging
points have apparently been skipped. It is

initialized to 1, and the program will abort if

it is incremented beyond 3. */

int i, skip_sxibscript ;

do-uble error_magnitude, parallel_component ;

static int count = 1;

/* The value "point" coming into this function should
be the overall point number. However, if a point
was found to be skipped before this particular call

to this function, the overall point count would be
one less than what it should actually be; two less

if there were two previously skipped points . The
following loop will make appropriate adjustments
if neccessary. */

75

for { i = 0 ; i < 2 ; ++i)

if (skipped [i] != -1) ++point;

/* The main basis for assuming that the probe has
skipped a point which was intended to be measured
is that the error vector has a large component
parallel to the part surface. Since the probe
should approach a point in a direction normal to '

the part surface, the measured machining error
should all be in + or - the direction of a vector
normal to the surface at that point.

Any component parallel to the surface must be due
to a problem with the probing process. If such a
component is large (say, greater than 1/16 inch,
assuming that any ordinary gauging problem will
result in a much smaller value, and that this is

the minimum spacing which will be programmed
between gauging points) , then, it seems probable
that the point being gauged is not the one
expected. In this case, the nominal coordinates
for the point apparently skipped will be eliminated
from the array so that the measured and nominal
coordinates match in sequence . The new matching
coordinates will then be tested similarly.

The only role in this strategy played by this
particular function is that of testing. */

error_magnitude = sqrt (i_component * i_component +

k_component * k_component)

;

parallel_component = sqrt (error_magnitude * error_magnitude -

normal_component * normal_component)

;

skip_subscript = count - 1;

if (parallel_component > . 06)

{

if (count > 3)

{

prnwinC'More than 3 gauging points "

"were skipped by the probe.", LIGHTRED, 1)

;

delay (5000)

;

exit (8)

;

}

skipped [(count++) -1] = point;

}

return skip_siibscript ;

/* end of skipped_points_test */

76

C.3.8 calculate errors

This function calculates deviations of actual from nominal gauging coordinates in the direction

of the normal vector. It computes the error vector at each gauged point and produces the

erTor_scalar multiplier for the normal vector at each gauged point for each cut.

Function prototype declaration:

void calculate_errors (int skipped[])

Inputs:

skipped[] - Array of skipped points indices.

Outputs:

The function does not directly return any values. Indirectly the error vectors and the error scalars

are computed for each of the gauge points and the attribute structure components are updated

with these values. The skipped[] array is incremented for any identified skipped points. Note that

the error scalar is just the dot product of the error vector with the surface normal since both are

assumed to be unit vectors.

Function procedures:

An overall point count is initialized. The function then sequentially goes through each cut in the

session and each point-per-cut until the overall point count exceeds the total number of points for

the session. At each point the x and z-components of gauged point minus the nominal point are

computed. Note that the x gauged coordinate, store in diameter mode, is divided by 2 to convert

it to radial mode for use in this function. The magnitude of the error along the normal vector is

computed as the dot product of the error vector and the normal vector. Finally a skipped point

test is performed.

77

y^*********************-**********-**-***

Function to calculate deviations of actual from nominal gauging
coordinates in the direction of the normal vector. This function
computes the error vector at each gauged point and produces the
error_scalar multiplier for the normal vector at each gauged point for
each cut_no

.

***y

void calculate_errors (int skipped [])

*

* Global variables

:

* attrib - cut attributes structure
*

* cut_no - pointer to a cut
*

* Parameter input

:

* skipped - Array of skipped points indices
*

* Parameter outputs

:

* none
*

* Non-system F\mction calls:
* skippedjpoints_test

*****************************'*'****'*‘*******-*'********************'***********-***y

{

/* Descriptions of global variables used are at the
beginning of this file. */

int point, overall_point_no, count;
doiible error_vector_i , error_vector_k;

overall_point_no = 0

;

/* Cycle through all of the cuts. */

for (cut_no = attrib [0];

(cut_no - attrib [0]) < total_cuts [0] ; ++cut_no)

/* Now cycle through all of the gauge points per cut.

First calculate the error vector. Note that the
gauged x coordinate must be transformed from
diameter mode. It is stored in the diameter mode in
the attributes structure. */

{

for (point = 0; point < cut_no->how_many_points ; ++point)

{

if ((overall_point_no) >= total_points) continue;

78

/* Gauged_coord stored in diameter mode */

error_vector_i = cut_no- >gauged_coord [point] . x / 2 -

cut_no- >nominal_coord [point] .x;

error_vector_k = cut_no- >gauged_coord [point] . z -

cut_no- >nominal_coord [point] . z

;

/* The error scalar is equal to the magnitude
(positive or negative) of the component of the
error vector which is in the direction of the
surface normal . This would be equal to the dot
product of the two vectors divided by the magnitude
of the surface normal, but since the surface normal
is equal to unity, the error scalar is equal to the
dot product of the two vectors. */

cut_no- >error_scalar [point] =

error_vector_i * cut_no- >normal_vector [point] . x +

error_vector_k * cut_no- >normal_vector [point] . z

;

/* Check on skipped points */

count = skipped_points_test (error_vector_i , error_vector_k,
cut_no- >error_scalar [point] , skipped, overall_point_no++)

;

if (skipped [count] != -1) return;

}

}

/* Move error scalar data to the finished cut
attributes. */

for (cut_no = attrib[0]

;

(cut_no - attrib[0]) < total_cuts [0] ; ++cut_no)

for (point = 0; point < cut_no- >how_many_j5oints ; ++point)

(attrib[l] + (cut_no - attrib [0]))- >error_scalar [point]

= cut_no- >error_scalar [point];

return;

}

/* end of calculate_errors */

79

C.3.9 write report

This function writes a file report.txt that records the part number, time and the magnitudes of the

error vectors normal to the surface at each of the gauge points.

Function prototype declaration:

void write_report (char point_order)

Inputs:

point_order - character r or s designating order ofprobed points relative to cuts

Outputs:

The file report.txt

Function Procedures:

The function first opens the file report.txt for writing. Next it writes a header text that includes

the part number and session time. Then for the semifinish session the function writes magnitudes

of the errors in the normal direction for each of the gauge points in the order in which they were

taken. The text file is then closed.

80

y**

Function to write file comparing errors in the direction of the normal
vector at each of the gauge points. This function writes out the
error_scalar multiplier at each gauged point.

***/

void write_report (char point_order, int seq_no)

*

* Global variables

:

* attrib - attributes structure
*

* Parameter input

:

* point_order - character r or s designating order of probed points
* relative to cuts
*

* Parameter output

:

* none
*

* Non-system Fxinction calls:
* none
*

*********************************'***************************************

y

{

/* Descriptions
beginning of

of global variables used are at the
this file. */

int session_no, point, point_no, tot_points, i

;

char buffer [75];

long int Itime;
FILE *out_file;
double error_scalar [max_points] [max_sessions] ,

dummy_scalar [max_points] [max_sessions]

;

static char probing_results_file [] = " \\QIA\\PROBING\\REPORT .***";

/* Assemble the output file name and prepare to start. */

itoa(seq_no, buffer, 10);

for (i = 0 ; i < 3 ; i++)

probing_results_file [i+20] = buffer[i];

/* Open file and write date, time and title. */

time (<ime)

;

out_file = fopen (probing_results_file , "w");

fprintf (out_file,

"\n Record of Measured Errors

\

\n From Manufacture of Part %s on\

\n %s\

81

\n.***** ******************************* ****\

\n\nGauging\nSession part_no, ctime (<ime))

;

/* Loop for each point within each cut within each
session, storing the error values and writing the
session numbers in the column headings. */

session_no = 1;

point_no = 0

;

for (cut_no = attrib [session_no-l]

;

(cut_no - attrib [session_no-l]) < total_cuts[session_no-l];
++cut_no)

for (point = 0; point < cut_no- >how_many_points ; ++point)

error_scalar [++point_no] [session_no] =

cut_no->error_scalar [point]

;

fprintf (out_file, " %d" , session_no)

;

tot__points = point_no;

/* If measurements were taken in the reverse order of
the point number sequence used here -- */

if (point_order == 'r'
| |

point_order == 'R')

{

}

for (point_no = 1; point_no <= totjpoints; ++point_no)

dummy_scalar [point_no] [session_no] =

error_scalar [point_no] [session_no]

;

for (point_no = 1; point_no <= tot_points; ++point_no)

error_scalar [point_no] [session_no] =

dummy_scalar [tot_points+l-point_no] [session_no]

;

/* Write the errors to the file in rows pertaining to
each point

.

*/

for (point_no = 1; point_no <= tot_points; ++point_no)

{

fprintf (out_file, "\n\nPoint %d ", point_no)

;

fprintf (out_file, "%12.6f", error_scalar [point_no] [session_no])

;

}

fclose (out file)

;

return;

}

/* end of write_report */

82

C.3.10 read toolpath data

This function reads in "go-to" coordinates and other tool path specifications for the part program

segment for the NEXT session. The "go-to" coordinates are the nominal endpoints of cuts. It

initializes an array tooipath_spec with the nominal endpoint vectors for each cut. If tool offsets

are read then they are put into the first two elements of toolpath_spec.

Function Prototype Declarations:

void read_toolpath_data (int next_segment, struct toolpath_data cut_coords[],

int init_block_spec[], int initial_block_cut[],

int fmal_block_cut[])

Inputs:

next_segment - NC code segment to be generated.

cut_coords - coordinates of start- and end-points of cuts.

init_block_spec - tool path spec numbers in terms of cut numbers.

initial_block_cut - cut for which a tool path spec is initial.

fmal_block_cut - cut for which a tool path spec is final.

Outputs:

Directly the function does not return any value. Indirectly the function returns the start and end

points of each cut, expressed in terms of the cuts.

Function Procedures:

The function begins by opening the file PATHNN00.2 where NN represents the first two

characters of the part number. An example of this file is given in Section 6.5. Each record read

has four fields. In the first record the first two values are usually set to 0 and represent z and x

offset. These two values in the file are dummy values, since the actual offset increments are

calculated in PIECS. The numbered specifications (e.g., "go-to" coordinates) in the file

ptNNOOll.in, the part program segment template used by PIECS, begin with 3 (after the two tool

offset specifications). Each of the next records have x and z-coordinates of a point that is the

beginning point of the cut numbered in the third field and the end point of the cut numbered in

the fourth field. The function then computes the start and end points of each cut.

83

/**

Fionction to read in "go-to" coordinates and other tool path
specifications for the part program segment for the NEXT session. The
"go-to" coordinates are the nominal endpoints of cuts. This function
initializes toolpath_spec with the nominal endpoint vectors for each
cut. If tool offsets are read then they are put into the first two
elements of toolpath_spec

.

^

void read_toolpath_data (int next_segment

,

struct toolpath_data cut_coords [] , int init_block_spec []

,

int initial block_cut [] , int final_block_cut []

)

/***

* Global variables

:

* part_no - part number
*

* toolpath_spec - go-to points for NC segment (These will be adjusted)
*

* toolpath_spec_nom - go-to points for NC segment and for RTEC file
*

* Parameter inputs

:

* next_segment - NC code segment to be generated
* cut_coords - coordinates of start- and end-points of cuts
* init_block_spec - tool path spec numbers in terms of cut numbers
* initial_block_cut - cut for which a tool path spec is initial
* final_block_cut - cut for which a tool path spec is final
*

* Parameter outputs

:

* none
*

* Non- system Function calls:
* none
*

{

/* Descriptions of global variables used are at the
beginning of this file. */

int i, spec;
FILE *in_file;
char dummyl[81];
double nominal_spec_x [max_cuts] , nominal_spec_z [max_cuts]

;

static char toolpath_file [] = " \\qia\\cutting\\pathNNOO .
2

"

;

/* This function is called only when there will be at
least one more machining-gauging session.
Therefore it is fine for this function to consider
the next segment, which is the first in the next
session. */

84

toolpath_f ile [17] = part_no[0];
toolpath_f ile [18] = part_no[l];

if ((in_file = fopen (toolpath_file , "r")) == NULL)

{

}

sprintf (dummyl, "No tool path file exists "

"for Part %i Segment %i.\n", part_no, next_segment);
prnwin (dummyl , LIGHTRED, 1)

;

delay (5000)

;

exit (4)

;

/* The first two variables (i=0 and i=l) in the array
" toolpath_spec [i] " are the Z and X tool offset
increments. The first two values in the tool path
file to be read are dummy values, since the actual
offset increments are calculated in this program.

The numbered specifications (e.g., "go-to"
coordinates) in the file pathNNOO.2, the part
program segment template used by this program,
begin with 3 (after the 2 tool offset
specifications) . Therefore, the subscript 2 in
"toolpath_spec" corresponds to specification 3 in
pathNNOO.2. */

for (spec =0; ! (feof (in_file)) ; spec += 2)

{

if (spec >= 2* (total_cuts [1] -1)) break;
fscanf (in_file, "%lf %lf %d %d" , &;nominal_spec_x [spec] ,

&nominal_spec_z [spec] , &initial_block_cut [spec]

,

&final_block_cut [spec])

;

toolpath_spec [spec] = nominal_spec_x [spec]

;

toolpath_spec [spec+1] = nominal_spec_z [spec]

;

/* For later use, the spec numbers need to be known
from the cut numbers. */

init_block_spec [initial_block_cut [spec]] = spec;

}

fclose (in_file)

;

/* The coordinates of the start- and end-points of the
cuts will now be expressed in terms of cuts

.

The left-hand side of the following equations can
be easily understood if read backwards. For the

start- and end-point subscripts, [0] refers to the
X coordinate; [1] refers to Z. The other
siibscripts are specified according to the way
values were read in from the tool path file by the
function read_toolpath_data . The first equation
reads, for example: The X coordinate of the start

-

point of cut [spec] equals nominal_spec_x [spec] . */

85

for (spec = 2; spec < 2* (total_cuts [1] -1) ; spec += 2)

{

cut_coords [initial_block;_cut [spec]] . startpoint [0] = /* radius mode */

nominal_spec_x [spec] /2 .

;

cut_coords [initial_block_cut [spec]] .startpoint [1] =

nominal_spec_z [spec]

;

cut_coords [final_block_cut [spec]]. endpoint [0] = /* radius mode */

nominal_spec_x [spec] /2 .

;

cut_coords [final_block_cut [spec]] .endpoint [1] =

nominal_spec_2 [spec]

;

}

return;

}

/* end of read_toolpath_data */

86

C.3.11 classifVerrors

This function determines the geometric category for which an error correction algorithm will be

applied.

Function prototype declaration:

int classify_errors (void)

Inputs:

None.

Outputs:

This function returns the value 1 if at least one of the axis curve degrees is not quadratic and 2

otherwise.

Function procedures:

For each cut this function tests the degree-of-curve value for whether the first value is negative.

If it is it returns 1 ,
otherwise 2.

87

/**

Function to determine the geometric category according to which an error
correction algorithm will be invoked.

***/

int classify_errors (void)

/**

* Global variables

:

* attrib - cut attributes structure
*

* Parameter inputs

:

* session_no
*

•k

There are two sessions: 1 for semifinish, 2 for finish.
Only 1 should be used.

* Parameter outputs

:

* classify_errors

*

1 if the degree of curve is not quadratic,
otherwise it is 2

.

* Non-system Fimction calls:
* none
*

kkk'kkkkkkkkk'kkkkk-kkkkickkkkk/

{

/* Descriptions of global variables used are at the
beginning of this file.

Test whether any cuts are a nonlinear curve-
interpolation type (i.e., machined in a curve-
interpolation mode) . (A better means than the
method used here for identifying such cuts will be
implemented later.) If such is the case, then an
analysis for trueness of curves will be performed.
Otherwise that analysis will be skipped, allowing
other tests to be performed in succession. */

for (cut_no = attrib [1];

(cut_no - attrib [1]) < total_cuts [1]

;

if (cut_no->type_of_curve [0] < 0)

return 1;

++cut no)

return 2

;

}

/* end of classify_errors */

88

C. 3. 12 untrue curve

This function is a placemarker for a future function to calculate corrections for untrue curved

features.

Function prototype declaration:

void untrue_curve (void)

Inputs:

None.

Outputs:

None.

Function procedures:

None.

89

/**

Function to calculate corrections for untrue curves.
***/

void untrue_curve (void)

/**
*

* Global variables

:

* none
*

* Parameter inputs

:

* none
"k

* Parameter outputs:
* none
*

* Non-system Function calls:
* none
*

***/

/* Descriptions of global variables used are at the
beginning of this file. */

return;

}

/* end of untrue curve */

90

C.3.13 max value

This function calculates the maximum (double precision) floating point value of the array

all_values.

Function Prototype Declaration:

double max_value (double all_values[], int how_many)

Inputs:

all_values - array of numbers whose maximum is sought

how_many - number of elements in the array

Outputs:

The function returns the maximum value in the array all_values.

Function Procedures:

The function keeps updating a temporary variable that represents the current maximum in the

array. When the last element of the array has been examined it returns the last value in the

temporary array.

91

/**

Function to calculate maximum (double precision) floating point value.

doioble max_value (double all_values [] , int how_many)

/**
k

* Global variable

:

* none
*

* Parameter inputs:
* all_values - array of numbers whose maximum is sought
•k

* how_many - number of elements in the array
k

* Parameter outputs

:

* max_value - maximum value in the array
k

* Non-system Fxmction calls:
* none
*

kkk^

{

int n ;

double max_so_far;

max_so_far = all_values [0]

;

for (n = 1; n < how_many; ++n)

if (all_values [n] > max_so_far) max_so_far = all_values [n]

;

return max_so_far;

}

/* end of max value */

92

C. 3. 14 min value

This function calculates the minimum (double precision) floating point value of an array.

Function Prototype Declaration:

double min_value (double all_values[], int how_many)

Inputs:

all_values - array of numbers whose minimum is sought.

how_many - number of elements in the array.

Outputs:

The function returns the minimum value in an array.

Function Procedures:

The procedure is similar to that in max_value except in this case the temporary variable

maintains the current minimum.

93

/***•***************************

Fimction to calculate minimum (double precision) floating point value.

^

double min_value (double all_values [] , int how_many)

/**
*

* Global variables

:

* none

* Parameter inputs

:

* all_values - array of numbers whose minimum is sought

* how_many - number of elements in the array
*

* Parameter outputs

:

* min_value - minimum value in the array
*

* Non-system Function calls:
* none
*

^

{

int n;

double min_so_far;

min_so_far = all_values [0] ;

for (n = 1; n < how_many; ++n)

if (all_values [n] < min_so_far) min_so_far = all_values [n]

;

return min_so_far;

}

/* end of min value */

94

C.3.15 smallest magnitude

This function identifies the subscript of the (double precision) floating point array that has the

smallest magnitude.

Function Prototype Declaration:

int smallest_magnitude (double all_values[], int how_many)

Inputs:

all_values - array of numbers whose minimum absolute value is

sought

how_many - number of elements in the array

Outputs:

This function returns the index of the element in the array all_values that has the smallest

absolute value.

Function Procedures:

The function first takes the absolute values of all elements of the array and temporarily stores

them. The it searches the temporary array for the smallest value, keeping track of the index each

time.

95

/**

Function to identify the subscript of the (doiible precision) floating point
value which has the smallest magnitude

.

***/

int smallest_magnitude (double all_values [] , int how_many)

/**

* Global variables

:

* none
*

* Parameter inputs

:

* all_values - array of numbers whose minimum absolute value is
* sought
*

* how_many - number of elements in the array

* Parameter outputs

:

* smallest_magnitude - siibscript of element in array with smallest
* absolute value
*

* Non-system Function calls:
* none

***/

{

int n, subscript;
double magnitudes [20] , smallest_so_far

;

for (n = 0; n < how_many; ++n)

magnitudes [n] = fabs (all_values [n])

;

smallest_so_far = magnitudes [0]

;

subscript = 0

;

for (n = 1; n < how_many; ++n)

if (magnitudes [n] < smallest_so_far)

{

smallest_so_far = magnitudes [n]

;

siibscript = n;

}

return subscript;

}

/* end of smallest_magnitude */

96

C.3.16 offset change

This function determines whether all errors for a single axis are reasonably constant, and if so, it

calculates a compensating tool offset increment. If the error range in the array error_value is

relatively constant then this function returns a fixed error offset value.

Function Prototype Declaration:

double offset_change (double error_value[], int how_many)

Inputs:

error_value - array of errors.

how_many - number of elements in the array.

Outputs:

This function returns the offset correction for a single axis.

Function Procedures:

Identify subscript of the error value with the smallest magnitude. If the range of error is small, a

constant offset can produce a satisfactory correction. Since the current tool offset in the machine

tool should be an integer multiple of the machine tool servo resolution, the increment calculated

here is also converted to such a multiple. The multiple used will be slightly higher than the

actual resolution since this program rounds down for the final figure, and since the machine tool

controller will round down again to a multiple of the actual resolution. If the range of error is not

small enough, the coordinates in the part program must be modified, so the offset is not changed.

97

^ **

Function to determine whether all errors for a single axis are reasonably
constant, and if so, to calculate a compensating tool offset increment.
If the error range in the array error_value is relatively constant then
this- function returns a fixed error offset value.

***/

double of fset_change (double error_value [] , int how_many)

y**

* Global variables

:

* correction
*

*

servo res

tolerance2

*

* Parameter inputs

:

* error_value
*

* how_many
•k

error multiplier fraction to obtain desired tool offset
See DEFINE statements

.

resolution of the machine tool servo system. See DEFINE
statements

.

percentage of the smallest absolute value of error that
can be corrected. See DEFINE ' s

.

array of errors

number of elements in the array

* Parameter outputs

:

* of fset_change - offset correction
*

* Non-system function calls:
* max_value, min_value, smallest__magnitude
*

{

int i, smallest;
double range, delta_of fset

;

/* The parameter "tolerance2" represents the widest
range of errors that can be corrected by a tool
offset. It is used as a percentage of the error of
smallest magnitude.

The parameter "correction" is the fraction by which
an error will be multiplied to obtain the quantity
by which the tool offset is to be changed. */

range = max_value (error_value , how_many) -

min_value {error_value , how_many)

;

/* Identify siibscript of the error value with the

98

smallest magnitude. */

smallest = smallest_magnitude (error_value, how_many)

;

/* If the range of error is small, a constant offset
can produce a satisfactory correction. */

if (range < fabs (tolerance2 * error_value [smallest]))

{

delta_offset = error_value [smallest] * correction,

-

/* The currently active tool offset should already be
an integer multiple of the machine tool servo
resolution. Therefore, the increment calculated
here will also be so converted. The multiple used
will be slightly higher than the actual resolution
since this program rounds down for the final
figure, and since the machine tool controller will
round down again to a multiple of the actual
resolution. */

}

delta offset -=

/*

else
delta offset =

fmod (delta_of fset , servo_res)

;

If the range of error is not small enough, the
coordinates in the part program must be modified,
so the offset will not be changed.

0 ;

*/

return delta_of fset

;

}

/* end of of fset_change */

99

C.3.17 Constant error

This function assigns new tool offsets if it is found that they could significantly decrease errors.

This is done by producing the error_scalar times the normal_vector at each gauged point and

testing the components for relatively constant values. If so it stores the offset values in the first

two elements of toolpath_spec array.

Function Prototype Declaration:

int constant_error (void)

Inputs:

None.

Outputs:

constant_error - a flag indicating whether both toolpath_specs have been set.

Function Procedures:

For all cuts except nonlinear curve-interpolation types, the function first tests whether the range

of x-errors and the range of z-errors are both small. If this is the case, then errors may be reduced

with X and z offsets and these values will be substituted into the tool offset update command in

the next segment ofNC code. They will often be zero, and will not matter. When either is (or

both are) zero, further corrections will be calculated for the corresponding axis (or both axes) by

the untrue planes function.

100

/**

F\mction to assign new tool offsets if it is found that they could
significantly decrease errors. This is done by producing the
error_scalar times the normal_vector at each gauged point and testing
the components for relatively constant values. If so it stores the
offset values in the first two elements of toolpath_spec

.

***/

int constant error (void)

/**
*

* Global variables

:

* attrib - cut attributes structure
•k

* x_error - array of x errors for all cuts
*

* z_error - array of z errors for all cuts
*

* toolpath_spec - array of go- to end points for NC segment

* Parameter inputs

:

* session_no -

*

*

There are two sessions: 1 for semifinish, 2 for finish.

Only 1 should be used.

* Parameter outputs

:

* constant_error - a flag indicating whether both toolpath_specs have
* been set.

* Non- system ftinction calls:
* offset_change

^

{

/* Descriptions of global variables used are at the

beginning of this file. */

int point, pt, both_done;

/* For all cuts except nonlinear curve -interpolation
types, test whether the range of X errors and the

range of Z errors are both small . If such is the

case, then errors may be reduced with X and Z

offsets. */

pt = 0;

for (cut_no = attrib [1];

(cut_no - attrib [1]) < total_cuts [1] ; ++cut_no)

if (cut_no- >type_of_curve [0] < 0)

for (point = 0; point < cut_no- >how_many_points ; ++point)

101

{

x_error [++pt] =

z_error [pt]

}

cut_no- >error_scalar [point] *

cut_no- >normal_vector [point] .x;

cut_no- >error_scalar [point] *

cut_no- >normal_vector [point] . z

;

both_done = 0

;

toolpath_spec [0] = of fset_change (z_error, pt);
toolpath_spec [1] = of fset_change (x_error, pt)

;

/* These values will always be substituted into the
tool offset update command in the next segment of NC
code. They will often be zero, and will not matter.
When either is (or both are) zero, further
corrections will be calculated for the
corresponding axis (or both axes) by the untrue
planes function. */

if (toolpath_spec [0] != 0 && toolpath_spec [1] != 0) both_done = 1;

return both_done;

}

/* end of constant_error */

102

C.3.18 straight_line

This function fits a straight line to data points and fills in poly_coeff numbers 5, 6, 0.

Function Prototype Declaration:

void straight_line (double nose_rad)

Inputs:

nose_rad - radius of the probe tip nose

Outputs:

none

Function Procedures:

The coefficients in poly_coeff numbered 1, 2, 3, 4 are first set to zero. The function then

prepares for the case of a cut with no points. (It may or may not be a hypothetical cut.) Data are

interpreted in an ususual way in this case. Furthermore, since these cuts will be used in solving

for compensation curve intersections just as the other cuts will, they need to be offset to the

location of the tool nose center. Next, the function addresses the case in which only a single

probe point is provided. According to the rules pertaining to the specific part, a line parallel to

a coordinate axis will pass through the point. Even though a hypothetical cut actually has no

points, it will also be treated in this way since the function assigns it a point. The function then

finally addresses the general case with the least-squares method of fitting a line to points. The

coefficients are then loaded into the data structure variables.

103

/**

Fxinction to fit a straight line to data points. This f-unction fills in
poly_coeff numbers 5, 6, 0.

^

void straight_line (double nose_rad)

*

* Global variables

:

* attrib - cut attributes structure
*

* Parameter input

:

* none
*

* Parameter output

:

* none
*

* Non-system function calls:
* none
*

**

{

/* Descriptions of global variables used are at the
beginning of this file. The pointer cut_no has the
value last assigned by the calling fimction. */

int point

;

double final_hyp_cut , switched_coeff_5 , switched_coef f_0

;

double sum_x, sum_z, sum_xz, sum_x_sq, sum_z_sq, x_bar, z_bar;

/* Certain coefficients are zero for a straight line. */

cut_no->poly_coef f [1] = cut_no- >poly_coef f [2] =

cut_no->poly_coeff [3] = cut_no- >poly_coef f [4] = 0;

/* First prepare for the case of a cut with no points.
(It may or may not be a hypothetical cut.) Data
are interpreted in an ususual way in this case

.

Also, since these cuts will be used in solving for
compensation curve intersections just as the other
cuts will, they need to be offset to the location
of the tool nose center (now) just as the other
cuts will (later) . */

if ((cut_no - attrib [1])+1 == total_cuts [1])

f inal_hyp_cut = 0

;

else // These values are used in the next section,
final_hyp_cut = 1;

104

if (cut_no- >how_many_points == 0)

{

if (cut_no->cut_direction.x != 'O')

cut_no- >adjusted_coord [0] . z = cut_no- >other_jplanes [1] . angle +

nose_rad; /* Must assume +k normal. */

else
cut_no- >adjusted_coord [0] . X = cut_no- >other_planes [l] . angle +

final_hyp_cut * nose_rad; /* Must assume +i normal.
The tool nose center may actually coincide with
the surface of a hypothetical cut, while it

must be offset by nose_rad from other surfaces. */

/* Now address the case in which only a single point
is provided. According to rules pertaining to the
specific part, a line parallel to a coordinate axis
will pass through the point. Even though a

hypothetical cut actually has no points, it will
also be treated in this way since the above section
has assigned it a point. */

if (cut_no->how_many_points ==

{

if (cut_no- >cut_direction .

:

{

cut_no- >poly_coef f [5] =

cut_no->poly_coef f [6] =

cut_no- >poly_coef f [0] =

}

else

0
I I

cut_no- >how_many_points

:
! = 'O')

1 ;

0 ;

cut_no- >adjusted_coord [0] .z;

{

cut_no- >poly_coef f [5]

cut_no- >poly_coef f [6]

cut_no- >poly_coef f [0]

}

0 ;

1 ;

cut_no- >adjusted_coord [0] .x;

return;

}

1)

/* Now to address the general case with the least-

squares method of fitting a line to points. */

sum_x = sum_z = sum_xz = sum_x_sq = sum_z_sq = x_bar = z_bar = 0

;

for (point = 0; point < cut_no- >how_many_points ; ++point)

{

sum_x += cut_no- >adjusted_coord [point] .x;

sum_z += cut_no- >adjusted_coord [point] . z

;

sum_xz += cut_no- >adjusted_coord [point] . z *

cut_no->adjusted_coord [point] .x;

sum_z_sq += cut_no- >adjusted_coord [point] . z *

cut_no- >adjusted_coord [point] . z

;

sum_x_sq += cut_no- >adjusted_coord [point] . x *

cut_no- >adjusted_coord [point] .x;

105

}

x_bar = sum_x / cut_no- >how_many_points

;

z_bar = sum_z / cut_no- >how_many_points

;

/* Load coefficients into data structure variables.

When the slope of the fitted line will be steep, a

singularity will arise in the derivation of the
standard equation for x(z)

.

This problem can be
averted by deriving the equation for z (x) instead.
Then, by dividing through by the coefficient of x,

the equation will be in the desired form of x(z)

.

After this is done in the "switched" case below,
the values of the coefficients are assigned to the
variable names used in the standard equations . The
slope is forced to be perfectly vertical, which is

virtually identical to that for cases within the
specified tolerance. */

if (fabs (sum_z_sq - z_bar*sum_z) > tolerancel) // Standard case

{ // (acceptable denominator)
cut_no->poly_coeff [5] = (sum_xz - x_bar * sum_z) /

(sum_z_sq - z_bar * sum_z)

;

cut_no- >poly_coef f [0] = -(x_bar - cut_no- >poly_coef f [5] * z_bar);

cut_no->poly_coeff [6] = -1;

}

else // Switched case

{

switched_coeff_5 = (sum_xz - z_bar * sum_x) /

(sum_x_sq - x_bar * sum_x)

;

switched_coef f_0 = -
(z_bar - switched_coef f_5 * x_bar)

;

cut_no- >poly_coef f [5] = -1;

cut_no- >poly_coef f [0] = switched_coef f_0

;

cut_no- >poly_coef f [6] = 0 ;

}

return;

}

/* end of straight_line */

106

C.3. 19 calculate coefficients

This function calculates the coefficients of the correction curve polynomial. It computes the

compensation adjusted coordinates at each of the gauged points and calls the straight line

function to fit a line through the adjusted points.

Function Prototype Declaration:

void calculate_coefficients (int constant_offset, int tool)

Inputs:

constant_offset - An integer flag: If != 0 the normal errors are

compensated by negative offsets otherwise by

negative scalar_error multiples of normal

vectors.

tool - tool number

Outputs:

None.

Function Procedures:

The function first reads the tool nose radius from the file CUTTER.K where K is the tool number

entered through the parameter list. Next it computes the adjusted coordinates by adding to the

nominal gauging coordinates of the finishing session the product of (1) the negative of the error

determined in the current session, (2) the percentage correction to be applied, and (3) the unit

vector normal to the surface. The result will be target coordinates for the finish machining

session. These coordinate adjustments are for gauge points. Each type of curve is considered

separately to determine the coordinates.

107

/**

Function to calculate the coefficients of the correction curve polynomial.
It computes the compensation adjusted coordinates at each of the gauged
points and calls the straight line function to fit a line through the
adjusted points

***/

void calculate_coef ficients (int constant_of fset , int tool)

/**
k

* Global variables

:

* attrib - cut attributes structure
* toolpath_spec - array of toolpath endpoints. First two are offsets.
•k

* Parameter input

:

* constant_of fset - An integer flag: If != 0 the normal errors are
* compensated by negative offsets otherwise by
* negative scalar_error multiples of normal vectors.
*

* Parameter output

:

* none
*

* Non-system function calls:
* straight_line
*

kkk^

{

/* Descriptions of global variables used are at the
beginning of this file. */

int pointer_index, point, j

;

char buffer [80], comment [80] ;

FILE *in_file;
double compensation, compensation_x, compensation_z

,

dividend, divisor, nose_rad;
struct cut attributes *next session cut;

/* Read the tool nose radius. */

sprintf (buffer, "\\QIA\\DATABASE\\TOOLS\\CUTTER. %d" , tool)

;

if ((in_file = fopen (buffer
, "r")) == NULL)

{

sprintf (buffer, "Tool data not available in file "

" \ \QIA\ \DATABASE\ \TOOLS \ \CUTTER . %d "

,

prnwin (buf fer , LIGHTRED, 1)

;

delay (5000)

;

return;

}

tool)

;

for (j = 0; j < 30; ++j)

108

{

fgets (buffer , 80, in_file);
sscanf (buf fer , "%s", comment);
if (strcmp (comment , "RADIUS:") == 0)

{

sscanf (buf fer, "%*s %lf/%lf", ÷nd, &divisor)

;

nose_rad = dividend / divisor;
break

;

}

}

fclose (in_file)

;

/* Compute the adjusted coordinates: add to the
nominal gauging coordinates of the next session the
product of (1) the negative of the error determined
in the current session, (2) the percentage
correction to be applied, and (3) the unit vector
normal to the surface. The result will be target
coordinates for the next machining session. These
coordinate adjustments are for gauge points.

Add compensation to each gauge point. */

for (cut_no = attrib[l];
(cut_no - attrib[l]) < total_cuts [1] ; ++cut_no)

{

for (point = 0; point < cut_no- >how_many_points ; ++point)

{

if (constant_of fset == 0)

{

/* The compensation curve is being adjusted to be the

path of the tool nose center instead of the path
along the surface. */

compensation =

compensation_x
compensation_z

}

else

{

compensation_x
compensation_z

}

- (cut_no- >error_scalar [point])
*

correction + nose_rad;
= compensation;
= compensation;

= -toolpath_spec [1]

;

= -toolpath_spec [0]

;

}

cut_no->adjusted_coord [point] .x =

cut_no->nominal_coord [point] .X +

(compensation_x * cut_no- >normal_vector [point] . x

cut_no->adjusted_coord [point] .z =

cut_no->nominal_coord [point] . z +

(compensation_z * cut_no- >normal_vector [point] .

z

109

/* Each type of curve must be considered separately to
determine the coordinates . *

/

if (cut_no- >type_of_curve [0] < 0)

straight_line (nose_rad)

;

else

{

prnwin ("\nOnly first degree curves are implemented.",
LIGHTRED, 1)

;

delay (5000)

;

exit (3)

;

}

}

return;

}

/* end of calculate_coef ficients */

110

C.3.20 solve equations

This function solves simultaneous linear algebraic equations by Gaussian Elimination.

Function Prototype Declaration:

void solve_equations (int how_many, double coeff[][7], double constant^, double root[])

Inputs:

how_many - number of equations to be solved,

coeff - matrix of coefficients of the equations,

constant - array of right hand sides of the equations.

Outputs:

root - array of solutions for the linear equations.

Function Procedures:

The function first tests whether any diagonals are equal to zero. It then switches equations to

avoid a zero pivot element. It continues in this fashion by Gauss elimination to triangularize the

coefficient matrix. Finally it solves for the roots by back substitution.

Ill

/**

Function to solve simultaneous linear algebraic equations by Gaussian
Elimination.

^

void solve_equations
(int how_many, double coeff[] [7], doiible constant [], double root [])

*

* Global variables

:

* none
*

* Parameter inputs

:

* how_many - number of equations to be solved.
*

* coeff - matrix of coefficients of the equations

* constant - array of right hand sides of the equations
*

* Parametric outputs

:

* root - array of solutions for the linear equations
St

* Non-system function calls:
* none
*

***/

/* The form of equation which this function solves is

as follows

:

coeff [0] [0]*root[0] +...+ coeff [0] [how_many-l] *root [how_many-l] = constant[0]
coeff [1] [0]*root[0] +...+ coeff [1] [how_many-l] *root [how_many-l] = constant [1]

etc

.

The parameter "tolerancel" should be defined
elsewhere as a small positive value (.00004, for
example) . It allows numbers very close to zero to
be treated as if they are exactly zero.

In the calling function, each dimension of all
array arguments should be "6", regardless of how
many equations are to be solved (up to a maximum of

six) .

As an argument for this function, the solution
"root" is available to the calling function as a

(double precision) floating point array. */

{

int i, j, k, 1, m, n;

double temp_storage , frozen_coef f , sum;

112

/* Test whether any diagonals are equal to zero. */

for (k = 0; k < (how_many - 1) ; ++k)

{

if (fabs (coef f [k] [k]) < tolerancel)

{

for (m = k + 2; fabs (coef f [m-1] [k]) < tolerancel; ++m)

if ((m - (how_many - 1)) > tolerancel) /* All diagonals 0 */

{

prnwin ("*** Equations not solvable ***", LIGHTRED, 1);
delay (5000)

;

return

;

}

/* Switch equation with next to avoid diagonal zero. */

--m;

temp_storage = constant [m]

;

constant [m] = constant [k]

;

constant [k] = temp_storage

;

for (1=0; 1 < how_many; ++1)

{

temp_storage = coef f [m] [1]

;

coeff[m] [1] = coef f [k] [1] ;

coef f [k] [1] = temp_storage

;

}

}

/* Triangularize coefficient matrix. */

}

for (i = k + 1; i < how_many;

{

constant [i] += -constant [k]

frozen_coeff = coeff [i] [k] ;

for (j = k; j < how_many;
coeff [i] [j] += -coeff [k]

}

++i)

* coeff [i] [k] / coeff [k] [k] ;

/* Will otherwise change below
++j)

[j] * frozen_coeff / coef f [k] [k] ;

/* Solve for roots by back substitution.

*/

*/

for (n = 0; n < how_many; ++n)

{

1 = how_many - n - 1

;

sum = 0

;

if ((1 - (how_many - 1)) < -tolerancel)

for (j = (1 + 1) ; j < how_many; ++j)

sum += coef f [1] [j] * root[j] ;

root[l] = (constant [1] - sum) / coef f [1] [1]

;

}

return;

}

/* end of solve_equations */

113

C.3.21 untrue_planar

Function to calculate corrections for untrue planar relationships.

Function Prototype Declaration:

void untrue_planar (int constant_offset, int tool)

Inputs:

constant_offset - An integer flag: If it is not equal to 0 the normal errors are compensated by

negative offsets, otherwise by negative scalr_error multiples of normal vectors.

tool - tool number.

Outputs:

none.

Function Procedures:

This function calculates coordinate values to be inserted into part program instructions to correct

all cases of errors of straightness, parallelism and perpendicularity — i.e., all errors except for

those on nonlinear curve-interpolation cuts, and those which can be corrected with tool offsets. It

first calls calculate_coefficients to determine the equations of the tool paths for the next

machining session for each cut. Then it considers each cut one at a time. At this point the

coefficients of the equations for each cut have already been determined. The last cut is

hypothetical and therefore not included in the total cuts. Next it finds the coordinates of the point

common to both, the current cut and the "intersecting cut" next in the direction of cutting. If a

tool offset increment was calculated for an axis (stored in either toolpath_spec[0] or [1]), then it

supercedes the need for the new specification calculated here for the same axis, and so the

nominal value is retained.

114

/**

Function to calculate corrections for untrue planar relationships.
***/

void xmtrue_jplanar (int constant_of fset , int tool)

/**
*

* Global variables

:

* attrib - cut attributes structure
*

* toolpath_spec - array of go-to points for generating NC segment

* Parameter inputs

:

* constant_of fset - An integer flag: If !0 the normal errors are
* compensated by negative offsets otherwise by
* negative scalr_error multiples of normal
* vectors

.

*

* Parameter outputs

:

* none
*

* Non-system f'unction calls:
* calculate_coef ficients ,

solve_equations

icie***ieie*if*ic'kiT*-k*-k-k***iT**************-k**-k-k-k*-k*-k-k***-k***'kic****'k'k*ic-k'k'k**'kic'kic-ir***/

{

/* This function calculates coordinate values to be
inserted into part program instructions to correct
all cases of errors of straightness, parallelism
and perpendicularity -- i.e., all errors except for
those on nonlinear curve -interpolation cuts, and
those which can be corrected with tool offsets.

Descriptions of global variables used are at the

beginning of this file. */

int i
, j

;

doiible X coord, z_coord, coeff [7] [7], constant [7] , root [7];

/* Determine the equations of the tool paths for the

next machining session for each cut. */

calculate_coefficients (constant_of fset , tool)

;

/* Now consider each cut one at a time. The
coefficients of the equations for each cut have
already been determined. The last cut is

hypothetical and therefore not included in the
total cuts. */

115

for (cut no

{

attrib [1] ;

(cut_no - attrib [1]) < total_cuts [1] -1 ; ++cut no)

/* Find the coordinates of the point common to both,
the current cut and the "intersecting cut" next
in the direction of cutting. (See definitions at the
beginning of the file.) */

coeff [0] [0]

coeff [0] [1]

constant [0]

coeff [1] [0]

(

coeff [1] [1] =

= cut_no->poly_coef f [5] ;

= cut_no->poly_coef f [6]

;

= cut_no->poly_coef f [0] ;

(

constant [1] =

(

attrib [1] + cut_no- >intersect_cut

attrib [1] + cut_no- >intersect_cut

attrib [1] + cut no- >intersect cut
solve_equations (2, coeff, constant, root)

;

1) ->poly_coeff [5]

;

1) ->poly_coeff [6]

;

1) ->poly_coeff [0]

;

/* If a tool offset increment was calculated for an
axis (stored in either toolpath_spec [0] or [1]),

then it supercedes the need for the new
specification calculated here for the same axis,
and so the nominal value will be retained. */

for (i = 0 ; i < 2 ; ++i)

{

switch (cut_no- >endpoint_spec [i] . coord)

{

case '

Z
'

:

case '

z
'

:

toolpath_spec [(cut_no->endpoint_spec [i] .spec)

}

break

;

case '

X
'

:

case '

X
'

:

toolpath_spec [(cut_no- >endpoint_spec [i] . spec)

2 *

break

;

}

1] =

root [0]

;

1]
=

root [1] ;

}

}

return;

/* end of \mtrue_planar */

116

C.3.22 write_segment

This fiinction writes the NC part program segment with modified tool path specifications.

Function Prototype Declaration;

void write_segment (int segment_no)

Inputs:

segment_no - NC code segment number

Outputs:

None.

Function Procedures:

The function reads all characters from the file PTNN0021.IN, one at a time and writes them out

to the new segment file called PTNN0021.DNC. When it reaches a "$" sign the next character

read is the path specification number. This is used as an index to extract from the the array of

modified toolpath specification points the adjusted value to be entered into the segment file in

place of the $path_spec_no combination. The function continues on to the end of the input file.

117

/**

Function to write NC part program segment with modified tool path
specifications

.

***/

void write_segment (int segment_no)

/**

* Global variables

:

* part_no - part number
•k

* toolpath_spec - go -to points for NC code segment
*

* Parameter inputs

:

* segment_no - NC code segment number
•k

* Parameter outputs

:

* none
*

* Non-system function calls:
* none
*

***/

{

int c, path_spec_no;
char dummy [81]

;

FILE *in_file, *out_file;
static char segment_template [] = " \\QIA\\CUTTING\\PTNN0021 . IN"

;

static char new_segment [] = "\\METALIST\\PTNN0021 .DNC"

;

segment_template [15] = new_segment [12] = part_no[0];
segment_template [16] = new_segment [13] = part_no [1]

;

if ({in_file = fopen (segment_template , "r")) == NULL)

{

sprintf (dummy, "No template program exists "

"for Part %s Segment %i.\n", part_no, segment_no)

;

prnwin (dummy, LIGHTRED, 1)

;

delay (5000)

;

exit (2)

;

}

out_file = fopen (new_segment , "w");

while ((c = fgetc (in_file)) != EOF)

{

if (c != '
$

')

fputc (c, out_file)

;

else

{

118

}

}

fscanf (in_file, "%d", &;path_spec_no) ;

fprintf {out_file, "%-.5f", toolpath_spec [path_spec_no-l]

)

fprintf (out_file, "%c", '\xlA'); /* Adding the marking EOF.

fclose (out_file)

;

fclose (in_file)

;

return;

}

/* end of write_segment */

119

C.3.23 errspec

This function writes the file errspec.dat ofRTEC cut specification start and end points for each

of the cuts.

Function Prototype Declaration:

void errspec (struct toolpath_data cut_coords[],

int init_block_spec[],int initial_block_cut[],

int final_block_cut[], double MACHINE_HOME_X)

Inputs:

cut_coords - coordinates of start- and end-points of cuts

init_block_spec - tool path spec numbers in terms of cut numbers

final_block_cut - cut for which a tool path spec is final

MACEnNE_HOME_X - x-distance from machine home to part origin

Outputs:

None.

Function Procedures:

The function first opens the error specification file. It writes the header record into the file. Then

it writes the axis offsets to the file even if they are both equal to zero. A nonzero offset indicates

that all the errors are reasonably uniform for that axis, and may be compensated by an offset

which is constant for that axis. Next, the function proceeds to compensate individual cuts. The

subscripts of the variable "toolpath_spec" are in the order in which the cuts are machined. This

is the same order required for the records in the error specification file. Note that each pair of

tool path specs, beginning with the even-numbered subscript, refer to x and z-coordinates,

respectively. The first pair of values in the toolpath spec file, being the tool offset increments,

were written to the file as stated above. The first cut specified in the attributes file is never

actually machined, regardless of whether it is hypothetical. (Note also that the order in which

cuts are listed in the attributes file is not necessarily the order in which they are machined.)

Therefore, the only useful information in the first data record in the error spec file is the x-

threshold for determining when to start monitoring an axis for the cut specified next. It is

assumed here that that cut will follow the one which initially moves the tool into the part, and

that it is the cut whose initial block contains the toolpath spec Avith subscript 2. The first cut

actually machined is always in the x-direction (into the part), and may or may not have gauging

120

points. In any case, the pair of tool path specs beginning with the subscript 4 are the coordinates

of the end point of the first cut containing gauging points. The current cut is that for which the

current spec is an end point—that is, the cut whose final block ofNC code contains the current

tool path spec. If the angle of a taper is steeper than 45 degrees, the x-axis will be monitored.

Otherwise, the z-axis will be monitored. The compensation values are equal to the adjusted

coordinates minus the nominal coordinates. The errors are the negative of the compensation

values. (If there are no points on the cut, specify zero errors.) The first variable on the right-hand

side of the first equation reads: the tool path spec corresponding to the initial block ofNC code

for the current cut. That is, the adjusted coordinates of the start point for the current cut. Note

that the subscript of the tool path spec for a z-coordinate if one greater than for the x. The

function then writes data to error spec file and terminates the file.

121

/**

Fiinction to write the file errspec.dat of RTEC cut specification start
and end points for each of the cuts

.

***/

void errspec (struct toolpath_data cut_coords [] , int init_block_spec []

,

int initial block cut[], int final_block_cut [] , double MACHINE HOME X)

/**

* Global variables

:

* VERSION - program version number, See DEFINE '

s

* toolpath_spec - Adjusted NC go-to points
*

* toolpath_spec_nom - Nominal NC go-to points
'k

* Parameter inputs

:

* cut_coords - coordinates of start- and end-points of cuts
*

* init_block_spec - tool path spec numbers in terms of cut numbers
*

* final_block_cut - cut for which a tool path spec is final
*

* Parameter outputs

:

* none
*

* Non-system fixnction calls:
* none
•k

***/

{

int j, current_cut, spec, axis;
FILE *out_file;
double delta_x, delta_z, start_error [2] , end_error [2]

,

PIECS_version_no = VERSION;
static char header [] = "(version); axis, "

"start_coord, x_err, z_err, end_coord, x_err, z_err"

;

static char err_file[] = "\\QIA\\CUTTING\\ERRSPEC.DAT"

;

static char axis_code [3] = "XZ";

/* Open the error spec file and write the header
record. */

out_file = fopen (err_file , "w");

fprintf (out_file, "%-.2f %s\n", PIECS_version_no, header);

/* Write the axis offsets to the file. If either is

nonzero, all errors are reasonably \miform for the
corresponding axis, and may be compensated by
offsets which are constant for the axis. */

122

fprintf (out_file, "%-.5f %-.5f\n", toolpath_spec [0] , toolpath_spec [1]) ;

/* The subscripts of the variable " toolpath_spec" are
in the order in which the cuts are machined. This
is the same order required for the records in the
error spec file. Note that each pair of tool path
specs, beginning with the even-numbered subscript,
refer to X and Z coordinates, respectively. The
first pair of values in the toolpath spec file,
being the tool offset increments, do not apply to
the error spec file.

The first cut specified in the attributes file is

never actually machined, regardless of whether it

is hypothetical . (Note also that the order in
which cuts are listed in the attributes file is not
necessarily the order in which they are machined.)
Therefore, the only useful information in the first
data record in the error spec file is the X
threshold for determining when to start monitoring
an axis for the cut specified next. It is assumed
here that that cut will follow the one which
initially moves the tool into the part, and that it

is the cut whose initial block contains the
toolpath spec with subscript 2

.

fprintf (out_file,

"X %9.5f 0.00000 0.00000 %9.5f 0.00000 0.00000\n",
MACHINE_HOME_X , cut_coords [initial_block_cut [2]] .startpoint [0]

)

;

/* The first cut actually machined is always in the -X

direction (into the part) , and may or may not have
gauging points. In any case, the pair of tool path
specs beginning with the subscript 4 are the

coordinates of the end point of the first cut

containing gauging points

.

for (spec = 4; spec < 2* (total_cuts [1] -1) ; spec += 2)

{

/* The current cut is that for which the current spec

is an end point- -that is, the cut whose final block

of NC code contains the current tool path spec

.

current_cut = final_block_cut [spec]

;

/* Determine which axis to monitor. If the angle of a

taper is steeper than 45 degrees, the X axis will

be monitored. Otherwise, the Z axis will be

monitored

.

cut_coords [current_cut] . endpoint [0] -

cut coords [current cut] . startpoint [0])

;

delta X = fabs

(

delta_z = fabs (cut_coords [current_cut] . endpoint [1] -

cut_coords [current_cut] . startpoint [1])

;

if (delta__x > delta_z)

axis = 0; /* 0 subscript for X axis
else

axis = 1; /* 1 siibscript for Z axis

/* Calculate the errors at each point . The
compensation values are equal to the adjusted
coordinates minus the nominal coordinates . The
errors are the negative of the compensation values

.

(If there are no points on the cut, specify zero
errors.) The first variable on the right-hand side
of the first equation reads: the tool path spec
corresponding to the initial block of NC code for
the current cut. That is, the adjusted coordinates
of the start point for the current cut. Note that
the subscript of the tool path spec for a Z

coordinate if one greater than for the X. */

if (attrib[l] [current_cut-l] .how_many_points != 0)

{

start_error [0] =

- (toolpath_spec [init_block_spec [current_cut]] /2 .
-

cut_coords [current_cut] . startpoint [0])

;

start_error [1] =

-(toolpath_spec [init_block_spec [current_cut] +1] -

cut_coords [current_cut] . startpoint [1])

;

end_error[0] = -{ toolpath_spec [spec] /2 .
-

cut_coords [current_cut] .endpoint [0])

;

end_error[l] = -(toolpath_spec [spec+1] -

cut_coords [current_cut] . endpoint [1])

;

}

else
for (j = 0; j < 2; ++j)

{

start_error
[j] = 0;

end_error[j] = 0;

}

/* Write data to error spec file. */

fprintf (out_file, "%c %9.5f %10.5f %10.5f %10.5f %10.5f %10.5f\n",

axis_code [axis]

,

cut_coords [current_cut] . startpoint [axis]

,

start_error [0] , start_error [1]

,

cut_coords [current_cut] . endpoint [axis]

,

end_error [0] , end_error [1])

;

}

/* Terminate the file. */

124

fprintf {out_file , "%c", '\xlA'); /* Adding the marking EOF. */

fclose (out_file)

;

return;

}

/* end of errspec */

125

C.3.1 piecs

This is the main function of the PIECS software module and is the last function in the program

listing. This placement is done only for compiler requirements. It takes nominal part

specifications from CAD generated specification files along with probed part coordinates at

selected points of a semifinished part and computes the necessary cut adjustments to make in the

finish cut in order to bring the final finished workpiece in conformity with the nominal

specifications. The function is called from the QIA Control program.

Function Prototype Declaration

float piecs(int seq_no, double temp[], double MACHINE_HOME_X)

Inputs:

seq_no - This is a sequence number used to index the gauging data by the QIA database. It is

converted to a character string and appended as the "K" to the file GAUGING.K

temp[] - This is an array of 40 thermocouple readings, in Celsius, passed to the PIECS function

for use by the geometric-thermal error model. They would be the thermocouple readings

taken by the Quality Controller at the time of the gauging operation. These would have

been stored in a separate database.

MACHINE_HOME_X - This is the distance from the machine home to the part origin in inches.

Outputs:

The program prepares three files report.txt, ptNN0021.dnc and errspec.dat.

Function Procedures:

Using the sequence number the program first reads the current part number from the gauging file.

It then forms a loop so that, in case a point to be gauged is skipped, cut attributes can be

re-interpreted to match only the points which did register. It next reads in the attributes of each

cut to be affected by the gauging session for the current part. The data include nominal

coordinates for gauging points, and nominal "go-to" coordinates for post-gauging cuts. Two cut

attribute files are read, one for the semifinish cut and the second for the finish cut. The

semi-finish probing session RTEC data is then read and the program transforms gauging results

to part coordinates from the probing segment format of the semi-finish session. It then calculates

deviations of actual from nominal gauging coordinates by computing the scalar errors in the

direction of the normal vectors at the gauge points of the semifinish cut. The program finally

classifies the errors as to whether they are constant error offsets, untrue curve errors or untrue

planar errors, applies the appropriate correction functions and prepares the output files.

126

127

^ **

Piecs fimction call

!

float piecs (int seq_no, double temp[], doiible MACHINE_HOME_X)
/**/

{

/* Descriptions of global variables used are at the
beginning of this file.

"Skipped" will equal the point numbers of those
missed by the probe during gauging. */

int i, all_done, next_segment , skipped[3], tool,

init_block_spec [max_cuts] , initial_block_cut [max_cuts]

,

final_block_cut [max_cuts]

;

char point_order, seq[7];
float PIECS_version_no = VERSION;

/* Declare a structure to contain cut coordinates in
terms of the cut number. This will clarify the
meanings of variables . Create storage addresses
and point to them. */

struct toolpath_data cut_coords [max_cuts]

;

doiible dummy_startpoint_coords [max_cuts] [2] ,

dummy_endpoint_coords [max_cuts] [2]

;

for (i = 0; i < max_cuts; ++i)

{

cut_coords [i] . startpoint = dummy_startpoint_coords [i]

;

cut_coords [i] . endpoint = dummy_endpoint_coords [i]

;

}

/* Convert sequence number to a string. */

itoa(seq_no, seq, 10);

/* Read in the attributes of each cut to be affected
by each gauging session for the current part.
There is a separate file for each post-gauging
machining session. Data include nominal
coordinates for gauging points, and nominal "go- to"

coordinates for post-gauging cuts. */

skipped[0] = skipped[l] = skipped[2] = -1; /* Set skip indicators to F. */

/* Read the part number from the gauging file. */

get_part_no (seq)

;

/* Form a loop so that, in case a point to be gauged
is skipped, cut attributes can be re -interpreted to

match only the points which did register. */

128

0 ;i =

do

{

/* Two cut attributes files will be read in. The first
for the semifinished cut and the second for the
finished cut. The files are to be titles attribl.n,
for the semifinished cut, and attrib2.n for the
finished cut, where n refers to a part number. */

read_cut_attributes (skipped)

;

/* Semi-finished probing session RTEC data will now be
entered. The next function reads, adjusts and
transforms gauging results from the probing segment
of the semi-finished session. */

point_order = read_rtec (seq, temp, MACHINE_HOME_X, &:tool) ;

/* There are two sessions. The first session (1) is

the semi-finished session that includes machining
and then gauging. The second session (2) is the
finished cut session that includes machining and
gauging. Piecs is executed between the semifinished
probe, called segment 2, and the finished machining
segment, called segment 3. Thus the current segment
should be segment 2. */

segment_no = 2

;

/* Calculate deviations of actual from nominal gauging
coordinates. During the first pass no skipped
points are assumed. After all skipped points, if

any, have been accounted for, the next function
writes the computed scalar errors in the direction
of the normal vectors at the gauge points of the

semifinished cut to the finished cut attributes. */

calculate_errors (skipped)

;

/* The following statement will test whether a point
was skipped. If not, execution of the subsequent
statements will proceed. If so, the outermost loop
will start over with reading of the cut attributes,

this time matching the arrays in accord with the

missed point. */

if (skipped [i] != -1) continue;

/* Write a file displaying errors for gauging session

1 .
*/

write_report (point_order , seq_no)

;

129

/* This ends processing of semifinished data.

Classify errors and apply the appropriate
correction functions. First read in nominal tool
path specifications for the NEXT segment. The next
segment is the machining segment of the finishing
session, which would be segment 3. */

next_segment = 3

;

/* Read any constant offsets and the nominal endpoints
for the finished cut. */

read_toolpath_data (next_segment , cut_coords, init_block_spec

,

initial_block_cut , final_block_cut)

;

/* The following switch statement is structured to
make it possible for all cases except for any
before for the first one matched to be executed in
succession. */

switch (classify_errors ())

{

case 1

:

untrue_curve ()

;

case 2

:

all_done = constant_error ();

case 3

:

untrue_planar (all_done, tool)

;

break

;

}

/* Write the NC file with adjusted "go-to" points. */

write_segment (next_segment)

;

/* Write the RTEC file of adjusted cut endpoints */

errspec (cut_coords, init_block_spec , initial_block_cut

,

final_block_cut, MACHINE_HOME_X)

;

}

while (skipped [i] != -1 && i++ < 3) ;

return PIECS_version_no;

}

/* end of piecs */

130

APPENDIX D
Introduction to NCMAKE

131

Since an NC probing code is required for each inspection session of a part processed through the

QIA system, a software procedure has been developed to facilitate the generation of the required

probing code. A CAD representation of the part is first used to develop a file of probe-path

coordinates. Then a program called NCMAKE, to be described here, reads that file, prompts the

user for certain NC program parameters, and writes the file ofNC probing code. NCMAKE is

written in the C programming language.

The process-intermittent loop is a QIA procedure for refining tool-path coordinates. A workpiece

first undergoes rough and semifinish machining, and then is inspected with the probe. The tool-

path coordinates for the finish machining are adjusted by PIECS to compensate for the

dimensional error patterns detected. After the finish machining, the part is inspected again. The

alternating machining and probing sessions are accomodated by segmenting the NC program.

NCMAKE produces the probing segments such that they can be executed as independent NC
programs.

Considering various requirements of process-intermittent dimensional inspection, it is clear that

most segments ofNC probing code should have certain types of notes and comments in

common. NCMAKE provides for certain "standard" kinds of comments which will be included

in every file ofNC code produced. For example, a comment states whether the touch-trigger

probe has an extension.

The routine nature of probe moves during inspection allowed a simple design for the file of

probe-move coordinates required by the program NCMAKE. The file is named "prbpathi.daf ’,

where “i” is the session number. (See Figure D1 .) The file is made up of repeated sequences of

coordinates to approach, touch, and retract from each successive gauging point. An exception to

this pattern is the case of a "bypass" point, a point in space to be traversed by the probe after

retracting from one gauging point, before proceeding to the approach point for the next. A
bypass point is sometimes necessary to provide sufficient clearance where the probe would

otherwise collide with the part. Comments are included in each record in the file, indicating

whether the values in that record are coordinates of the approach, touch, retract, or bypass point.

The gauging point number is also given for each touch point.

A separate probing-path definition program, an interactive computer program using a CAD
system, has been developed to produce prbpathi.dat. This program creates the probing path on a

CAD drawing of the part, and the resulting coordinates are written to prbpathi.dat with the

following modifications. First, the coordinates for each gauging point are adjusted such that the

probe stylus will attempt to touch a point slightly beneath the part surface. That is necessary

because, for the probe to trigger with accurate timing, the target coordinates when it moves to

touch the part must take into account the machine tool acceleration distance and the overtravel

limits of the probe stylus. Furthermore, all coordinates are adjusted to the center point of the

probe stylus. Tool offsets for the probe are determined such that the stylus center is the point

which must move according to NC code instructions. With prbpathi.dat thus created, NCMAKE
may use the coordinates directly.

132

NCMAKJE is designed to create code which moves the machine first to the user-defined probing

start location, and then moves only along the Z axis to the Z coordinate of the approach point for

Gauging Point 1 . Next, it moves in only the X direction to the approach point. Moving one axis

at a time in this order ensures that the preliminary moves of the probe allow maximum clearance

from the workpiece. The probe will touch Point 1, retract, approach Point 2, etc., according to

the coordinates in prbpathi.dat, as explained above.

The program uses a file named template.prb as a template for the NC code segment. (See Figure

D2.) The file is copied character-by-character, except that variable symbols are replaced by

corresponding numerical values or text strings. A variable symbol consists of a special character

followed immediately by an integer. There are two special characters used: $ and @. If the

special character is $, then the integer is a number referring to one of the twenty parameters

discussed earlier. The only exception is $21, which is replaced by the complete set of probe-

move blocks comprising the main body of the NC code segment. If the special character is @,
then the text to be substituted does not originate from the parameter list, but from within the

main program. This approach is necessary, for example, when the substitution will be derived

from a calculation which is based on a parameter value.

The current version ofNCMAKE has been tailored to the requirements of the prototype QIA
turning center. However, the program has been structured so that a few simple changes, mostly

to data files rather than program modules, could adapt it to significantly different NC
programming applications.

133

PARTLENGTH: 6.25

POINT start 5 . 148643

,

1.793852, 0 . 000000
POINT touch 1, 5 . 123869, 1.494877, 0 . 000000
POINT finish 5.148643, 1.793852, 0 . 000000
POINT start 5.000000, 1 . 800000, 0 . 000000
POINT touch 2, 5 . 000000, 1.500000, 0 . 000000
POINT finish 5 . 000000, 1 . 800000, 0 . 000000
POINT start 4 . 850000, 1 . 800000, 0 . 000000
POINT touch 3

,

4 . 850000, 1 . 500000, 0 . 000000
POINT finish 4 . 850000, 1.800000, 0 . 000000
POINT bypass 4.854984, 2 . 092784, 0 . 000000
POINT start 4 . 550000, 2 . 100000, 0 . 000000
POINT touch 4, 4.550000, 1.800000, 0 .000000
POINT finish 4.550000, 2 . 100000, 0 . 000000
POINT start 4.243750, 2 . 100000, 0 . 000000
POINT touch 5

,

4.243750, 1 . 800000, 0 . 000000
POINT finish 4.243750, 2.100000, 0 . 000000

FIGURE D1

Example "pathf in

.

cdl" File of Probe -Path Coordinates

134

NOOlO (ID, PROG, $1@1$2, $3 SEG$2: GAUGING @2)

N0020 ! @3
N0030 ! Tool $4: Touch- trigger probe $5 in $6" boring bar holder.
N0040 ! Length: Z=$7 X=$8 Offset $20: Z=$9 X=$10
N0050 ! Touch face of part , then MDI W$ll for PROBING START
N0060 ! P$15 =$13 PROBING STTiRT

:

Machine Z coordinate to which
N0070 ! probe moves from the " standard" initial machine coordinates
N0080 ! [XO, ZIO]

.

N0090 ! Probe tip diameter = $14 II

NOlOO ! Feedrate = $12 (inches per minute)
NOllO ! $16
N0120 ! $17
N0130 ! $18
N0140 G70 ! INCH MODE
N0150 G94 TOO ! INCHES /MIN, CLEAR TOOL
N0160 GOO Z(P$15) 1 RAPID TO PROBING START
N0170 G92 X30.4 Z$19 1 PRESET REF COORDS
N0180 T0$4@4 1 INDEX TURRET TO PROBE
N0190 M14 I TURN ON PROBE
N0200 Ml 5

$21
N@5 GOO X30.4 Z$19 TOO ! BACK TO REF COORDS, CLEAR TOOL
N@6 G92 XO Z(P$15) ! BACK TO PROBING START
N@7 GOO ZIO 1 BACK TO INITIAL MACHINE POSITION
N®8 M02 1 END OF SEGMENT
N9999 (END, PROG)

_FIGURE D2

The Template File for the NC Code, "template .prb"

135

APPENDIX E
Procedure for Generating Part Data

136

This appendix describes the general steps that are followed in order to develop data for PIECS
beginning with a CAD definition of a part. Any user of the PIECS software will have to tailor

the steps in this appendix to their particular CAD system.

Step 1: Start a new CAD drawing. Design the part, creating the original CAD profile. The

profile should consist of a single geometric entity (line or arc) for each cut. The CAD program

should be structures to prompt the user for the part number, part name and CAD file name. It

should also prompt for the date and time ofCAD file creation. Write all of this to a part feature

file.

Step 2: Create CAD profiles of the semi-finished and finished part. The profile of the semi-

finished part should differ from that of the finished part by a constant offset.

Step 3: Identify and number all the cuts in sequence, assigning "1" to the lowest right-most cut

in the part profile, and proceed in a counterclockwise direction. Although the basic (root-level)

features, considered to be the parents of the cuts, have not yet been defined at this stage, the cuts

must be recognized before the NC code for machining is created.

Step 4: Create the NC program segments for machining the semi-finished and finished parts by

using NCMAKE. It produces the probing segments such that they can be executed as

independent NC programs. The NC code identification number, required in the first block ofNC
code, is assigned as six digits: the first three digits of the part ID, followed by a “0", the session

number, and a “2" for finish. The file name for a probing segment consists of the letters “PT”

followed by the NC code identification number, and with the file extension “DNC”. For

example the semifinish probing segment for part 6324 would have the file name

“PT632012.DNC”.

Step 5: Determine which tool path coordinates in the NC code for machining the finished part

are to be variables. Create PATHnnOO.2, the file containing (1) the nominal coordinate values

for the tool path variables and (2) the associated cut numbers. Also create the NC code input file

for the process-intermittent error analysis.

Step 6: Interactively define all features (including cuts) except gauging points. The features for

the finished part should be created before those for the semi-finished part. Have the name of

each feature on the semi-finished part automatically become the same as that of the

corresponding feature on the finished part. Since, in use, names will always be associated with

gauging session numbers, the identical names will not cause confusion. Other than to conform to

this naming convention, duplication of names should be automatically disallowed.

Some values for feature characteristics are predictable. Examples are that the gauging session

number is always 2 for the finished part, and that Attribute 1 is always "INITIAL BLOCK" if the

feature is a cut. Some values are calculable, such as feature count. Geometric data such as

coordinates of endpoints of lines, and degree of curve in x and x, are to be derived from the CAD
system's own database. Have values in these categories entered automatically. Write the the part

137

feature file (PARTFEAT).

Step 7: Use the probing path program to create (1) the gauging points, one cut at a time, for only

the finished part profile, then (2) the same gauging points applied to the semi-finished part

profile, and finally (3) the probing path and corresponding NC probing program segment for

each of the two profiles. Append this to the part feature file created after step 1

.

Step 8: Write ATTRnnvO.j, the cut attributes file which is used in the process-intermittent error

analysis, where "j" is the gauging session number.

Step 9; After setting up for machining and gauging, write the various tool data files.

Step 10: Have a database system read in the part data, the part features and the tool data files.

Step 11: Produce the DMIS file for the current part to be used for CMM inspection.

138

.-i-

\

