
NAT'L INST. OF STAND & TECH R.I.C.

AlllDM TDflMED

NIST

PUBLICATIONS

NIST
U.S. Department of Commerce
National Institute ofStandards and Technology
High Performance Systems and Services Division

Scalable Parallel Systems and Applications Group

NISTIR 5789

Using S-Check
Alpha Release 1.0

Robert Snelick

Nathalie Drouin

John Antonishek

QC

100

.056

NO. 5789

1996

February 1996

Supported by NIST task number 40131 andARPA task number 7066.

NISTIR 5789

Using S-Check
Alpha Release 1.0

Robert Snelick

Nathalie Drouin
John Antonishek

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

High Performance Systems and Services Division

Scalable Parallel Systems and Applications Group
Gaithersburg, MD 20899

February 1996
Supported by NIST task number 40131 and ARPA task number 7066

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

L'' -S

‘.1^

..h.
jj.
*

.- SSi'^
'

i '• .'} •I

'44
''vW

'
-M^'!

•(4

>. 'aa

1
*“3i

''Ml

'
./J;.

'•t!- C-

r

A
i*''

- 1'^^*

„

36fl3MM#=IO,'TWfmi£^ ^

. 2t»f«it)t>ftJd lo'a;

E-
'“*

' A J
'^.' :^ 'll

"c

—
k'KW'*, « X

® '-J12'#® •

4Mn^ «i0UK>aqi:v^- bil«

_;;te
ytttmM 'mti ll^M^ Zfit»ii'S44m)in MM 'WM '(U tailuri*^

t:4v‘;

w:m-
r--,

Ssl''

'>Ci

i,<'<3

71,,

^%2

'^i

.7‘:s*p
'••PiH'''

BOfiaMMOO TO 7vt3Mr?mTO Tiiiy^n^'

'y$.v
fc- J "*• f*w<WMWVva< «* I'JWW '

,

'

*-;’iji

;:s' ’®."-:'^iS. ea^wrimre TO
“• — ' ^

wyi.

^pkftrto*^ UM

cr ',lr V *TP"'

va»?nK'l ,TPrt«(VTO<!'',i>«^ jr, Vi

?jfiu,ialii»jar.ayvtv

li 'W

•
.#'

m 's^*^ , ', /,

,, * ' jit S..jj^'|

>.^ II. ii "m ritk^.Aid .« W^'k •

Preface

Preface

Today’s multiprocessors provide unprecedented performance potential, yet all too

often the actual performance obtained is far less impressive. The inherent com-

plexity of parallel programs makes it far more difficult to capture true performance

measurements on multiple-instruction stream, multiple-data stream (MIMD) archi-

tectures. In the absence ofMIMD performance tools, obtaining reaisonable parallel

program performance is no small undertaking. The goal of S-Check is to provide a

tool that gives the programmer useful performance information and is portable

across machines as well as architectures.

S-Check automates the techniques of Synthetic Perturbation Screening (SPS). Syn-

thetic Perturbation Screening systematically perturbs selected program code seg-

ments and determines performance sensitivities of these selected segments by using

the statistical techniques of Design of Experiments (DEX). The resulting sensitiv-

ity analysis serves as a basis for performance evaluations. The name S-Check is

derived from sensitivity analysis or Sensitivity Check (S-Check).

The concepts of Synthetic Perturbation for performance analysis of parallel pro-

grams were developed in the Parallel Processing Group at the National Institute of

Standards and Technology (NIST) under the direction Dr. Gordon Lyon. In addi-

tion to Dr. Lyon and the authors, the following have contributed to the project: Dr.

Raghu Kacker guided theoretical aspects of the statistical library developed for the

tool; Dr. Joseph Ja’Ja’ helped formulate some of the SPS techniques; Dominique

Rodriguez wrote much of the tool’s front end C parser and source code re-genera-

tor; Dr. James Filliben provided insight and examples for presenting statistical

results graphically; Michel Courson and Amaud Linz provided assistance in test-

ing the techniques and tool prototypes.

S-Check 1.0 Alpha release works on Silicon Graphics and Sun parallel machines.

S-Check analyzes any code that adheres to either Kemighan and Ritchie or ANSI

C. The graphical interface is written with the widely available OSF Motif toolkit.

We plan to port S-Check to other platforms in the near future. They include the

IBM SP2 and Intel Paragon. When using this early release of S-Check, it is impor-

tant to remember that many planned features have not been completed or imple-

mented at all; we point these out in the manual.

Funding for the project is provided by NIST and the Advanced Research Projects

Agency (ARPA), task number 7066.

Using S-Check iii

Preface

S-Check is public domain. All or any parts of it can be used, modified, or incorpo-

rated into other systems without permission from NIST or the authors. However,

the authors and NIST would appreciate credit if the tool or parts of it are used.

There is no warranty, expressed or implied, on the capabilities of the code.

Send questions, comments, and bugs to scheck-tool@www.scheck.nist.gov. For

information on how to obtain S-Check and for updates access the http://

www.scheck.nist.gov Web site.

Robert Snelick

Nathalie Drouin

John Antonishek

Gaithersburg, MD.
September 1995

iv Using S-Check

Table of Contents

Using S-Check

What is S-Check? 1

Overview ofan S-Check Experiment 2

S-Check’s 1.0 Alpha Release 3

SPS Basics 3

SPS step-by-step 4

Screening and Special SPS tests 5

Getting Started 6

S-Check’s Directory/Experiment Layout 6

Creating/Opening an Experiment 7

Experiment Configuration 8

Declaring the target machine 9

Connecting your application to S-Check 10

Selecting the experiment type 11

Instrumenting the Test Program 11

Factor Editor Window 12

Selecting Factors 13

Setting The Response Interval 15

Experiment Control 17

Experiment Maintenance and Convenience

Functions 17

Launching Factor Editors 18

S-Check Messages 18

Setting the amount ofdelay 20

Selecting a DEX plan: 20

Setting Replication 23

Experiment Information Area 24

Running an Experiment 24

Saving Results 26

Viewing Results 26

List Effects 27

Plot Effects 29

Multiple Displays 32

Glossary 34

Warnings and Bugs 36

References 38

Appendix A: error messages A-1

Appendix B; standard error table B-1

Using S-Check V

Table of Contents

Appendix C: code instrumentation C-1

Index

How to Install S-Check

S-Check Quick Reference

vi Using S-Check

Using S-Check

Robert Snelick

Nathalie Drouin

John Antonishek

What is S-Check?

S-Check is a software sensitivity checker designed to help you locate performance

bottlenecks in parallel (and complex serial) programs. The tool S-Check provides

the mechanisms to:

• determine the impact of computational code segments

• determine how well a program or code segment scales (not yet implemented)

• determine the cost of synchronization barriers (not yet implemented)

• detect interdependencies amongst code segments

S-Check employs and automates statistically designed experiments to identify

sources of performance degradation. The host system can be a serial, parallel or

networked (PVM-like) layout. The tool implements the techniques of Synthetic

Perturbation Screening (SPS) developed at the National Institute of Standards and

Technology (NIST). The methodology demands laborious experiment setup and

execution procedures. S-Check automates much of the drudgery in an easy to use

graphical user interface.

S-Check provides easy selection of test parameters, code instrumentation, experi-

mental plan setup, experiment execution, Ccdculation of results, and graphical pre-

Using S-Check 1

Overview of an S-Check Experiment

sentation of results. S-Check is designed to accommodate users with varied SPS

and design of experiment (DEX) skills. SPS proficient users personally control

experiment details while novice users are given mechanisms for automatic setup

and testing.

SPS introduces the notion of inserting artificial delays into the source code and cap-

turing the effects of such delays by employing design of experiment techniques.

Performance information takes the form of effects that correspond to source code

segments or interactions among code segments. Effects are ranked by magnitude.

Source code segments with the highest effects are likely candidates for bottlenecks.

Based on variations of these techniques other performance information specific to a

given architecture can also be obtained.

This document is provided as a user’s guide to S-Check; it is not intended to

describe or explain SPS techniques. However, a brief superficial overview of the

process is given in the next section, SPS Basics. A detailed description of SPS can

be found in the following publications: “Synthetic-perturbation tuning ofMIMD
programs”[l], “Synthetic perturbation techniques for screening shared-memory

programs”[2], and “A simple scalability test for parallel code”[3].

Overview of an S-Check Experiment

S-Check’s basic notion is an experiment. An experiment defines all the parameters

needed to setup and run the SPS process. S-Check views an experiment as an

object that can be created, opened, initialized, saved, executed, displayed, and mod-

ified. Multiple experiments may be instantiated in an S-Check session. The follow-

ing list provides an overview of the basic steps that need to be performed (from the

user’s perspective) in an S-Check experiment:

• Create/Open an experiment

• Declare the target machine (not available in this release)

• Configure the test program

• Select the experiment type

• Select program test points

• Define a response interval

• Select an experimental plan

• Select experiment replication

• Run the experiment

2 Using S-Check

S-Check’s 1.0 Alpha Release

• View experimental results

S-Check assists in or performs each of these steps.

In addition to providing the necessary functions to run an experiment, S-Check

organizes experiments by providing maintenance functions such as saving the

experiment configuration, control settings, and results. S-Check also provides sta-

tus information of the experiment. It indicates the number of test parameters

selected, number of runs required to complete the experiment for a given plan type

and replication setting, an estimate on how long an experiment will run, an estimate

of the delay magnitude, state of an experiment, and trial number of a running exper-

iment. Results from experiments take the form of ranked order lists or graphical

plots of effects. This data can be saved as postscript files.

S-Check’s 1.0 Alpha Release

In this release, S-Check works on C programs on Silicon Graphics and Sun parallel

machines. The next phase of the project is to link the tool to specific parallel

machines. Since S-Check works at the source code level this only entails imple-

menting procedures to build and run the test program on the target machine. S-

Check analyzes any code that adheres to either Kemighan and Ritchie or ANSI C.

The graphical interface is written with the widely available OSF Motif toolkit.

In this alpha release, the framework for some features exists in the interface but

have not yet been implemented. These features are grayed oMt—they are inaccessi-

ble. For example, barrier and scaling tests are not yet implemented. Features that

are not available in this release are nonetheless described.

SPS Basics

This section presents a perspective of the underlying technique that S-Check imple-

ments, which is Synthetic Perturbation Screening (SPS). A reader familiar with the

technique can skip to the next section. Getting Started.

Synthetic Perturbation Screening (SPS) is a method of code investigation that helps

identify which code segment matters most for performance improvement. It is

especially suited for assaying MIMD parallel programs. Relying on the mathemat-

ical perspective of statistically designed experiments, program bottlenecks are

directly identified as quantitative effects upon a response time. A MIMD program

Using S-Check 3

SPS step-by-step

is treated as a black box with input parameters and an output. User-induced syn-

thetic perturbations (or delays) are inserted in the source code at chosen locations

suspected to be program bottlenecks. The added perturbations determine a set of

input parameters with controllable settings (e.g., delay ON, delay OFF). Statisti-

cally designed experiments capture the effects of such controllable delays on the

overall system behavior. Code segments that are highly sensitive to code perturba-

tions have a detrimental effect on the system performance, so that source code

improvement on these segments will likely yield increased performcince. SPS is

independent of the system's architecture and works for both shared and distributed

memory machines. The technique is portable and scales well.

SPS step-by-step

The SPS technique involves:

• a test program P.

• a response to be improved (e.g., the running time of P)

• statistical techniques from Design of Experiments (DEX).

• code modification via Synthetic Perturbation.

A basic evaluation of a test program P involves the following steps:

Step 1: Select code locations to be tested. Any segment of code is a potential can-

didate location. Typically, it is a basic block construct (e.g., loops, functions, etc.),

a critical section or a synchronization mechanism. These code locations (test

parameters) are referred to as factors.

Step 2: Insert synthetic perturbations at the factor locations. Factors are treated

with a delay/no delay option. No-delay option leaves the code unperturbed. A
delay option adds a specified number of artificial instructions to the code. The per-

turbation occurs as a time delay and a uniform treatment setting is used (i.e., the

duration of the delay does not vary with its location). The perturbation itself does

not interfere with the logical state of the program.

Step 3: . Generate an experimental plan of analysis. An experimental plan can be

developed once the factors have been chosen for study. A plan of experiment is a

succession of trials with different patterns of synthetic delays. Each pattern

involves a different combination (treatment) of delay settings. Different schemes

are available to the user.

4 Using S-Check

Screening and Special SPS tests

Step 4: Run the trials and record their responses. Each different pattern in the sta-

tistical plan corresponds to a different treated version of the program. Treatments

are run in a random order and a response is recorded for each run. A typical

response is the running (response) time of R

Step 5: Perform analysis. The relative importance of the various delays is deter-

mined by an analysis of variance. Each location or interaction of delays is ranked

quantitatively according to its sensitivity to the synthetic perturbation. Such a list is

called an SPS rank.

Step 6; Tuning. SPS assumes that source code improvement at locations highly

sensitive to code perturbation will yield increased performance. The tuning process

is performed via iterative refinement (repeat steps 1 through 5) until satisfactory

performance is obtained.

Within this framework, more specialized problems can be solved. These issues are

quickly addressed in the next section.

Screening and Special SPS tests

Screening test. At an early stage of analysis, one is primarily concerned with iden-

tifying and discarding factors that have no significant effect on the program

response. Screening is an investigation strategy that efficiently isolates important

factors from a pool of candidates. Insignificant factors can then be removed from

subsequent investigations, thus narrowing the scope of the analysis. Screening is

an identification step that may be used to make a quick, preliminary assessment of a

large apphcation.

Barrier test. SPS can be used to address the issue of bottlenecks due to synchroni-

zation in the shared memory programming model. Processes that hit a barrier at

widely dispersed times cause processors to idle for a significantly long period of

time. The test objective is to identify barriers where such idle time overheads

occur. Effects must be paired up and compared for analysis. In other words, two

factors (or perturbations) are required per barrier. One is inserted immediately

before the barrier, the other one immediately after. The barrier test requires a spe-

cial factor treatment—not explained here. For each individual pair, the difference in

the perturbations respective effects gives an indication of the cost associated with

each synchronization. The synchronization cost increases with the difference in the

two effects. If the paired effects are about the same the synchronization cost is

marginal. Note that screening experiments and barrier tests must be conducted sep-

Using S-Check 5

S-Check’s Directory/Experiment Layout

arately as factor treatments in these two cases are not comparable. See the Refer-

ence [2], “Synthetic perturbation techniques for screening shared-memory

programs”, for a thorough explanation of the technique.

Scaling test. Code scalability determines how well parallel code avoids becoming

a bottleneck as its host computer is made larger. Statistically designed experiments

handle program and system together as a single entity. The system size (i.e., the

number of processors assigned to the program) comes as an additional factor to the

regular set of input perturbations (i.e., segments of code suspected of being perfor-

mance bottlenecks). A large negative number for the effect associated with the sys-

tem size means the whole program is sensitive to scalabiUty, since the response

time decreases with the system size. To determine which code segment improve-

ments best promote parallel speedup the effects of interactions between code seg-

ments and the system size are studied. A large negative number for these

interaction effects mecuis the code seems to be scalable, since the sensitivity to

delays decreases with the system size.

Getting Started

S-Check’s Directory/Experiment Layout

S-Check requires that all files needed to build the executable testprogram reside in

the directory in which S-Check was started or if the target machine is remote, then

the directory that is specified by the user in the Configuration Panel (S-Check 1.0

Alpha release does not handle remote file access). As illustrated below in Figure

1, an experiment is saved in a sub-directory of the starting directory, called the

experiment directory. The first level of this hierarchy is named “.scheck”. Sub-

directories with the name of the experiment are then created under the “.scheck”

directory. These directories contain internal S-Check information for an experi-

ment. To open a saved experiment, you must start S-Check in the appropriate

experiment directory.

To invoke S-Check, type the following command:

scheck

S-Check first displays a working dialog while it is performing system initializa-

tions. When this is completed the window for creating and opening experiments is

launched.

6 Using S-Check

Creating/Opening an Experiment

<experiment ciirectory>

testl.l

test 1.0 test2.0

FIGURE 1. S-Check’s directory hierarchy

Creating/Opening an Experiment

S-Check starts by displaying the Experiment List Window, as seen in Figure 2. The

experiment directory name is displayed near the top of the Experiment List Win-

dow. S-Check will look here for work set files if the experiment is to be performed

on the host machine. The Experiment List Window displays previously defined

experiments as well as an area for creating new experiments. To create a new

experiment, enter the name of the experiment in the New Experiment Name field

and select the Open button. To open a previously defined experiment double-click

on the desired experiment in the experiment list.

Either of these actions brings up the Experiment Control Window (to be described

shortly). This action also brings up the Configuration Window if the configuration

for the experiment has not yet been defined. To delete an experiment, click on the

experiment name and press Delete. To exit the Experiment List Window without

requesting any tasks, select the Cancel button. To exit S-Check click on the Quit S-

Check button. The Cancel button will also exit S-Check if no experiment is active.

Creating a new experiment from a previously defined experiment can really econo-

mize experiment setup time. Simply recall an experiment with a suitable configura-

tion and use the Save As commeuid on the Experiment Control Window menu.

Modifications for the new experiment can now be made without having to re-ini-

tialize the bulk of experiment settings.

The Experiment List Window has two main menus: Results and Info. The menu

selection Multiple Display, under Results, allows you to view results of previously

saved experiments. The details of this are explained in Viewing Results. The Info

menubar provides on-hne information about S-Check.

Using S-Check 1

Creating/Opening an Experiment

experiment list

FIGURE 2. Experiment List Window

Experiment Configuration

The Configuration Window (Figure 3) supplies information to S-Check on how to

build the executable program, how and where to run the experiments, and the type

of the experiment.

The Configuration Window is invoked automatically upon creation of an experi-

ment. Alternatively, it can be explicitly brought up from the Experiment Control

Window under the File and Configure menu selections.

8 Using S-Check

FIGURE 3. Configuration Window

Declaring the target machine

The first group of text fields in the Configuration Window request information

about the target machine and associated information. First choose whether the tar-

get machine is the host (local) machine on which S-Check is running or whether the

target machine is accessed remotely. The default setting is local. Remote machine

access is not available yet. If the target machine is a remote machine, the follow-

ing information must be provided:

• Machine Name of the remote machine (e.g., seq.ncsl.nist.gov)

• User Name on the remote machine (e.g., rob)

Using S-Check 9

Connecting your application to S-Check

Note: this connection must be set up such that access to the machine can be

gained without requiring the use of a password. Refer to Unix documentation

on “.rhosts” or “host.equiv”.

• Directory (working directory) of the program that will be used in the experiment

(e.g., /home/users/rob/parallel/quicksort)

Note: that all files necessary to build the executable program must reside in this

directory.

If a remote machine is declared, all target files must be located on the remote

machine. There is no option of having the target files local with compiling and run-

ning on the remote machine.

Connecting your application to S-Check

The next step is to provide information so that S-Check can build your test pro-

gram. S-Check requires that you select files and provide flags that are needed to

compile your program. S-Check also provides an area to declare command line

arguments for the executable. The list called Directory Contents names all allow-

able files from which an executable can be built. Select a file and enter any special

C-flag(s) needed for that file. Push the add button to enter the file into the work set.

The work set defines the files needed to build the executable. This list also defines

the set of files that can be edited for choosing test locations (factors). The work set

list appears on the Experiment Control Window. Double clicking on a file (under

the Work Set list) will remove the file from the work set. Set default C-flags that

apply to all C files in the Default CFLAGS text field. For example, to instruct S-

Check to look in the include directory named /usr/local/include, enter

-l/usr/local/include

in the Default CFLAGS text field.

Likewise the loader/linker flags can be set in the Id FLAGS text field. To specify a

compiler, other than the default, enter the name of the compiler (path, if necessary)

in the Compiler text field. Command line arguments for the test program are set in

the area named Arguments. Enter only the arguments. Do not enter the name of

the executable. File input/output redirection is not yet implemented.

10 Using S-Check

Selecting the experiment type

Selecting the experiment type

S-Check can perform basic screening tests to extract a sensitivity analysis of the

test program. Specialized tests are also available. For shared memory architec-

tures, the cost of synchronization barriers can be evaluated. Scaling is another test,

one that determines how well a code segment scales as the size of the machine is

increased.

The chosen experiment type dictates certain S-Check restrictions and requirements

for additional input. For example, when performing barrier tests, only barriers can

be selected as factors. Scaling tests require that the test program be capable of

varying the number of processors. To select the experiment type, click on the

desired test. Only one test can be selected.

Pressing OK will record this information and pop up the Experiment Control Win-

dow. Cancel will bring down the window with no changes or selections recorded.

Instrumenting the Test Program

From your perspective instrumenting the test program involves two functions:

• selecting factors

• defining the response interval

Factor selection involves picking code segments in the program that you wish to

test. Wherever a factor is selected, S-Check inserts code that can be activated to

cause a delay at that location. You can choose factors and the response interval by

launching Factor Editors. To start a Factor Editor double-click on the file you wish

to edit in the Experiment Control Window (Figure 8). Starting a Factor Editor

brings up a Factor Editor Window, loaded with the source code, and ready for fac-

tor selection. Figure 4 shows an example of a Factor Editor.

Using S-Check 11

message area

annotation

source code display area

factor list area

FIGURE 4. Factor Editor Window

Factor Editor Window

Through the Factor Editor you select factors and determine the response interval.

The scrollable message area provides feedback during factor selection. For exam-

ple, if you select an item that can’t be instrumented, an appropriate message is dis-

played. The annotation colunrn indicates if a factor is selected on a line by marking

the corresponding annotation colunrn line with a white horizontal dash. It also dis-

plays the start-stop indicators when the response interval is set. See discussion on

Setting the Response Interval. The source code display area is where you define

factors. Discussion on this topic is expanded in the next section. Selecting Factors.

12 Using S-Check

Selecting Factors

The factor list area provides a list of selected factors. The factors are displayed in

sorted order depending on their line number within the file. The factor list area is

not yet available. The factor count displays the total number of factors selected in

the file that is being edited. A count of all factors selected for the experiment is dis-

played on the Experiment Control Window. To the right of the factor count is the

Select Response button. The purpose of this button is described in Setting the

Response Interval.

Press OK to dismiss the Factor Editor and record all changes. To lower the window

while ignoring modifications, press Cancel. The Help feature is currently

unavailable.

The size of the scrollable windows (i.e., message area, source code display area,

and the factor list area) can be increased/decreased by moving the panes at the

lower right hand side of each scrollable window.

Selecting Factors

Factors are test points in the code. Currently, you are responsible for selecting fac-

tors. Future versions of S-Check will provide limited automatic factor selection.

The notion of a factor comes from the branch of statistics called design of experi-

ments (DEX). In DEX, factors correspond to parameters that are varied in the

experiment. To select a factor, click on the location where you want to define a test

point. If this location is a valid factor that can be instrumented, the location of the

instrumentation is indicated. The location is tagged with reverse video (Figure 5).

The instrumentation will be inserted between the left most character and the right

most character of the reverse video. Some exceptions to this rule exist and are

pointed out below. Click on the location again to remove the factor. The factor will

no longer be highlighted in reverse video. Once a factor has been selected the fac-

tor count is updated for the current file that is being edited. The global factor count

for the experiment is maintained on the Experiment Control Window.

Using S-Check 13

Selecting Factors

|| :j

uhi le(exchanges == TRUE)

;
; “H Exchanges = FOLSE; if

Unit -= 1;
:

'* i = left_pt;
uhiled <= limit)
£

ifdistti] > list[i+l])£ 11

li^^p exchanges = TRUE;

li

i += 1;
3

3

3 1

FIGURE 5. Factor Selection, Default Interpretation.

Figure 5 shows a cut out of a Factor Editor. The first selection instruments the body

of the whileO loop. That is, the perturbation code is inserted as the first statement

in the loop. The second selection instruments the code after the call to swap() and

before the statement exchanges = TRUE.

Defining a code segment to be a factor will cause instrumentation code to be

inserted at that location. The code instrumentation process occurs later in the SPS

process. In most cases the instrumentation code is inserted between the left most

and right most character displayed in reverse video. In a few situations this rule

does not apply. The user must exercise caution when selecting factors to insure that

the intended location for instrumentation is the desired location. The example

above shows the default interpretation. The example in Figure 6 illustrates the spe-

cial cases that apply to compound statements.

<F1> <D1> while <F2> (index > limit) <F3> { <F4>
<D3> <F5> <D5> stmt1 = setting 1

;

stmt2 = setting2:

<D4>

}

<D2>

FIGURE 6. Factor Selection, Special Cases for Compound Statements.

14 Using S-Check

Setting The Response Interval

The symbols <F1> through <F5> indicate the test locations you selected. In S-

Check these locations will be highlighted in reverse video. The symbols <D1>
through <D5> indicate the locations where the delay treatment is inserted into the

code. Factors <F1> and <F5> adhere to the default interpretation as the delay is

inserted where the factor was chosen. The interpretation for factor <F2> is to

instrument the code following the while() loop (<D2>). Clicking at location <F3>
instruments the body of the loop, that is, the first statement in the loop. It is instru-

mented exactly hke <F5>. If the location F4 is selected, then the last statement in

the while loop is instrumented (<D4>). The impact of <F4> and <F3/F5> will dif-

fer if there is branching back to the beginning of the loop. Some of these special

case options are implemented for future S-Check features. If you want to instru-

ment the body of the loop, it is best to use the default interpretation as in <F5>.

If you select a location that S-Check cannot instrument, you are notified of this in

the message area. Items that cannot be instrumented include lines that are encased

in preprocessor commands which are not defined and therefore will not be part of

the executable code. Locations that produce invalid code (e.g., at the end of a func-

tion) can not be instrumented.

Setting The Response Interval

The second item that needs to be set for instrumenting the code is the response

interval. The response interval defines the start and stop locations for capturing the

response time. The response time equals the time recorded at the stop location

minus the time recorded at the start location. The response time is used in the cal-

culation of effects. The start/stop locations can be set in any file and the response

interval can span files. That is, the start/stop locations need not reside in the same

file. The response interval should be set so that it encompasses all factors. Other-

wise the effect for the factors not in the domain of the response interval are not

accounted for. It is important that the response interval be set in a sequential part of

the code or that it is guaranteed to be set by only one process. Results are otherwise

undefined.

To select the response interval click on the Select Response button. This will turn

off the factor selection mode and activate the select response mode. While in the

select response mode, the cursor is modified to a down arrow indicator or to an up

arrow indicator. Clicking in the source code display area while the down arrow

cursor is active will cause a “B” to be placed in the annotation column correspond-

ing to the selected location. Likewise, clicking in the source code display area

while the up arrow cursor is active will cause an “E” to be placed in the annotation

Using S-Check 15

Setting The Response Interval

column corresponding to the selected location. The “B” indicates the start (begin)

location and the “E” marks the stop (end) location.

ttif CHECK
printfC unsorted list of nunbersSn")

;

for(i=0;i<SIZE;i++)
printfC X6dXcMist[i3,(inO==9 II i ==SI2E-1) ? 'Sn'

ttendif

quickO;

tlif CHECK
printfC'SnSORTED LISTSn");
for{i=0; i<SIZE;i++)

printf(“ %6di:cMist[i3,<inO==9 II i ==SIZE-1> ? 'Sn'
ttendif

FIGURE 7. Defining the Response Interval.

The first time the Select Response button is clicked, the down arrow indicator is

active. You can change the selection mode to an up arrow (for defining the stop

location) by selecting a start location or by clicking on the Select Response button.

The latter option allows you to avoid setting or changing the start location. The

former option will define the start location and automatically put the editor into the

define stop location mode. Clicking twice on the Select Response button will return

you to the factor selection mode (bypassing the stop location mode). The factor

selection mode is automatically entered after the stop location is defined. Unlike

factor selection, defining the response interval is line oriented. The resolution of

the “B” and “E” (in this implementation) are somewhat coarse, so make sure the

start and stop locations are clearly defined.

In Figure 7, the function quick() is defined to be the response interval.

S-Check does not check for multiple execution of start/stop locations. It does how-

ever check if the stop location is executed before the start location. Only one

response interval can be set. Setting the start/stop locations when the response

interval is already defined will overwrite any previous settings. The new start/stop

locations will define the response interval.

Setting the response interval will automatically reset the delay value to an unde-

fined state. It also changes the job status to Empty. A built experiment will have to

be reconstmcted.

16 Using S-Check

Experiment Maintenance and Convenience Functions

Experiment Control

The Experiment Control Window (Figure 8) involves:

• Experiment maintenance and convenience functions {File menubar)

• Launching factor editors

• Setting and showing the delay value {Utilities menubar)

• Selecting a DEX plan

• Selecting experiment repUcation

• Displaying progress and error messages from S-Check

• Displaying experiment setup information

• Running an experiment

• Displaying run status information

• Saving Results

• Launching result viewers {Display menubar)

The first seven topics are described in this section. The next two are explained in

the section to follow. Running an Experiment. The last two items are covered in

Saving Results and Viewing Results.

Experiment Maintenance and Convenience Functions

Experiment maintenance and convenience functions are accessed under the File

menubar selection. Open gives you access to the Experiment List Window. For

experiment configuration modifications select the Configure button to bring up the

Configuration Window. To save the current experiment, select Save. This action

brings up a box with toggle buttons named Save Experiment and Save Results. To

save all of the settings of an experiment, select Save Experiment and hit Save. The

saved file contains everything necessary to retrieve an experiment in its present

state. These items include everything defined on the Configuration Window, Exper-

iment Control Window and Factor Editors. It also saves the state of the interface. A
saved experiment can be opened from the Experiment List Window. Results of an

experiment can be saved by selecting the Save Results toggle button and hitting

Save. This action pops up the Save Results Window. See the section on Saving

Results for details. To save an experiment with a new name, select Save As. To

close an experiment, select Close. Quit S-Check will exit the program.

Using S-Check 17

Launching Factor Editors

Launching Factor Editors

The work set is the list of files defining the target program. This list is constructed

in the Configuration Window. Double-click on the file you wish to edit. This

action launches a factor editor, loaded with source code, and ready for factor selec-

tion. There is no limit on the number of factor editors you can launch. See Instru-

menting the Test Program for details on using a factor editor.

S-Check Messages

S-Check uses the message area to inform you about its progress in instrumenting

the target program. Typical status information includes:

• files being parsed

• compilation progress

• stages in determining the delay value

• state and value of the delay

• traces of response time and treatments for trials

• information for effect calculations

• warning cuid errors

TABLE 1. Experiment Control Warnings and Error Messages

Message Reason Fix/Consequent

delay value is no

longer set

1 . factor set was changed.

2. response interval was

changed.

1 . a built experiment has to be

reconstructed because the pre-

vious delay value may not be

appropriate for the new experi-

ment settings.

unable to find suit-

able delay value in

“x” tries

1 . factors not significant

enough, S-Check gave up

looking for large delay

value.

2. response times not lin-

ear with respect to delay

value due to unusual pro-

gram or varying system

loads.

1 . re-evaluate factor choices or

set the delay manually.

2. look for unusual behavior in

program or run when system

load is stable.

18 Using S-Check

S-Check Messages

TABLE 1. Experiment Control Warnings and Error Messages

Message Reason Fix/Consequent

resolution of delay

value may be too

coarse

1 . S-Check’s nominal

delay value is too coarse

for factor set.

1 . response times may be

unnecessarily long due the

coarseness of S-Check’s delay

value. Future S-Check ver-

sions will allow for finer grain

delay values.

runtime with no

delay set is > runtime

with delay

1. response interval does

not encompass factors

2. selected factors are not

significant enough to

cause response time to

increase significantly

3. program is very unusual

1 . make sure the response inter-

val encompasses all selected

factors

2. re-evaluate factor set

3. check for severe communi-

cation contention or other

anomalies which make the pro-

gram run faster with delays.

See [1] for an example.

variance computed

with “x" degrees of

fieedom. You need

at least 10 for a

meaningful estimate.

1
.
plan does not provide

enough information to

obtain a meaningful esti-

mate of the standard error

1 . disregard and use normal

probability plots to select sig-

nificant factors.

2. choose new plan or run with

replication.

S-Check can’t han-

dle saved suspended

jobs. Job Status is set

to built.

1 . experiment was saved

while job was suspended.

1 . Current S-Check implemen-

tation can’t handle suspended

jobs. Job must be re-started.

Creation of instru-

mented source failed.

1 . The program CInstGen

failed.

1. Check the standard error

message log and look for a

work around.

2. This is a bug in S-Check and

should be reported.

linking failed 1 . unable to create execut-

able

1 . verify program code and

linkage flags.

Table 1 gives a list of potential warning and error messages along with suggestions

on how to resolve problems.

Using S-Check 19

Setting the amount of delay

Setting the amount of delay

The delay value is either set by you manually or by S-Check automatically. By
selecting Build (see Running an Experiment), S-Check will automatically deter-

mine an appropriate delay size for the experiment. It is part of the build process.

Alternatively, you can set the delay value manually.

To set the delay value manually, select Set Delay from the Utilities menu on the

Experiment Control Window. This pops up the Set Delay Window. After entering

the delay value, select Set. A message confirming the delay value setting is printed

in the message area on the Experiment Control Window. To get back to the default

state of letting S-Check automatically determine the delay value, choose Unset.

The duration of the artificial delay is an important aspect. Ideally, the delay should

be long enough so that it can be distinguished from experiment noise and short

enough so as not to produce unnecessarily long program execution times. When
setting the delay manually, it is up to you to select an appropriate value. When the

delay is determined automatically, a few trial runs are performed until a satisfactory

setting is found.

The delay itself is a function that performs artificial instructions. The delay value

controls how many times a loop iterates performing the artificial instructions. With

the current implementation of the delay function, it is recommended that S-Check

tests be performed without compiler optimization. A future improvement to S-

Check will incorporate a variety of artificial perturbation options.

The delay value can be queried at any time by selecting the Show Delay button

under the Utilities menubar.

Selecting a DEX plan:

A design of experiment plan is a complete description of a minimum set of pertur-

bation patterns needed to carry out a meaningful program investigation. A variety

of schemes (briefly described below) is available in S-Check. It is important to

note that there exists a direct correlation between the minimum number of runs in

an experiment, the quantity of information provided by the investigation and the

selected plan type. The trade off buys information with number of runs.

The user has six options for defining the experimental plan.

• Automatic

• Full factorial

20 Using S-Check

Selecting a DEX plan:

• Half factorial

• Quarter Factorial

• Resolution IV

• Resolution HI

The total number of factors under study is an important criterion in the choice of an

experimental plan. For efficiency purposes, it is essential to maint^dn a balance

between the quantity of information desired and the cost of the corresponding

experiment. Any knowledge on interactions or the lack thereof should be put to

use-there is no point looking for third-order interactions when they are known to

be absent. Table 2 is intended to help you meet these requirements.

TABLE 2. Plan Selection

Plan Selection

Up to S- Check Up to the user

Number of factors <200 small(<12) large(12<f<200)

Full Resolution IV

Option Automatic Half Resolution HI

Quarter

With Automatic, S-Check decides which plan type to use in investigating the pro-

gram. Table 3 summarizes how choices are made.

TABLE 3. Automatic Selection

Number of Factors Plan T^pe

up to 4 Full Factorial

5 or 6 Half Factorial

7 or 8 Quarter Factorial

9 to 31 Resolution IV

31 to 199 Resolution HI

Fullfactorial designs consider every combination of factor levels, that is, they sup-

port inferences about all factor interactions. Be aware that the number of measure-

ments (program runs) rapidly becomes prohibitive as the number of factors

Using S-Check 21

Selecting a DEX plan:

increases. A full factorial design is usually not appropriate for large numbers of

factors. Note that high-order interactions are quite often of negligible magnitude

when compared to main effects and low-order interactions; therefore when the

number of factors increases, the desired information can be obtained by performing

only a fraction of a full factorial experiment. Full factorial designs can currently be

12
requested for up to 12 factors (2 runs).

A halffactorial design requires only half the runs of a complete full factorial. A
minimum of 3 factors (theoretical limit) is necessary to request this type of plan.

Such a design in 3 factors is of resolution EU (explanation follows). To get an esti-

mate of the standard deviation (called standard error) under this particular configu-

ration you will need replicates. Other half factorial designs provide an estimate of

the standard error without replication. Half factorial designs can be requested up to

9 factors (implementation Unfit).

A quarterfactorial design requires only one-fourth the runs of full factorial (i.e.,

half the runs needed in a half-factorial design). A minimum of 5 factors (theoreti-

cal Unfit) is necessary to request such a design. This 5-factor configuration is of

resolution III and as noted previously repUcates are needed to get an estimate of the

standard error. Other quarter factorial designs provide an estimate of the standard

error without repUcation. This type of plan can be requested up to 10 factors

(implementation Unfit).

The resolution of a plan gives an immediate indication of the information capacity

of the design. Resolution III plans confound (mix) results of first and second order

effects, while resolution TV plans do not confuse first and second order effects, but

instead confound first and third order effects. Ideally one should only use plans of

resolution FV and up. Both resolution in and resolution IV plans are, however,

appropriate for preUnfinary screeifing of a large number of factors, since in these

cases many factors are insigmficant.

Resolution FV designs may be requested for any number of factors between 2 and

199. They provide information on main (first order) effects only. In contrast to res-

olution III designs, no repUcation is needed to get an estimate of the standard error.

Investigations built on resolution HI plans require half the runs of those built on

resolution FV plans. Again, information is provided only on main effects and this

time repUcations are needed to get an estimate of the standard error. Resolution IFI

plans may be requested for any number of factors between 2 and 199.

22 Using S-Check

Setting Replication

Setting Replication

Replication indicates the number of times the experiment is performed. The default

value is 1 (minimum), which means the experiment is run once. To duplicate the

experiment, set repUcation to 2. The range of the repUcation value is currently 1 to

99.

experiment control

menubar

files to edit

experiment information

area

DEX plans

replication area

message area

FIGURE 8. Experiment Control Window

Replication maybe necessary if anticipated variability or noise level of the experi-

ment is high. Shared-memory systems generally have lower experiment noise than

Using S-Check 23

Experiment Information Area

distributed-memory machines, with “PVM” style experiments being the worst.

Rephcation may also be used to obtain a standard error for an experiment when a

single run of the DEX plan cannot provide one. As mentioned, under some circum-

stances full factorial, half factorial, and quarter factorial plans do not provide a

standard error. A single run of a resolution HI experiment never provides a stan-

dard error (Normal probabihty plots allow some choices to be made without know-

ing the standard error). Refer to Appendix B for details on the availabihty and use

of the standard error for an experiment.

To increase/decrease the number of rephcations, press the up/down arrow buttons

to the left of the replication text field. For rapid movement hold the desired arrow

button down. To reset replication to its default value click once in the replication

text field.

Experiment Information Area

This area describes experiment parameters and attributes of the current experiment.

Factors is the total number of factors selected for the experiment. Runs Required is

the total number of times the test program is executed to complete the experiment.

This value is affected by the number of factors, DEX plan, and the rephcation

value. Overhead Est. (Overhead Estimate) gives an estimate (as a percentage) of

how much longer the test program will run on average. Status indicates the state of

the experiment: This topic is expanded in the next section. Trial indicates the cur-

rent trial number S-Check is running (e.g., 17 of 32—the 17th run in a plan that

requires 32 runs). Time Estimate shows how long the experiment will take to com-

plete, based on prehminary measurements performed while determining the delay

value and the number of runs in the experiment. This estimated value is updated

during the execution of the experiment. If you set the delay value manually, then

the Time Estimate is not given until after the first trial run.

Running an Experiment

There is a two step procedure for running an experiment. The first is an intermedi-

ate step called build (select Build on the Experiment Control Window). Building

the experiment compiles the work set files and constructs an executable test pro-

gram. The built program is instrumented with code that can activate/deactivate per-

turbation code at each factor location. Building the experiment also determines the

size of the delay value (if not set manually).

24 Using S-Check

Experiment Information Area

At this point the experiment is ready for execution. You can select (if you haven’t

done so already) or change the DEX plan and number of replications without

rebuilding the experiment. Changing the DEX plan or repUcation value can alter

the number of runs required. If the factor set is modified, the experiment must

be rebuilt.

To run an experiment, press Start on the Experiment Control Window. Starting an

experiment will randomly execute each program version defined by the experiment

parameters. The plan row and response time for a given trial is displayed in the

message area. The series of I’s and O’s indicate whether or not a delay was exe-

cuted for a given factor. If set to 1 , the delay was executed. The code is not dis-

turbed if set to 0. The factors are mapped to the plan row (left to right) and can be

identified by correlating them with the id on the Effects List Window.

An experiment is suspended and restarted by selecting the Suspend emd Restart but-

tons respectively. Suspending an experiment terminates the current running

instance of the program. Data from completed trials are saved. Restarting an

experiment first runs the trial that was terminated during the suspend operation and

then continues the experiment. Response information is appended to data previ-

ously captured. Stop terminates the experiment with no saving of state. The job

status is returned to Built, the experiment can be restarted. Start/Stop and Suspend/

Restart occupy the same button region, therefore only one of the option pair is

available at any given time.

Status indicates the current state of the experiment. An experiment can have the

following states:

Empty The experiment has not been built.

Building The test program is being compiled with instrumentation

code.

Determining Delay Sample trial runs are executed for the purpose of finding a

suitable delay value.

Built The experiment was successfully built and the delay value

is defined.

Running The experiment is currently running.

Queued The experiment is queued waiting for start-up. This feature

is currently unavailable.

Using S-Check 25

Experiment Information Area

Suspended The experiment is suspended. State information of

previously run program instances are saved.

Terminated The experiment has been Terminated. No experiment state

information is saved.

Calculate Effects All trials ran successfully. Results are being calculated.

Finished The experiment has completed. Results of the experiment

can be examined.

Saving Results

Results from the current experiment can be saved in a file by using the Save Results

Window. The Save Results Window is accessed by selecting the Save Results but-

ton under the Display menubar. As mentioned earlier, it can also be accessed by

selecting the Save Results toggle button from Save under the File menu. The Save

Results Window can only be accessed when vaUd experimental results exist.

At the top of the Save Results Window are listed previously saved result files for

the experiment. The text field (at the bottom of the window) provides an area to

enter the name of the results file. Saved result files can be retrieved and viewed via

List and Plot Windows through the Multiple Display Window. See the next section,

Viewing Results, for details.

Viewing Results

There are two ways to view results. You can either obtain a rank-ordered list of the

effects by launching a List Effects Window or observe the effects in various plot

views of the Plot Effects Window. By default, data from the current experiment are

displayed when either of these two windows are launched. To view results of other

experiments you can bring up the Multiple Display Window. These options are

found under the Display menu on the Experiment Control Window.

26 Using S-Check

List Effects

List Effects

The List Effects Window (Figure 9) displays results of the experiment. At the top

of the results area an experiment profile is given. The profile includes experiment

settings and the standard error. After this the effects for each factor and factor

interaction are displayed. The list follows this format:

index effect order term [line #]file function text

where:

index arbitrary identification assigned to a factor or factor interaction

effect expresses importance of corresponding factor or factor

interaction

order describes the degree of interaction. An order of 1 indicates a

main (standalone) effect. An order of 2 indicates a 2-factor

interaction and so on.

term describes the factor or factor interaction via an index.

Index and term are the same for main effects. For effects

with an order of two or more, the term is represented by

combining the indexes of constituent factors. The indexes are

deUneated by periods (.).

[line #]file indicates the file and line number for the factor. If the factor

is an interaction then that is indicated instead.

function is the function in which the factor resides.

text displays the source code corresponding to the factor.

Using S-Check 27

List Effects

standard error filter

order level area

sorting preference

results area

1 [33]part.c parti tion_list()
2 [38]part.c parti tion_list()
0 [38]bubbie.c bubble_sart()
0.1 < Interaction —

>

1.2 < Interaction >

0.2 < Interaction —

>

0.1.2 < Interaction —

>

FIGURE 9. List Effects Window

The list control area gives the user the option to set preferences for displaying the

effects. You can control a standard error filter, the level of the order to be dis-

played, and the sorting of effects by index or by value.

Setting the standard error filter determines how significant an effect should be to be

displayed. For example, if the standard error is 0.25 and the standard error filter is

set to 5, then only effects that are greater than 5 * 0.25 = 1.25 are displayed. Press

Apply (or hit <retum>) to activate the new setting. The default value for the stan-

dard error filter is one standard error (if activated).

The level of interaction, or order, of effects to be displayed is controlled by select-

ing the desired order in the order level area. Selecting the order will display effects

28 Using S-Check

Plot Effects

of that order. More than one order may be selected. Once all your selections are

final, press Apply to see the changes. The default displays only main effects, but in

parallel processing, second order effects caimot be dismissed.

Effects are sorted either by their value or by their index. Select the desired ordering

and press the Apply button to activate the changes. Sort-by-value is the default.

If you are changing more than one setting in the list control area, you can wait until

all of your selections are made before pressing Apply.

List information can be saved in a postscript file. Select the Save Postscript button.

This action brings up a dialog containing a list of files in the current working direc-

tory and a text entry field. Enter the name of file you wish to save the effects list in

and click the Save button. The implementation saves the currently selected display.

All postscript files are saved in the experiment directory, regardless of the experi-

ment.

Plot Effects

Four plots are available to visualize S-Check analysis results (Figure 10):

• absolute effects plot

• mean plot

• normal probability plot

• half normal probability plot

By default, all four plots appear in the display area when the Plot Effects Window is

popped up. Each plot can be requested individually by clicking on the plot or by

using one of the available push buttons. Clicking again in the display area brings

you back to the previous display.

The plot control area gives you the option to set preferences for displaying the

effects. You can control a standard error filter, the level of the order to be dis-

played, and the sorting of effects by index or by value. Unless otherwise specified,

these options apply only to the absolute value of effects and half effects plots.

Next and Previous allow you to browse through the results whenever a single

screen cannot handle the complete set of results at once. A screen can plot up to 32

data points.

Using S-Check 29

Plot Effects

plot selection area

screen control buttons

standard error filter

plot display area

order level area

sorting preference

k i

FIGURE 10. Plot Effects Window

The error filter applies only to the absolute value effects plot. It can be used to

ignore factors that are not considered to be significant. To use this filter, select the

ERROR FILTER toggle button. If a standard error exists, this will activate the text

field immediately below the toggle button. Enter the standard error factor and hit

<retum>. This action will highlight effects that surpass the threshold set by the fil-

ter. An effect must be greater than the standard error multiplied by the standard

error filter to be highlighted (displayed in another color). In addition, a highlighted

horizontal line is drawn at the threshold limit. The default value for the standard

error is one (if activated).

The level of interaction, or order, of effects to be displayed is controlled by select-

ing the desired order in the order level area. More than one order may be selected.

30 Using S-Check

Plot Effects

Once all your selections are final, press Apply to see the changes. The default dis-

plays only main effects.

Interaction availability is dependent on the experiment type. Order level toggle

buttons are grayed out when interactions are not available.

Effects are sorted either by value or by index. Select the desired ordering and press

the Apply button to activate the changes. In contrast to the List Panel, sort-by-index

is the default.

If you are changing more than one setting in the plot control area, you can wait until

all of your selections are made before pressing Apply.

A description of each plot follows:

Absolute Effects Plot

The absolute effects plot represents the absolute values of effects for the different

factors under study and their interactions (when available). The taller the line, the

larger the absolute value of the effect (y axis). Numbers on the x axis are arbitrary

identifications assigned to factors. Use the rank-ordered list (List Effects Window)

to link indexes with their corresponding term.

Mean Plot

The effect of a factor is given by the difference in the means for all high and all low

settings of the factor. The mean plot is generated by drawing a line between the

mean at the low and high setting of a factor for every factor and factor interaction

(when available). The longer the line, the larger the effect. As with the absolute

effects plot, factors are identified by an arbitrary index (x axis).

Normal Probability Plot

In a normal probability plot, effects (y axis) are arranged in ascending order of their

value (i.e., from smallest to largest) and plotted against the theoretical standard nor-

mal percentiles (x axis). Theoretical standard normal percentiles are the cumula-

tive values one would expect if the effects arose from a normal distribution

centered about zero with a standard deviation of one. If the effects in an experi-

ment are generated purely by noise, then the points would tend to fall on a line

passing through the origin. Outliers from this line indicate significant effects and

Using S-Check 31

Multiple Displays

so highlight potential perform2ince bottlenecks. Data points (i.e., effects) are

arranged in ascending order of their value.

HalfNormal Probability Plot

The half normal probabihty plot is similar to the normal probabihty plot, except

that effect estimates are arranged by their absolute values (y axis) and plotted

against the theoretical standard half-normal percentile (x axis).

The plots can be saved in a postscript file. Select the Save Postscript button. This

action brings up a dialog containing a list of files in the current working directory

and a text entry field. Enter the name of file you wish to save the plots in and click

the Save button. The current implementation saves all four plots by default, there

is no feature available yet to save individual plots. In addition to the plots a list

correlating the factors indexes to their corresponding terms is provided. All post-

script files are saved in the experiment directory, regardless of the experiment.

Multiple Displays

The Multiple Displays Window (Figure 11) allows the user to view and compare

results from previously saved experiments without having to load each experiment

separately. List and Plot panels can be launched for any results file listed in the

results list. This list displays all the result files saved for all the experiments under

the current experiment directory. Results can be saved by accessing the Save menu
selection or the Save Results menu selection on the Experiment Control Window. If

you want to display a results file, click in the corresponding toggle area and press

List or Plot to obtain a display of the data. More than one results file may be

selected at a given time. To see multiple results together, you must remember to

move the displays around (they are stacked up initially) if your window manager

automatically places windows.

32 Using S-Check

Multiple Displays

FIGURE 11. Multiple Displays Window

Using S-Check 33

Glossary

Glossary

analysis of variance (ANOVA) statistical method used for the purpose of calculating effects.

effect expresses importance of a factor or factor interaction.

experiment an S-Check entity that defines parameters needed to perform an SPS

analysis of the test program.

experiment configuration items that define settings that allow S-Check to build (make) the test

program. It also defines other setup information such as where to run

the experiments and the type of the experiment.

experiment control settings items that define settings directly associated with the experiment, e.g.,

factors, plan type, delay value, and replication.

experiment directory the directory in which S-Check was started. Experiments are saved in

this directory under the sub-directory named .scheck.

delay value the amount of delay.

DEX design of experiments.

factor parameter that is being varied and tested (e.g., source code segments,

synchronization barriers, etc.).

host machine the machine on which S-Check is running.

replication indicates the number of times an experiment is performed.

response interval defines the start and stop locations for the purpose of capturing the

response time.

response time actual execution time for response interval. A response time is captured

for each tried run.

34 Using S-Check

Glossary

Glossary

SPS rank rank-ordered list of source code segments based on the relative sensitiv-

ity (effects) of the test program to synthetic delays associated with the

code segments.

standard error estimate of the standard deviation of observed effects.

target machine the machine on which the S-Check experiments are performed.

test program executable test program for the experiment.

treatment instrumentation pattern (of delays) obtained from the experimental plan

for a trial run.

trial is an instance of the test program with a particular treatment.

work set set of source code files needed to build the test program.

working directory the directory in which files are accessed to build the test program. This

directory will either be the directory in which S-Check was stcuted

(experiment will run on local machine) or the directory specified on the

Configuration Window for remote machine access.

Using S-Check 35

Warnings and Bugs

Warnings and Bugs

Cancel button on Factor Editors

The Cancel button on the Factors Editors is not implemented yet. It currently per-

forms the same functions as the OK button.

Standard Error Messages

Messages sent to the standard error (stderr) from the test program are not displayed

to the user.

C preprocessor anomalies

The alpha 1.0 version of S-Check takes advantage of the target machine's C proces-

sor by using the '-E' option to cc(l). Therefore, S-Check only parses the preproces-

sor output, not the original code. This can be confusing when selecting factors. For

example:

#define TRUE 1

foo = TRUE;

If the user clicks on the above statement, the highlighted result is 'RU' (since S-

Check's input is 'foo = 1 ;'). The instrumented code will be correct, just shown to

the user incorrectly. The user is advised to avoid selecting factors on macros that

contain executable code. The results for the factor locations, in this case, are

unknown.

Parsing the preprocessor output also causes another problem. Consider:

foo.h:

#ifndef CORRECT

you forgot to define CORRECT

#endif

foo.c:

#define CORRECT 1

#include <foo.h>

main(){}

36 Using S-Check

Warnings and Bugs

Since S-Check never parses the macro CORRECT, the attempt to build an instru-

mented executable will fail. These problems will be corrected when a C preproces-

sor is integrated into S-Check. A work around is to add the #define to the special

C-flags (i.e., -DCORRECT) for the file(s) in question on the Configuration Win-

dow.

Running experiments simultaneously

Results fi'om running two or more experiments simultaneously are unpredictable.

This feature has not been thoroughly tested and should be avoided. In addition,

running experiments simultaneosly where the test program uses shared files (e.g.,

on SGI machines, shared arena) may cause problems.

Cannot allocate colormap entry for “color”

The server can’t allocate the colormap entry for “color”. Too many X-clients are

currently running on the system. Exit one or more of these clients if you want to

display the default S-Check colors.

Response interval tags (B and E) placement with source code

modifications

If the response interval tags (B and E) are set and the source code is modified in

which the response interval tags are set, the tags are no longer valid. Results are

unpredictable. No warning or error message is provided to the user. The user

should reset the response interval tags after source code modifications have been

made. Modifying source code in which factors are selected is handled correctly.

Instrumenting switch statements

As mentioned in Selecting Factors, caution should be exercised when defining fac-

tors in compound statements. This is especially true when instmmenting switch

statements. Selecting the switch statement itself will place the instrumentation code

at the bottom of switch (by design), which under most circumstances is never

reached. It is best to placed the factors in the individual cases that you want to

instrument.

Using S-Check 37

References

References

[1] G. Lyon, R. Snelick, R. Kacker.

Synthetic-perturbation tuning ofMIMD programs.

The Journal of Supercomputing 8 (1) (1994), 5-28.

[2] R. Snelick, J. Jala, R. Kacker and G. Lyon.

Synthetic-perturbation techniques for screening shared memory programs,

SOFTWARE—Practice and Experience 24 (8) (1994), 679-701.

[3] G. Lyon, R.Kacker, and A. Linz.

A simple scalability test for parallel code,

SOFTWARE—Practice and Experience, publication pending, June, 1995.

(Also appears in Proc., IEEE 2nd Int. Symposium on Software

Metrics, October, 1994, London, 54-60.)

38 Using S-Check

Appendix A: error messages

Appendix A: error messages

Appendix A gives a list of possible error messages from S-Check. Errors of this

sort are the result of invalid user input or input that is utu-ecognizable by S-Check.

Adjustments (or input corrections) must be made before S-Check can proceed in

the direction before the error occurred. Note that all other system functions are fro-

zen until the user acknowledges the error by clicking on the OK button in the error

popup dialog. The table below provides possible reasons and solutions to the

errors. If you are unfamiliar with how S-Check instruments the source code, it may
be useful to review Appendix C (Code Instrumentation). The information provided

there will let you better understand the error messages.

Message Reason/Fix

The program “X” is not in your

path.

The executable “X” is not contained in any of the

directories specified by your PATH variable. You

must quit S-Check and correcdy modify your PATH
and restart S-Check.

The program “X” received a

“Y” signal.

The program “X” received a termination signal “Y”

from the UNIX operating system. If “X” was Cln-

stGen or Cparser, this is an S-Check bug and

should be reported. If “X” was a.out, a bug in the

user’s test program exists. If “X” is cc, this is a

compiler bug.

The program “X” received
'

unknown signal “Y”.

The program “X” has received an unknown an

unknown signal “Y” from the Unix operating sys-

tem. “X” can be one of the following: aout, cc,

Cparser, or CInstgen.

“X” is not a regular file S-Check expected a regular file. Check file type of

file “X”.

The generator has returned

unknown code “X”.

The program CInstGen has terminated with an exit

status unknown to S-Check. This is a bug in S-

Check and should be reported.

Invalid delay value: “X”, delay

is not set.

OR

Invalid delay value: “X”, delay

is stm “Y”

The delay value entered manually does not fall in

the range 0 to DELAY_MAX_VALUE.
DELAY_MAX_VALUE can be modified when S-

Check is installed. It’s default value is 1,000,000.

CTree_Load failed Unable to load the “X.tree” file because it does not

conform to a known format.

Using S-Check A-1

Appendix A: error messages

Message Reason/Fix

Ran out of memory for source

file load.

Ran out of memory (mallocf) failed). Close other

windows, stop other processes, increase swap

space, add memory, etc.

bad read for file “X” File “X” does not conform to a known format. K
“X” is config then experiment save file is cor-

rupted. You may not be able to savage the saved

experiment.

bad read for response.scheck

file, execution time unknown

The file response.scheck does not conform to a

known format. The Begin (B) and End (E) markers

were probably improperly placed. Check to see if

the E was executed, or that E was executed before

B.

bad factor kind found in config

file

The config file does not conform to a known format.

The file may be corrupted or the file may be incom-

patible with the current S-Check version.

illegal stmt index for factor in

config file

The identified factor index is out of range. The con-

fig file is corrupted. The factor in question is

removed from the factor list.

The parser has returned

unknown code “X”

This is an S-Check bug and should be reported.

Invalid file name, file not

saved.

An invalid file name was entered. The file was not

saved, try another name. _

Can’t load results file: “X” The results file “X” can not be read, contains cor-

rupted data, or host system memory is low.

A-2 Using S-Check

Appendix B: standard error table

Appendix B: standard error table

The standard error of an experiment is used to assess the quality of S-Check’s

results (rank lists and plots). However, depending on the experiment, a standard

error may not be provided or its accuracy may be limited. In these cases, valid con-

clusions can still be made from S-Check’s results, although with diminishing confi-

dence.

The table below shows availability of the standard error for an unrephcated experi-

ment. The standard error for unreplicated plans is calculated by treating interaction

effects of three or more as error. When third order interaction effects are not avail-

able, second order interaction effects are used for the standard error estimate. This

is the case for resolution IV plans when the number of factors is ten or greater.

The plan and the number of factors determine the accuracy of the standard error. A
“YES” indicates that the standard error is calculated with sufficient precision and— confidence in analyzing the results. A “YES^” indicates that a

standard error is provided, but it may not be very reliable. Typically, unrepUcated

plans are used when the number of factors is six or more. When the number of fac-

tors is less than six, it is generally possible to replicate the experiment and calculate

the standard error from repUcation.

Factors

Plan 2 3
: 1

V

4 5 6-7 8-9 10-1-

Full Factorial NO YES* YES* YES YES YES YES

Half Factorial N/A NO NO NO YES YES YES

Quarter Factorial N/A N/A N/A NO YES* YES YES

Resolution IV NO NO NO NO NO NO YES

Resolution III NO NO NO NO NO NO NO

NO: no standard error is possible for the plan

YES: the standard error is calculated with sufficient precision

YES*: the standard error is calculated with insufficient precision

N/A: the plan is not available for the specified number of factors

Note: a standard error is always available when the experiment is replicated.

Using S-Check B-1

Appendix B: standard error table

A “NO” indicates that no standard error is calculated for the experiment. In the

“YES*” and “NO” cases, inferences of the data can still be made but it should be

done judiciously. For example, when the system load (and noise) is low, the esti-

mate of the standard error may not be necessary. In such cases a resolution III plcui

may be used for screening. In contrast, investigating interactions between send/

receive pairs in a highly congested (noisy) communication system may warrant a

sound standard error estimate.

Decisions about the importance of the standard error for analyzing S-Check’s

results can be aided with information about the test program and host system.

Knowledge from previously-run experiments is especially useful. In addition, the

significance of a factor in relationship to other factors in heu of adequate standard

error information can still be determined through the use of normal probability

plots. If significant outliers exist in the results, these plots highlight them as points

not on a straight line.

B-2 Using S-Check

Appendix C: Code Instrumentation

Appendix C: Code Instrumentation

Appendix C explains the method in which S-Check instruments the source code

program.

Using S-Check C-1

Appendix C: Code Instrumentation

Given the file foo.C, S-Check runs the default C preprocessor for the purpose of

including include files and expanding macros. The source code output from the C
preprocessor is then analyzed with the Cparser program. The Cparser builds an

abstract tree containing lexical and semantic information about the source code.

This information is stored in the file foo.tree. A separate tree is built for each source

file. S-Check (CTree library) uses the abstract tree to make inferences about the

code and to re-generate the original source code with instrumentation. Inferences

about the code allow for basic block factor selection, requests such as “ instrument

all while loops in function X()” are possible. This feature is not implemented yet.

To instrument and re-generate the source code, two inputs to the code generator

program (CInstGen) are required; the abstract tree and the user’s instrumentation

requests. Instrumentation requests are gathered and translated by S-Check and are

saved in foo.scheck. The files foo.scheck and foo.tree are fed as inputs to CInstGen

which yields the instrumented source code (foo.scheck.c). This code is then com-

piled with a compiler of the user’s choice to obtain object code (foo.scheck.o).

Other object files are then linked together to create the executable program.

C-2 Using S-Check

Index

A
analysis of variance 5

Arguments text field 10

artificial delay 20

B
barrier test 5, 11

build. See experiment

C
C-flag 10

code instrumentation 14

Command line arguments 10

Configuration Window 8-11, 17

Configure menu selection 17

D
default C-flags 10

delay value 16

delay value, setting the 20, 24

design of experiment (DEX) 2, 13, 20

Directory Contents 10

E

error

filter 28, 30

error messages 19

exiting S-Check 7, 17

experiment 2

building 20, 24

creating 7

deleting 7

noise 20, 23

opening 17

plan 4, 20

restarting 25

running 24-26

state of 25

stopping 25

suspending 25

Experiment Control Window 7, 17-24

experiment design/plan

full factorial 20, 21

half factorial 20, 22

quarter factorial 20, 22

Using S-Check 1

Index

resolution HI 20, 22

resolution FV 20, 22

experiment directory 6

experiment information

Factors 24

Overhead Est. 24

Runs Required 24

Status 24, 25

Time Estimate 24

Trial 24

Experiment List Window 7-8

F

factor

definition 4

selection 11-15, 18

Factor Editor 11,12-16,18

factor selection mode 15

File menu 8

I

input/output redirection 10

interactions 21

L

Id Flags 10

loader/linker flags 10

M
Machine Name 9

messages, on Experiment Control

Window 18

P

plots

Absolute Effects 31

Absolute Normal Quantile 32

Half Effects 31

Normal Quantile 31

postscript

save list effects 29

save plots effects 32

R
remote machine 9

replication, setting 23

response interval

setting 15-16

response time 5, 15, 25

results

list effects 27-29

plot effects 29-32

saving 17, 26

viewing 26-32

S

Save As menu selection 7, 17

Save menu selection 17

scaling test 6, 11

screening test 5, 11

Select Response button 13, 15

select response mode 15

Set Delay menu selection 20

Show Delay menu selection 20

SPS rank 5

SPS technique 4-6

Synthetic Perturbation Screening

(SPS) 1,3

T
target machine 9-10

test program 6

trial 4-5

U
User Name 9

W
warning messages 19

work set 10, 18, 24

working directory 10

Q
Quit S-Check menu selection 17

2 Using S-Check

How to install S-Check

S-Check software can be obtained via the ftp site www.scheck.nist.gov. You can also get to this

location by accessing the http://www.scheck.nist.gov Web address. S-Check 1.0 Alpha release

works on Sihcon Graphics and Sun parallel machines. S-Check analyzes any code that adheres to

either Kemighan and Ritchie or ANSI C. The graphical interface is written with the OSF Motif

toolkit (version 1.2). You must have the Motif hbraries to compile S-Check.

Steps:

1. Retrieve the compressed tar file scheck_LOA.tar.gz from the scheck directory.

2. Use gunzip to un-compress the file.

% gunzip scheck_LOA.taKgz

3. Use tar to extract the files.

% tar xf scheck_l.OA.tar

4. Change directory to scheck_l .OA

% cd scheck_l .OA

5. Configure the package for your system.

% configure

This command automatically configures the software source code package

for your particular system. Among other things, it builds the Makefiles

necessary to create the executables.

6. Make the executables.

% make

7. Make sure the executables (CInstGen, Cparser, and scheck) in the scheck_1.0A/bin

are in your path.

8. Copy the resource file Scheck to your home directory on the machine your running

9. Refer to the user’s guide, Using S-Check, to get started with the tool.

Note: S-Check has a X-windows user interface, so remember to set your $DISPLAY environment

variable to your local X-server and add the chent machine to your xhost list. Use the command
setenv DISPLAY your_X-server_machine:0 on the client machine to set the DISPLAY variable,

and the command xhost -i-cUent_machine on your local X-server to allow the chent machine to

open a window on your console.

Send questions or comments to scheck-tool@www.scheck.nist.gov.

directory

scheck on.

getting started

• put all “.c” parts of test program in same directory

• type the command scheck

S-Check Quick-Reference

Alpha Release 1.0

(some transitions omitted)

Written by; Gordon Lyon

SCheck: Experiment List Window
• select <name> from Experiment List Window to rerun or modify old experiment

or

• type in <new experiment name> to build completely new experiment

I

^ SCheck: Experiment Control Window

• set DEX Plans on automatic, Replication(s) = 1 or 2
• double-chck on files to establish or change response timing interval and code segments (fac-

tors) of interest

SCheck: Factor Editor Window
• chck on code parts suspected as bottlenecks. A black mark will indicate selection. A sec-

ond click rteletes the selection. The-window indicates the number of selected factors. Factor

selection is always active unless you hit the response selection button. Exit via OK.
• the Select Response button in this window sets points B-E between which experiment tim-

-ings will occur. This response is Usually set toscatch run time for the whole program, so the

window margin markers ofB and E should be set in the main driver. (The code being instru-

mented is indicated in the upper left-hand comer of the window.) The cursor will change to

red and be directional during response point setting.

• exit of the window leads back to the Experiment Control Window, where other files can be

set up or the experiment begun (see below).- '
i ^

SCheck: Experiment Control Window
• hit the Build button to initiate compilation and selection of delay size. Or, you can use the

Utilities menu option to set the delay manually, should you wish to do so.

• when the Start button becomes enabled, hit it to begin (errors will prevent this)

• when the experiment is done, use the Display menu selection to plot or list results.

List or Plot Effects Window
• if there is an error estimate, the error filter can be set in multiples of the standard error {e.g.,

2SE is a 95% confidence acceptance level). Any effect less than the Standard Error (SE) is

probably not significant. Even 2SE is marginal for SCheck Technology.

V
setup

con-

tinues

setup

stage

done
I

scheck: Configuration Window

• select directory contents and add to work set. Set flags as needed for host parallel system.

Exit via OK button.

