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Abstract

This paper presents a new visual motion cue, we call the Hybrid Visual Threat Cue

(HVTC). The HVTC provides some measure for a change in relative range as well as

absolute clearances, between a 3D surface and an observer when there is a relative

motion between them. The visual field associated with the HVTC can be used to

demarcate the regions around a moving observer into safe and danger zones of varying

degree, which may be suitable for autonomous navigation tasks, in particular collision

avoidance and maintenance of clearance. The HVTC is independent of the 3D

environment and needs almost no a-priori information about it. It is rotation independent,

and is measured in [time‘1] units

When there is a relative motion between a point of visual fixation on a 3D surface

and an observer, the perceived texture details in the image vary. The rate at which the

details vary provides an indication of the observer’s relative motion with respect to the 3D

surface. Scale space representation which is a multiscale approach provides a concrete

way to analyze the variations of image details with the image inner scale. We derive a

relation between the relative temporal variations of the image inner scale and the HVTC.

A practical method to extract the HVTC from a sequence of images of a 3D

textured surface obtained by a visually fixated, fixed-focus monocular camera in motion is

also presented. A global dissimilarity measure is extracted directly from the raw data of

the gray level of textured images from which the HVTC is obtained. This approach of

extracting the HVTC is independent of the type of 3D surface texture and needs no

optical flow information, 3D reconstruction, segmentation, feature tracking. It needs

almost no camera calibration. This algorithm to extract the HVTC was applied to a set

of twelve different texture patterns (of 3D scenes) from the Brodatz's album, where we

observed a similar behavior for most of the textures.

Key Words: Active Vision, Visual Navigation, Visual Fields, Collision Avoidance, Scale

Space Filtering
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1 Introduction

1.1 Vision-Based Navigation: An Overview

The process of driving or flying in a 3D environment usually involves a human

operator. The operator acts in part as a sensory feedback in the perception-action closed-

loop control system to avoid obstacles, maintain clearance, etc., to ensure safe navigation

in real time. It becomes a difficult problem to replace the human operator by a vision-

based system to achieve similar tasks for the following reasons: in outdoor navigation the

environment is usually a-priori unknown and unstructured, and the same 3D scene may

result in many different images due to changes in illumination conditions, relative

distances, orientation of the camera, choice of fixation point, etc., as well as various

camera parameters such as zoom, resolution, focus, etc. There is a need for an approach,

to obtain relevant visual information about relative proximity in the presence of the above

mentioned factors.

When dealing with a moving camera-based autonomous navigation system, a huge

amount of visual data is captured. For vision-based navigation tasks tike obstacle

avoidance, maintaining safe clearance, etc., relevant visual information needs to be

extracted from this visual data and used in real-time closed-loop perception-action control

system. In order to accomplish safe visual navigation several questions need to be

answered, including:

1. What is the relevant visual information to be extracted from a sequence of images?

2. How does one extract this information from a sequence of 2D images?
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3. How to generate control commands to the vehicle based on the visual information

extracted?

This paper is focused on the first two of the above mentioned questions.

1.2 The Hybrid Visual Threat Cue: An Overview

This paper presents a new visual motion cue, we call the Hybrid Visual Threat Cue

(HVTC) that provides some measure for a change in relative range as well as clearance,

between a 3D surface and an observer in motion. It can be shown that the HVTC is a

linear combination of the Time-to-Contact [11], the Looming [9] and the Visual Threat

Cue (VTC) [50, 64]. The HVTC is independent of the 3D environment and needs almost

no a-priori information about it. It is rotation independent, and is measured in [time'l]

units. Corresponding to this visual cue there is a visual field associated with the observer

in motion. In other words there are imaginary 3D surfaces attached to the observer that

move with it. All the points that lie on a particular imaginary surface produce the same

value of the cue. The visual field associated with the HVTC can be used to demarcate the

regions around an observer in motion into safe and danger zones of varying degree

suitable for autonomous visual navigation.

When there is a relative motion between a fixation point on a 3D surface and an

observer the perceived texture details vary depending upon the motion. For instance,

consider the case of a camera (with fixed parameters) that is gradually moving towards a

tree. When the distance between the camera and the scene is very large, details such as

leaves and branches are smeared, due to finite spatial sampling. However as the camera

moves towards the tree, details start appearing. The rate at which the details in the image
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varies provides an indication of changes in the relative distance between the camera and

the observer. In other words, if details start appearing, it indicates that the relative

distance between the observer and the camera is decreasing and vice-versa. The concept

of scale space filtering introduced by Witkin [40] and Koenderink [44] provides a concrete

way to analyze the image details with varying image inner scales.

We derive a relation between the relative temporal variations in the image inner scale

and the power spectral density of the images. Also a relationship between the image inner

scale and the range between the observer and the 3D point in fixation is derived. These

two relations together establish a connection between the power spectral density of images

and the HVTC (refer to Figure (1)).

Figure (1): Block diagram representations of the relation between the range and

image details

Several approaches to extract the HVTC are suggested. A practical method to extract

the HVTC from a sequence of images of a 3D textured surface obtained by a visually

fixated (i.e., observing the same point), fixed-focus monocular camera in motion is

presented. For each image in such a 2D image sequence of a textured surface, a global

variable (i.e., a variable that is obtained for each image window) we call the Image

Quality Measure (IQM) is obtained directly from the raw data of the gray level images.

Using the IQM values the HVTC is extracted. This approach of extracting the HVTC is
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independent of the 3D surface texture , i.e., it does not need to know what type of texture

is present in the scene. It needs no optical flow information, 3D reconstruction,

segmentation, feature tracking. The process of extraction can be seen as a sensory fusion

of focus, texture and motion at the raw data level and needs almost no camera

calibration. This algorithm works better on images obtained from natural scenes including

fractal-like images, where more details of the 3D scene are visible in the images as the

range shrinks and also can be implemented in parallel hardware. This algorithm to extract

the HVTC was applied to a set of 12 different textures from the Brodatz's album [51]. A

graphical comparison of the theoretical HVTC and the HVTC extracted from sequences

of images is presented.

1.3 Other Approaches to Vision-Based Navigation

First we present a brief overview of autonomous vision-based navigation approaches.

The problem of automating vision-based navigation is a chaUenging one and has drawn the

attention of several researchers over the past few years (see for example [1-12]). Usually

identifying the surrounding object is not important for such tasks, i.e., is it a tree,

mountain or another vehicle; what is more important is whether a particular object is an

obstacle or not, i.e., is the observer on a collision course with it, is there enough clearance,

etc. For navigation tasks recovering the 3D scene and its attributes may not be necessary

as it may contain information which is not relevant for the task at hand. Visual cues such

as time-to-contact [11], looming [9], VTC [50] carry important information about the

relative proximity. These cues can be obtained without 3D scene reconstruction which is

usually computationally intense.
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Time-To-Contact (TTC) is an entity that can be extracted from images, provides an

indication of time available to the observer in order to make decisions about

acceleration/deceleration without measuring the actual depth [11]. The looming effect

which is the result of retinal expansion of objects due to change in range has shown to

cause defensive reaction in several animals as well as babies [16, 17]. A detailed

qualitative as well as quantitative approach to the concept of looming is presented in [10].

The Visual Threat Cue (VTC) provides some measure for relative change in range as weU

as clearance and is presented in [50].

It is weU established in the literature (computer vision as weU as psychology) that

optical flow plays an important role in the control of human motion behavior in the

environment [13-15]. Several researchers have addressed the use of optical flow as a

feedback signal for vision based autonomous navigation (see for example [3,5-9]). An

optical flow based theory of how a driver visually controls the braking of an automobile is

presented in [11] where it is also shown that it is possible to control the braking of a

vehicle using visual information without measuring the absolute distance, speed or

acceleration/deceleration. A differential invariant of the image flow field-based visual

information about time-to-coUision is presented in [12]. Application of certain measures of

flow field divergence as a qualitative cue for the task of obstacle avoidance is presented in

[7]. In [9] the optical flow field is transformed by using a log-polar transformation to

extract visual information about time-to-contact [19]. In [3, 8] the variations in peripheral

optical flow are employed to guide a mobile robot through obstacles.

8



Though the optical flow-based approaches provide excellent qualitative approaches to

visual navigation, its extraction from a sequence of images may be difficult in certain

situations [20]. The extraction of the local optical flow employs a constraint equation

between the local brightness gradients and the two components of the optical flow.

Additional constraints are needed to evaluate the complete flow field [18-20]. In addition,

the extraction of optical flow from a sequence of images needs pre-processing like spatio-

temporal smoothing which may be computationally expensive. In such situations where

optical flow-based approaches to visual navigation are difficult, alternatives to optical flow

information as sensory feedback for obstacle avoidance may be required to increase the

reliability of the system. Alternatives to optical flow to accomplish autonomous visual

navigation include geometrical properties like size, shape, contour and area of image

entities, imaged texture, focus, etc.

In [21] a frequency-based texture operator is employed to classify the characteristics

of the Fourier transforms of local image windows, to compute the gradients of texture in

the image in order to get depth information. Variations in image statistical parameters are

employed to extract the differential invariant of image flow field is presented in [22]. A

qualitative view of the use of these components as sensory feedback information for

collision avoidance is also presented [22]. In [23] it is shown that the relative changes in

edges of visible texture in a unit area are equal to looming , the concept introduced in [9].

This approach of using edge density in an image is an alternative to the use of flow based

approach to extract looming which is sensitive to noise.
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2 Multiscale Image Analysis: An Overview

A gray level image is a physical entity which is a 2D representation of the 3D scene to

which it belongs to. The perceived texture details of the 3D scene mainly depend upon the

camera parameters such as zoom, focus, aperture, spatial sampling as well as the distance

between the camera and the scene. These parameters collectively represent the two

dimensions of the image, namely the inner scale and the outer scale. The inner scale of an

image corresponds to the pixel size converted to the scene dimensions and the outer scale

corresponds to the finite size of the image [27].

A multiresolution representation facilitates a simple hierarchical framework for the

interpretation of information content of images [27]. At different image inner scales,

entities in the image correspond to various entities in the scene. In other words, at coarse

resolutions fine details are suppressed. Multiscale image analysis deals with analysis of

image entities at various scales. It plays an important role in the analysis of information

content in images at various resolutions. The relevant areas of multiscale or

multiresolution image analysis include (refer to Figure (2)): 1. Quadtree Approach, 2.

Pyramid Representation, 3. Wavelet Representation, 4. Scale Space Filtering.
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Figure (2): Various Multiresolution Image Analysis Approaches

Early research in this area was reported in [28] in the context of edge detection. The

classification of images into edges is a non-trivial problem. Rosenfeld, et al. [28]

suggested a straight forward combination of outputs of operations, that detect edges of

different sizes, it is possible to obtain an output that retains the conspicuous edges in the

scene.

Quadtree representation is a multiscale approach introduced by Klinger [29]. In this

approach an image is recursively split into smaller regions until certain criteria are met.

These criteria could be any function of the image gray level intensity. For example, gray

level variance in a window be less than a certain threshold. Quadtree approach has been

employed in region splitting and image segmentation algorithms (see for example [30,

31]).

A commonly employed multiscale representation of images is the pyramid approach

introduced by Burt [46] and Crowley [47]. This approach facilitates computation of the

image details at various resolutions. The concept of pyramids is based on a combination of
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sub-sampling and smoothing operations. In other words a pyramidal representation of an

image is a stack of 2D arrays of exponentially decreasing sizes, for example 2“x2“,

2“-'x2“-',..., 2x2, 1x1.

Wavelet representation is a multiscale approach based on a family of basis functions

(see for example [32]). A wavelet is a two-parameter family of translated and dilated

functions [32, 33]. The basic function from which the family of curves is derived, is known

as the mother wavelet and has to satisfy certain admissibility conditions [32, 33].

Scale space representation is a multiscale approach employed by many researchers in

the recent past (see for example [34-39]). The concept of scale space filtering introduced

by Witkin [40] and further developed by other researchers (see for example [41-45])

provides a concrete way to analyze the details in image at various scales. The scale

parameter in their approach is a continuous one as opposed to the discrete scales

employed in pyramid representations [46-48].

3 Motivation for Using Scale Space Representation

The scale space representation is usually employed to represent intrinsic physical

entities (for instance image gray level intensity)that are functions of space, time as well as

resolution [27]. We are primarily interested in the changes in the image inner scale. If the

camera parameters remain unchanged, then the relative motion between the observer and

the 3D scene results in changes in the image dimensions, namely the inner and outer

scales. In other words, as the distance between the scene and the observer decreases, the

inner scale (i.e., the pixel size converted to the scene dimension) as well as the outer scale
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decreases. It is the variations of the inner scale that are responsible for variations in the

perceived texture details.

Since the scale space representation is based on a precise definition of causality, and

deals with a continuous scale parameter (image inner scale), we selected it as a tool to

study the variations of image details at various inner scales. Also according to [42], the

scale space operators closely resemble the receptive field profiles in the front end visual

systems of mammalians.

4 Scale Space Filtering: An Overview

The theory of scale space filtering is based on a precise definition of causality (see

for example [27, 40-45]), namely: no spurious detail should be generated with an

increasing scale. The scale space concept is used where this causality condition is

satisfied.

This section is organized as follows: in sub-section 4.1 an overview of scale space

representation is presented, followed by a relation the scale space images and the

variations in the scale parameter in subsection 4.2, sub-section 4.3 presents the relation

between the range and the image inner scale parameter.

4.1 Scale Space Representation: An overview

Scale Space filtering allows one to generate a family of derived signals from a

given original signal by successively removing details when moving from fine to coarse

scales. In other words, given a 2D continuous signal f(x,y), one can obtain a set of
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smoother versions of f(x,y) by convolving the image with some smoothing filter [40].

Mathematically this operation can be expressed as follows [41]:

L(x,y;G) = K(x,y;G)* f(x,y) ( 1 )

where L(x,y; a) = smoothed version off(x,y),

(7= smoothing factor or scale parameter,

f(x,y) = original image,

* denotes convolution,

K(x,y; <j) = smoothing kernel and

X, y are the spatial coordinates of the image.

Among several possible smoothing kernels, Gaussian kernel has been shown to be

the unique kernel that satisfies the causality condition for scale space filtering (see for

example [41-45]). If K(x,y; a) in Equation (1) is replaced by the Gaussian Kernel G(x,y;

a), Equation (1) can be rewritten as follows:

L(x,y; (j) = G(x,y; C7)*f(x,y) (2)

where

and cr = scale parameter, the standard deviation of the smoothing kernel. Note that

LimL{x,y;a) = f(x,y)

,

which means that when the scale is zero (i.e., the Gaussian

becomes a delta function) one obtains the original image.
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This derived one parameter family of images namely L(x, y; cr) of the original image

J(x, y) is known as scale-space images [38]. In the following section we present a relation

between the variations in scale-space images and the corresponding scale variations.

4.2 Scale Space Images and Temporal Variations in Image Scale

Given an image sequence L, that represents the scale space images of an original image

J(x,y), with absolutely no information about the scale parameter, it can be shown that the

scale space images provide an indication of the scale variations. In this section we derive a

relation between the relative variations in the image scale and the scale space images.

Consider an image and its scale space its representation. Let the image be denoted as

f(x,y) and its scale space images being denoted as L,, i = 1, 2, 3, ..., where:

Lj = L{x, y; a 1 )
= G{x, y; a j

)* f{x, y)

Lj = Lix,y;G ^ )
= G{x,y;G

^ )*f(x,y)

L; = L(x, y; a ,. )
= GU, y; a ;

)* fix, y)

A relation between the scale space images and the corresponding temporal

variations in scale (employing Gaussian Kernel) can be derived as follows (see

Appendix A):

^(M)
dt _ dr

f(M)
dt dt

(3)
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where M = natural logarithm of the Fourier Transform of the image, i.e., \r\(F{LJ),

d(.)/dt is the differentiation of (.) with respect to time, and cris the scale parameter.

Equation (3) presents a relation between temporal variations of measurable image

entities denoted as M and a non-measurable scale parameters denoted as cr. In other

words, based on the variations in the measurable image entities it is possible to infer the

variations in image scale parameters without measuring the scales. For example, small

variations in M correspond to small variations in the scale parameter. Equation (3) is an

important relation as it provides a connection between measurable and non measurable

image quantities. An important observation is that the left hand side of Equation (3) is

V

independent of the frequency components which is due to the linear shift invariant

property of the Gaussian Kernel.

4.3 Relation between Range and Image Scale

Scale Space theory can be employed as a tool when the details in an image disappear

with an increase in the scale factor. In other words, scale space filtering can be used as a

tool for the analysis of variations in image details whenever the causality condition is

satisfied. One such situation is described as follows: Consider the case of a camera that is

initially focused to a 3D surface at a very short distance. With this fixed focus setting, as

the camera moves away from the surface fixating at approximately the same point on the

3D surface, a sequence of images of the same 3D scene is obtained. In this image

sequence the perceived texture details get blurred and eventually disappear as the

distance between the surface and the camera increases. In other words, the sequence of
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images obtained by such a system for ranges greater than the range to which it is focused

to initially, is analogous to the scale space images (see Figure (3), since we restrict

ourselves to regions R > R,,, we do not show regions R < R^,). The original image f(x,y) in

Equation (2) corresponds to the image of the scene in perfect focus and the image

sequence L(x,y,<j) corresponds to the blurred images. The details in L(x,y,<j) get smeared

as <j increases which indicates that causality condition is satisfied. Hence for ranges

greater than the distance to which the camera is focused to initially, the scale space

representation could be appropriate for the image sequence obtained by a fixed-focus

visually fixating observer in motion.

Figure 3: Scale Space Images, 0<ai< a 2< <7 3<...< cr i, Ro<Ri<R2<—<Ri, where Ro is the

distance to which the camera is focused to initially and Rj is the distance between the

camera and the surface and a i
being the corresponding scale (We restrict R > Ro)
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A blurred image acquired by a camera can be viewed as the result of convolving a

focused image with the Point Spread Function (PSF) of the camera, assuming the camera

to be a linear shift invariant system [49]. The PSF of a convex lens is approximated as a

2D Gaussian function (see for example [24,26,49]). Since the Gaussian kernel of the

scale space representation is similar to the PSF of the lens, the standard deviation y of the

Gaussian PSF can be seen as analogous to the image inner scale a of the scale-space

kernel and can be written as follows:

a = k{Y (4)

V,

where a = image inner scale, y = standard deviation of the PSF and is some positive

constant.

The standard deviation of the Gaussian PSF is proportional to the radius of the blur

circle (see for example [26, 49]). In other words.

y = k^a (5)

where y = standard deviation of the PSF, a = radius of the blur circle.

For a fixed focus camera, the relation between the range between a point of visual

fixation on a 3D surface and the observer and the radius of the blur circle can be written

as follows (refer to Appendix (E)):

a = k. J J_

V^o
(6)
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where a = radius of the blur circle, = positive constant, = distance to which the

camera is focused to initially, and R is the range between the fixation point on a 3D

surface and the observer.

Combining Equations (4-6) the following relation between the image inner scale and

the range between the fixation point on a 3D surface and the observer can be derived:

a (7)

Since we are not interested in the absolute range, there is no need to know the

proportionality constants namely k, , k^, k3
.

The radius of the blur circle a is different for objects in the scene at different

distances from the observer. Since the analysis is done for a small portion of the scene

(during fixation) we assume that the blur circle for all the elements in the portion of the

image near the fixation point is similar [49].

The analogy between the scale space images and the image sequence obtained by a

fixed-focus visually fixated camera in motion (for ranges greater than the range to which

the camera is focused to initially) can be summarized as follows:

1. The scale space representation is based on causality principle. In otherwords no

spurious details must appear as the scale increases.

In the case of defocused image sequence no details appear as the range between

the observer and the textured surface increases (see Figure (12)). In otherwords the

causality condition is satisfied.
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2. The scale space images and the defocused images are the result of convolving

the original image with a 2D Gaussian filter of varying standard deviations. In scale space

representation the standard deviation of the Gaussian filter is usually referred to as the

scale. The image inner scale can be seen as analogous to the standard deviation of the

Gaussian kernel.

3. The image inner scale is zero for the original image in the scale space images.

The standard deviation of the Gaussian PSF is zero when the image is in perfect

focus.

4.4 Scale Space Images and Variations in Range

In Equation (3) a relation between the variations in scale and the corresponding

scale-space images is presented and in Equation (7) a relation between the scale parameter

a and the range R between the observer and a fixation point is presented. Under the

assumption that the changes in the image outer scale are small for any three consecutive

frames of a given sequence, and combining Equations [3-7] the following relation

between range and image inner scale can be derived (see Appendix B);

,

d
, ,

^(c) ®
dt

^(R) ^(R)
dt o dt .

-j(R)
dt

R.
^(R)
dt

R (R-Ro) R
(8 )
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(9)

d'^ d
-T (^) Tdt

2 ^

dt
(R)

R (R-Ro) R

Equation (9) presents a relation between the temporal variations of measurable image

entities namely the natural logarithm of the magnitude of the fourier transform of the

image (denoted as M), and the temporal variations in the ranges denoted as R. Equations

(9) is independent of the frequency components and is true for any given frequency (due

to the linear shift invariant property of the Gaussian Kernel). The entity on the right hand

side of Equation (9) represents a visual motion cue, we call the Hybrid Visual Threat Cue.

It is a combination of Time-to-Contact [11], Looming [9] and the Visual Threat Cue [50]

(see Appendix F). In later sections a detailed analysis of this cue and how it can be used

for autonomous navigation is presented.

5 The Hybrid Visual Threat Cue (HVTC)

5.1 Definition

Following Equation (9) mathematically the Hybrid Visual Threat Cue (HVTC) is

defined as follows (for R > Ro):

HVTC = dr
(R)

dt

d
-(R)

- 2— +
R.

R (R-Ro) R
( 10)
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Where R is the range between the observer and a point of visual fixation on the 3D

surface, d(.)/dt is the differentiation of (.) with respect to time and Rq is the distance to

which the camera is focused to initially and has the same units as R. Note that the units of

the HVTC are [time'l]. The HVTC is dependent only on the observer’s translational

velocity component but is independent of relative rotation. The HVTC is a combination of

the Time-to-Contact [11], the Looming [9] and the VTC [50] (see Appendix F).

5.2 ISO HVTC Surfaces

In this section we present simulation results to show the location of points, beyond

the desired minimum clearance Ro in 3D space, around the moving observer, that have the

same value of the HVTC, for a given motion of the camera. The HVTC corresponds to a

visual field surrounding the moving observer, i.e., there are imaginary 3D surfaces

attached to the observer that are moving with it. For a given value of the HVTC there is a

corresponding imaginary surface around the observer in motion.

Since the HVTC is a linear combination of the following variables:

dt
(R)

dt

2. -2 dt

R

R. dt

{R-R,) R

we present the individual visual fields associated with each of the above mentioned

entities.
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Surfaces5.2.1 Iso ^
(R)

There are imaginary surfaces attached to an observer in motion and all the points

that lie on a particular surface produce the same value of the , The points that lie

dt

in front of the observer produce a negative value and the points that lie in back of the

observer produce a positive value of the entity. Points that lie on a relatively closer

surface produce a relatively higher value compared to those lying on a farther surface. A

qualitative plot of a cross section of the iso contours is shown in Figure (4).

^(R)
dt
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5.2.2 Iso -2 dt
(R)

R
Surfaces

The entity had been defined as looming [9]. The visual field associated
R

with looming had been shown to be a system of spheres whose centers are located as

shown in Figure (5) [9]. The points that lie on a surface in front of the observer produce

positive value and points in back produce negative values. A qualitative plot of the cross

sectional view of the Iso contours is shown in Figure (5).

instantaneous Velocity Vector
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Surfaces5.2.3 Iso - R.
^(R)
dt

(R-Ro) R

The entity -
4(R)
dt

iR-Ro) R
had been defined to be the Visual Threat Cue (VTC)

[50].

A cross section of the visual field associated with the VTC is shown in Figure (6).

Figure (6): Qualitative Cross sectional view of the Iso VTC surfaces, t is the instantaneous

Velocity Vector

Even though the HVTC is a linear combination of the TTC, the Looming and the

VTC, the visual field associated with it is not as simple as the individual fields associated

with the TTC, the looming or the VTC (see Figures [2-6]). In the following sub-section

the visual field associated with the HVTC is described.
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5.2.4 Iso BTVTC Contours

In this section we provide simulation results to show the location of points in 3D

space around an observer in motion, that have same value of the HVTC (see Equation

(10)) for a given motion of the observer. The HVTC corresponds to a visual field

surrounding the moving observer, i.e., there are imaginary 3D surfaces attached to the

observer that are moving with it, each of which corresponds to a value of the HVTC.

There is one region in front of the observer and one region in back of the observer

that produce positive values of the HVTC and also there is one region in front of the

observer and also the back of the observer that produce negative values of the HVTC. In

other words for the region in front of the observer there are two sub-regions one

corresponding to positive values of the HVTC denoted as FP (Front Positive) and the

other corresponding to negative values of the HVTC denoted as FN (Front Negative) (see

Figures (7a) and (7b)).

Similarly for the region in back of the observer there are two sub-regions, one

corresponding to positive values of the HVTC denoted as BP (Back Positive) and the

other region corresponding to negative values of the HVTC denoted as Back Negative

(BN) (see Figures (7a) and (7b)).

AH the points that lie on a particular surface in the FP region produce the same

value of the HVTC. The points that lie on a relatively smaller surface produce a relatively

greater value of the HVTC (see Figure (7c)). There is a point in the FP region (denoted as

S in Figure (7d)) on the instantaneous translational velocity t, where the HVTC in the FP

is the maximum.
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Similarly all the points that lie on a particular surface in the BP region produce the

same value of the HVTC. Points that lie on a relatively smaller surface produce a relatively

greater value of the HVTC (see Figure (7c)). There is a point in the BP region (denoted as

S’ in Figure (7d)) on the instantaneous translational velocity t, where the HVTC is

minimum in the BP region.

The point on the instantaneous translational vector t, where the HVTC is the

maximum in the FP region lies on the instantaneous translational vector t, at a distance of

2.35Ro, where Ro is the desired clearance.

+ HVTC -HVTC
V /

- HVTC

Observer lfClearance„ . ,

/ / + HVTC I + HVTC
/ ^1 ^

'

Zero HVTC

+ HVTC

Figure (7a): Qualitative Iso HVTC Surfaces, t is the instantaneous Velocity Vector
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Zero HVTC

]FP Front Positive^
FN Front Negative

BP Back Positive

BN Back Negativ^

Observer Clearance

Figure (7b): Qualitative Iso HVTC Surfaces, t is the instantaneous Velocity Vector
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Figure (7d): Qualitative Iso HVTC Surfaces, t is the instantaneous Velocity Vector
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5.3 The HVTC as a Sensory Feedback Signal

The HVTC divides the 3D space around the observer in motion into four 3D sub-

regions as shown in Figures (7a-7d). For local navigation decisions, i.e., to obtain

information about obstacles in the observer’s surrounding, the HVTC information alone is

not sufficient For instance consider an obstacle in the FP region, it produces a positive

value of the HVTC. Without any a-priori knowledge about the observer’s motion or the

obstacle’s location in the surrounding it becomes very difficult to judge the location of the

obstacle’s location as obstacles in FP as well as BP regions produce positive values. This

difficulty can be overcome using the VTC (which measurable from images [50]) and its

temporal derivative [60].

5.3.1 Iso VTC Field

The visual field associated with the VTC is shown in Figure (6). The VTC divides

the space around an observer in motion into two different regions namely one region in

front where the VTC is positive and one region in the back of the observer where the VTC

is negative (see Figure 8a). The problem in employing the VTC information alone for

navigation tasks is explained as follows (refer to Figure (8b)): The points 1,2, ...,7 lie on

the same VTC surface, hence produce the same value of the VTC. But for navigation

purposes, point 4 poses the maximum threat as it lies on the instantaneous translational

velocity vector. Points 3 and 5 pose a relatively high threat as they are closer to the

instantaneous translational vector. Points 1,2, 6 and 7 pose low threat. Using the VTC

alone (without any information about the heading vector) it is not possible to distinguish
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whether the point is closer to the instantaneous velocity or far from it. However, this

problem can be overcome by using the temporal variations of the VTC (TVTC) which is

described in the following section. Note that the VTC is measurable (as will be shown in

later sections).

Figure (8a) :The VTC and the space around an observer in motion

Figure (8b): Qualitative VTC
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5.3.2 Iso TVTC Field

The Temporal VTC [60] corresponds to a visual jSeld surrounding the moving

observer, i.e., there are imaginary 3D surfaces attached to the observer that are moving

with it, each of which corresponds to a value of the TVTC. The points that lie on a

relatively smaller surface corresponds to a relatively larger value of the VTC, indicating a

relatively higher threat of collision. The VTC value on the minimum clearance hemi-sphere

of radius Rq centered at the location of the observer is the maximum which is infinity,

indicating that the absolute distance between the observer and the camera is the minimum

clearance. Note that this field is symmetric about the instantaneous translational vector t.

The visual field associated with the TVTC is shown in Figure (9a). There are regions in

front and in the back of the observer that produce a positive values as weU as negative

values of the cue as shown in the Figure (3). It has been shown that for R» Ro, the angle

between the direction of motion and the zero TVTC is about 54.74° [60].
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Figure (9a): Cross section of the TVTC, t is the instantaneous translational vector

Figure (9b) : TVTC and the space around a moving observer, t is the instantaneous

translational vector
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Figure (10): The HVTC and Space around a moving observer, t is the instantaneous translational

vector

The VTC, TVTC and the HVTC divide the region around an observer in motion into

different regions as shown Figures (8-10). Based on these visual motion cues it is possible to

demarcate region around an observer in motion into several regions. Using this information about

the space around the observer it is possible to generate appropriate control commands to the

autonomous observer to avoid collisions with obstacles.
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Visual Cue Positive Regions Negative Regions

VTC Region 1 Region 2

TVTC Region 3 Region 4, Region 5

HVTC Region 6 Regions 7-9

Table (1): Demarcation Table

6 Extraction of the ETVTC

This section describes several possible approaches to extract the HVTC from a sequence of

monocular images.

The HVTC can be extracted by measuring the radius of the blur circle and its temporal

variations. Several researchers have suggested various approaches to extract the radius of the blur

circle (a) for 3D scene reconstruction tasks. These approaches usually involve the Fourier

transform and some times may require special purpose hardware to extract to measure a.

This section describes a practical approach to extract the VTCs from images. The

approach is based on measuring a global image variable called the Image Quality Measurement

(IQM) and the visual cues can be extracted from the relative temporal variations of the IQM.

Since the visual cues can be extracted in several ways, namely by measuring the radius of

blur circle, by employing the variations in perceived texture details, etc., a brief overview of 3D

surface reconstruction approaches from defocused images is presented.
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6,1 Related work on 3D surface reconstruction using defocused images

Pentland [61] is one of the pioneers to investigate approaches for extracting depth information

from defocused images. He proposed two approaches to extract depth information from

defocused images using a the radius of the radius of blur circle. One approach is based on

measuring the slope of edges in blurred images (in focused images they correspond to a step

discontinuity). The approach requires a-priori knowledge of the location and magnitude of the

step edges in the focused images (which is difficult to obtain in real situations). He also suggested

a second approach in which the same scene is viewed with two different aperture. Based on the

focal gradient in the image due to varying aperture widths, he formulated an expression for a in

terms of the Fourier transforms of the images. A special purpose hardware is suggested to obtain

two images of the same scene at two different width of apertures.

Subbarao [62] is another researcher who is actively involved in depth reconstruction

approaches using defocused images. In [62] he described three approaches for 3D depth-map

recovery. The approaches are based on variations in the image of a scene due to a small known

variation in one of the three intrinsic camera parameters namely, distance between the lens and the

image plane, focal length of the lens and the diameter of the lens aperture.

In order to extract the HVTC from a sequence of images using Equation (9), we need to

extract the Fourier transform of the image window. Extraction of the Fourier transform for the

image window of our choice turned out to be computationally intensive for a 486-based Personal

Computer-based imaging system. However if hardware implementation of Fourier transforms are

available, extraction of the HVTC from images is possible using Equation (9).
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In this section we present an alternate practical way to extract the HVTC described in

Equation (9) from a sequence of images, using temporal variations of the Image Quality Measure

(IQM). It is extracted directly from the raw gray level data without measuring the Fourier

transform or a

.

A practical and robust method to extract the VTC from a sequence of images of a 3D

textured surface obtained by a visually fixated, fixed-focus monocular camera in motion has been

presented in [16]. This approach is independent of the type of 3D surface texture and needs

almost no camera calibration. For each image in such a 2D image sequence of a textured surface,

a global variable (which is a measure for dissimilarity) called the Image Quality Measure (IQM)

is obtained directly from the raw data of the gray level images. The VTC is obtained by

calculating relative temporal changes in the IQM. This approach by which the VTC is extracted

can be seen as a sensory fusion of focus, texture and motion at the raw data level. The algorithm

to extract this cue works better on natural images including fractal-like images, where more

details of the 3D scene are visible in the images as the range shrinks and also can be implemented

in parallel hardware. In order to minimize the depth of field of the camera, the aperture is open

wide (see Appendix H)).

6.2 Image Quality Measure (IQM)

Local spatial gray tone variations in an image give rise to a visual pattern in the image known

as texture. These spatial gray level variations are due to the visual characteristics of the 3D scene

being imaged, the illumination, the range between the scene and the observer, as well as due to

camera parameters like zoom, aperture, resolution, focus, etc. When there is a relative motion

37



between a textured surface and a visually fixated, fixed-focus moving observer, the perceived

texture in the 2D image varies. For instance, consider the case of a camera that is initially focused

to a 3D surface at a very short distance and gradually moves away from this surface. As a result,

the perceived 2D image texture varies from one image to another, mainly due to focus, i.e., the

image of the scene in perfect focus is very sharp and has many details, then as the camera moves

away from the scene, fine details gradually get smeared and eventually disappear (see Figure 12).

When the image is in perfect focus, the dissimilarity, i.e., spatial gray level variations is very high,

and as the details get smeared the dissimilarity gets smaller and smaller. We describe an IQM to

measure the dissimilarity of the image. Using the relative temporal variations in this IQM we

extract the HVTC.

Among several possible approaches to describe the quality of texture in an image, we

employed a measure, we call the Image Quality Measure (IQM) that is based on city block metric,

to describe the dissimilarity of images [58,59]. The advantages of using this approach over the

other approaches are:

1. It gives a global measure of quality of the image, i.e., one number which characterizes the

image dissimilarity is obtained.

2. It does not need any preprocessing, i.e., it works directly on the raw gray level data without

any spatial or temporal smoothing.

3. It does not need a model of the texture and is suitable for many textures.

4. It is simple and can be implemented in real time on parallel hardware.

Mathematically, the IQM is defined as follows [50] (see Appendix F):
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( 10)

\^\ x=x,y=yyp=-L,q=-L,

where I(x,y) is the intensity at pixel (x,y) and xj and xf are the initial and final x-coordinates

of the window respectively
; yj and yp are the initial and final y-coordinates of the window in the

image respectively and Lc and Lr are positive integer constants; and D is a number defined as

D = (2Lf. + \)x(2Lj. + l)'K(Xf -Xi)y.( -y^). One can see from Equation (10) the IQM is a

measure for the dissimilarity of gray level intensity in the image. In our experiments we arbitrarily

chose a window of size 50 x 50 pixels in the center of the image and Lc = 5 and Lr = 4.

6.2 Extraction of the HVTC from relative variations of the IQM

The IQM described in Equation (5) was applied to a set of 12 different textures from

Brodatz's album [51]. The experimental details are provided in the following section. Based on

our experimental results, we observed that the IQM mentioned above is almost a constant when

the range between the surface and the camera is very large and it increases non linearly as the

camera approached the distance to which it is focused to. We observed that the radius of the blur

circle varies inversely with the IQM, i.e., when the texture details are sharp, IQM is very high and

the radius of blur circle is almost zero, and vice-versa. Hence for ranges greater than the initial

distance to which the camera is focused to, we modeled the radius of the blur circle in terms of

IQM as follows:

IQMoc- ( 11 )

a

or:
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IQM =
( 12)

£o

a

where gq is some proportionality constant and a is the radius of the blur circle.

From Equation (7):

dt^

(a)

j(<5)

+
dt

((y)

d^ d
—jUQM) —ilQM)
dr

4-(iQM)
dt

IQM
(13)

By combining Equation (4) with Equation (13), using uq = Rq, we obtain the following

relation

^UQM) ^(IQU)
Hvrc = —, 3— (14)

dt

The HVTC obtained by using Equation (14) does not need knowledge about the camera

parameters like the focal number f or the focal length F and is independent of the magnitude of the

IQM.

7 Experimental Details

Several experiments were performed to study the variations in the IQM of image sequences in

order to extract the HVTC. The system used in the experiments include a Coordinate Measuring

Machine (CMM), a CCD video camera, a 486 based personal computer, HEX PC-VISION
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PLUS image processing system and several texture plates from Brodatz's album [51]. A block

diagram of the connections is shown in Figure (10a).

7.1 Procedure

A CCD camera is attached to the CMM and the texture surface is placed in front of the

camera as shown in the Figure (10b). The maximum distance between the surface and the camera

is 900 mm and the minimum distance being 200 mm. The camera is focused to the closest possible

distance which in the case of the camera used is 200 mm, i.e., texture details are sharp when the

distance between the camera and the surface is 200 mm. The error in the initial setting is about 1

mm. Once this is set, the measurements in relative ranges (for obtaining the ground truth values)

were as accurate as the CMM. With this focus setting, the distance between the camera and the

surface is varied from 900 mm to 200 mm in steps of 10 mm.

The CCD camera attached to the CMM as shown in Figure (10a) and Figure (10b) captures

the images of the texture. These images are then digitized by the PC-based image processor PC-

VISION PLUS. These digitized images are then processed by a 486-based personal computer, to

extract the IQM and the VTC. For a given texture, we computed these measures at 7 1 different

distances and this was repeated for 12 different textures (shown in Figure (11)) from Brodatz's

album [42]. Figure (12) shows an imaged texture (D18 from [42]) as a function of range for 20

different ranges. This set of images shows intuitively the evolution of details in the image as a

function of range for a fixed focus camera. The experimental results along with the textures used

are presented in the following section.
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Figure (10a) ; Block diagram of the Experimental setup
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D4 Pressed Cork D5 Expanded Mica D9 Grass Lawn

D12 Bark of tree D13 Bark of tree D18 Raffia Weave

D20 French Canvas D23 Beach Pebbles D25 Ceramic-coated

brick wall

D74 Coffee Beans D98 Crushed Rose

quartz

DUO Handmade
paper

Figure (11): Various texture patterns used in the experiments
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d = 200 mm
d = 210 mm d = 220 mm d = 230 mm

B
d1 = 240 mm

d = 250 mm d = 260 mm d = 270 mm

H
d = 280 mm

d = 290 mm d = 300 mm d = 325 mm

H
d = 350 mm

d = 375 mm d = 400 mm d = 425 mm

1

'

s

d = 475 mm
d = 550 mm d = 725 mm d = 900 mm

Figure (12): Sequence of images depicting the evolution of details in the image a decrease in the

relative range, d is the range between surface (D18) and the camera
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7.2 Results and Analysis

The IQM described in Equation [10] is extracted according to the procedure described in

section (7.1). Since the extraction of the HVTC is a nonlinear function of the second derivatives,

its straight forward extraction using IQM becomes problematic. To overcome this problem, we

employed a curve fitting strategy described in Appendix [G]. Using atleast six values of the

measured IQM values in the past we fit a sixth order polynomial to the IQM values of the past to

estimate the current IQM. Then using the estimated IQM values we compute the HVTC

according to Equation [8].

The IQM described in Equation (10) is extracted according to the procedure described in the

section 3.1, and the HVTC is extracted from the relative temporal variations of the IQM.

For each of the texture patterns employed, we present the following:

1. Five sample images (out of a total 71 images) relative ranges 200 mm, 280 mm, 400 mm,

550 mm, 900 mm (Figures 13(a)-24(a)).

2. The normalized measured IQM as function of the distance between the camera and the

surface (It is normalized since the extraction of the HVTC is independent of the absolute

magnitude of the IQM. Figures 13b-24b).

3. A plot depicting the theoretical HVTC and the HVTC extracted from the images (Figures

13c-24c).
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Figure (13a): Image Sequence for Texture D4, d is the relative distance

Figure (13b): Measured IQM vs. Distance between the camera and surface for D4

HVTC(l/s)

Figure (13c): HVTC vs. Distance between the camera and surface for D4
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llin H
d = 900 mm d = 550 mm d = 4(X) mm d = 280 mm d = 200 mm

Figure (14a): Image sequence for Texture D9, d is the relative distance

HVTC(l/s)

Figure (14c): HVTC vs. Distance between the camera and surface for D9

47



Figure (15a): Image sequence for texture D1 10, d is the relative distance

Figure (15b): Measured IQM vs Distance between the camera and surface for DUO

HVTC(l/s)

Figure (15c): HVTC vs Distance between the camera and surface for DUO
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d = 200 mm

Figure (16a): Image sequence for Texture D12, d is the relative distance

IQM

Figure (16b): Measured IQM vs Distance between the camera and surface for D12

HVTC(l/s)

Figure (16c): HVTC vs Distance between the camera and surface for D12
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d = 900 mm d = 550 mm d = 400 mm d = 280 mm d = 200 mm

Figure (17a): Image Sequence for Texture D13, d is the relative distance

IQM

Figure (17b): Measured IQM vs Distance between the camera and surface for D13

HVTC(l/s)

Figure (17c): HVTC vs Distance between the camera and surface for D13
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Figure (18a): Image Sequence for Texture D18, d is the relative distance

HVTC(l/s)
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Figure (19a): Image Sequence for Texture D23, d is the relative range

Figure (19b): Measured IQM vs Distance between the camera and surface for D23

Figure (19c): HVTC vs Distance between the camera and surface for D23
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Figure (20a): Image Sequence for Texture D5, d is the relative distance

HVTC(l/s)
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Figure (21a): Image Sequence for Texture D20, d is the relative range

IQM

Figure (21b): Measured IQM vs Distance between the camera and surface for D20

HVTC(l/s)

Figure (21c): HVTC vs Distance between the camera and surface for D20
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d = 900 mm d = 550 mra

Figure (22a): Image Sequence for Texture D25, d is the relative range
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Figure (23a): Image Sequence for Texture D74, d is the relative range

Figure (23b): Measured IQM vs Distance between the camera and surface for D74

HVTC(l/s)

Figure (23c): HVTC vs Distance between the camera and surface for D74
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Figure (24a): Image Sequence for Texture D98, d is the relative distance

Figure (24b): Measured IQM vs Distance between the camera and surface for D98

HVTC(l/s)

Figure (24c): HVTC vs Distance between the camera and surface for D98
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7.3 Extension to Textureless Surfaces

The approach mentioned in the previous section to extract the HVTC is passive and is

suitable for textured surfaces only. In otherwords, passive approaches to extract the HVTC are

limited to textured surfaces and are independent of the type of the texture in the environment In

this section we describe an alternative active approach to extract the HVTC from textureless

surfaces.

The idea is based on projecting an a-priori unknown texture pattern on to the scene in a

small region around the fixation point There are no constraints on the type of the texture pattern

employed. This active texture projection approach to extract the HVTC is suitable for both

textureless as weU as textured surfaces, as the extraction of the HVTC is independent of the type

of the texture in the scene.

The idea of active texture projection to extraction depth information from textureless

surfaces has been suggested by Pentland et al. [56] and Nayar et al. [57]. Pentland et al [56]

describes an approach in which an a-priori known texture pattern is projected on to the scene and

the depth information is obtained by comparing the blurred picture with the known original one. A

simple texture pattern composed of parallel lines is employed as the a-priori known texture in the

experiments [56]. A relation between the width of the blurred line and the depth of the scene is

also derived. This idea active texture projection to extract depth information works very well in

structured environments where there is absolutely no texture in the scene. It might lead to

erroneous results in the presence of texture in the scene, as the resulting blurred image is different

from the a-priori known image.
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Nayar et al. [57] describe a depth from defocus approach in which an illumination pattern

is projected on the scene using a high power light source and a telecentric lens identical to the one

used to image the scene. Due to this reason they assume that the projected illumination is the

primary cause for the surface texture and is assumed to be stronger than the natural texture of the

surface [57]. An optimal pattern is sought that would ensure all the scene points have the same

dominant texture, one that maximizes the spatial resolution and accuracy of computed depth. On-

line derivation of the optimal projected pattern is posed as an optimization in Fourier domain [57].

This approach needs modification for outdoor implementation [57].

We propose an alternate approach to extract the HVTC information from textureless

surfaces as opposed to the depth reconstruction approaches as mentioned earlier. The proposed

system consists of a fixed-focus camera and a projection system held very close to the camera and

moves along the camera as shown in Figure (1). The camera is initially focused to the desired

clearance Ro. The projection system projects an a-priori unknown texture pattern on to the scene

in a small region around the fixation point. The amount of details in the images obtained by the

fixed focus camera depends mainly upon the range between the observer and the fixation point in

the 3D scene. In otherwords if the range between the camera and the fixation point is large the

corresponding image is blurred and is smooth. We extract the IQM mentioned in the previous

section for each image and the HVTC is extracted by using the relative temporal variations of the

IQM values. Though the IQM values are dependent upto a certain degree upon the illumination

power of the projection source, the scene illumination between any two consecutive frames is

assumed to be almost constant. Since the extraction of the HVTC from relative temporal

variations of the IQM, the HVTC is almost independent of the scene illumination.
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Focus

Camer

Textmey^^
Projection

System

7^ Induced

P Fixation Point Texture

Figure (25): An Active Texture Projection System

This approach of active projection of a-priori unknown texture on to scenes works well

for textureless as well as textured surfaces as we are interested in the relative temporal variations

in the image smear and not on the texture in the scene. Since the approach works well on textured

as well as textureless environments, absolutely no a-priori information about the environment in

which the observer is traversing is necessary.

8 Conclusion and Future Work

This paper presents a new visual motion cue, called the Hybrid Visual Threat Cue (HVTC) that

provides some measure for a change in relative range as well as absolute clearances, between a

3D surface and a visually fixating observer in motion. The visual field associated with the HVTC

can be used to demarcate the regions around a moving observer into safe and danger zones of

varying degree, which may be suitable for autonomous navigation tasks, in particular collision

avoidance and maintenance of clearance. The HVTC is independent of the 3D environment and

needs almost no a-priori information about it It is rotation independent, and is measured in
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[time‘1] units. Based on scale space representation, we establish a link between the HVTC and

the image inner scale.

A practical method to extract the HVTC from a sequence of images of a 3D textured surface

obtained by a fixated, fixed-focus monocular camera in motion is also presented. A global

dissimilarity measure is extracted directlyfrom the raw data of the gray level of textured images

from which the HVTC is obtained. This approach of extracting the HVTC is independent of the

type of 3D surface texture and needs no optical flow information, 3D reconstruction,

segmentation, feature tracking. It needs almost no camera calibration. This algorithm to extract

the HVTC was applied to a set of twelve different texture patterns (of 3D scenes) from the

Brodatz's album, where we observed a similar behavior for most of the textures.

Practical approach to extract the HVTC from images, described in this paper is based on

experimental observations only. However, theoretically the HVTC can be extracted from images

in several ways (for instance, by measuring the fourier transform of the images). Currently, we are

investigating alternate approaches to extract the HVTC from images.

Though the extraction of the HVTC needs some texture in the environment, it does not

depend upon the type of texture in the environment.. Results presented in this paper are for

textured surfaces only. Extension of the approach to extract the HVTC for textureless

environments is currently being investigated. The HVTC described in this paper is good only in

the region beyond the minimum clearance Rq. Currently we are studying the nature of visual fields

for points whose ranges are less than Rq. We are also working on the implementation of the

HVTC as a sensory feedback signal in action-perception closed-loop control system of a vision-
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based autonomous mobile vehicle to accomplish local navigation tasks such as collision avoidance

as well as well maintenance of clearance in a-priori unknown outdoor environments.
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Appendix A: Variations in Scale and Scale-Space Images

In this appendix the relation between the scale space images and the corresponding

variations in scale are presented.

Since Equation (2) involves a convolution operator, it will be convenient to work in the

frequency domain. Equation (2) can be written in frequency domain as follows:

L(u,v;ct) = G(u,v; a)F(u,v) (A 1 )

where L(u,v; a) = F{L(x,y; a)}, G(u,v; a) = F{G(x,y; a)}, F(u,v) = F{f(x,y)}, F{(.)} = Fourier

Transform of (.).

Taking the natural logarithm on both sides of Equation (Al), we obtain the following

relation:

ln[L(u,v; c)] = ln[G(u,v; a)] + ln[F(u,v)] (A2)

and also we have the following:

G(u,v,a) = Ae.xp(-kG^ (u^ + v^))

where A and k are constants independent of the scale a .

Let ln[L(u,v; a)] = M(u,v; c). Hence Equation (A2) can be written as follows:

M(u,v; a) = ln[A] + ln[F(u,v)] - kG^(u^ +v^) (A3)

When there is a relative fixated motion between an observer and the same scene we have

the following relations:
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at time t = ti, scale a = Qi and image M = Mi (i = 1,2, ...).

For a given frequency (u,v) we can write the following relation:

Ml -M2
=k{u^ +v'^)[(5l -cjf] (A4a)

M2 -M3 =k{u^ +v'^)[(5l -C2] (A4b)

Hence from Equations (A4a) and (A4b) we can write the following relation:

(Ml -M2) (oI-gD

If the interframe time interval At is very small, dividing the numerator and the denominator on

both sides of Equation (A5) by At, Equation (5) can be written as follows:

Lim

(M2 -M3)

At At

(gI-gI) (gI-g^)
At At

r(Mi-M2)i A/-40 /t-2 ^2”
G

2
Gy

At At

(A6a)

dM dM
dt t=l2 dt t=t\

dM
dt t=t\

dt i=t2 dt t=n

^ / 2 \

dt t=ti

(A6b)
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Dividing on both sides of Equation (A6b) by At, we obtain the following relation:

=> Lim
Ar-»0

dM dM
dt t=t2 dt t=n

.A(AO ^
dt t=n

= Lim
A/-»0

dt

d

r=/2 dt t=n

dt t=t\

(A6c)

dt‘

^(M)
dt

dt
(a^)

dt

(A7)
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Appendix B: Variations in Range and Scale-Space Images

dt^The right side of Equation (A7) in Appendix A (i.e., ) can be written as

dt

follows:

—(aO
dt dt

_j_
dt

dt dt
i<y)

(Bl)

Also we have the following relation between the scale and the range (see Equation (6)):

G = k^J__T
V^o ^ J

(B2)

dt
(B3)

dt
(G) = k-

dr
(B4)
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Dividing Equation (B4) by Equation (B3) we obtain the following relation:

^(o) ^(R) ^(R)
dt _ dr

4(0 4 («)
dt dt

R
(B5)

dt
I

dt dt
(R) 4(7J)

2^1 + .

dt
(CJ) 4(«)

dt

R.
4(fi)
dt

R (R-Ro) R
(B6)
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Appendix C: Fourier Transforms

In this section the Fourier Transforms of the 2D Gaussian function is derived.

G(x,y;G)
1

27ca^
exp(-

2a ^

G(u,v;g) = F{G{x,y;a)} =
X + y
^ 2 ) exp(-;(w^ + vy))dxdy
2a

G(M,v;a) = F{G(x,y;a)} =
Itzg' j

exp(-
2a

jux)dxj exp(-
2a

-jvy)dy

From [63] we obtain the following results:

G(u,v;g)
^^^„

-exp(-a^(M^ + v^)) = exp(-a^(M^ + v^))
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Appendix D: Analysis of the HVTC

In this section each term in the HVTC expression is analyzed in this section.

Consider an observer centered co-ordinate system OXYZ as shown in Figure (Dl). The

origin of the co-ordinate system is attached to the observer and is moving along with it. Consider

a point P in the stationary environment around the observer. Let t be the instantaneous

translational vector, r be the range between the observer and the fixation point P.

^ fixation Point

o
t Instantaneous ^

Translational

Vector
X

Figure (Dl): Observer in motion, OXYZ is the observer centered co-ordinate system, t is the

instantaneous translational vector, P is the fixation point, r is the range vector

The range between the observer and the fixation point r in the observer centered co-

ordinate system can be written as follow;

(Dl)
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(D2)

• •

dR _ xx+yy+zz

dt ylx^ +y^ +z^

V
I I. .....i . 00 00

x'^ +y^ +z^ ixx+yy+zz+

dt^ jc^+y^+z^

X +y +z )

2 ^,2 , ^2 n 3
+ y + z )

(D3)

• • •

where (x, y, z) are the co-ordinates of the fixation point in OXYZ co-ordinate system, ( jc, y, z ) is

the instantaneous translational vector t of the observer in OXYZ co-ordinate system. ( j:, y, z ) is

the instantaneous acceleration of the observer in OXYZ co-ordinate system, d(.)/dt, d^(.)/dt^ are

the temporal derivatives of (.). For a uniform translational velocity the acceleration component

( JC, y, z ) is zero. Hence Equation (D3) reduces to the following:

dt^ x^+y^+z^

• • •

{xx+yy+zz)^

(VFTTTF)’
(D4)

The HVTC defined in Equation (10) is reproduced as follows:

HVTC = dt^

(R)

-2 dt
(R)

dt
{R)

R
+

R.

d
-(R)
dt

(R - Ro ) R

In the following sub-sections, representations of the entities on the right side of the above

equation in terms of Equations [Dl, D2, D4].
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D.l Representation of -2— in terms of Equations [Dl, D2]
R.

Looming is defined as follows [10]:

R
(D5)

where L represents looming and R = m
dt

Rewriting Equation (D5) in terms of Equations (Dl) and (D2) the following relation can

be derived [10]:

. . . /T2 n 72

(jc +—)+(}' +—) +Z +—)
={- )

2L 2L 2L 2L
(D6)

« • •

For a given instantaneous translational velocity {x,y, z). Equation (12) represents a system of

circles (spheres in 3D) as shown in Figure (5).

D.2 Representation of — in terms of Equation [D2,D4]
R

We can write (— ) in terms of Equations [D2, D4] as follows:

R

•• • 2 * 2*2 * * *

R (jc +y +z ) (jcj:+yy+zz)

R {xx+yy+zz) )

(D7)
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Analysis of two entities on the right side of Equation (D7) is presented in the following

subsections.

.2 .2 .2

D.2.1 Analysis of !
(xx+yy-¥zz)

Let:

• 2 * 2 • 2

{x +y +z )

• •

(xx+yy+zz)
(D8)

Equation (D8) can be rewritten as follows:

• •

^(
.

-

2
."2 + y( .2 .^2 .2 ) + Z( .2 .^2 .2 ) = 1 (D9)

X +y X +y +z X +y +z

T T T

Equation (D9) represents a systems perpendicular to the instantaneous translational

velocity vector. This visual field associated with Equation (D9) is similar to the TTC concept in

[11] and is measured in [time'^J units. Any point that lies on a particular plane produces the same

value of T and points that lie on a plane in front of the observer correspond to negative values and

the points in the back of the observer correspond to positive values of T.
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D.2.2 Analysis of _.^£±Zi±£|>
(x^+y'+z^)

The entity -

• • •

(xx-\-yy+zz)

(x^+y^+z'^)
represents looming (see Equation (D5)) which is described in

section Dl.

D.3 Analysis of
(R-Ro)R

R R
The entity is defined as the Visual Threat Cue (VTC) [65], whose visual

(R-Rq) R

fields are shown in Figure (6).

The above manipulations show that the HVTC is a linear combination of the TTC, the

Looming, the VTC.

Also a relation between the VTC and the HVTC can be derived as follows:

VTC
HVTC = 2VTC (DIO)

VTC
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Appendix E: The Imaging System

The amount of blur in an image is characterized by the radius (refer to Figure (Al)) of the blur

circle [24-26]. The expression for the radius of the blur circle, for a camera focused to a short

distance uq, can be derived as follows [26].

Image Plane

Figure El; Imaging System

In Figure (El) : vq = distance between the image plane and the lens, uq = distance between

the lens and the scene for which the image is in focus, o = radius of the blur circle (for u > v), r =

radius of the lens, F = Focal length of the lens, f = focal number of the lens.
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For objects in perfect focus the following Gaussian lens formula holds

Vq F

From Figure (El) we also get the following relation

(El)

V Vq-V
(E2)

By combining Equation (E2) with Equation (El) and replacing u by R we have the following

relation:

VQ-F-Gf
(E3)

From which the following relation is obtained:

f R, R
(E4)

where R is the distance between the object and the lens and Rq is the distance to which the

camera is focused to initially.
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Appendix F : The Image Quality Measure (IQM)

Let (x,y) be the spatial coordinates of an arbitrary pixel in the image, where x, y are

integers and I(x,y) be the intensity at (x, y). The inter-pixel distance is denoted by 5 and is defined

as follows.

6 = (Ax, Ay) (FI)

where Ax = difference between the corresponding x coordinates of two pixels; Ay = difference

between the corresponding y coordinates of two pixels.

The dissimilarity between the image intensities of pixels separated by the inter-pixel distance

defined in Equation (Bl) can be characterized by the City Block Metric (CBM), which is defined

as [58, 59]:

CBM = {|/(x, y) -l{x + hx,y + Ay)|} (F2)

where I(x,y) = intensity at pixel (x,y); I(x+Ax, y+Ay) = intensity at pixel (x+AX, y+Ay).

Several other dissimilarity measures may be used instead of the one used in Equation (F2). A

detailed description of these measures is presented in [55].

Each pixel (x,y) in an image can be characterized by a matrix known dissimilarity matrix,

which is basically a matrix of numbers that characterizes the dissimilarity of pixel intensities in the

neighborhood of the pixel. For instance, if the texture is smooth, the dissimilarity is very low,

hence the mean value of the dissimilarity matrix is low. This dissimilarity matrix is a

(2Lr+l)X(2Lc+l), where Lc, Lr are positive integer constants. The (i,j) element of this matrix is

the CBM defined in Equation (B2), i = -Lc, ...,-l,0,l,...Lc and j
= -Lr,...,-l,0,l,...,Lr. The (0,0)
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element of the dissimilarity matrix is zero since {II(x,y)-I(x+0,y+0)}l = 0. A matrix of numbers can

be generated for any pixel.

This dissimilarity matrix can be used to generate a global image variable to indicate the

smoothness of texture details in an image. Next we show how to generate a global measure which

indicates the texture smoothness.

We select an arbitrary window in the image plane. Let xj and Xf be the initial and final

coordinates of the window along the x-direction respectively and yj and yf be the initial and final

coordinates of the window along the y-direction respectively. For each pixel in the window

selected we compute the sum of all elements in the dissimilarity matrix described above. Thus

there are (xf-Xi)X(yj-yp sums for the window selected, i.e., mathematically it can be described as

follows.

(F3)

x=Xiy=y\p=-L, q=-L,

Where I(x,y) is the intensity at pixel (x,y) and X[ and xf are the initial and final x-coordinates

of the window respectively
; y[ and yf are the initial and final y-coordinates of the window in the

image respectively and Lc and Lr are positive integer constants, need not be equal.
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Appendix G: Estimation of IQM using measured IQM

In this appendix, we describe the process of estimation of IQM using the measured values

of the IQM.

The following Equation presents a relation between the radius of the blur circle and the

range (see Equation (6)).

G = k'j__T
V^o ^

(Gl)

In reality, only the left hand side of the above Equation is measurable (in the form of

1/IQM). In order to fit a curve for a i.e., 1/IQM, we chose time as the independent variable, i.e..

^approx — f(0-

Let f(t) = ao+ait+a2t^+...+ ant° (G2)

The minimum value of n that results in an estimate that minimizes the error between the

ctapprox and Gmeasured is Obtained on the basis of computer simulation as follows:

Using Equation (Gl)a set of as (anjeasured)is computed for various values of R. Using this

set of a’s as our inputs, we tried to fit a polynomial of nth order in t as follows:

at t = 0, a = Gi; t = At, a = a2 ; t = 2At, c = as;

t

= (n-1) At, a = an

;

Based on numerical simulation results, we found that the order of the polynomial has to be

atleast six, in order to minimize the error between Gapprox and Gmeasured- Hence, we employed a sixth

order polynomial fit in computing the HVTC values using the IQM values measured from images.
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Appendix H: Depth of Field and Width of Aperture

There is a region in front of the camera in which the image remains almost in sharp focus.

This region in front of the camera is usually referred to as the depth of field and depends upon

several factors such as the width of the aperture of the camera, distance to which the camera is

focused to initially, etc. This section presents a relationship between the depth of field of the

camera and its parameters.

Figure (HI) : A Block Diagram of Lens and Shutter Arrangement

Let r be the radius of the lens, u be the distance to which the camera is focused to, ul, u2

be the lower and upper bounds on u for which the camera remains approximately focused, v be

the distance between the image plane and the lens, vl, v2 be the corresponding images of ul and

u2, “a” be the width of the aperture, “p” be the distance between the aperture stop and the lens

and a be the upper bound on the radius of the blur circle so that the point is almost in perfect

focus.

79



From Figure (HI) we can derive the following relations:

<5 _ a

v-v, v,-p
(HI)

<5 _ a

Vj-V v^-p

Simplification of Equations (HI) and (H2) leads to the following relations:

(oa + av)
v, =

((J + Cl)

( z?a - av)
v, =

(a -a)

(H2)

(H3)

(H4)

By employing the Gaussian lens law we obtain the following expression for ui and U2 from

Equations (H3) and (H4):

fipG + av)

(pc + av-fc- fa)
(H5)

fipc - av)

(pc -av-fc+ fa)
(H6)

where f = focal length of the camera, c be the upper bound on the radius of the blur circle so that

the point is almost in perfect focus (in otherwords, the point remains in almost perfect focus as
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long as its radius of blur circle is less than or equal to a), a = width of aperture, v = distance

between the lens and the image plane, p is a positive constant

The depth of field of the camera is defined as follows (refer to Figure (HI)):

D = Mj — 1^2 (H7)

If the aperture stop is very close to the lens, then p = 0 , with this assumption an

expression for the depth of field can be derived in terms of Equations [H5, H6] as follows:

D=Uy — = fav
+

fav

{-fG ) + (-fa + av) (-fa ) - (-fa + av)
(H8)

On simplification Equation (H8) leads to the following:

D = If^avG

a^f^ - 2a^vf+ a^v^ - f^G^
(H9)

D = ifvG
(HIO)

Width of the aperture a and the upper bound for radius of blur circle g can be represented

in terms of the width of the lens as foUows:

a = ar (HU)

G = ^r (H12)

where a, P are positive constants.
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Combining Equations [H10-H12], expression for the depth of field can be written as

follows:

D = 2/^P

a(/^-2v/+v^-/^(-&^))
a

(H13)

When a -> 0 , it corresponds to a pin hole camera and when a ^ 1 it corresponds to

wide aperture camera.

Qualitative plots depicting the behavior of the depth of field D as a function of the width

of the aperture a and the initial distance to which the camera is focused to, are shown in

Figures [H2,H3].
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Figure (H2) : A qualitative plot of the depth of field (D) as function of the aperture width (a) and

the initial focus adjustment (Ro): f = .105m, P = 0.0005
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Figure (H3) : A qualitative plot of the depth of field (D) as function of the aperture width (a) and

the initial focus adjustment (Ro): f = .315m, |3 = 0.0005

From Figure (H2, H3), it can be seen that the depth of field increases as the width of the

aperture is decreased, also it increases with the initial focus adjustment namely Ro. The depth of

field is minimum when the aperture is fuUy open.

From Figure (H2,H3), it can be seen that as the desired clearance increases, the depth of

field also increases. In other words for larger desired clearances RO, there wiU be larger error in

maintaining desired clearances. This is not a very serious drawback for navigation tasks

(especially maintaining clearances) as the tolerance in error is also large for large clearances.
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