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Abstract

Motion cues are a rich source of visual information. Object boundaries

due to motion parallax, perception of collision, and transparency provide

crucial information to any mobile vision system, biological or robotic.

This report presents the formulation, design, evaluation and

implementation of a motion algorithm which accurately and efficiently

interprets the above motion cues.

Numerous previous results have suggested that all the relevant motion

information is contained in the image motion field, which is qualitatively

characterized by optical flow. Optical flow has indeed been applied to

many motion tasks such as 3-D scene reconstruction, locating the focus

of expansion, image stabilization, scene segmentation, motion detection,

obstacle avoidance, image compression, and medical diagnostics. In this

report, we take a new approach to the overall motion problem by

modeling general 3-D motion (and its projection on the 2-D image)

instead of optical flow (2-D image motion). In theory, this results in more

comprehensive and unambiguous interpretations of 3-D motion. In fact,

the general framework of the motion model based approach has not only

generated an elegant optical flow algorithm but also a direct solution to

motion boundary extraction, transparent motion segmentation, and time-

to-contact estimation. It has also led to more accurate estimations of 2-D

motion, mainly as a result of many elegant properties provided by the

spatio-temporal Hermite polynomial differentiation filters. These

properties include Gaussian derivatives, orthogonality, and a recursive

relation that resolves the nonlinearity of the motion model. In addition,

the separable filter design has made real-time implementation feasible.

For performance characterization of the optical flow algorithm, we

follow the scheme established by Barron [9] to evaluate accuracy; we

use another scheme developed by Heyden [46] to evaluate motion

boundary extraction; we also develop an accuracy-efficiency



performance plot to evaluate the cost-effectiveness of motion algorithms.

These thorough evaluations against existing algorithms show that our

algorithms presented in this report have excellent performance

characteristics in accuracy, flexibility, noise sensitivity, and efficiency.
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Chapter 1

Introduction

1.1 Motivation

Motion cues are a rich source of visual information. Object boundaries due to motion

parallax, perception of collision, transparency are all crucial information to any mobile

vision systems, biological or mechanical. Numerous previous research efforts have sug-

gested that all the motion information is contained in the image motion field, which is

qualitatively characterized by optical flow. Optical flow has indeed been applied to many
motion tasks such as 3-D scene reconstruction (Prazdny[90] ,

Adiv[3]
, Young &

Chellappa[120]
,
Bruss & Hom[14] , Negahdaripour & Lee [82] ), locating the focus of

expansion (FOE) (Prazdny[91] , Guissin & Ullman[39] , Aloimonos & Duric[4] ),

image stabilization (Burt, et al.[ 15] ), scene segmentation (Hartley [42] ,
Adiv[3] , Mur-

ray & Buxton[73] ), motion detection (Duncan & Chou[30] ), obstacle detection and

avoidance (Prazdny[90]
, Nelson & Aloimonos[79] , Young[122] , Young, et al.

[123] [124] ), video compression (Jain & Jain[51] ), and medical diagnostics (Chou &
Chen[23] ). In this report, we take a new approach to the overall motion problem as we
model general 3-D motion (and its projection on the 2-D image) instead of 2-D image

motion (optical flow). The traditional approach is depicted in Fig 1. In this approach, all

Fig 1 . Traditional approach—all interpretations are based on optical flow

the motion interpretations are based on optical flow, computed using a 2-D image

motion model. In our approach (Fig 2), all the 3-D motion model parameters can be used

1
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Fig 2. Our approach—model parameters directly used for motion interpretations.

for motion interpretations. Most motion applications can use some combinations of the

3-D motion parameters directly from our model. The model parameters generated in this

framework include optical flow, confidence measures, image gradient evolution, a cue

for multiple motions, and 2-D motion field curl.

Our primary goal in using the motion model based approach is to interpret and analyze

motion in a comprehensive, sound and direct way to resolve many difficulties currently

faced in motion research.

The first and foremost difficulty is the computation of optical flow. Image noise and the

aperture problem both require the use of a large template (correlation based method) or

large filters (gradient and frequency based methods). But a large template or filter covers

more image area and therefore the traditional 2-D translational motion model becomes

inadequate. For example, when the observer is approaching a scene, there is expansion

as well as translation in the 2-D image. This is illustrated in Fig 3.1 and Fig 3.2. Model-

2



ing the 3-D motion will relax the constraint on the template or filter size.

Fig 3.1 Translation only Fig 3.2 Translation plus expansion

Another apparent difficulty lies in motion boundary extraction. To deal with the aperture

problem, previous motion estimation algorithms enforce a smoothness constraint or

apply filters with appropriate filter support. In either approach, motion estimation on the

boundary is not correct. Methods that extract motion boundaries from such flow field by

detecting discontinuities will fail. A motion model based approach works similarly to

the computational approach proposed by Canny [22] . We both model regularities

(motion in our case; edge in Canny’s) and irregularities (boundary in our case; noise in

Canny’s) and observe high response in one of the model parameters to locate boundaries

(edges). This resolves the motion boundary conflict.

Another difficulty exists in the computation of flow field divergence. Divergence can be

derived from flow field but if the flow field is derived based on the traditional uniform

translational motion model, then the model itself is in conflict with the existence of flow

field divergence. Our motion model based approach models divergence from the outset

and avoids the conflict.

It is clear now that the traditional interpretation of motion based on optical flow has had

many problems. Without a sound interpretation of 3-D motion, some motion algorithms

and applications using optical flow may be self-contradictory.

In attaining our primary goal, we remain careful not to compromise the algorithms’

accuracy and efficiency, which is crucial to real world motion applications. Indeed, cur-

rent motion research is still far from being utilized to its fullest potential. The key prob-

lem is the combination of accuracy (precision and robustness) and efficiency. We realize

that the above theoretical innovations are meaningless if the algorithms are not adapted

to real world motion tasks. We have aspired to make the implementations as accurate

and efficient as possible and at the same time make them applicable to real tasks. In

doing so, we have been rewarded not only with an insight into some elegant numerical

techniques but also with a new understanding of many issues of “applicability”, includ-

ing accuracy, efficiency, flexibility, etc.

1.2 Contributions

In theory, our motion model based approach results in more comprehensive and sound

interpretations of 3-D motion. In fact, the general framework of the motion model based

3



approach has not only generated an elegant optical flow algorithm but also direct solu-

tions to motion boundary extraction, transparent motion segmentation, and time-to-con-

tact estimation. Motion boundary extraction is based on a model parameter which is

analytically related to motion discontinuities. Transparent motions can be modeled and

thus segmented. Flow field divergence is shown to be related to image gradient evolu-

tion, which is modeled in our formulation.

In practice, our approach has led to more accurate estimations of 2-D motion, mostly

due to the 3-D model and the spatio-temporal Hermite polynomial differentiation filters

employed. These filters provide many elegant properties including Gaussian derivatives,

orthogonality, and a recursive relation that resolves the nonlinearity of the motion

model. In addition, the separable filter design has made real-time implementation feasi-

ble.

Suppose the image size is S and the maximum motion velocity is V and also suppose

that the algorithm is to output dense results. Traditional correlation algorithms perform-

ing spatial search or gradient based algorithms using 2-D filters are of complexity

2 30{V S)

.

Several recent spatio-temporal filter based methods even have 0(V S ) com-

plexity. Our algorithm has achieved the lower bound of 0( VS)

.

Since there are many existing algorithms, we consider rigorous evaluation and perfor-

mance characterization as integral parts of this report.

A thorough evaluation has demonstrated our optical flow algorithm’s excellent perfor-

mance. Both synthetic images with ground truth motion and real images are used. The
criteria include accuracy, noise sensitivity, algorithm’s flexibility, and efficiency. Our
motion boundary extraction is also very accurate in extracting and locating boundaries

in a quantitative evaluation scheme. Our transparent motion segmentation and collision

avoidance algorithms are both evaluated using real images since there are few compara-

ble implementations. Both show good results.

Some of our evaluations, although based on previously reported schemes, contains some
more interesting aspects which are fundamental to the understanding of the underlying

algorithms. For example, noise sensitivity, while very important in real applications, is

not covered in the original optical flow evaluation by Barron [9] . In addition, evaluation

of the localization error of motion boundaries is separated from evaluation of the error

due to incorrect flow, so that the evaluation points out the algorithm’s problem more spe-

cifically.

Since our algorithms perform well in many respects, it is natural that we address the

issues of real-time implementation. These issues have been neglected because many pre-

vious motion algorithms have struggled with either accuracy or efficiency. Once these

two conflicting criteria are jointly analyzed, many interesting points arise and an analy-

sis of cost-effectiveness becomes necessary. Our analysis of the accuracy-efficiency

trade-off is one of the first such studies and will be very useful in implementations.

All the algorithms presented in this report have computer implementations available for

reproducing our results and for users interested in using our algorithms for other motion

applications.

4



Real world tasks that can benefit from the work reported here include unmanned vehicle

(obstacle avoidance, range recovery), reconnaissance, surveillance, target acquisition

(image stabilization, object tracking, motion detection), video compression (motion esti-

mation, segmentation), etc.

In summary, this report offers a sound theory that interprets 3-D motion unambiguously,

a set of algorithms that perform well in terms of accuracy and efficiency, rigorous evalu-

ations that clearly characterize the algorithms’ performance, and real-time implementa-

tions that are suitable for many real world applications.

1.3 Organization of the report

The remainder of the report is organized follows. Chapter 2 introduces the general

motion model and the spatio-temporal filters as a theoretical basis for the entire report; it

also presents our optical flow algorithm in this framework. Chapter 3 evaluates the opti-

cal flow algorithm’s accuracy against several existing ones using Barron’s scheme [9]

.

We also evaluate the algorithms’ noise sensitivity, output flexibility and applicability to

real world tasks such as obstacle detection. Chapter 4 describes the motion-model-based

boundary extraction method and its evaluations. Chapter 5 introduces a visual threat

cue—image gradient evolution and its application to obstacle avoidance. Chapter 6 mod-

els and formulates transparent motion in our framework and presents a solution to trans-

parent motion segmentation. Chapter 7 presents our real-time implementations and

efficiency evaluation. It also addresses many important issues regarding real-time imple-

mentations.

Since each motion problem is dealt with separately, relevant previous work is discussed

in each chapter, and experiments are also presented separately in each chapter.

Chapter 8 concludes the report with possible future research directions.
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Chapter 2

A General Motion Model
Approach to Optical Flow

Traditional optical flow algorithms assume local image translational motion and apply

simple image filtering techniques. Recent studies have taken two separate approaches

toward improving the accuracy of the computed flow: the application of spatio-temporal

filtering schemes and the use of advanced motion models such as the affine model. Each

has achieved some improvement over traditional algorithms in specialized situations but

the computation of accurate optical flow for general motion has been elusive. In this

chapter, we exploit the interdependency between these two approaches and propose a

unified approach. The general motion model we adopt characterizes arbitrary 3-D steady

motion. Under perspective projection, we derive an image motion equation that

describes the spatio-temporal relation of gray-scale intensity in an image sequence, thus

making the utilization of 3-D filtering possible. However, to accommodate this motion

model, we need to extend the filter design to derive additional motion constraint equa-

tions. Using Hermite polynomials, we design differentiation filters, whose orthogonality

and Gaussian derivative properties insure numerical stability; a recursive relation facili-

tates application of the general nonlinear motion model while separability promotes effi-

ciency. The resulting algorithm produces accurate optical flow and other useful motion

parameters. It is evaluated quantitatively using the scheme established by Barron, et

al.[9] and qualitatively with real images.

2.1 Introduction

Research in the field of optical flow, originating from Gibson[36] , has generated many
algorithms in the past two decades, and at the same time has led to numerous applica-

tions. To name a few, optical flow can be used to compute three-dimensional motion and

structure (Prazdny[90] ,
Adiv[3] , Young & Chellappa[120] , Bruss & Hom[14j ,

Negah-

daripour & Lee[82] ,
Gupta[40] ), to locate the focus of expansion (Prazdny[91j

,

Guissin & Ullman[39]
,
Aloimonos & Duric[4j ) or a moving observer’s direction of

heading, to segment independently moving objects (Hartley[42] , Adiv[3] ,
Murray &

Buxton[73] ), to extract boundaries (Thompson, et al.[106] ), to detect motion (Duncan

& Chou[30] ), to stabilize images (Burt, et al.[15] ), to perform obstacle detection and

avoidance (Prazdny[90] ,
Nelson & Aloimonos [79] ,

Young[122] ,
Young, et al.

[123] [124] , Coombs, et al.[25] ), and to analyze medical video (2D echocardiographic

images) for diagnosis (Chou & Chen[23] ). All of these applications use optical flow

data in a quantitative way. Although it is true that the optical flow field is not necessarily

equal to the motion field[ 110] ,
relative accuracy in optical flow is very important in

obtaining qualitative properties of motion. For example, discontinuities in optical flow

7



are useful qualitative properties that can be used to locate motion boundaries more pre-

cisely if the flow is more accurate.

Evidently, the importance of accurate optical flow cannot be overemphasized. In view of

this, Barron, Fleet, and Beauchemin[9] developed a scheme for evaluating optical flow

algorithms, highlighting the current endeavor to achieve greater accuracy.

However, attempts to obtain accurate motion estimates are impeded by three sources of

error: sensor noise, brightness changes over time, and quantization error. Sensor noise is

caused by optical or electronic irregularities. Brightness changes occur due to changing

light sources, shadowing, camera aperture adjustments, or shading of a Lambertian or

specular surface. Quantization error is inherent in digital images. These factors represent

physical challenges that cannot be overcome but can only be mitigated by image pro-

cessing techniques. In addition to dealing with these physical errors, are there other

ways of improving the current best optical flow algorithms? To answer this, we need to

review other systematic difficulties that have been facing us.

The first difficulty is the aperture problem or the ill-posed nature of the flow computa-

tion problem. Traditional optical flow algorithms have worked on finding reasonable

constraints to solve this problem [4,48,68,78,97,109]. Although many ideas have been

proposed, the desired accuracy has not been achieved due to two factors: lack of atten-

tion to better filtering schemes and the use of the simple assumption of uniform transla-

tional motion. A good filtering scheme is essential in dealing with the aforementioned

sources of error, and uniform translation is insufficient for describing general 3-D

motion.

Recent studies have taken two separate approaches to improving accuracy. The first is

the application of spatio-temporal filtering schemes [34,44,58,100,113]. The second is

the use of improved motion models [10,19,23,42,77,100,111,116] such as the affine

model. The fact that these two approaches are actually complementary to each other will

become clear as we analyze their individual advantages and disadvantages.

An intuitive idea for achieving better accuracy when applying a filter is to increase its

support. A large support alleviates the aperture problem, smooths out more noise, avoids

aliasing, and reduces quantization and truncation errors of the filter. For example, to esti-

mate temporal derivatives, recent research has used temporal filters on multiple frames

instead of simple successive frame differencing (Fig 4.1). In fact, more sophisticated

spatio-temporal filters[ 1 8] [44] [34] , i.e., 3-D filters (Fig 4.2), have been developed to

estimate image properties.

2-D Sobel operator or

other simple operators

Temporal difference or correlation

7

_/
3-D filter kernel

3-D convolution (filtering)

Fig 4.1 Traditional filtering approach Fig 4.2 Spatio-temporal filtering approach
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However, an arbitrary increase in filter support is not adequate due to the second diffi-

culty commonly experienced: the lack of a good motion model. Since traditional algo-

rithms use simple filtering schemes and small filter supports, they can safely assume

uniform translational motion described in the following image motion equation:

I(x,y,t )
= F(x-ut, y-vt) . (1)

Once the spatio-temporal filters are applied and the support increases, the motion within

the filter region becomes more complicated. Moreover, if we consider perspective pro-

jection of the 3-D motion onto the 2-D image plane, the problem gets worse. For exam-

ple, a forward moving observer sees a diverging scene in which an image patch can

undergo both translation and expansion (Fig 2). Generally, divergence, curl, and

deformation[57] as well as translation exist in 2-D image motion. Unless the motion

model accommodates all these motion parameters, there is a limit to the useful filter

size. Recent research has proposed the affine motion model to cope with this difficulty.

However, even if a general motion model is used, it may not necessarily improve accu-

racy because of the increase in the number of motion parameters. More constraints and

sophisticated filtering techniques are required to compute additional image properties;

for example, one may use higher order derivatives to compute divergence, curl, and

deformation [116] .

The above two approaches (spatio-temporal filtering and improved motion modeling)

have achieved a certain degree of improvements over traditional algorithms. Interested

readers may refer to Section 2.2 for more details about these approaches and for compar-

isons. Nonetheless, the interdependencies between them still set a limit to their accuracy.

To answer the question posed earlier: Yes, we can improve on the current optical flow

algorithms by unifying a general motion model and a spatio-temporal filtering scheme.

A general image motion model based on 3-D relative motion has been developed in[67] .

However, we need to extend the instantaneous motion model so as to describe continu-

ous motion because of the intrinsic requirement of spatio-temporal filtering. The contin-

uous motion model is actually a 4-D model that involves X, Y, Z, t. An image motion

equation based on this model is not tractable, especially considering the non-linearity

imposed by perspective projection, unless we make a small motion approximation. A
pointwise analysis reveals that 2-D motion is quadratic with respect to image coordi-

nates (x, y) . It is then clear that we need a potent spatio-temporal filter design to solve

the problem.

The spatio-temporal filtering scheme we use is based on 3-D Hermite polynomial differ-

entiation filters [43] [58] ,
which possess several advantages: the orthogonality and

Gaussian derivative properties of the filters insure numerical stability; the approach is

generalizable to higher order derivatives we desire; a recursive relation to be developed

below (20) can nicely facilitate the computation based on the quadratic motion equations

and linearize with respect to motion parameters; these three properties make possible the

coherent application of multiple filters. Furthermore, its separability promotes comput-

ing efficiency. Numerous physiological models[38,125] also support the theory that

visual receptive fields can be modeled by Gaussian derivatives.

*. A patch centered at the focus of expansion has expansion only.
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To achieve higher accuracy, we still need to overcome the third difficulty: occlusion or

motion boundary effects. It is where accretion or deletion occurs[75] , and the informa-

tion available to solve the optical flow problem is reduced. This difficulty is also com-
mon to other vision problems such as stereo matching. However, this issue is beyond the

scope of this chapter and will be investigated in a future study.

The ultimate goal of this research is to develop a flexible set of algorithms that deals

with arbitrary 3-D relative motion and computes accurate optical flow for such applica-

tions as obstacle detection or motion segmentation. Our method is not only capable of

unifying the two approaches attempted by recent research but also results in algorithms

whose output is adequate for many motion applications. Its competitive performance is

demonstrated using the evaluation framework established by Barron, et al.[9] .

2.2 Previous Work

Recent research in the field of optical flow seems to converge on two ideas to be detailed

in this section. They are spatio-temporal filtering and improved motion models.

An earlier method based on these two ideas has been proposed in [100] by Srinivasan.

In this approach to an improved gradient method for optical flow, the author concen-

trated on generalizing spatio-temporal filtering and demonstrated his algorithms on vari-

ous types of motion. However, the algorithms did not deal with motion that

simultaneously contained translation, expansion, and rotation. In fact, it is stated that

“erroneous results can occur if a translatory motion is superimposed upon the rotation or

expansion”. Nonetheless, [100] is one of the first efforts in generalizing the existing

optical flow algorithms.

Later, Workhoven and Koenderink [116] introduced the idea of the affine flow field (2)

to estimate optical flow:

(2 )

A series of algorithms [10,19,23,77,111] using this more comprehensive flow field fol-

lowed.

Based on an infinitesimal affine flow field, both Workhoven & Koenderink [116] and

Nagel [77] used Taylor series expansion and 2-D Gaussian derivative filters to derive

motion constraint equations. These equations are organized as a linear system in a simi-

lar way in both studies. Their work can be regarded as an extension of the gradient-based

method originating from Horn and Schunck’s work [48] . Our work is inspired by

Workhoven and Koenderink’s algorithm because an extensible motion constraint equa-

tion similar to (33) was developed in [116] ,
though only in 2-D. However, the affine

model is different from our general motion model, which is based on the pointwise 3-D

motion analysis. Also their approach does not offer an algorithm with competitive

experimental results. In fact, our implementation of their algorithm shows that it is not

reliable due to the high condition number of the linear system.

Campani and Verri [19] ,
Bergen et al. [10] , and Wang and Adelson [111] used local

flow field coherence rather than the Taylor expansion to compute flow. Their work can

V(x) = T + Ax where T =
u0 and A =

u ux y

v
0

V Vx y

10



be regarded as an extension of the gradient-based method originating from Lucas and

Kanade’s work [68] . They do not require high-order gradients but need to perform

patchwise computation. Patchwise computation is accurate when the motion has been

segmented but inaccurate otherwise due to its strong susceptibility to the aperture prob-

lem.

Chou [23] modeled the error in the affine flow field as independent Gaussian noise and

used Maximum a Priori (MAP) estimation to minimize the error and compute optical

flow. We show later that the error modeled in [23] consists of exactly the quadratic

terms. It is actually systematic and dependent on motion. Therefore, this noise model is

not adequate.

Prior to the affine flow model. Hartley [42] had proposed a quadratic flow field model

and used pyramid linking to estimate and segment flow simultaneously. This is the first

use of the “correct” motion model in an algorithm. The integration of estimation and

segmentation is a promising approach, but the lack of temporal or even spatial filtering

to deal with noise is the main weakness in this work.

We realize that modeling a flow field is essentially a 2-D process, whereas modeling

motion is a 3-D process, which is relatively difficult. However, we can impose temporal

filtering in an integrated theoretical framework based on Hermite polynomials and turn

the difficulty into an advantage.

Buxton and Buxton [18] first applied spatio-temporal filtering to the motion estimation

problem. Heeger [44], Fleet and Jepson [34], and Weber and Malik [113] also

achieved success using spatio-temporal filters. However, they used a uniform transla-

tional motion model and their improvements are limited by this assumption. Among
them, Fleet and Jepson attempted to cope with non-translational motion in [34] . They

showed that the phase response, instead of the amplitude response, of the velocity-tuned

filters is robust to image affine transformations and photometric deformation. Their

algorithm is based on constant phase contours and tends to produce more accurate but

sparse flow fields.

If the above methods could take advantage of the general motion model to be developed

below (16), which deals with arbitrary 3-D motion, greater improvements might be

achieved. However, these methods might have difficulties with spatial nonlinearity (spe-

cifically, quadratic) and the number of parameters involved. Hermite polynomial filters,

on the other hand, are capable of overcoming these difficulties.

From a theoretical point of view, the image motion corresponding to arbitrary 3-D

motion has been studied by Longuet-Higgins and Prazdny[67] and Fang and Huang

[33] . We have made progress beyond these efforts not only by integrating temporally

continuous analysis but also by exploring robust numerical implementations. Fig 5 sum-

marizes the thread of work leading to our algorithm. An arrow in the figure represents an

idea extracted, extended or used similarly.

2.3 The General Motion Model

In this section, we describe how the local optical flow pattern reflects arbitrary 3-D

motion and use this knowledge to derive a general motion model and an image motion

equation. Rather than considering instantaneous velocity[67] , we consider velocity over

11
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Fig 5.Thread of the optical flow research

time for the sake of spatio-temporal filtering. Let a 3-D point P = (X ,
Y, Z ) undergo

steady rotation Q. y , £2Z ) and translation (Tx ,
T y ,

Tz ) per unit time with respect

to an observer at the origin. Previous research that deals with generalizing the motion

model has used a two-frame strategy as in [33]

,

which may be formulated as

X' X 1 —
y TX

Y' = R Y + T
,
where R = Q2 1

and T - Ty

Z' Z —Hy ^^X 1 Jz_

(3)

Equivalently, we write

X' X 1 -Q
z Oy TX

Y = M Y
,
where M =

Qz 1 Ty

T Z ~Q
y Qx 1

_1_ _1_
_
0 0 0 1_

matrix.

is the 3-D motion transformation

(4)
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The locus of a 3-D point P(t) = (X(t), Y(t), Z(t))
T
can then be described by

p(t) = MM...M p(0 ) = m' p(0 )

1 _
1 1

M

'

means matrix M raised to the power of t and is a polynomial of matrices. If M were

diagonalizable, M would be easily computed as SA S [49] , where A is the diagonal

matrix composed of the eigenvalues of M and S is the matrix of column eigenvectors.

However, M has two identical eigenvalues and is not diagonalizable. Fortunately, M has

a Jordan Canonical Form SJS
1

[102] from which M l

can be computed as SJ
C

S
1

,

where / has the analytical form [49]

J =

110 0

0 10 0

0 0 1 -Qi 0

0 0 0 1 +Qi

where Q 2 2 2Q~
x + Q y + and i = ja. (6)

Hence, J
l

1 t 0 0
1 t 0 0

0 10 0 0 1 0 0

0 0(1-Qi/ 0 0 0 1 - tQi 0

0 0 0 (1 +Qi)[ 0 0 0 1 + tCli

when Q. « 1

.

(7)

k
The assumption of small rotation, Q « 1 , or equivalently, Q = 0 for all k > 2 , is also

used in [33] and most other later studies. In other words, we use Taylor’s expansion up

to order 1 . Then,

1 -rQz tQ. Y tax + k>x 1 -rQz tQ. Y tax

1 -tClx ta Y + b Y fQ-z 1 -rQx ta y

-rQ Y rQx 1 taz + bz -tQ. Y tQ.x 1 taz

0 0 0 1 0 0 0 1 _

(8 )

where each of ax ,
a Y ,

az is a function of all of (Q.x ,
Q Y ,

Q.z ,
Tx ,

T Y ,
Tz )

.

In this con-

tinuous time motion analysis, the center of 3-D rotation is constantly changing due to 3-

D translation. Since, 3-D translation is also complicated by 3-D rotation, all the motion

parameters are involved in the expressions of ax ,
a Y , az ,

bx ,
b Y ,

bz . We may regard

ax ,
a Y ,

az as translations in the presence of rotation per frame time. Fortunately, since

at t = 0 , Af° = I,bx ,
b Y ,

bz vanish in (8), resulting in the last equality.
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The locus P(t) = (X(t),Y(t),Z(t))
T

projects to a point, (x(t), y(t))
, in the 2-D

image plane, where

'x(t) = fX(t)/Z(t)

y(t) = fY (t)/Z{t)
, where f is the camera focal length. Let

= fX/Z

Jo = fY/Z
. Then (9)

x(t) =

y(t) =

f(tax + X - tQ.zY + tQyZ)

taz — t£lyX + tQx Y + Z

f {tCLy + t£lyX + Y — t£lXZ)

taz — t£lyX + t£lxY + Z

f(taxf/Z + xQ - tQzy0 + tClyf)

tazf/Z - tO. Yx0 + tQxy0 + f

f{ta Yf/Z + tQzx0 +y0
- t£lxf )

*

tazf/Z - tQ.yX0 + t£lxy0 + f

( 10)

Note that an instantaneous velocity derived in [67] is a special case of our formulation,

namely, the velocity (u, v) at t = 0:

Note that the flow is generally quadratic in terms of x and y

.

Computing optical flow

based on the uniform translation model is far from adequate, while the affine motion

model is only valid when there is no rotation in the X and Y directions.

To derive an image motion equation in the form of (1), we start with the brightness con-

stancy equation:

I(x(t),y(t),t) = l(x0,y0,0). (12)

Without loss of generality, let F(x0 , y0 )
= I(x

0 , y0 , 0) . It suffices to find x0 , y0 in

terms of x(t), y(t ) , which will be denoted by x, y for simplicity. The resulting solution

is extremely complicated, but assuming small rotation and small 3-D translation relative

to distance, namely, ax ,
a Y ,

az «Z , we have

x0 =

x+t\—x + Q.zy - fy— + Q.

1 + j(ClyX-Q.xy)
Yo

y + t\-Q.zx + -y- f z~ Qx
.(13)

1 + j(Q vx-Qxy)

Equation (13) can be further simplified by using the approximation

j
Q. y x,

j
y « 1 , as follows:

14



(14)

x0 ~\x + t\—x + Qzy -f[ — + Qy 1 — j.(Q.yX — £2^y)

Jo -
|
J + r[ -QZX + Yy ~f z' Qx 1 — f(Q.yX

— Q.zy)

XQ ~X+ + Clzy - ji^yX
2 ~ f^Xy)

y0 = y + t[-Q.zx + yy - f{j^ - j(&Yxy ~ ^x/)

(15)

The above approximation is justified by the following facts. First, the value of / in pixel

units is usually large. For example, for a 256x256 image with a field of view of 45

degrees, / is 309 pixels. Second, since we are concerned with motion in a relatively

small image spatio-temporal neighborhood (i.e., the so-called pointwise analysis), x, y, t

are small. Third, a small rotation in the X and Y direction in 3-D space can be approxi-

mated in the 2-D image plane as a simple translation. The error from this approximation

will be absorbed by the translation parameters ax ,
a Y , thus offsetting the optical flow

error. Inherent 3-D motion ambiguities related to this are described in [2] [121] . We will

also use the above arguments for further simplification in our algorithm development

(Section 2.5.2).

Now the image motion equation is, from (12) and (15),

7(x, y, t )
= F(x + t(a + yx + py + bx~ + exy), y + r( (3 - px + yy + 8xy + £y“))

, (16)

where

“ = ~f ij
+ ar)^

= -/
(x~

Q
*) T = X’ p = QZ ’ 8 = ~}n r’

e =
J
Q*- (17)

We are to develop a filtering scheme to relate all the above motion parameters to the 3-D

filter output and then solve them in order to estimate the optical flow, which is (-a, -(3)

atx = y = f = 0 (the center of the window) from (11) and (17). Note that these

motion parameters are closely related to 3-D motion.

The above two equations, (16) and (17), constitute the general motion model we will uti-

lize throughout the paper. In summary, it is derived from the brightness constancy equa-

tion (12) and continuous-time motion analysis using the 3-D motion transformation

matrix (4). Since equation (16) is true pointwise (under small motion assumptions), it is

different from other motion models (affine or quadratic) whose analysis is based on a 3-

D planar surface. For the same reason, the motion model is correct for arbitrary 3-D

scenes and even non-rigid motion.

To demonstrate the behavior of the image motion equation, consider the following basic

motion patterns of a parallel frontal picture:

15



1 . When there is no rotation, and no translation in the Z direction, then

y = p = § = £ = 0 (17), and there is uniform image translational

motion, as assumed by traditional algorithms (Figure 3.1
,
page 3).

1. When there is no rotation, p = 8 = 8 = 0 , hence the image motion is

affine without rotation, i.e. with only expansion and translation (Figure 3.2 ,

page 3).

1 . When there is no translation in the Z direction, y = 0 and no rotation in the

X and Y direction, 8 = 8 = 0 , the image undergoes translation and rota-

tion (Fig 6.1).

1 . When there is no rotation in the X and Y direction, 8 = 8 = 0, the image

undergoes affine motion without deformation, i.e. only with translation,

expansion and rotation (Fig 6.2).

Fig 6. 1 Translation and rotation

X X

Fig 6.2 Affine motion without deformation

1. An arbitrary 3-D motion generates an image motion like Fig 7.

Intuitively, (a, (3) are related to optical flow, y and p can be interpreted as expansion

and rotation parameters respectively. 8 and e are related to perspective effects arising

from rotation in both X and Y directions. If the imaging surface is a sphere instead of a

plane, there will be no perspective effect.

In summary, the image motion equation is based on expedient and reasonable approxi-

mations. It is applicable not only to the algorithm developed here, but also to other

motion algorithms, although the extent of improvement depends on the particular algo-

rithm. For the gradient-based method, the filtering process is the decisive factor as far as

performance is concerned. We formulate the theory of Hermite polynomial differentia-

tion filters in the next section.
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2.4 Hermite Polynomial Filters

2.4.1 Hermite polynomials

The nth Hermite polynomial H
n
(x) is a solution of

2

( 18 )

The H
n
(x ) are derived by Rodrigues’ formula [43] :

Hn(x) = (- (19)

dx

The computation of H
n
{x) is especially easy using the following recursive relations:

H
n + l

{x) = 2xH
n
(x)-2nH

n _ {
(x)

H
0
(x) = 1 (20)

H
x
(x) = 2x

2 -x
By substituting G(x) (with variance cT) for e

x
in (19), we generalize to Hermite

polynomials with respect to the Gaussian function. Let these Hermite polynomials be

denoted by Hn (x )

Hn(x) = (-1 )

n
G~\x)-^-(G(x)) (21)

dx

Note that Hn {x) differs from H
n
(x) by a scaling product:

(22)

The scalar product of two functions and the L2-norm of a function with G(x) as a

weight function are defined as follows:

The orthogonality of { Hn (x ) } can be expressed in the following way[43] :

(23)

The 3D case of Hermite polynomials is especially simple because they are separable.
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(24)

Thus the polynomial of order n = i + j + k is

H ijk (x,y,t

)

= Hi(x)-Hj(y)-Hk (t) .

2.4.2 Derivation of gradient constraint equations

One of the most important properties of Hermite polynomials is the property of Gauss-

ian derivatives. It is with the aid of this property that we are able to establish gradient

constraint equations. This property is manifested in the following theorem.

Theorem 1: A one dimensional signal /(x) can be expanded in terms of Hermite poly-

nomials as

I(x) = I h
k = o

Hk{x)

INI
2

Then/* = </,//*) = < l
{k)
,H0> where H0(x)

k

and /(*) = ^4
. (25)

dxk

The proof is given in Appendix A. This theorem states that the kth order Gaussian

derivative of the image is the inner product of the image and the kth order Hermite poly-

nomial Hk (x) . Note that the theorem is true only for unnormalized Hermite polynomi-

als. This fact is used when we assign weights to motion constraint equations of different

orders in equation (37).

Recall our image motion equation (16),

2 2
/(x, y, t )

= F(x + t(

a

+ yx + py + 5x“ + exy), y + f ( (3 - px + yy + Sxy + ey
-

)) .

Expand both sides with Hermite polynomials.

oo oo ©o

H
oo oo oo

III = 1 1 I
H ijk

i = 0j = 0k = 0 \

H ijk\

then

i = 0j = 0k = 0
Him

I
ijk

= <I,Hi:/*>
= Fijk = (F, Hijk)ijk

Equating I
i

:
l
to F

tjl
and using Theorem 1, we derive

Iin = Fm = <F.ffy 1 > = <|f,Hyo>

(26)

2 d

F

9 ^F —
= ((oc + yx + py + 5x +exyW— + (p-px + yy + 5xy + ey W— , H^o)

oXn oyo

2 , 0/

L
o

,3/ 77
« ((a + yx + py + 5x + £xy)^ , Hijo) + <(P - px + yy + 5xy + £y )^ ,

Hij0) (27)

We make the above approximation because equations (10) and (17) allow us to derive
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(28 )

dF dl dx didy dl .. . dl , .

+ 37TT- =
dx0 9x3x

0 dydx dy

Since
dF
dXr

dl_

dx
and the inner product is Gaussian

x = 0, y = 0, t = 0 dX x _ o } y = o, r = 0

weighted, the error is not significant. Without the approximation, the eventual constraint

dF
equation would be nonlinear and very difficult to solve. The analysis is similar for

Therefore, we arrive at

l,ji = {(a + Yx + py + Ojf-t- ExvjU Hij0) + ((|5 - p* + yy + 8xy + ef )^,H,jn) . (29)

Im = a<^, H,j0) +y(j^, xHij0) + P<|i, yH,j0) + x
2Hij0} + e(~, xyHij0) (30)

+ P Hijo) -
P <||, xHijo> + 7 ytfy0> + S<|^, jyffyo) + £ <|j, y

2

#yo>

To simplify (30), we derive from (20) and (22) the following equation

xHn (x )
= G 2Hn + i

(jc) + nHn _\(x) .Hence (31)

/y, - «<|f. Hyo) +Y<|f. G
2
Hi+ijo + iHi_ ,;o> + P

a

2

1,0 + JHij-yo) (32)

+ 5(^,G Hi+2j0 + (2/ + 1)0 Wyo + i(i + 1)H,_2^o)

+ £(^ ,
<7 //; + iy+ i, o + ict ///_ \j+ i, o + j® Hi + l j- 1,0 + ijHi-i j~ i, o)

+ P , #«/o> - P , <7% + 1)0 + iHi- ijo) + 7(^ , c
2
tf«y + 1, o + jHij - i, o>

+ » <J
4
Hi + \ j+ 1

, 0 + i<5~Hi-.
1 y+ 1,0 + jG

2
Hi+ 1 1,0 + ijHi-

1 )- i, o)

+
£<1^

,o%> 2,0 + (2;+ l)(7
2

Hyo + ;0'+ l)ffy- 2,o>

Using Theorem 1, we simplify (32) to
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(33 )
I
ijl

s:aI
i + ljO

+ y^2l
i + 2jO

+ iI
ijO^

+ p[tf
2

/; + ij+ 1, 0 + jJi + \j- 1, o]

+ §[a
4
/

/ + 3jQ + (2 / + 1 )c
2
I

i + 1 j0 + i(i + 1 )/,•_ ly0 ]

+ £ [

<

7
4
/

2
- + 2j + 1, o

+ I
ij + 1,0 + 7°^ / + 2j - 1, 0

+ - 1 ,o]

+ P^iy+l,0“p[a + 1; + 1, 0 + ill - 1; + 1, 0 ] +y[O
2
Iij + 2,0 + jI

ij0 \

+ 5 [a
4
/; + 1; + 2, o + ia

2
Ii _ Xj + 2, o

+ + 1 yo
+

i - iyo]

+ £[a Iij + 3, o + (2j + l)a I
tj + 1)0 + j(j + 1 )^ij~ i, 0 1

For generality, in equation (33), we can substitute ijk for ij 1 and (/(^ - 1 ) for ij0 . All

other terms will remain the same. In deriving equation (33), we assume that the motion

parameters a, |3, y, p, 8, £ are constant within the filter support. This is true under the

assumption that the underlying surface is parallel frontal so that Z is constant (17).

As stated in the introduction, the general motion model is a fundamental element result-

ing in a coherent spatio-temporal filtering scheme to compute optical flow. This capabil-

ity stems from two nice properties of (33). The first is the linearity of the equation in

terms of the motion parameters as defined in (17); the second is its extensibility to higher

orders, i.e., the values of i, j can be as large as required by the number of parameters.

Thus to solve for the motion parameters and then for optical flow, we derive a system of

linear equations with coefficients computed from spatio-temporal filters I
tjk

. These

result in excellent numerical stability due to the orthogonality of the Hermite polynomial

differentiation filters and their inherent Gaussian smoothing. Although (33) appears to

be complicated, it in fact suggests a simple, local, and parallel algorithm, which involves

only convolutions and solving a linear system, as presented in the next section.

2.5 Algorithms for Computing Optical Flow

Equation (33) gives rise not to a specific algorithm but to a set of algorithms, due to its

extensibility. We can derive the same number of equations as unknowns and solve a lin-

ear system, or we may incorporate more equations of higher order and solve a linear

least square problem. On the other hand, if we possess knowledge about the input image

- quence, for example, that there are no rotations around certain directions, the number

c unknowns can be reduced. We also make other expedient choices based on numerical

considerations and experimental findings. All these options are explored in the following

subsections.

2.5.1 The general framework

According to (33), we can derive six equations up to the third order. Within a 3-D local
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window, we estimate {I
{jk }

with the discrete approximation
{
7^(x, y,t) }, that is, the

3-D convolution of the sampled Hermite polynomial filters with the image sequence,

and write the equations in matrix vector form:

M
6
s = c, where M

6 = (M4 ©M 2 ) where ® means concatenation, and (34)

s =

r ~
Oo —

1

a
/l01

P

Y
,
c = o

<

—

<

<
II

sj-

P ^201

5
/ill

£_

/02 1_

2

hoo ^010 a~(^200 + ^020 )

~ 2
1200 I no a 300 + /l2o) + ^ 100

2,-r
Ino 1020 a (hio + /030 ) + /010

/3OO h \0 a (UoO + ^220 ) + 2/200

2 ,%

0

-/010

/ 100

—2/
1 10

^210 /l20 a- (^310 + /l3o) + 2/li0 h00~l020

7l20 7q30 G (^220 + 7q4o) + 2/020 2/ 110

(35)

4 - - 2-
a (^300 + f 120) + a LoO

4 - « 2-
a (/210 + ^030) + 0 ^010

4 ~ ^ 2 - ~ 4 ^ ^ 2-
0 (^400 + ^220) + a (3^200 + ^020) + 2/(X)0 c (h\0 + h3o) + ® 2/no
4 ~ ^ 2 '

0 (/310 + / 130) + O 2/no
4 >v ~ 2

o (/220 + ^04o) + a ( 3/020 + /200) + 2 /qOO

4- - 2 a - A - * 2-
a d500 + hio ) + a (5/300 + 3 / 120) + 6/ 100 a ( /41 0 + ^230) + 0 3/210

4 ~ * 2' - - 4 ~ „ 2 -

a (^410 + ^230) + a ( 4 ^210 + ^030) + 3/oiO ° (^320 + ^140) + 0 (4^120 + ^300) + 3/i00

a (-*320 + ^05o) + 3 / 120 a (?230 + ^050) + a (5^030 + 2/210 ) + 6/qio

(36)

Note that filter outputs of up to fifth order are used. 5 can be solved exactly by (34) for

the center pixel of the 3-D convolution window and optical flow at the center of this win-

dow is (-a, -(3) . Note that we can also derive more equations using even higher order

derivatives and obtain a linear least square estimate of the parameters and optical flow.

2.5.2 Specialized algorithms

The algorithm presented in the previous subsection, i.e., solving a full-rank linear sys-

tem, is often not necessary for many image sequences. There are several disadvantages

in using it for simple motion: First, it requires the use of higher order filters; their

orthogonality is always distorted with limited filter support while the use of a large filter

results in greater susceptibility to motion boundary effects. Second, the linear system is

often highly ill-conditioned, since the columns of the matrix are of different orders of

magnitude. Third, it is computationally expensive.

Let the focal length be large enough and/or the rotation in the X, Y direction small

enough for 5 and 8 to be small (17), i.e. the perspective effect is negligible. Then

Mn = 0 and we have a linear least square problem:
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E = ram||A4s4
- b\\ where A

4 = WM4 , b = Wc, and

W = Diag[w
x ,
w

2 ,
w

3 ,
w4 ,

w
5 ,
w

6 ] . (37)

W is the diagonal weight matrix for the motion constraint equations. According to (26),

we use

- m-2

'i
= Ikooill

i- m-2
w

2
=

ll^lOlll = ||^01l||

2
>w4 = |//20l|| w

5 = |j//ml w
6 = ||ff02i|r

l— 11-2

Equation (37) models affine motion without deformation, as depicted in Fig 6.2. Note

that this formulation reduces the highest order filter to fourth order. In addition, a least

square solution is more stable than a full-rank linear system. The applicability of the

weight matrix is another nice feature. We suggest solving (37) by QR decomposition:

A4 = QR, and E = min\\QRs + b\\ = minl/fa + <2^1, where Q is unitary. (38)

R can be denoted by , where R
s

is an upper triangular matrix; and Q b is
X

_
0

_
b

r

correspondingly. Equation (38) then becomes

E = mm(||R
5
s + 6j + ||6 r ||)

= ||Zv||
= r if R

s
is not singular. (39)

The solution 5 is computed from R
s
s + b

s
= 0 (40)

For many practical applications, the above algorithm is adequate for computing optical

flow. Nonetheless, one can still simplify the algorithms and improve the stability of the

linear system. For example, in many synthetic image or synthesized real image

sequences [9] where there is no rotation along the optical axis, i.e., Qz = 0 ,
we get

p = 0 and (37) reduces to

E = mm||A
3 53

-
&|| , (41)

where A
3
and .s^ are the first three columns and elements of A4 and s4 , respectively.

Furthermore, the third column in A
3

involves higher order terms plus a lower order

term. Experiments suggest that the lower order term is always dominant and more accu-

rate. Neglecting the higher order terms does not necessarily degrade the accuracy but

does save a great deal of computing time. This finding is very crucial especially for real-

time implementations.

As far as the implementation is concerned, our algorithm is efficient due to the separabil-

ity of the 3-D Hermite polynomial filters. Let the 3-D filter size be Wx
x W x W

t
and

image size be S

.

The complexity of the computation is 0((WX + Wy
+ W t

+ C)S) ,

instead of 0((WxWy
W

t
+ C)S) ,

where C is the constant factor associated with solving

the linear system.
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One of the advantages of using the QR decomposition is the availability of the matrix R
s

and the residual. The behavior of R
s
and the residual value reveal significant informa-

tion about the underlying images and motions. There are certain situations where the

optical flow cannot be reliably computed from local information due to, for example, the

aperture problem. Therefore, R
s
and the residual can be investigated for their possible

link to the reliability of the computed flow. We devote the next subsection to the discus-

sion of the optic flow errors and confidence measures.

2.5.3 Confidence measures

Our algorithm provides certain information about the behavior of the system equations.

This information includes the residual r
,
the condition number and the determinant of

R
s

. They can be shown [62] to signify certain image phenomena, e.g., occlusion, the

aperture problem, etc., which present difficulties for optical flow computation. There-

fore, they can be utilized to locate high error areas and suggest subsequent improvement

methods. For the sake of evaluation in Chapter 3, we simply use them as confidence

measures or threshold values to extract more accurate data; however, they can also be

used for qualitative image analysis such as motion boundary extraction [64] .

2.5.3.1 Residual

The residual of our algorithm is
||

A
n
sn + £>||

or r (=£) (39). The residual of an overdeter-

mined linear system indicates the degree to which the equations disagree with one

another. The reason for the existence of the residual lies in the approximation error of

{ Iij/c(x, y, t) }. A high approximation error may indicate one of three problems:

1. The assumption of the motion model is violated in the 3-D window: It is

possible that the window covers more than one moving object. Occlusion or

multiple independently moving objects in a window can cause this problem.

2. The assumption of constant image brightness is violated: It is not unusual

for the brightness of an object to change when the viewing angle changes

due to relative motion. In addition, the observing camera may adjust the

brightness gain as the content of the scene changes, resulting in a change of

object brightness. Similar effects can be caused by the shadow of another

object.

3. Quantization and truncation errors. Quantization errors result from sampling

Hermite polynomial filters: Truncation errors are introduced when we use

limited spatial support to compute
{ /^(jc, y,t) }. Within a small window,

the Hermite polynomials are no longer orthogonal and the derivatives com-

puted are not accurate. This situation is worse for higher order differentia-

tion filters. For example, (Hn ,
Hn)/a

~n
n\ (23) is 0.93 when n = 5 and

0.999945 when n = 1 for a window size of 2 1

.
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We can model the above errors as perturbations to the linear system [62] :

E = ram||(An + N)s + (b + AZ?)|| ,
where N and Ab denote errors and n <6

.

We prove in Appendix B the following analytical results:

As = 5 -s = -(a/a
r )

-1

A^(As + A£)

r = E~ (I-An(An

T
A

n
)'

l

A
n

T
)(Ns + Ab)

(42)

(43)

(44)

Note that the expressions for both optical flow error As (43) and residual r (44) are pro-

portional to the magnitude of the noise vector (Ns + Ab) . It is evident that locations

with a high residual value reflect large errors and inaccurate optical flow values.

Note that the three problems mentioned above suggest contradictory choices for the win-

dow size. With larger windows, problems 1 and 2 becomes worse; with smaller win-

dows, problem 3 becomes worse.

2.5.3.2 Condition Number and Determinant

The condition number of R
s ,

denoted by k(R
s ) , is defined as ||R

5
||||Rj'

1

||

and can be

I'M max
shown to be yyr—- , where the X ’s are eigenvalues or diagonal elements of R

s
.

IN min

The condition number measures the extent to which a linear system maps an input error

into an output error, i.e., the numerical instability of the system. If 5 contains errors mag-

nified by an ill-conditioned A
n
from errors in b

,

it is not reliable. Since matrix A
n

is

concerned with the image texture only and not with motion, we find that a high condi-

tion number results from the following two image neighborhood situations:

1. When there is a steep edge in the x(y) direction (Fig 8.1), the derivatives are

very large for x(y) and small for y(x);

2. When there is a lack of texture in a direction (the x + y direction in Fig 8.2),

the derivatives in the x direction are approximately proportional to the

derivatives in the y direction, i.e. I(x, y) ~ I(kx + y) .

Fig 8.1 Smoothed steep edge Fig 8.2 Lack of texture in x+y direction

The above two situations can easily be confirmed by inspecting the QR decomposition
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process. If there is motion in the area where one of these two situations dominates, then

it corresponds to what is known as the aperture problem.

The determinant of R
s

is the product of all its eigenvalues. In solving (40) or

5 = -Rj l b
s , the determinant plays an important role in the matrix inverse. Since we

use the QR decomposition method, Q is unitary (orthonormal projection) so the behav-

ior of R
s

is similar to the original A
n

. A small determinant of R
s
indicates one of the

following two situations:

1. The three columns of A
n

are close to being linearly dependent. This is the

same as the second situation in the above discussion related to the condition

number. In fact, a small determinant due to linear dependency also causes a

high condition number.

2. All the elements of A
n

are very small. This corresponds to a uniform bright-

ness area, e.g. a cloudless sky.

As noted before, the above situations correspond to the general case of the aperture

problem. It is interesting to note that Barron, Fleet, and Beauchemin [9] recognize

empirically that the determinant is a better confidence measure in the application of the

Uras, et al. [109] optical flow algorithm than the condition number used in the original

paper. Our analysis agrees with their empirical observations.

2.5.3.3 Integration of confidence measures

Based on the above analysis, we choose a combination of confidence measures accord-

ing to the nature of a given image sequence.

If the image sequence contains numerous moving objects or the brightness changes sig-

nificantly, residuals should be used as the confidence measure since they signify the

three problems listed in Section 2.5.3. 1. No other confidence measure that we know of is

effective for these cases.

The condition number and determinant have something in common although they may

signify different situations. Together they signify the relationship between numerical

instability and the aperture problem. Empirical findings suggest that they be used as a

multiplicative combination, or similarly, in the form of \X\ min [62] . This has been pro-

posed by Girosi et al.[37] in a similar context and was used in Barron’s implementation

[9] of Lucas and Kanade’s optical flow algorithm. In our algorithm, [k\ min simply indi-

cates the whether or not the necessary texture exists. We use it to signify the aperture

problem and to avoid numerical instability.

All the above mentioned problems are not unique to our algorithm; they are common to

other optical flow algorithms as well.

2.5.3.4 Distinguishing normal flow from full flow

When the aperture problem arises in an image local neighborhood, correct full flow can-

not be recovered. In our algorithm, however, the condition number and smallest eigen-

value can assist us in distinguishing different levels of the aperture problem and

25



extracting accurate normal flow and full flow. In summary, when the condition number

k(R
s ) is moderately low and the smallest eigenvalue |X.| min is reasonably high, which

means the image texture is sufficient, then correct full flow can be recovered; when the

condition number is very high and the smallest eigenvalue is low, which means the

image texture is high in one direction and very low in the perpendicular direction, nor-

mal flow can be recovered; when both the condition number and the smallest eigenvalue

are very low, which means there is insufficient texture in the local image neighborhood,

then no flow can be recovered reliably.

The following example illustrates the concept. In Fig 9.1, the white square is moving to

the upper right. Our algorithm successfully segments three areas corresponding to the

three situations above: First, at the comers of the square, where these is no aperture

problem, the correct optical flow is extracted by thresholding on the smallest eigenvalue,

in this example, \'k\ min >1.5 (Fig 9.2). Second, at the edges of the square, where the one

dimensional aperture problem exists, correct normal flow can be extracted by threshold-

ing on the smallest eigenvalue and on the condition number, in this example,

\M m in < 1-5 a K(/?y) > 100 (Fig 9.3). Third, at all other areas where the two dimen-

sional aperture problem exists, no correct flow can be extracted.
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*//////
//////

/’/////
s s s / / s

S S S t / f f
s / / / / / s

/ s f / / / /
/•/////

/////
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Fig 9.2 Full flow only Fig 9.3 Normal flow where there is aperture problem
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Chapter 3

Evaluating Optical Flow Algorithms

3.1 Quantitative Evaluation Using Synthetic Images

Following the work of Barron, Fleet, and Beauchemin[9] , we conducted extensive com-
parisons between our algorithm and existing optical flow algorithms, including those by

Horn and Schunck[48]
, Lucas and Kanade[68] , Uras et al. [109] , Nagel[78]

,

Anandan[4] , Singh[97]
, Heeger[44]

,
Waxman et al. [112] , Fleet and Jepson[34]

,

Bober and Kittler[ 11] , Weber and Malik[113] . The synthetic image sequences we use

for comparison are Sinusoid, Translating tree. Diverging tree, Yosemite fly-by (provided

by Barron), and Moon landing.

When the image sequences contain only translational (Sinusoid) and diverging motion

(Translating tree. Diverging tree, and Yosemite fly-by), we use the algorithm in (41);

when the image motion also contains rotation (Moon landing), we use the algorithm in

(37). A simple 3x3 median filter is applied on the flow field to reduce output noise

although it may not necessarily improve overall accuracy.

The error statistic utilized is the angle error between the computed optical flow time-

space direction (u
e ,

v
e , 1) and the ground truth flow time-space direction (u

c ,
v
c , 1)

averaged over the whole image. Refer to [9] for more details. In order to make extensive

comparisons, we implemented our algorithm in such a way that a certain density of out-

put flow can be extracted by thresholding on a chosen confidence measure. Error statis-

tics in the following subsections are displayed in tables. For a single technique with

multiple entities in these tables, different threshold values are used in the algorithm to

produce multiple densities of output. The error statistics and associated density for the

comparison algorithms were obtained directly from [9] or from the original publica-

tions.

3.1.1 Sinusoid

This is a synthetic image sequence (Fig 10) of a spatial sinusoidal wave traversing

toward the upper right. For our method we chose a window size large enough (17x17x7

for x,y,t) to prevent aliasing. |l/r| was used as the confidence measure. Fig 11.1 shows

the true optical flow, while Fig 11.2 shows the flow computed with our method. Our

algorithm performs better than all of the other algorithms except Fleet and Jepson’s

(Table 1).

3.1.2 Translating tree and Diverging tree

The translating and diverging tree sequences are two realistic synthetic sequences simu-
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Fig lO.Traversing sinusoid

Fig 1 1.1 True optical flow for sinusoid Fig 1 1.2 Computed optical flow (100% density)

/////////////////
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/////////////•////
/////////////////
/////////////////
/////////////////
/////////////////
/////////////////

Table 1: Summary of Sinusoid error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 0.63° 0.06° 4.19° 0.50° Horn & Schunck (original unthresholded)

2.55° 0.59° Horn & Schunck (modified unthresholded)

2.47° 0.16° Lucas and Kanade (unthresholded)

2.59° 0.71° Uras et al. (unthresholded)

2.55° 0.93° Nagel

30.80° 5.45° Anandan

2.24° 0.02° Singh (step 1 unthresholded)

0.03° 0.01° Fleet and Jepson

12.8% 0.63° 0.06° 64.26° 26.14° Waxman et al.

lating the motion of simple translation (Fig 12.1) and expansion (Fig 12.2), respectively,

of a poster. The window size used in our method is 19x19x11 for the translating tree

and 17x17x1 F for the diverging tree. Due to the lack of texture in some background

*. from frame 4 to frame 14.
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areas, we used |A,|m -

n as the confidence measure. Fig 13 and Fig 14 show the results. For

the translating tree sequence, our results are among the best as shown in Table 2. The
comparison is also visualized in Fig 15 where we plot all the algorithms’ error versus

density. In the plot, our algorithm generates a curve while other algorithms generate

points. For the diverging tree sequence, our results are second only to Fleet and Jepson’s

result as shown in Table 3. The comparison is also visualized in Fig 16. Note that the

poster is not parallel frontal. This results in errors, especially for the translating tree

sequence.

Fig 12.2 Diverging treeFig 12.1 Translating tree

Fig 13.1 True flow for Translating tree Fig 13.2 True flow for Diverging tree

3.1.3 Yosemite fly-by

The Yosemite fly-by sequence is a realistic synthetic image sequence (Fig 17). The flight

scene is simulated using actual aerial photos and digital terrain maps, with artificial sky

and clouds. Since the clouds in the sky change brightness over time, it poses difficulties

f. from frame 5 to frame 15.
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Fig 14.1 Computed flow for Translating tree Fig 14.2 Computed flow for Diverging tree

for all algorithms. Based on our previous analysis, we used
|

l/r\ as the confidence mea-

sure to eliminate points that lie in a large blank area in the sky and on motion bound-

aries. Fig 18.2 shows the results. Since the motion is rather fast in some areas, we used a

larger window (21x21x7, from frame 6 to frame 12). Error statistics are shown in

Table 4 and visualized in Fig 19. Again, the clouds account for the large magnitude

error. Our algorithm performs better than all others.
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Fig 16. Comparison plot for Diverging tree sequence

Fig 17. Yosemite fly-by image
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Fig 18.1 True optical flow for Yosemite fly-by Fig 18.2 Computed optical flow for Yosemite fly-by
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Fig 19. Comparison plot for Yosemite fly-by sequence

3.1.4 Moon landing

The Moon landing sequence (Fig 20) is generated by gradually rotating and expanding

a picture of the surface of the moon. Visually, it is a bird’s-eye view of the moon from a

spiral landing spaceship. The purpose of this sequence is to demonstrate our algorithm’s

capability to handle complex motion, specifically, expansion plus rotation. Our algo-

rithm used a 21x21x7 window and |A,| min as the confidence measure since there are no

*. Rotation and expansion are done using Khoros 1.5 vrotate and vresize functions, respectively.
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Fig 20. Moon landing sequence

Table 2: Summary of Translating Tree error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 0.66° 0.83° 38.72° 27.67° Horn & Schunck (original unthresholded)

2.02° 2.27° Horn & Schunck (modified unthresholded)

0.62° 0.52° Uras et al. (unthresholded)

2.44° 3.06° Nagel

4.54° 3.10° Anandan

1.64° 2.44° Singh (step 1 unthresholded)

1.25° 3.29° Singh (step 2 unthresholded)

0.54° 1.69° Bober and Kittler (no smoothing)

99.6% 0.66° 0.82° 1.11° 0.89° Singh (step 2)

96.8% 0.59° 0.66° 0.49° 0.35° Weber and Malik

74.5% 0.46° 0.45° 0.32° 0.38° Fleet and Jepson

53-57% 0.40° 0.38° 32.66° 24.50° Horn & Schunck (original)

5.63° 2.78° Heeger (level 1

)

1.89° 2.40° Horn & Schunck (modified)

49.7% 0.39° 0.36° 0.23° 0.19° Fleet and Jepson

44.2% 0.38° 0.35° 8.50° 13.50° Heeger (level 0)

40-42% 0.37° 0.34° 0.46° 0.35° Uras et al.

0.72° 0.75° Singh (step 1)

0.66° 0.67° Lucas and Kanade

26.8% 0.33° 0.29° 0.25° 0.21° Fleet and Jepson

13.1% 0.29° 0.25° 0.56° 0.58° Lucas and Kanade

1.9% 0.27° 0.26° 6.66° 10.72° Waxman et al.

motion boundaries. Table 5 shows that our results are better than Fleet and Jepson’s and
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Table 3: Summary of Diverging tree error statistics

Our Algorithm Other Algorithm

Density Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 1.86° 1.35° 12.02° 11.72° Horn & Schunck (original unthresholded)

2.55° 3.67° Horn & Schunck (modified unthresholded)

4.64° 3.48° Uras et al. (unthresholded)

2.94° 3.23° Nagel

7.64° 4.96° Anandan

17.66° 14.25° Singh (step 1 unthresholded)

8.60° 4.78° Singh (step 2 unthresholded)

3.69° 4.39° Bober and Kittler

99% 1.84° 1.32° 8.40° 4.78° Singh (step 2)

88.6% 1.74° 1.22° 3.18° 2.50° Weber and Malik

73.8% 1.63° 1.15° 4.95° 3.09° Heeger (combined)

60-61% 1.54° 1.06° 0.99° 0.78° Fleet and Jepson

8.93° 7.79° Horn & Schunck (original)

3.83° 2.19° Uras et al.

46-48% 1.42° 0.95° 2.50° 3.89° Horn & Schunck (modified)

0.80° 0.73° Fleet and Jepson

1.94° 2.06° Lucas and Kanade

28.2% 1.29° 0.81° 0.73° 0.46° Fleet and Jepson

24.3% 1.26° 0.77° 1.65° oor-H Lucas and Kanade

3.9-4.9% 1.16° 0.63° 13.69° 11.83° Waxman et al.

5.62° 6.16° Singh (step 1)

Table 4: Summary of Yosemite fly-by error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 7.52° 13.72° 31.69° 31.18° Horn & Schunck (original unthresholded)

9.78° 16.19° Horn & Schunck (modified unthresholded)

8.94° 15.61° Uras et al. (unthresholded)

10.22° 16.51° Nagel

13.36° 15.64° Anandan

15.28° 19.61° Singh (step 1 unthresholded)

10.44° 13.94° Singh (step 2 unthresholded)

97.7% 6.82° 12.41° 10.03° 13.13° Singh (step 2)

64.2% 3.13° 4.28° 22.82° 35.28° Heeger (level 0)

4.31° 8.66° Weber and Malik

59.6% 2.99° 3.98° 25.33° 28.51° Horn & Schunck (original)

44.8% 2.66° 3.43° 15.93° 23.16° Heeger (combined)
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Table 4: Summary of Yosemite fly-by error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

33-35% 2.47° 3.11° 4.28° 11.41° Lucas and Kanade

4.63° 13.42° Fleet and Jepson

5.59° 11.52° Horn & Schunck (modified)

6.06° 12.02° Nagel

30.6% 2.42° 3.02° 5.28° 14.34° Fleet and Jepson

15% 2.17° 2.81° 9.87° 14.74° Heeger (level 1)

7.55° 19.64° Uras et al.

8.7% 2.04° 2.76° 3.22° 8.92° Lucas and Kanade

7.4% 2.03° 2.59° 20.05° 23.23° Waxman et al.

2.4% 2.01° 2.42° 12.93° 15.36° Heeger (level 2)

Table 5: Summary of Moon landing error statistics

Density

Algorithms

Average

Error

Standard

Deviation
Technique

100% 1.73° 0.87° Our algorithm (Translation + Rotation -(-Expansion model)

1.91° 0.89° Our algorithm (Translation model)

33.3% 3.91° 3.80° Lucas and Kanade

1.37° 0.71° Our algorithm (Translation + Rotation +Expansion model)

1.69° 0.83° Our algorithm (Translation model)

31.1% 2.47° 1.71° Fleet and Jepson

1.36° 0.70° Our algorithm (Translation + Rotation -(-Expansion model)

1.68° 0.82° Our algorithm (Translation model)

Lucas & Kanade’s (also see Fig 21.) It also reveals the amount of improvement (10% to

16%) of a generalized motion model over a uniform translation motion model in our

algorithm.

3.1.5 Noise sensitivity

We created noisy images from the synthetic sequences used above and tested the sensi-

tivity of the algorithms to such noise.

The sensitivity analysis is motivated by simple experiments such as the following: On a

real-time image processing machine, suppose we run a temporal differencing algorithm

at video rate on successive frames while keeping the camera and the scene stationary.

Instead of getting a uniform output of zero, the actual output always contains random

spots of non-zero values. This kind of sensor noise violates the brightness constancy

assumption and degrades the accuracy of any optical flow algorithm.

In Chapter 2, we proved analytically that the magnitude of optical flow error is linear

with the magnitude of noise (44), provided that the noise is significantly smaller than the
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Fig 2 1 . Comparison plot for moon landing sequence

image intensity. Here we report results of experiments that support the claim.

In the following tables, we used additive Gaussian noise of zero mean and increasing

variance. In order to conduct a fair comparison, the threshold on the confidence measure

is fine-tuned in every single run so that the output density is always 50%. We chose two

of the best algorithms in [9] ,
Lucas & Kanade and Fleet & Jepson, for comparison. For

the noisy Diverging tree sequence, the noise sensitivity is summarized in Table 6.

Table 6: Diverging tree noise sensitivity statistics

Noise

Standard

Deviation

Our Algorithm Fleet & Jepson Lucas & Kanade

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation

0 1.41° 0.94° 1.09° 0.52° 3.04° 2.53°

3 1.64° 1.08° 1.18° 0.61° 3.28° 2.77°

6 2.03° 1.37° 1.51° 0.93° 3.62° 3.06°

9 2.53° 2.17° 2.15° 1.78° 4.32° 3.79°

12 3.28° 2.78° 3.83° 5.48° 5.17° 4.69°

15 3.87° 3.15° 9.23° 12.04° 5.93° 5.41°

Both our algorithm and Lucas & Kanade’s have an approximately linear error increase

with noise while Fleet & Jepson ’s has a quadratic or even exponential error increase

(Fig 23). Despite its excellent accuracy for noise-free data, Fleet & Jepson’s algorithm

performs worse than the other two when the image sequence becomes noisy (see also
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Noise Sensitivity

nil 1 We also conducted a similar experiment with the Yosemite fly-by sequence.

Unfortunately^Fleet A Jepson’s algonthm does not generate Mgh enough denshy data
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when the sequence becomes noisy. However, we can once again confirm the linear error

with respect to noise for Lucas & Kanade’s and our algorithm (Fig 24).

Noise Sensitivity

+ :Our algorithm

o : Lucas and Kanade

Fig 24. Yosemite fly-by noise sensitivity

Robustness to noise is a very important quality for good optical flow algorithms. Our

algorithm achieves robustness by integrating spatio-temporal smoothing with the 3-D

Hermite polynomial differentiation filter theory.

3.2 Qualitative Evaluation Using Real Images

Many existing optical flow algorithms often have difficulty with real image sequences.

Our algorithm performs best on the Yosemite and Moon landing sequences because

these sequences model real 3-D motion and are thus complicated enough to reveal the

strengths of our algorithm. Here we demonstrate our algorithm with the following real

image sequences: SRI trees, Hamburg taxi, Rubik Cube, NASA and HMMWV. The

HMMWV sequence was taken in an outdoor environment with a camera mounted on a

forward moving HMMWV (High Mobility Multipurpose Wheeled Vehicle). It was later

stabilized[126] to eliminate unsteady motion and then all algorithms were applied to the

stabilized images. All the other sequences were obtained from Barron [9] . For the first

three sequences, we display our flow results only; readers may refer to Barron, et al. [9]

for the results of other algorithms. For the HMMWV sequence, the flow outputs for our

algorithm as well as Lucas & Kanade’s, Fleet & Jepson’s, and Anandan’s are displayed

in Fig 28. Finally, we use the NASA sequence to demonstrate an obstacle detection

capability based on optical flow and make a comparison among the algorithms. In our

algorithm’s implementation, the output has undergone thresholding based on two confi-

dence measures, |l/r| and

3.2.1 SRI trees, Hamburg taxi, and Rubik cube sequences

In the SRI trees sequence (Fig 25.1), the camera translates parallel to the ground plane,

perpendicular to its line of sight, in front of clusters of trees. This image sequence con-

tains many occluding boundaries and is very noisy. It is particularly challenging because

of the presence of thin tree branches and small leaves, which requires the use of a small

window (13x13x5). Our flow result (Fig 25.2) displays the scene structure clearly (tree
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Fig 25.1 SRI trees sequence Fig 25.2 Our algorithm’s flow output (100%)

in the center, depth of the ground). In the Rubik cube sequence (Fig 26.1), a Rubik cube

Fig 26.2 Our algorithm’s flow output (44.2%)

is rotating counter-clockwise on a turntable. This sequence contains many regions with

1-D (side patterns on the turntable) or 2-D (top of the turntable) aperture problems and

the cube’s motion is very small. The flow result (Fig 26.2) demonstrates our algorithm’s

capability to extract 2-D shape (cube and turntable) from confidence measures, handle

aperture problems, and estimate subpixel motions. In the Hamburg Taxi sequence

(Fig 27.1), there are three vehicles and a pedestrian moving independently. The flow

result (Fig 27.2) demonstrates our algorithm’s capability of handling widely varying

motion velocities.

Not all the capabilities that our algorithm possesses are common in most of the optical

flow algorithms reported in [9] . We observe from the flow results in [9] that those algo-

rithms tend to be adapted to a limited set of situations but do not do well in other situa-

tions. In this qualitative evaluation, our algorithm appears to be more versatile than other

existing algorithms. This can be attributed to the good filter design and the confidence

measures. In the following sections, we demonstrate the advantage of the general motion

model.

Fig 26.1 Rubik cube sequence
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Fig 27.1 Hamburg taxi sequence Fig 27.2 Our algorithm’s flow output (100%)

3.2.2 HMMWV sequence

In the HMMWV (High Mobility Multi-Purpose Vehicle) sequence, visual inspection

shows that Lucas & Kanade’s flow output (Fig 28.4) is very noisy, as evidenced by ran-

dom velocity changes in small neighborhoods. Fleet & Jepson’s flow output (Fig 28.5)

shows no indication of the flow field divergence. It is probable that the particular imple-

mentations (provided by Barron) of these two algorithms are not tuned to the relatively

large flow existing in this sequence. The implementations of both Anandan’s and our

algorithm are suitable for large flow and the output flow fields of both are quite good.

Anandan’s flow field (Fig 28.2) appears to be the smoothest due to the use of neighbor-

hood smoothness constraint. But a close inspection on the image border reveals an

apparent inconsistency since the rightmost columns of the flow field are converging. Our

algorithm, on the other hand, produces a coherently diverging flow field (Fig 28.3)

except in the area of the sky.

3.2.3 NASA sequence and obstacle detection demonstration

In the NASA sequence, both our flow (Fig 29.2) and Fleet & Jepson’s flow1 outputs

(Fig 29.4) are very good, while Lucas & Kanade’s algorithm produces a noisy flow field

(Fig 29.3). Note that our output density is twice that of Fleet & Jepson’s but it achieves

approximately the sar i, accuracy visually. If Fleet & Jepson were to generate the same

density, it might not be as accurate.

Finally we apply the NASA flow field outputs from these three algorithms to an obstacle

detection algorithm developed by Young, et al.[122] [123] [124] . This algorithm dis-

criminates between obstacle and non-obstacle regions in the image using only the com-

ponent of flow perpendicular to arbitrarily chosen image lines. In the following figures, a

*. <7 = 0.8 is used for both Lucas & Kanade’s and Fleet & Jepson’s algorithms because only

10 image frames are available. The filter size of our algorithm is 21x21x7.

|. G = 2.0 is used for both Lucas & Kanade’s and Fleet & Jepson’s algorithms. The filter size

of our algorithm is 21x21x7.
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Fig 28.4 Lucas & Kanade’s flow field (48%) Fig 28.5 Fleet & Jepson’s flow field (34%)

41



Fig 29.1 NASA sequence Fig 29.2 Our algorithm’s flow field (75% density)

protrusion or a depression represents an obstacle detected by the algorithm.

For the first set of data, we select the horizontal lines from 220 to 260 (Fig 30.2). Over

these lines, there is a vertical long metal plate with a hole in the left end of the image

strip. We should expect two depressions at the locations of the plate. The detection

results from all lines are averaged and then displayed in Fig 31. In Fig 31.1, Lucas &
Kanade’s flow does not detect the metal plate clearly; in Fig 31.2, Fleet & Jepson’s flow

detects the metal plate but its shape is hardly recognizable; in Fig 31. .3, our algorithm

not only detects the • -late but also shows its shape as should be expected.

For the second set f data, we select horizontal lines 45 to 90 (Fig 30.1). Over these

lines, there is a po e on each end of the image strip and a coke can at the center. In

Fig 32.1, Lucas & Kanade’s flow does not make out meaningful objects. In Fig 32.2,
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Rcw_l22C to Rcw_L26C
Iaage position x

Rou_L220 to Rcd_L2PC
position x

Fig 31.1 Lucas & Kanade’s results Fig 3 1 .2 Fleet & Jepson’s results Fig 31.3 Our algorithm’s results

C.3

Deviation

-C.3

Rcw_L45 to Rob_L9C
Iaage position x

C.3

Deviation

RCb_L45 to Rc«_L9C

Fig 32.1 Lucas & Kanade’s results Fig 32.2 Fleet & Jepson’s results Fig 32.3 Our algorithm’s results

Fleet & Jepson’s flow barely detects the coke can and the right pole, and does not detect

the left pole. In Fig 32.3, our flow clearly detects all three objects. Note that for this par-

ticular image strip we used dense (100%) flow for our algorithm.

In summary, compared with other existing optical flow algorithms, our algorithm offers

the qualities of accuracy, flexibility, and adequate noise sensitivity, which are very cru-

cial for real world tasks.
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Chapter 4

Motion-Model-Based

Boundary Extraction

Motion boundary extraction and optical flow computation are two subproblems of the

motion recovery problem that cannot be solved independent of one another. We present

a local, non-iterative algorithm that extracts motion boundaries and computes optical

flow simultaneously. This is achieved by modeling a 3-D image intensity block with the

general motion model formulated in the previous chapter that presumes locally coherent

motion. Local motion coherence, which is measured by the fitness of the motion model,

is the criterion we use to determine whether motion should be estimated. If not, then

motion boundaries should be located. The motion boundary extraction algorithm is eval-

uated quantitatively and qualitatively against other existing algorithms using a scheme

originally developed for edge detection.

4.1 Introduction

This chapter studies the strengths and weaknesses of recent motion boundary detection

and motion segmentation algorithms and proposes a local, non-iterative algorithm for

motion boundary detection with potential for real-time implementation. This algorithm

extracts motion boundaries and computes optical flow at the same time. We apply a

quantitative evaluation scheme for boundary detection to show that our algorithm is

accurate in locating motion boundaries.

In this chapter, the problem of motion recovery is referred to as involving two major sub-

problems: opticalflow computation and motion segmentation. Optical flow computation

quantitatively measures the motion associated with the perceived objects; motion seg-

mentation, on the other hand, qualitatively distinguishes different moving objects. The

fact that they are dependent on each other has complicated the general motion recovery

problem.

Due to the aperture problem, motion estimation algorithms [47] [48] developed earlier

usually enforced a smooth flow field as an additional constraint. Recent approaches use

spatio-temporal filters [34] [44] [65] , often with large support, to estimate image prop-

erties and then solve for optical flow. In either case, on or near motion boundaries, this

smoothing or filtering renders the estimation incorrect. In other words, motion estima-

tion is not accurate until we know where the boundaries are. On the other hand, motion

boundaries are defined as motion field discontinuities. (The motion field is qualitatively

equivalent to the optical flow field [110] .) Due to the aforementioned optical flow error

around motion boundaries, the requirement of a dense flow field, and noise in the optical

flow field, the motion boundaries are very difficult to extract and/or locate from optical

flow. Researchers have used other image cues, for example, accretion and deletion[75] ,
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or normal flow [47] ,
to detect motion discontinuities, but they are not always correct for

all situations because they provide only partial information about the motion. In other

words, motion boundaries cannot be located accurately without a dense and accurate

optical flow field.

Even though they are two aspects of the same problem, optical flow computation has

received much more attention in the literature than motion boundary extraction. Existing

methods for motion boundary extraction are approached through optical flow algo-

rithms. A popular technique is to use an iterative scheme that consists of two compo-

nents: optical flow estimation and motion boundary extraction. The basic idea is to refine

both components’ results through iteration. This approach is time-consuming and some-

times does not converge. We believe that optical flow and motion boundaries are of

equal importance and we present an algorithm that produces both outputs at the same

time.

Although “global” motion segmentation may be more convenient for other motion appli-

cations, we realize, from the above analysis, that “local” motion boundary detection/

extraction is sufficient for combining with optical flow an algorithm for motion recovery.

In fact, our view is that local image properties provide abundant information and motion

estimation should be performed pointwise [63] .

The local properties that we use are image spatial and temporal derivatives up to third

order. It has been shown in [63] that Hermite polynomial differentiation filters are very

stable and insensitive to noise even up to this high order. With the aid of sufficient and

accurate image properties, a motion-model-based approach to boundary extraction

becomes possible. In this approach, we fit the image properties with a single coherent

motion model, which leads to a linear system of multiple motion constraint equations.

Pixels that fit the model are locations where the motion is coherent, so the motion can be

estimated using the linear system. Those pixels that do not fit the model represent fail-

ures of the motion model in describing the local motion. A failure of the model can only

be attributed to multiple motions existing in the local window used to estimate the image

properties, assuming that brightness constancy is maintained. Using a least square error

method on the overdetermined linear system, a failure of the model is measured by the

residual. An analysis of the residual is shown to reflect the likelihood of a motion bound-

ary. Using an optimal filter on the residual, we can easily locate motion boundaries.

Using the residual for motion boundary extraction offers several advantages over using

flow. First, the residual is a scalar, so it avoids the difficulty of handling vector field dis-

continuities while providing equivalent information a^out motion boundaries, e.g.,

whenever one component of the flow is discontinuous, the residual is high. Second, flow

values on the boundaries are not accurate and are very noisy, and thus require smoothing

for boundary extraction. This extra smoothing may cause localization error. Third, the

residual is computed using a 3-D motion model so that it corresponds to real motion

boundaries and it is not susceptible to nonuniform flow within an object; whereas non-

uniform flow can induce false detections of discontinuities in flow-based methods.

The appeal of a local, non-iterative approach lies in its potential speed. However, its

accuracy should not be compromised. To measure the accuracy, we need an evaluation

scheme to compare different motion boundary extraction algorithms. Since recent

approaches combine optical flow and motion boundary detection, evaluation has often
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been performed based on the final optical flow. This has the disadvantage of not distin-

guishing the source of error, which may be due to inaccurate optical flow or inaccurate

motion boundary location. In other words, evaluation based on segmented optical flow

does not suggest a direction for improvement. Hence, we employ here a quantitative

evaluation scheme applied only to motion boundary extraction. This scheme takes into

account not only the probabilities of detection and miss but also localization error. This

scheme was originally developed for edge detection [46] .

4.2 Previous Work

Braddick’s psychological experiments on random dot motion [12] set the stage for

vision research on motion boundaries. It verified the human visual capability of perceiv-

ing motion boundaries clearly without any other visual cues such as texture. Table 7

summarizes the existing work on motion boundary extraction or segmentation. This sur-

vey is not exhaustive but represents typical work in this area, which will be elaborated in

the following subsections.

Table 7: Recent motion boundary extraction algorithms

Non-iterative schemes Iterative schemes

Motion boundary

extraction vs.

flow estimation Algorithm by Techniques Algorithm by

Prior to Hildreth [47] Pyramid linking Hartley [42]

Spoerri & Ullman [101] Markov random

field with binary

line processes

Koch, Marroquin & Yuille

[56] , Murray & Buxton

[74] , Heitz & Bouthemy

[45]

Simultaneous with Mutch & Thompson [75]

Schunck [93]

Shizawa & Mase [95] Tracking & nulling Bergen et al. [10]

After Potter [89] , Nakayama&
Loomis [79] , Adiv [2] ,

Thompson, Mutch, &
Berzins [106] , Dengler

[28]

Robust estimation Darrel & Pentland [26]

Jepson & Black [53]

4.2.1 Non-iterative algorithms

Early research on motion boundary extraction or motion segmentation can be roughly

characterized as based on a non-iterative approach. These algorithms can also be put into

three categories [28] [101] based on whether the motion boundary extraction is per-

formed prior to, simultaneously with, or after the flow field estimation (refer to Table 7).

The approaches that extract motion boundaries prior to flow field estimation employ

“motion primitives’^ 101] , usually normal flow [47] ,
as a basis. Hildreth’s method

[47] is based on the intensity zero-crossing contours, which are different from motion
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contours, and may well cross motion boundaries. Traveling along a contour, the algo-

rithm detects a boundary point as the sign of the normal flow changes. The method has

two limitations [47] : first, it does not detect boundaries when the neighboring moving

objects are traveling in about the same direction; second, it requires that there be two

edge points with the same orientation in the contour. In addition, due to the use of con-

tours, the boundaries detected are sparse, which is very restrictive for general applica-

tions. Spoerri & Ullman [101] use a local histogram on motion primitives and statistical

tests to infer motion boundaries, or tracking of “thin-bars” to find occlusion. This

method is quite appealing for the diversity of statistical tests offered, but the motion

primitives do not always provide sufficient information about the boundaries. The exper-

iments show detection capabilities but the localization errors are significant even in syn-

thetic images.

The approaches that extract motion boundaries simultaneously with flow field estima-

tion include [75] ,[93] ,and [95] . Mutch & Thompson [75] use the fact that motion

around occlusion boundaries induces accretion and deletion so that a local no-match

between successive frames can signal occlusion boundaries, whereas a match can be

used for estimating optical flow. This algorithm detects only occlusion boundaries but

not all motion boundaries, for instance, two neighboring objects moving in parallel

directions or a rotating object where no accretion or deletion occurs, will not be

detected. Schunck’s algorithm [93] pays special attention to avoiding optical flow ambi-

guity at motion boundaries by constraint line clustering. The motion boundaries are

actually detected from the flow field discontinuities. We categorize this algorithm as per-

forming simultaneous estimation and segmentation because of its special treatment of

boundary flow. The basic idea of the algorithm is to use local consensus to assign flow

values instead of smoothing. The algorithm produces high localization error on motion

boundary “corners”. The clustering technique is heuristic and is prone to numerical

instability. Shizawa & Mase [95] use “multiple-flow constraint equations”, a generaliza-

tion of the common optical flow constraint equation, to deal with motion boundaries

and/or transparent motion. The algorithm generates not only flow but also a measure of

the degree of multiplicity of motion. When a pixel’s associated multiplicity is deter-

mined to be greater than one, it is on a motion boundary or where transparent motion

occurs. This method unifies rather than distinguishes motion boundaries and transparent

motion. However, it is more suitable for transparent motion than motion boundary

extraction because of the assumption of additive multiple flows, which is less valid

around motion boundaries.

The approach that extracts motion boundaries after flow field estimation is the most pop-

ular one. Global techniques such as the Hough transform (Adiv [2] ), region growing

(Potter [89] ), and pyramid linking (Dengler [28] ) have been proposed. Local tech-

niques include center-surround filters (Nakayama & Loomis [79] ), and direction rever-

sals of the Laplacian operator on the flow vector field (Thompson, Mutch, & Berzins

[106] ), etc. This approach offers only a partial solution to the motion estimation prob-

lem because boundary detection depends heavily on the accuracy of the optical flow.

However, this approach offers an algorithm suitable for one component of an iterative

scheme. Such schemes are described next.
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4.2.2 Iterative approach

The iterative method of motion estimation is an approach developed more recently. It

has both optical flow estimation and segmentation components. These components inter-

act with each other and improve their individual results during the course of the itera-

tion. Pyramid linking, Markov random fields with line processes, robust estimation, and

tracking plus nulling techniques have been proposed. Iterative methods tend to be more

accurate than non-iterative methods but are time-consuming. Note that there are algo-

rithms that use an iterative scheme to compute optical flow only. However, we do not

label them as iterative methods here since they do not include the segmentation compo-

nent.

Hartley’s algorithm [42] uses an iterative pyramid linking technique for flow field seg-

mentation. Segmentation is done by hierarchical linking and the flow field is computed

and smoothed by fitting a linear or quadratic flow field model to the current flow. The

algorithm is efficient and always converges but its overall accuracy depends heavily on

the initial flow values, which the author does not address.

The use of a Markov random field model for flow has been proposed by Koch, Marro-

quin & Yuille [56] , Murray & Buxton [73] ,
and Heitz & Bouthemy [45] . They handle

flow discontinuities by introducing a binary line process to discourage smoothing across

boundaries. Although the reason for modeling the flow fields as Markov random fields is

not clear, the results of these algorithms are generally good. The computational cost,

however, is formidable (usually hundreds of iterations, or image sweeps).

Robust estimation techniques have been proposed by Darrel & Pentland [26] ,
and Jep-

son & Black [53] . They use a multi-layered motion model (“mixture model”[53] ) and

thus are capable of handling loosely occluded scenes (e.g., tree leaves) or transparent

motion. The main idea is to estimate the dominant motion(s) in a window while reject-

ing inconsistent constraints as outliers so as to minimize their influence on the results.

The results are promising when the algorithms converge.

Instead of using a layered motion model, Bergen et al. [10] model the addition of

motions of differently moving image patterns (not necessarily square, as dictated by the

window). A simple tracking and a ‘nulling’ mechanism is used to separate and estimate

individual motions. In other words, image registration and residual motion estimation

are iterated. This algorithm has potential for high speed implementation on a system

with warping hardware. The results are reasonably good but the algorithm may not

always converge, depending on the noise level.

The results of the iterative methods seem good, but they have two major problems. The

first is the computational load, the second is that the convergence rate depends on the

scene, noise, and motion. Moreover, some of these algorithms may not converge at all.

4.3 Motion-Model-Based Boundary Extraction

The basic idea of our motion-model-based boundary extraction method is to fit the local

image properties with a general motion model. The necessary elements of the scheme

are a general motion model which is based on arbitrary 3-D motion; an accurate estimate

of image properties, for which we use image spatial and temporal derivatives; and a pro-
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cedure to measure the goodness of the image properties to the motion model. The fol-

lowing subsections briefly present the derivations of these three elements; the details can

be found in [63] and [65]

.

4.3.1 Spatial and temporal image derivatives

We estimate image spatial and temporal derivatives with Hermite polynomial differenti-

ation filters described in previous chapters. These filters are orthogonal and their Gauss-

ian derivative properties provide the numerical stability required. We use this filtering

scheme and the motion equation (37) to derive a linear system of equations. In linear

least square form,

E = min\\As + b
\\ ,

where (45)
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where the 7 ’s are derivatives computed by Hermite polynomial filters and a is the stan-

dard deviation of the G(x ) used in defining the Hermite polynomials. Note that the

higher order Hermite filter outputs are relatively small [65] ,
the above matrix A can be

simplified to
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(47)

The above simplification is also supported by the fact that the higher order Gaussian

derivatives are usually smaller and less accurate. In other words, such an approximation

does not induce much error.

It is necessary that we derive the motion constraint equations up to the third order for the

purpose of motion boundary extraction because we need to have more constraints than

unknowns to obtain a least square formulation and compute the residual, E in (45). The
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residual measures the amount of disagreement among the equations in a linear system.

In other words, if these equations are derived from a mathematical model, then the resid-

ual reflects the deviation from the underlying assumptions of the model. In our case, the

assumptions are brightness constancy and local coherent motion. In the following sub-

section, we analyze the relationship between the residual and the motion boundary.

4.3.2 Analytical relations between the residual and the motion boundary

The residual of our algorithm is £ = min\\As + b\\

.

The residual error can result from

the approximation errors of our computational model in describing the physical world.

Specifically, these errors are:

1 . The assumption of the motion model is violated in the local window

2. The assumption of constant image brightness is violated.

3. Quantization or truncation error.

The following figures show the typical effects and magnitudes of errors due to motion

boundaries, brightness changes, and quantization in a small local neighborhood. Fig

33.1 shows the image at time 0. Fig 33.2.1 shows the same patch occluded by another

patch. Fig 33.2.2 shows the patch undergoing random brightness change due to sensor

noise. Fig 33.2.23 shows the intensity of the same patch quantized coarsely. Fig 33.3.1-

Fig 33.3.3 show the magnitudes of the errors associated with these situations, where

mid-gray represents 0, brighter levels mean positive and darker levels mean negative. It

can be seen that motion boundaries usually induce the largest errors among the three.

Fig 33.1 Original image

Fig 33.2.1

Boundary

Fig 33.3.1

Boundary error

Fig 33.2.2 Bright-

ness change

Fig 33.3.2 Bright-

ness change error

Fig 33.2.3 Quanti

zation effect

Fig 33.3.3 Quanti

zation error

Note that the figures only show the errors in the image sequence. After we apply the dif-

ferentiation filters, the errors are transformed into errors in the linear system.

Hence we can model the above errors as perturbations or noise to the linear system [58] :

E = min\\(A + N)s + (b + Ab)\\
,
where N and Ab denote errors. (48)

We derive the analytical relationship between the residual and the errors as follows. Let
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A and b, defined in (46), contain no noise. Then

E = As + b = 0 and 5 = -{A 7A)
l

A Tb. (49)

Let the noise contaminated optical flow be ~s and the new residual be E
, and assume that

N « A and Ab « b elementwise, i.e., NNT = 0 and NAb = 0 . Then

5 = -[(A + N) T(A + A)] -1 (A + N) T(b + Ab ) , and (50)

[(A + N )
T(A + N )]-! - (A rA[7 + (A TA)~ l (A TN + NTA)])~ ]

« [I- (A tA)-\A tN + NTA)](A TA)~ l
, SO (51)

~s~-{A TA)- lATb + {ATA)- x{A TN + NTA)(ATA)-xA Tb-{A TA)- xNTb-{A TA)- xA TAb

Using (49), this can be simplified as follows:

s ~ s - (A TA)~ lA TNs - (A 7A)~ lA 7Ab and As = -{A 7A)~ lA 7Ns-{A 7A)~ xA 7Ab

.

For the residual, substimting s into (48), and using (49), we derive

E - \\(A + N)s - A(A rA)" 1A tNs - A(A rA)" 1A 7Ab + b + Ab\\

~ ||(7 - A(A 7A)~ lA 7)(Ns + AZ?)|| . (52)

Further analysis shows that expression 7 - A(A 7A) -1 A 7
,
denoted by T , has only two

nontrivial eigenvalues, both 1. We thus conclude that E is proportional to the noise mag-

nitude and noise orientation with respect to the matrix T. And since T is dependent on

the image intensity pattern, which we cannot separate from the noise, we will only use

the fact that residual error is proportional to the noise magnitude. But in order to use the

residual to extract boundaries we still need to separate the residual error induced by

motion boundaries from that by other sources. Therefore we analyze the residual profile

in the spatial domain in the following subsection.

4.3.3 Residual profile

We now show that the residual profile across a motion boundary follows a specific pat-

tern and is very different from the residual profiles arising from brightness changes or

quantization errors. We can then use a spatial filter that matches this profile to extract

motion boundaries.

Fig 34.1 shows a motion boundary neighborhood. A dotted square represents a local

window used to estimate image derivatives and the residual for the center pixel. By slid-

ing the window across the boundary, we can compute and plot the residual profile. A
typical residual profile is shown in Fig 34.2. It has a big plateau centered on the motion

boundary. The width of the plateau is about the same as the local window size. This is

because only in that region does the local window cover the boundary.

Brightness changes and quantization errors, on the other hand, are usually scattered in
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Fig 34.1 Sliding window across boundary

Fig 34.2 Typical residual profile across boundary

the image; we do not expect their residual profiles to look like the residual profiles due to

motion boundaries. Also, since residuals arising from motion boundaries are larger than

those arising from the other two sources, their profiles should be very prominent.

4.3.4 Motion boundary extraction based on residual profile

Based on the above findings, we can extract motion boundaries using two spatial filter

(for different directions) designed according to Canny’s criteria [22] for wide ridge edge

detection. The maxima of the two responses are thresholded to form thick boundaries.

On the thick boundaries, we perform a morphological medial axis operation or

skeletonization [35] to extract the center loci of the boundaries. Some simple pruning

and contour following are then done to prevent streaking since the medial axis does not

guarantee connectivity. Note that we do not use nonmaximum suppression and hystere-

sis as in [22] . This is because the residual is not proportional to noise ! and there may be

multiple peaks in the residual profile that will cause the maximum to drift away from the

actual center of the ridge. We have verified in experiments that the medial axis provides

better localization than nonmaximum suppression and hysteresis. The algorithm is sum-

marized in Fig 35.

residual

Fig 35. Summary of our boundary detection algorithm.

4.4 Evaluation and Experiments

It is very important to evaluate motion boundary extraction separately from optical flow.

This makes clear what component of the motion estimation algorithm needs to be

improved.

*. It is performed using Khoros 1.5 vmskel.

f. It depends on the noise vector direction (Section 4.3.2).
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The evaluation of motion boundary extraction is similar to that of edge detection except

that the ground truth is less clearly defined in the former case. For example, given only

two successive images with motion boundaries (Fig 36.), the motion boundary can be

€ ^VJ

M ill
Fig 36.Motion boundary dilemma

second frame
first frame

designated at the location before or after the motion. We therefore use an odd number of

frames to extract boundaries. The motion boundary will be defined as the location of the

boundary in the center frame.

A good quantitative evaluation scheme for motion boundary extraction should account

for the probabilities of detection and miss as well as the localization error. We reviewed

several existing schemes and found that Heyden’s method of evaluation [46] is best

suited for motion boundary extraction purposes. It offers the following advantages over

Abdou and Pratt’s method[l] : first, it penalizes long streaking, i.e., large gaps of missed

boundaries; second, it penalizes thick edges; third, there is no need to perform a search

for correspondences between detected and ground truth motion boundaries. This evalua-

tion scheme is sketched in Fig 37. It involves only binary image subtraction, Gaussian

binary ground truth

Fig 37. Heyden’s quantitative evaluation scheme.

convolution, and computing the root mean square (RMS) of all pixels in the resulting

image. The performance measure is the RMS of the Gaussian smoothed difference

image. The Gaussian convolution is actually the crucial step that results in the above

advantages.

Note that in this scheme, a better algorithm will yield a smaller output quantity, with

zero as its minimum.

In order to make comparisons, we also implemented algorithms developed by Schunck

[93] and Thompson et al. [106] . In implementing Schunck’s algorithm, we used 3-D

Hermite polynomial filters to compute first order derivatives and perform constraint line

clustering to estimate optical flow. In fact, we had originally used Gaussian smoothing

and Sobel operators to compute the derivatives and found the results too noisy to use.

The Canny edge detector is applied to the flow components to find motion boundaries. In

implementing Thompson’s algorithm, we used Lucas & Kanade’s algorithm imple-
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mented by Barron et al. [9] . The initial flow output is not dense, so we implemented a

propagation and smoothing technique to fill the field. After the flow is estimated, we use

the vector field discontinuity detector suggested in [106] , using direction reversal of the

Laplacian response of the flow vector field, to locate motion boundaries.

The first image we used is shown in Fig 38.1. It is a sequence composed of a baby face

)

Fig 38.3 Motion boundary

traversing laterally in front of a moving random dot background. The approximate flow

map and the motion boundary ground truth are shown in Fig 38.2 and Fig 38.3, respec-

tively. This image sequence is synthesized so as to contain curved motion boundaries,

which are common to real world scenes but present difficulties for most motion bound-

ary extraction algorithms. This is because motion boundaries are often wider than inten-

sity edges due to the nature of the motion estimation algorithm and it is very difficult to

capture wide as well as high curvature features.

In Fig 38.1-Fig 38.3, we show our algorithm’s residual map and Schunck’s and Thomp-

son’s flow fields. They represent the bases upon which these algorithms extract bound-

aries. Thompson’s flow field (Fig 39.3) is smooth across boundaries as expected, while

Fig 39.1 Residual map Fig 39.2 Schunck’s flow field Fig 39.3 Thompson’s flow field

Schunck’s flow field (Fig 39.2) is noisier right on boundaries but more accurate near

boundaries.

Next we show the detected and true motion boundaries for the three algorithms. In

Fig 40.1-Fig 40.3, the dark edge represents the true motion boundary while the white

edge represents the boundary detected. Note that when the true boundary is detected, the

Fig 38. 1 Moving face on random dots Fig 38.2 Approximate flow field
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color of the edge becomes gray. These images are obtained by subtracting the ground

truth boundary image from the detected boundary image as dictated by Heyden’s evalu-

ation scheme.

Fig 40.1 Our algorithm’s boundary Fig 40.2 Schunck’s boundary Fig 40.3 Thompson’s boundary

In Fig 40.2, it can be seen that Schunck’s algorithm suffers from boundary drift caused

by noise on the boundary as well as localization errors in the comers, as mentioned in

[93] . On the other hand, when the motion boundary is a straight line, Schunck’s algo-

rithm performs better than the other two. In Fig 40.3, it can be seen that Thompson’s

algorithm suffers from flow noise away from boundaries. Since it uses a direction rever-

sal technique similar to zero crossings, spurious edges are detected. Otherwise, the

localization is very good. Our algorithm’s boundary is better at comers and essentially

free of the major problems of the other two. The following table summarizes the quanti-

tative performance measure computed by Heyden’s evaluation scheme. It can be seen

that our algorithm is better than the other two.

Table 8: Evaluation of the motion boundary extraction algorithms

Comparison

Algorithms Our Algorithm

Schunck’s

Algorithm

Thompson et al.’s

Algorithm

Performance measure 5.85 7.86 10.32

The next image we use is the Yosemite fly-by sequence shown in Fig 41.1. This is a syn-

thesized sequence in which the observer is approaching the scene and motion boundaries

exist between objects of different depths. As can be seen by the flow field (Fig 41 .2), two

prominent motion boundary curves exist. One separates the sky from the mountains, and

the other separates the domed mountain in the lower left comer from the other moun-

tains. The boundary ground truth is not available. In Fig 42.1-Fig 42.3, we show the

results of the three boundary extraction algorithms overlaid on the original image. The

white edge points represent the extracted boundaries.

Note that the boundaries that separate sky and mountains are easier to extract because

the motion directions are different on the two sides. All three algorithms indeed extract

these boundaries. However, the other boundary that separates the domed mountain from

the other background mountains is not as easy to extract because the motions on the two

sides are in the same direction but have different magnitudes. Note that this kind of

56



motion field is typical in the image sequences captured by a forward moving observer. In

Fig 42.2 Schunck’s algorithm fails to extract these boundaries because the noise on both

sides overwhelms the small variation in flow. In Fig 42.3 Thompson’s algorithm fails to

extract these boundaries because the presmoothing and filling of the sparse field smooths

out the small flow variation. On the other hand, our algorithm extracts a large part of this

boundary curve (Fig 42.1).

The motion-model-based method used here offers the capability of segmenting moving

objects with different flows, divergences, or curls. The Yosemite fly-by sequence, for

example, contains different divergences. The residual values indeed account for incoher-

ence of the above three motion parameters in the local window. This is why our algo-

rithm is capable of extracting these boundaries.

4.5 Conclusion

Motion boundary extraction algorithms are as important as motion estimation algo-

rithms for the complete motion recovery problem. However, their interdependency poses

a computational dilemma that renders any partial solution inaccurate. Indeed, the only

way to solve the motion recovery problem is to simultaneously address both motion seg-

mentation and estimation. While recent research has focused on iterative methods, we
propose a method based on a general motion model. This method is local, non-iterative,

and simultaneously deals with both motion estimation and boundary extraction.

The motion-model-based approach fits the local 3-D image pattern to a motion model

and outputs a boundary likelihood measure, the residual, which may be used to extract

motion boundaries. Compared with motion boundary extraction from flow, it offers sev-

eral advantages: first, it is a scalar and thus avoids handling vector field discontinuities;

second, the residual is less noisy on the boundary than the flow; third, the residual corre-

sponds to true 3-D motion discontinuities instead of high variations caused by flow field

nonuniformity within an object. In fact, the residual accounts for discontinuities in flow,

divergence, and curl.

The evaluation of motion boundary extraction should be separated from the evaluation

of optical flow to truly understand the performance of the individual motion algorithm

Fig 41.1 Yosemite fly-by

57



Fig 42.1 Our algorithm’s result

Fig 42.2 Schunck’s result

Fig 42.3 Thompson’s result

components. We employed a simple but elegant evaluation scheme and synthesized a
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difficult motion sequence for comparison. We then demonstrated that our algorithm per-

forms better than existing algorithms.

In the future, we will integrate the motion estimation algorithm described in [63] and

the boundary extraction algorithm developed here. This will involve not only updating

the flow around the boundaries but also finding important motion information from

boundary properties such as the local relative depth. Other future topics include finding

occluding surfaces, and global topological sorting of moving objects. These are impor-

tant for obstacle avoidance and navigation.
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Chapter 5

Image Gradient Evolution

—

A Visual Cue for Threat

This chapter is concerned with the task of visual motion-based navigation. A critical

requirement of the task is the ability to estimate 3-D depth and motion from visual infor-

mation. Recent studies have demonstrated that the relevant cues consist in motion paral-

lax or optical flow and that flow field divergence and hence time-to-contact can be

extracted. We present a new concept called image gradient evolution, which utilizes the

change of image spatial gradients over time as a threat cue: an approaching object

induces 2-D expanding motion and causes the image spatial structure to stretch so the

image gradients decrease. Based on this idea, our method offers a one-step solution

directly from image gradients, instead of from optical flow and its derived properties.

We use a technique that is local and linear so the implementation can be very fast. The

threat map is expectedly noisy but sufficiently informative, as is seen in demonstrations

on several real images. These two aspects, fast implementation and useful qualitative

information, provide a viable solution to navigational tasks.

5.1 Motivation

We start with a simple illustration to introduce the idea of image gradient evolution and

emphasize its difference from the optical flow approach.

Fig 43.1 Approaching box Fig 43.2 Flow field

Fig 43.1 shows a diverging object in the image. Our goal is to obtain an algorithm that
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can warn the observer of a potential collision.

Conventionally, optical flow (Fig 43.2) is computed first and then the first order flow

field properties (diverging or converging) is used to characterize the underlying objects’

3-D motion. In our approach, however, the change of the image gradients over time is

computed. As illustrated in Fig 44, a decreasing image intensity gradient(slope) at the

Original image

intensity profile

Image intensity profile

after diverging

corresponding point signifies a diverging object. As shown in Fig 45, we wish to avoid

processing the noisy flow data when it is evident that we can achieve the same result from

image gradient evolution.

Our

Approach c

(Image Gradients ZJ
\ Conventional

( Optical Flow ) Approach

( Divergence D
Fig 45 Different approaches to divergence

The following sections of this chapter are organized as follows. Section 5.2 discusses our

work in the context of previous research. The image gradient evolution is formulated in

the context of a generalized motion model in Section 5.3. Section 5.4 details our filtering

scheme and implementation issues. Section 5.5 demonstrates experimental results on real

images. Section 5.6 concludes the chapter.

5.2 Previous Work

The looming effect is a major cue in biological vision systems used to sense danger

(Schiff, et al. [93] ). Local motion parallax is in turn a cue for looming or divergence

(Werkhoven & Koenderinkf 1 1 6] ). Since time-to-contact is related to both divergence

and 3-D scene structure, to solve for time-to-contact is, in an exact sense, equivalent to

recovering 3-D motion and structures. There is a plethora of literature about recovering

3-D motion and structure from optical flow (Adiv[3]
,
Bruss & Hom[14] ,

Negahdaripour

& Lee[82] ), image sequence (Broida & Chellappa[13] ), or features (Negahdaripour &
Hom[81]

, Tsai & Huang [108] ). It is basically an ill-posed and nonlinear problem. These
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methods usually use iterative optimization techniques, which is often time-consuming.

However, these reports established the feasibility of imposing extra constraints and/or us-

ing derivatives of flow to solve the problem in theory. But the intended precision of these

quantitative methods is often an illusion due to the limit on the accuracy with which the

input measures can be obtained (Thompson & Kearney [107] ). Accurate optical flow es-

timation is still a difficult problem.

The avoidance of differentiating optical flow has been approached in different ways. In-

tegration theorems such as Green’s theorem (Poggio, et al.[88] , Cipolla, et al.[24] ),

Stoke theorem [88]

,

and Gauss theorem (Gupta[40] ) are used to estimate first order flow

parameters directly from image intensity integrals[40] , image moments (and their tem-

poral derivatives) [24] , or flow integrals[88] . The integration techniques basically trade

off noise sensitivity for smoothness, which arises from a single motion assumption within

the integration contour. To prevent the integration contour from going across boundaries,

it requires additional mechanisms, probably global, to segment images.

Another approach models the local motion with an affine model. It uses higher order

pointwise image derivatives (Nagel [77] ,
Werkhoven & Koenderink[l 16] ) or patchwise

motion coherence (Campani & Verri [19] , Bergen, et al.[ 10] ) techniques to solve for

first order motion parameters. This approach is actually aimed at accurate flow estimation

and the reports make little mention of 3-D motion estimation.

Since the above two approaches do not model the 3-D structure, they do not offer suffi-

cient information to solve for time-to-contact without additional constraints or differen-

tiations in the general case. It has been proved that only the upper and lower bounds on

time-to-contact can be derived (Subbarao[103]
,

Cipolla, et al.[24] ). Meyer and

Bouthemy[59] used temporal derivatives on the first order parameters to circumvent the

problem. Essentially this is equivalent to using second order derivatives, but Kalman fil-

tering on the temporal derivatives makes the result much smoother and more practical.

However, a fast implementation is relatively difficult.

Nelson & Aloimonos[79] were the first to attempt a realistic approach to navigation.

Their algorithm computes directional divergence, which is a second order flow parame-

ter, and can be very noisy. Coombs, et al.[25] employed flow divergence for real-time

obstacle avoidance. Their obstacle avoidance system currently appears to be the fastest

one using flow divergence. In their system, time-to-contact is equivalent to divergence

when carefully controlling the camera so as to approximately translate in the direction of

the optical axis. The computation of divergence, however, is based on noisy flow and re-

quires temporal integration in order to interpret the result. Camus [20] implemented a

real-time algorithm for time-to-contact which is quite reliable. However, the algorithm is

limited by its restrictive assumptions about the motion and the surfaces. Kundur &
Raviv[59] proposed the use of image quality measure for the visual threat cue. This

method exploits the camera defocusing effect for navigation.

The major contribution of this chapter is to pioneer the idea of image gradient evolution

and use it as a cue for threat during navigation. Such a capability is embedded in a gen-

eralized 2-D motion equation that also models expansion. An integrated spatio-temporal

filtering scheme is designed to estimate image derivatives in a numerically coherent man-

ner. From these derivatives, image gradient evolution and optical flow can be estimated

at the same time in a fast manner.
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5.3 Generalized Motion Model

The brightness constancy equation is often interpreted in the following way.

V/ = 0 => 7(x, y, t) = F(x-ut, y-vt ) (53)

To measure image gradient evolution, the first step is to extend the image motion model

from simple 2-D translation to translation plus expansion. A 3-D point at position

P =
(X ,

Y, Z ) ,
under perspective projection, projects to a point in the 2-D image plane,

Oj).
X = fX/Z

’
w^ere / *s t^ie f°cal length of the projection. (54)

Let there be relative 3-D translational motion P(t) = (X + Ux t, Y + U Y t, Z- Uz t )

.

Hence,

x(t) = f(X+Uxt)/(Z-Uz t)

y(t) = f(Y+U rt)/(Z-Uz t)

Brightness constancy and (55) yield

(( U7 \ fUv f U
I(x, y, 0=^ x1- z )

fUx
z z

(55)

(56)

3-D translation only is assumed for its simplicity since 3-D rotation has no bearing on ex-

pansion (Koenderink[58] ). A general motion model that includes rotation parameters

can be found in (Liu, et al. [63] ). The following derivations can also be derived from the

general motion model.

To understand the generalized motion equation better, we describe equation (56) in the

context of optical flow.

(k, v)
dx

dt’Tt)
~

Z - Uz t

Uzx fUy Uzy x

Z - Uz t’ Z-Uz t

+
Z- Uzt)

®

fUx
1

uzx fUy Uzy
z

+
z ’ z

+
z

UZ (fUX fUy\
Let — be denoted by 5 , and I

——
.,

—

—

I by (p, q )

.

(57)

Rewriting (56) and (57) as

/(x, y, t) = F(x( l -st)- pt, y( 1-st)- qt ) (58)

(w, v) = (p + sx, q + sy) (59)

Equation (59) lays out the two components of optical flow: (p, q ) , and (sx, sy)

.

From

the linear dependency of (sx, sy) on (x, y) , s is interpreted as expansion. The translation

component (p, q) is induced by (Ux , UY ) only, and the expansion component s by Uz
only. When s = 0, then (u, v) = (p, q) and (58) becomes (53).
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The image gradient evolution is characterized by the following equation (derived in

Appendix C),

y t
t) = (l-st)~I(x', y\ 0),

\y

x(l -st)-pt

y(\-st)-qt (60 )

An image point (x\ /) at time 0 moves to (x,y) at time t. The two image gradients are

related by (60). When 5 is positive, which means the object is approaching (Uz > 0, in

(56)), the slope is decreasing ( 1 - st < 1 ). This coincides with our previous observation

in Fig 44. In the extreme case, when st = 1 ,
we derive the following equation

s

Z_

u 7

and t—I{x, y, t) = 0 .

OX
(61 )

In equation (61), t is interpreted as the time-of-contact and at that instant, the entire im-

age texture disappears, which is what we observe when the object is too close. It is clear

that s measures not only 2-D expansion, but also image gradient evolution and time-to-

contact. We can use it as a cue for collision avoidance.

Note that the focus of expansion (FOE) is predefined to be at (0, 0) in (56). To complete

the formulation, we modify (58) and (59) to allow the FOE to be at an arbitrary location

(*0> ?o) •

I(x, y, t) = (62 )

^p-^oX 1 -st)-pt+x
0 ,(y-y0)(l -st)-qt+yQ )

(u,v) = (p + s(x-x0),q + s(y-y0)). (63 )

Note that equation (60) is derived based on the assumption of a parallel frontal surface,

i.e., the surface normal is parallel to the optical axis. When the surface is not parallel fron-

tal, the image gradient evolution cannot be reliably interpreted for 3-D motion. However,

to use it as a qualitative cue for threat, our algorithm remedies this problem by identifying

other types of surfaces and potential boundaries as outliers. A post-smoothing stage then

overwhelms the errors induced by the outliers. This technique is reasonable because “di-

vergence due to a relatively distant object can be large, but only over a short distance in

the image” (Nelson & Aloimonos[79] ).

Compared with other approaches that attempt to compute absolute time-to-contact (Bur-

lina & Chellappa [15] ), our method appears inexact. In fact, we use a simplified model

of the affine motion with reasonable assumptions. However, it is a sound approach as we
realize that humans can navigate in complex environments without estimating time-to-

contact exactly. In addition, it is important to navigate in an unknown environment where

the scene and objects change dynamically, therefore there is little point in spending time

computing exact time-to-contact for the underlying scene [107] . For navigational tasks,

a practical approach is to build a “qualitative” threat map quickly instead of an accurate

time-to-contact map slowly.
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5.4 Algorithm and Implementation

To facilitate the estimation of image gradient evolution in the framework of the general

motion model, a potent and stable image differentiation filtering scheme is needed. The
set of orthogonal 3-D Hermite polynomial filters is excellent for the task.

hji * ~uI(i+ i)jO~vIiU + 1)0~(* + J)sIijO
where ( u ’

v ) are defined in (63). (64)

Equation (64) is linear in terms of optical flow (w, v) and image gradient evolution 5 .

Using 00, 01, 10 for ij , we can derive three equations up to the second order and solve

the linear system. In our implementation, we use six equations up to the third order to

form a least square formulation. The reason is that the residual is an excellent reliability

measure. In fact, if we consider the residual as the extent to which the motion model is

violated, it can be used to indicate noise, non-frontal surfaces, and boundaries (Liu, et

al.[64] ). Since 5 is noisy, our implementation exploits smoothing with confidence

weighting, i.e., extra steps of smoothing on s with the reciprocal of the residual as

weighting. This will smooth out noise but prevent smoothing across boundaries. It will

also overwhelm the errors due to non-frontal surfaces as long as there is a portion within

the object that is parallel frontal or nearly parallel frontal. If the objects’ surfaces are no-

where frontal, we shall direct the robot to look and move in the same direction in a piece-

wise manner using pan/tilt camera control, thus eliminating lateral motion that may con-

fuse the algorithm.

5.5 Experiments

The flow portion of the algorithm has been shown to be very accurate (Liu, et al.[63] )

compared with other current algorithms [9] . The following figures(Fig 46-Fig 48) show

one image of the sequence and its 3-D perspective threat map based on image gradient

evolution 5 . In the 3-D threat maps, elevation is used to depict threat. So the elevated area

represents closer objects. The threat value is thresholded to enhance 3-D structure per-

ception. For example, in Fig 46, the cereal box stands out in the center because most of

the threat values within the box are above the threshold; a navigational algorithm can then

use this threat map and veer aside to avoid the dangerous area in the center. In Fig 47, the

threat map is gradually elevated from the valley to the mountain in the lower left comer.

And the sky is perceived as safe except in some areas where the clouds change brightness

irregularly and deceive the algorithm; a navigational algorithm can use this threat map to

avoid heading for the lower left comer. In Fig 48, the metal plate in the lower left comer

is extracted; the Coke can and the platform are also partially visible; the pole on the right

side is visible at both of its ends. The fact that the metal plate is detected and the hole

remains intact demonstrates the effect of smoothing with confidence weighting. We are

currently working on the real-time implementation of the algorithm. On 64x64 images,

image gradient evolution without smoothing can be expected at the rate of 3 to 4 frames

per second on a Hyper Sparc 10 MP board. The amount of smoothing is dependent on the

image noise and may take a little more time than required by computing image gradient
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evolution. Although the threat map is noisy and currently the resolution is limited by the

noise and irregular brightness change, it already provides useful information for naviga-

tion.

5.6 Conclusion

Image gradient evolution is shown to be a useful cue for threat. The use of the image gra-

dient evolution eliminates the need to process noisy optical flow. Our algorithm builds a

dense qualitative threat map based on image gradient evolution. For navigation, we
would rather compute useful, probably inexact, information quickly than exact informa-

tion slowly. That is what our algorithm achieves.
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Fig 48 NASA sequence and threat map
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Chapter 6

Transparent Motion Segmentation

An image is ideally a projection of the 3-D scene. However, the imaging process is

always imperfect and constrained by the physical environment, for example, viewing

through a window with reflections. This chapter is concerned with image sequences

acquired in such situations, the so-called transparency. When this occurs, the image

sequence contains undesirable transparent motion, for example, of the window reflec-

tions. This complicates the already difficult motion estimation problem. We present an

algorithm to segment transparent motion based on a spatio-temporal filtering tech-

nique—3-D Hermite polynomial differentiation filters. With motion segmentation

accomplished, we can then focus on the analysis of the scene. The implementation of

our algorithm is fast and accurate.

6.1 Introduction

Transparent motion refers to two superimposed intensity patterns with different motions

present in a single image. The resulting image can be hypothesized to be either the addi-

tion or multiplication of the two moving patterns depending on the types of transparency.

Specular and diaphanous transparencies are additive; film and shadow transparencies are

multiplicative [55] .

Fig 49.1 -Fig 49.3 give an example of specular transparent motion. Since the moon is ro-

tating, the surface is translating (to the right in Fig 49.3). The moon also revolves around

the earth causing the specular reflection of the sun to translate (to the upper left) at the

same time.

An image 7 with transparent motion is formulated as follows:

I(x,y,t) = /j(*, y, t)®I2
(x, y,t), (65)

where (+) can be addition or multiplication, and

I
t
(x,y,t )

= I^x-uJ, y- v-f, 0), i =1,2, (66)

using the translational motion model.

It can easily be seen that any single motion estimation algorithm would fail to compute

either one of the motions unless there is one dominant texture. Transparent motion seg-

mentation needs to be performed before an analysis of the individual motions is possible.

Although it may seem that the transparent motion scenario is rarely present, it is actually

very common in the real world. The specular reflection depicted in Fig 49.2 is a good ex-

ample. Also common is the dirty lens scenario where the dirt pattern on the lens is mo-

tionless but contaminates the intensity pattern of the scene.

Transparent motion segmentation is difficult to solve. However, it is encouraging to note
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Fig 49.1 Diffuse reflection Fig 49.2 Specular reflection

12th 16th 20th

Fig 49.3 Sequential display of image frames

that when humans view images with transparent motion, they have no problem segment-

ing different m tions.

There are three steps involved in transparent motion segmentation:

1 . Determining whether multiple motions exist.

2. Extracting transparent motions.

3. Segmenting transparent motions.

Unlike most previous studies which are primarily focused on 2. and sometimes 1., this

chapter address each of the three steps.
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6.2 Previous Work

In this chapter, we expand on the multiple motion model proposed by Shizawa and

Maze[95] [96] . Their basic idea is to apply consecutive linear operators, which are

equivalent to single motion constraint equations. For two motions, it is formulated as:

[O l5
Vj, 1) • V][(w

2 ,
v2 , 1) • V]7 = 0 (67)

A A
dydt

With this model, Langley, et al. [60] used a phase-based method to extract multiple mo-

tion.

Our expansion of the model is based on the gradient constancy assumption, which is true

when brightness constancy is true. It is formulated as:

and • is the inner product.where V =
(

,

[(wj, vj, 1) • V'][(k
2 ,

v
2 , 1) • V ;

]7 = 0 (68 )

where V z

'
d

l

a'"

,a/ a/ d/

,

With different combinations of the i and j ,
we get multiple motion constraint equations

to solve the problem.

We adopt the conventional gradient-based method instead of using frequency informa-

tion because our previous work [63] [66] has shown that spatio-temporal filtering based

on 3-D Hermite polynomial differentiation filters is excellent in estimating image gradi-

ents. The separability of the filters offers a tremendous speed advantage over the frequen-

cy domain filters of Langley, et al. and Shizawa & Mase.

Bergen et al. [10] proposed an iterative scheme and image registration to minimize their

multiple motions estimation error. Darrell and Pentland [26] used robust estimation tech-

niques and a layered representation of the images to segment multiple flows. Although

these algorithms are better at handling occluding boundaries, their iterative nature does

not guarantee convergence to a global minimum and their computational cost is very

high.

6.3 The Algorithm

To facilitate the estimation of accurate image gradients in the framework of the expanded

transparent motion model depicted in (68), an accurate and stable image differentiation

filtering scheme is needed. The set of orthogonal 3-D Hermite polynomial filters is ex-

cellent for the task.

6.3.1 Extracting transparent motions

If the transparency is multiplicative, we simply take the logarithm of the image intensity

and follow the same procedure as for additive transparency.
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From equation (68), we derive enough equations to solve for the unknowns (x in (70)).

The unknowns are nonlinear functions of (u
x ,

Vj) and ( u 2 ,
v
2 )

.

But we solve the linear

system for the unknowns first and use the relations (x in (70)) to solve for the flows. For

double transparent motion, we have

min\\Ax-b\\ where (69)
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Once the value of x is computed from the least square system, (u
Y ,

Vj) and ( u 2 ,
v
2 ) can

be easily computed and properly aligned according to [95] .

6.3.2 Segmenting transparent motions

Now that every image point has two flow vectors, we need to separate them into two co-

herent flow fields. For this, we assume that the foreground flow is constant. Thus we
compute a 2-D image flow histogram and find a peak in the histogram, which corre-

sponds to the constant motion. Then at every point, the flow closer to this peak is assigned

to the foreground motion, while the other flow is assigned to the background motion. This

assumption is often true when the foreground motion is induced by window reflections

or dirt patterns on the lens.

6.4 Experiments

We have tested our algorithm on a synthesized image sequence (Fig 49) and on real im-

age sequence (Fig 52). The 3-D window size used in both instances is 25x25x17.

In Fig 50, we show the true and computed flow for the moon surface and the specular re-

flection. As can be seen, the computed background motion corresponding to the moon
surface is very accurate. The computed specular motion is less accurate because the spec-

ular component has significantly less texture. This is the general aperture problem present

in motion algorithms. In the extreme case where one moving pattern has no texture, only

the other motion can be detected.

We then separate the two intensity patterns by the following technique. In Fig 51.1, we
warp the first frame with flows from the flow field associated with specular reflection

motion and then subtract the second frame, resulting in the cancellation of specular re-

flection pattern. The output is the temporal difference of the moon surface pattern.

Fig 51.2 is derived conversely.
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Fig 50. 1 True moon surface flow

Fig 50.3 Computed moon surface flow

Fig 51.1 Temporal difference of the moon

surface pattern

Fig 50.2 True specular flow

Fig 50.4 Computed specular flow

Fig 5 1 .2 Temporal difference of the specular

reflection pattern

The real image sequence used in our experiments is presented in Fig 52. In this sequence,

the scene is composed of a picture in a frame which reflects the ceiling light. Note that
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1st 10th 19th

Fig 52.Sequential display of real images

the picture is moving to the upper right comer and the reflection is moving upward.

From the results in Fig 53.1, we see that the motion of the picture is extracted accurately
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Fig 53.1 Computed picture flow Fig 53.2 Computed reflection flow

in most areas. However, the motion of the light reflection is noisy because of the lack of

texture in this pattern. Nonetheless, a close inspection of the flow field in Fig 53.2 reveals

that it is indeed moving upward. It should be noted that the object motion, rather than re-

flection motion, is usually the desirable information to extract and the accuracy associat-

ed with the former is more important

Our transparent motion segmentation algorithm is implemented on a Sun Hyper Sparc 10

board. For the window size specified above, it ran on a 150x150 image sequence in less

than 1 minute. The code is available through our ftp site at giskard.cme.nist.gov, in direc-

tory ftp/pub/motion/transparent.

6.5 Conclusion

Transparent motion segmentation has received relatively little attention due to its numer-

ical demands. The same reason appears to have led recent approaches away from gradi-

ent-based methods. In this chapter, however, we present a gradient-based method for

transparent motion segmentation which is facilitated by a spatio-temporal filtering tech-
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nique based on 3-D Hermite polynomials. We achieve a fast and accurate algorithm. This

work offers a comprehensive solution to transparent motion segmentation by addressing

all three issues involved in transparent motion segmentation: determining the existence

of multiple motions, extracting transparent motions and segmenting transparent motions.

In the future, a more sophisticated assumption about the motion will be developed to

adapt the algorithm to the general case.
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Chapter 7

Accuracy vs. Efficiency Trade-offs in

Optical Flow Algorithms

There have been two thrusts in the development of optical flow algorithms. One has

emphasized higher accuracy; the other faster implementation. These two thrusts, how-

ever, have been independently pursued, without addressing the accuracy vs. efficiency

trade-offs. Although the accuracy-efficiency characteristic is algorithm dependent, an

understanding of a general pattern is crucial in evaluating an algorithm as far as real

world tasks are concerned. To meet various performance requirements of these tasks,

this chapter addresses many implementation issues relevant to the accuracy vs. effi-

ciency trade-offs that have often been neglected in previous research, for example, sub-

sampling, temporal filtering of the output stream, algorithms’ flexibility and robustness,

etc. We present a critical survey of different approaches toward the goal of higher perfor-

mance and conduct experimental studies of accuracy vs. efficiency trade-offs. A detailed

analysis of how this trade-off affects algorithm design is manifested in a case study

involving two state-of-the-art optical flow algorithms: one is gradient-based [65] [66]

and the other correlation-based [21] . The goal of this chapter is to bridge the gap

between the accuracy and the efficiency-oriented approaches.

7.1 Introduction

Whether the results of motion estimation are used in robot navigation, object tracking, or

other applications, one of the most compelling requirements for an algorithm to be

effective is the speed. No matter how accurate an algorithm may be, it is not useful

unless it can output its results within the necessary response time for a given task. On the

other hand, no matter how fast an algorithm runs, it is useless unless it computes motion

sufficiently accurately and precisely for subsequent interpretations.

Both accuracy and efficiency are important as far as real world applications are con-

cerned. However, recent motion research has taken two approaches in opposite direc-

tions. One neglects all considerations of efficiency to achieve the highest accuracy

possible. The other trades off accuracy for speed as required by a task. These two criteria

could span a whole spectrum of different algorithms, ranging from very accurate but

slow to very fast but inaccurate. Most motion algorithms are clustered at the ends of the

spectrum. Applications which need a certain combination of speed and accuracy may

not find a good solution among these motion algorithms. Therefore, to evaluate an algo-

rithm for practical applications, we propose a 2-dimensional scale where one of the

coordinates is accuracy and the other is time efficiency. In this scale, an algorithm with

different parameter settings generates an accuracy-efficiency (AE) curve, which will

assist users in understanding its operating range (accuracy-efficiency trade-offs) and in
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optimizing its performance.

In evaluating accuracy-efficiency trade-offs, we also consider implementation issues

such as subsampling, temporal filtering and their effects on both accuracy and speed.

The above issues are highlighted in a case study, in which we compare a gradient-based

method [66] and a correlation-based method [21] . Both algorithms achieve about the

same speed but work very differently. They represent state-of-the-art optical flow algo-

rithms because few gradient-based methods achieve such high accuracy as that of [66]

and few correlation-based methods achieve such high speed as that of [21] . We analyze

the characteristics and state the strengths and weaknesses of each algorithm. The under-

standing of the subtle differences will assist a user in selecting a good algorithm for real-

time applications.

Since the focus of the previous chapters was on accuracy and the relevant previous work

has been discussed, we start with a survey of real-time implementations here.

7.2 Previous Work on Real-Time Implementations

Regarding the issue of speed, there is a prevailing argument in most motion estimation

literature that with more advanced hardware that will be available in the near future, the

techniques could be implemented to run at frame rate [9] . In a recent report, many exist-

ing algorithms’ speeds (computing optical flow for the diverging trees sequence) are

compared and compiled in a tabular form[l 1] . We use the data from this table and cal-

culate the time (in years) it may take for these algorithms to achieve frame rate, assum-

ing computing power doubles every year [87] . This result is displayed in Table 9. Note

Table 9: Execution time and expected time to achieve frame rate for diverging

tree

Techniques Horn Uras Anandan Lucas Fleet Bober

Execution time

(mins:secs)

8:00 0:38 8:12 0:23 30:02 8:10

Approximate execution

time on HyperSparc 10

2:00 0:10 2:03 0:06 6:00 2:03

Expected time to frame

rate

12 years 8 years 12 years 7 years 14 years 12 years

that some algorithm may take up to 14 years (from when the table was compiled) to

achieve frame rate. This would drastically limit the potential of such algorithms for

many practical applications over the next decade.

There have been numerous attempts to realize fast motion algorithms. There are two

major approaches: the hardware approach and the algorithmic approach. They are sum-
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marized in Table 10 and Table 11 given below and elaborated in the following para-

Table 10: Real-time motion estimation algorithms—hardware approach

Category Type Difficulties

Parallel

computers

Connection machine [17] [85] [114] [117] Parsytec

transputer [99] and hybrid pyramidal vision

machine (AIS-4000 and CSA transputer)[31]

high cost, weight and

power consumption

Special image pro-

cessing hardware

PIPE [4] [25] [112] , Datacube [83] and PRISM-3

[86]

low precision

Dedicated VLSI
chips

Vision Chips: gradient method [73] [105] , corre-

spondence method [28] [104] and biological recep-

tive field design [32] [72]

low resolution

Non-Vision Chips: analog neural networks [61]

digital block matching technique [8] [50] [115]

quantized results

Table 11: Real-time motion estimation algorithms—software approach

Technique Algorithms Difficulties

Sparse feature

motion

tracking [4] [69] . computing time-to-contact (and

hence obstacle avoidance)[25] and segmentation [99]

requirement of tem-

poral filtering

Special con-

straints

constraint on motion velocity [21] , constraint on pro-

jection [118]

constraint on input

images

Efficient algo-

rithm

1-D spatial search [7] , separable filter design (Liu's

algorithm[66] )

requirement of care-

ful algorithm design

graphs.

The hardware approach uses specialized hardware [34] to achieve real-time perfor-

mance. There have been three categories of specialized hardware employed for motion

estimation: parallel computers, specialized image processing hardware and dedicated

VLSI chips.

Parallel computers such as the Connection Machine [17] [85] [114] [117] , Parsytec

Transputer [99] ,
and hybrid pyramidal vision machine (AIS-4000 and CSA

transputer) [31] have been used for optical flow estimation. These machines tend to be

bulky and consume huge power. For applications that use motion cue for mobility such

as robot navigation, such machines would significantly hamper the practicality of the

motion algorithms in two ways: if the computer system is to be mounted on the robot

platform, the power requirement is a major challenge for current battery technology; if

the computer system is off the platform, the robot would have to be tethered in order for

the computer to collect and process huge amount of sensor data. Noise and fluctuation in

battery power often adversely affect the sensor signals (e.g. corrupt video synchroniza-

tion). On the other hand, a tethered robot’s mobility is limited. At the Perception Sys-

tems Laboratory at the National Institute of Standards and Technology, we have

experienced these problems.
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Specialized image processing hardware such as PIPE [4] [25] [92] [112] , Datacube

[83] ,
and PRISM-3 [86] have been used for flow estimation. These machines achieve

high speed with simplified arithmetic circuitry. Thus the algorithms’ accuracies are com-

promised. This approach can only be used in motion applications which do not require

precise estimates.

Finally, there is the use of dedicated VLSI chips to estimate flow. In terms of applica-

tions, there is significant potential in this approach because of its small size and power

consumption. One method uses analog computing circuitry with built-in photoreceptors.

These estimation chips represent a major class of the so-called “Vision Chips” or “See-

ing Silicons”[71] . Gradient methods [73] [105] , correspondence methods [28] [104]

,

and biological receptive field designs [32] [72] have all been implemented. Although a

great deal of progress has been made in the past decade, there are still several barriers to

this approach. First, there is a lack of VLSI-friendly algorithms. Most flow estimation

algorithms are simply too complex to implement efficiently. Second, there is a require-

ment for huge routing areas in the chips between adjacent photoreceptors. This require-

ment arises in any flow algorithm which performs even the simplest local operations

(e.g. differentiation). This puts a limit on the number of cells that can be put on a chip.

The third barrier is the insufficient understanding of biological visual systems, which

usually inspire vision chip design. Hence, the limitations of the current chips include

very low resolution (usually less than a hundred cells [32] )and simplified applications

(e.g. only 1-D motion estimation, or even only motion detection). Another method uses

digitized images as input to the VLSI chips to pe orm motion estimation, i.e., there are

no on-chip photosensors. One of the two major approaches uses analog neural networks

[61] while the other uses digital block matching techniques [8] [50] [115] . This method

achieves higher speed and marginally higher resolution than using vision chips. The pre-

cision of motion estimation, however, is limited because the motion vector is coarsely

quantized.

It should be noted that any progress made in basic motion research can be reevaluated in

the context of hardware implementations. It is hoped that such understanding can bridge

the gap between algorithm development and its applications. It is clear now that the use

of specialized hardware has had many problems, compromising its applicability to real

world tasks. While the difficulties are being coped with, other research efforts have

taken a different approach to real-time motion estimation—focusing on algorithm

design.

The most popular method is to compute sparse feature motion. Sparse feature motion

has been used for tracking [4] [69] [80] , computing time-to-contact (and hence obstacle

avoidance)[25] and segmentation [99] . However, with sparse feature motion, to inter-

pret the scenes in a sufficiently comprehensive way for these applications, these algo-

rithms need to use extensive temporal filtering (e.g., recursive least square, Kalman

filtering), which is time-consuming. Therefore, either the speed is not satisfactory [4] or

they need to run on special hardware to achieve high speed [25] [69] [99] .

Another method is to constrain the motion estimation to a more tractable problem. For

example, images can be subsampled so that the maximum velocity is constrained to be

less than 1 pixel per frame. Therefore, a correlation method [21] can simply perform

temporal matching in linear time instead of spatial search in quadratic time. Another
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technique is to use a different projection. For example, any 3-D vertical line appears as a

radial line in a conic projected image. This fact has been exploited for real-time

navigation [1 18] .

Another elegant idea is to work on efficient design and implementation of the flow esti-

mation algorithm. The main goal of this approach is to reduce the computational com-

plexity. Suppose the image size is S and the maximum motion velocity is V

.

Traditional

correlation algorithms performing spatial search or gradient-based algorithms using 2-D

filters have the complexity 0(V S)

.

Several recent spatio-temporal filter based methods

3
even have 0(V S ) complexity. Recent correlation-based algorithms use 1-D spatial

search [7] while another gradient-based algorithm [66] exploits filter separability. They

have achieved 0(VS ) complexity,. This is a breakthrough because to output dense

results, this complexity is the lower bound. The discussion of resolution, accuracy and

robustness will be presented in the following sections. A nice characteristic of this

design and implementation is that it runs very efficiently on a general purpose worksta-

tion or a microcomputer. It can easily be integrated with high-level processes (e.g.,

obstacle avoidance, robot control) because they often run on the same host computer.

7.3 Accuracy vs. Efficiency Trade-offs

Although real time is often used to mean video frame rate, in this chapter, real time is

loosely defined as sufficiently fast for interactions with humans, robots or imaging hard-

ware. The following subsections discuss the issues that are only of interest when one is

concerned about both accuracy and speed. All the experiments illustrating our discus-

sions are done on the diverging tree sequence.

7.3.1 Accuracy-efficiency curve

If a motion algorithm is intended to be applied in a real world task, its overall perfor-

mance, including accuracy and efficiency, should be evaluated. Analogous to the use of

electronic devices, without the knowledge of an algorithm’s full operating range and

characteristics, one may fail to optimize its performance. Using accuracy (or error) as

one coordinate and efficiency (or execution time) as the other, we propose the use of a 2-

D accuracy-efficiency (AE) curve to characterize an algorithm’s performance. This

curve is generated by setting parameters in the algorithm to different values.

For correlation methods, the template window size and the search window size are com-

mon parameters. For gradient methods, the (smoothing or differentiation) filter size is a

common parameter. More complex algorithms may have other parameters to consider.

The important thing is to understand their characteristics in a quantitative way.

For optical flow, accuracy has been extensively researched in Barron[9] . We will use the

error measure in [9] , that is, the angle error between the computed flow {u
c , vc, 1 ) and

the ground truth flow (u, v, 1 ) , as one quantitative criterion. For efficiency, there are two

indicators: throughput and latency. An algorithm should attain high throughput (number

of output frames per unit time) without long latency. However, throughput is more rele-
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vant to efficiency than latency. We will use it as the other quantitative criterion.

In the 2-D performance diagram depicted below (Fig 54.), the x axis represents the

angle error; the y axis represents the execution time. A point in the performance dia-

gram corresponds to a certain parameter setting. The closer the performance point is to

the origin (small error and low execution time), the better the algorithm is. An algorithm

with different parameter settings spans a curve, usually of negative slope. Analogously,

the distance from the origin to the AE curve represents the algorithm’s AE performance.

In Fig 54, there are two AE curves and several points . It can be seen that some algo-

Fig 54. 2-D performance diagram

rithms (e.g., Fleet & Jepson[34] ) may be very accurate but very slow while some algo-

rithms (e.g., Camus[21] ) may be very fast but not very accurate. In terms of AE
performance, Liu, et al.’s algorithm in [66] is most flexible and effective because the

curve is closest to the origin. It is interesting to find that the curve corresponding to the

gradient-based method in [66] coincides with Camus’s [21] curve at one point. This

should not be a surprise because these two algorithms are approaching the problem from

opposite starting points. Liu, et al’s [66] algorithm is more focused on accuracy so the

AE curve is close to horizontal, while Camus’s algorithm is concerned more with speed

so the AE curve is close to vertical. These curves are bound to intersect each other.

*. The implementations of other algorithms are provided by Barron [9] . Some of the algorithms

produce different density, we simply project the error by extrapolation. In Liu’s curve, the filter

size used range from 5x5x5 to 17x17x11. In Camus’s curve the template size ranges from 7x7x2

to 7x7x10. The execution time for all algorithms is the approximate elapsed time running on the

same machine (80MHz HyperSparc 10 board). They are faster than those reported in Table 9.
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The AE curve is also useful in understanding the effect and cost of certain types of pro-

cessing. For example, Fig 55 depicts the trade-off of using a median filter in Liu, et al.’s

Fig 55. The effect and cost of using a median filter

algorithm on the flow field output. The two curves are generated using different filter

sizes. Note that the curve using the median filter has less error (-14%) but the computa-

tion cost is higher (-12%). Since the curve using the median filter is generally farther

away from the origin, it is not advisable to use a median filter for AE critical tasks. How-
ever, to achieve maximum accuracy, a median filter can be used. For the same speed,

using no median filter (with a larger filter size) results in higher accuracy than using the

median filter (with a smaller filter size). This means that the selection of the right filter

size is more important than the application of a median filter. Fig 56 shows the effect and

cost of using different orders of image derivatives in Liu, et al.’s algorithm. The trade-off

is even clearer in this example. Using only up to second order derivatives saves 50% in

time while sacrificing 85% in accuracy. Parameters can be adjusted for different applica-

tions according to their specific needs.

7.3.2 Subsampling effect

The computational complexity of optical flow algorithms is usually proportional to the

image size. However, an application may not need the full resolution of the digitized

image. An intuitive idea to improve the speed is to subsample the images. Subsampling

an image runs the risk of undersampling below the Nyquist frequency, resulting in alias-

ing, which can confuse any motion algorithms. To avoid aliasing, the spatial sampling

distance must be smaller than the scale of image texture and the temporal sampling

period must be shorter than the scale of time. That is, the image intensity pattern must

evidence a phase shift that is small enough to avoid phase ambiguity [94] .
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Fig 56. The effect and cost of using different orders of derivatives.

Temporal subsampling resulting in phase ambiguity and hence false motion perception

is easier to understand. In fact, it is often seen in motion pictures, e.g. reverse spinning of

vehicle wheels. However, spatial subsampling causing spatial aliasing and hence false

motion perception is illustrated in Fig 57. The left column shows the original curve and

the right column shows only the sample points. The top two rows show the original sam-

ple pattern and the bottom two show the subsampled pattern. It is easily seen that the

original image is perceived to move one pixel to the right while the subsampled image is

perceived to move one pixel to the left.

In summary, subsampling should be avoided on an image sequence with high spatial fre-

quency and large motion. This aliasing problem can be dealt with by smoothing (low-

pass filtering) before subsampling. However, since smoothing is done on the original

images and the computational cost is proportional to the original image size, the advan-

tage of subsampling is lost.

Aliasing is not the only problem in subsampling. Object size in subsampled images is

reduced quadratically but the image boundaries are reduced linearly (in terms of number

of pixels). Hence the density of motion boundaries is higher. This is detrimental to opti-

cal flow algorithms in general.

In short, subsampling can improve efficiency but needs careful treatment.

7.3.3 Temporal processing of the output

Since most general purpose optical flow algorithms are still very inefficient and often

operate on short “canned” sequences of images, they tend to be oblivious of the abun-

dant past output information. For long image sequences, it is natural to consider the pos-

sibility of temporally integrating the output stream to achieve better accuracy.
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Fig 57. Subsampling effect.

Temporal filtering is often used in situations where noisy output from the previous stage

cannot be reliably interpreted. Successful applications of temporal filtering on the output

requires a model (e.g., Gaussian with known variance) for noise (Kalman filtering) or a

model (e.g. quadratic function) for the underlying parameters (recursive least squares).

Therefore, these methods are often task specific.

A general purpose Kalman filter has been proposed in [98] where the noise model is

tied closely to the framework of the method. In this scheme, an update stage requires

point-to-point local warping using the previous optical flow field (as opposed to global

warping using a polynomial function) in order to perform predictive filtering. It is com-

putationally very expensive and therefore has little prospect of real-time implementation

in the near future (note that for example, the current Datacube warper provides only glo-

bal polynomial warping function but not local warping). So far, Kalman filters and

recursive least square filters implemented in real-time are limited to sparse data point

[69] [25] .

We have experimented with a simple, inexpensive temporal processing approach—expo-

nential filtering. Suppose b(t ) is the original optical flow estimate. We derive the expo-

nential filtered output a(t) based on the following equation:
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(71)a(t) = Y^f(\-f)
k
b(t-k) = fb(t) + (\-f)a(t-\).

k = 0

where f is the forgetting factor. When the forgetting factor is 1, which means the algo-

rithm forgets everything in the past, there is no exponential filtering. On the other hand,

when the forgetting factor is 0, the filtering always outputs the previous result and com-

pletely ignores the current estimate. With an appropriate forgetting factor, this filtering is

excellent for estimating a flow field that is constant over time. It is also very helpful for

flow outputs that are very noisy. Applying the filtering to Liu, et al’s algorithm [66] run-

ning on the diverging tree sequence, our experiments show that with parameter settings

that already achieve high accuracy, exponential filtering may increase accuracy, although

oversmoothing may reduce accuracy. This is illustrated in Fig 58.1: the average angle

Fig 58. 1 Temporal smoothing on Fig 58.2 Temporal smoothing on

high accuracy output low accuracy output

error improves with some filtering (i.e., as the forgetting factor decreases from 1) but

worsens when filtering is applied beyond some point (forgetting factor < 0.4). On the

other hand, in Fig 58.2, with parameter settings that generate low accuracy original out-

put, the filtering can greatly improve accuracy (up to 25%, from 19.17 to 15.23) very

much while its computational cost increases minimally (less than 2%, from 0.975 to

0.989 CPU second/frame). As expected, noise in the filtered output, represented by the

standard deviation of the angle error, is uniformly proportional to the forgetting factor

(see Fig 58.1 and Fig 58.2).

In summary, when the noise in the output is high or the output is expected to remain

roughly constant, the exponential filtering improves accuracy with little computational

overhead, but when the scene or motion is very complex or contains numerous objects,

exponential filtering is less likely to improve accuracy.

7.3.4 Flexibility and robustness

It has been pointed out that some motion algorithms achieve higher speed by constrain-

ing the input data, e.g., limiting the motion velocity to be less than a certain value, thus
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sacrificing some flexibility and robustness. Some algorithms optimize the performance

for a specific situation. For good performance in other situations, users may need to

retune an array of parameters. It is thus important to understand how these constraints or

parameter tunings affect the accuracy. Flexibility refers to an algorithm’s capability to

handle widely varying scenes and motions. Robustness refers to resistance to noise.

These two criteria prescribe an algorithm’s applicability to general tasks.

To evaluate algorithm flexibility, we conducted a simple experiment as follows. We gen-

erated a sequence by taking every other frame of the Diverging trees sequence. The
motion in the new sequence should be twice as large. We then ran algorithms on this

sequence using the same parameters as on the original sequence and compared the errors

in the two outputs. A flexible algorithm should yield similarly accurate results, so we
examine performance variation rather than absolute accuracy here. The following figure

Fig 59.Algorithm flexibility in handling different motion.

illustrates the results. The algorithms’ performance variations for these two sequences

ranges from 16% (Liu, et al.) to 75% (Horn & Shunck). We had hoped to include the

results of Fleet and Jepson’s algorithm, which has been very accurate, but we were

unable to generate other than 0% density on the new sequence. Their algorithm seems to

be perfectly tuned for the original sequence.

To evaluate the algorithms’ noise sensitivity, we generated a new diverging tree

sequence by adding Gaussian noise of increasing variance and observed the algorithms'

performance degradation. The following figure illustrates the algorithms’ noise sensitiv-

ity. Some algorithms (Lucas & Kanade, Liu, et al., Anandan, Camus) have linear noise

sensitivity with respect to noise variance, some (Fleet and Jepson) show quadratic noise
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Noise sensitivity analysis on diverging trees sequence

sensitivity.

7.3.5 Output density

Most algorithms do some thresholding to eliminate unreliable data and hope that the

density is adequate for the subsequent applications. In addition, the threshold value is

often chosen arbitrarily (by users who are not experts in the algorithms) without regard

to the characteristics of the algorithms. The important characteristics that should be con-

sidered are flexibility and robustness to noise. If an algorithm is accurate but not flexible

and not robust to noise, then it is better off generating a sparse field because the more

data it outputs the more likely it will contain noisy data. However, the applications

should have a final say on the output density. A dense flow field is always ideal, but

selecting the right density of sufficiently accurate output is a more practical approach.

In section 3.2 on page 38, we showed that density is very important in real-world appli-

cations. For example, although Fleet and Jepson’s algorithm [34] is claimed to be very

accurate, its sparse flow field on the NASA sequence can barely be used for obstacle

detection. It should be noted that sometimes a less accurate dense flow field is better

than an accurate sparse flow field in real world applications. This issue is unfortunately

neglected in Barron’s performance evaluation [9] .
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7.3.6 Hardware constraints

Many researchers, after developing an accurate but slow algorithm, often argue that spe-

cialized hardware can make a real-time implementation feasible. It should be noted that

many potential problems may arise when attempting such an implementation. For exam-
ple, limitations in hardware precision, memory space, data path and data routing capac-

ity, unsupported operations (e.g., division is not supported in the Datacube), and

synchronization overhead (among parallel or pipelined units) can all set a limit to the

accuracy and/or speed of the implementation. For example, we have implemented an

optical flow algorithm[62] running on a Datacube MV200 at about 10 frames per sec-

ond. Its accuracy, due to low precision convolution, is poor compared to the implementa-

tion on a general purpose machine where floating point computation is performed.

7.4 A Case Study

In this section, we describe similarities and distinctions between gradient-based methods

and correlation-based methods for optical flow estimation.

The traditional intuitive distinctions between these two methods are the following: the

correlation-based methods perform search, so they are very slow; the gradient-based

methods perform numerical differentiations, so they are very inaccurate. However, with

recent advances in optical flow research, the above intuition is no longer true. For exam-

ple, efficient correlation algorithms have been developed [7] [21] . Some accurate gradi-

ent algorithms have also been developed [66] [114] .

In fact, a certain correlation algorithm is equivalent to a certain gradient algorithm. In

this section, we investigate their similarities and distinctions. We present a comparison

study between Liu, et al.’s gradient algorithm [66] and Camus’s correlation algorithm

[21] . They represent state-of-the-art optical flow algorithms because few correlation

algorithms have been as efficient as [21] and few gradient algorithms have been as accu-

rate as [66] . This comparison serves two purposes. First, it puts all the issues discussed

in the previous section in the context of two specific algorithms. Second, it points out the

strengths and weaknesses between a general gradient method and a general correlation

method. This understanding is important in selecting algorithms for particular real-time

applications.

7.4.1 Equivalency

Although correlation methods and gradient methods are conceptually different, we show

here that under some situations, they are equivalent.

A correlation algorithm that minimizes Sum of Squared Differences (SSD) is formulated

as the following:

MinAx Ay^(E)~dxdy ,
where E = I(x, y, t) - I(x + Ax, y + Ay, t + At)

.

(72)

If the image intensity pattern is smooth, then
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(74)so
JJ(£’)~

dxdy ~
JJ(

ulx + vl
y
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1 )

2
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2
dxdy

Equation (74) is used in the least squares formulation of the patchwise gradient

algorithm[68] . So

Min
Ax, aJ

J

(E)
2
dxdy «Min

u> VJJ(
w/* + vl

y
+

1

1 )

2
At

1
dxdy

.

(75)

In addition to the above analysis, Anandan[6] has used another weighting function to

analyze the relation between his correlation algorithm and Nagel’s second order gradient

method.

We see from this analysis that many motion algorithms are equivalent or related. It is the

implementations that distinguish them. And this is the reason why we consider imple-

mentation issues to be very important in this chapter.

7.4.2 Comparing a gradient algorithm with a correlation algorithm

Camus [21] has developed a real-time algorithm using the correlation method. Its speed

is about 5 frames per second on a general purpose computing machine (50 MHz Sparc

20) on 64x64 images. It is currently one of the most efficient general purpose optical

flow algorithms. The basic idea of this algorithm is to subsample the image and thus

constrain the motion velocity so that a quadratic search in space can be reduced to a lin-

ear search in time. This temporal matching concept is depicted in Fig 61.1-2. This algo-

Image 1-2 Image I Image t-2 Image t-1 Image t

Fig 61.1 Visualization of pixel (1,1) in image

T-1 moving to pixel (2,0) in image T, an opti-

cal flow of (1,-1) pixels per frame.

Fig 61.2 Visualization of pixel (1,1) in image T-2

moving to pixel (1,2) in image T, an optical flow

of (0,1/2) pixels per frame.

rithm outputs quantized flow. The number of quantization levels is proportional to the

range of the temporal search. For the performance mentioned above, the temporal search

range is 10 frames and the template window size is 7x7. Despite the algorithm’s simplic-

ity and quantization, it is sufficiently accurate for computing time-to-contact robustly

[20 ] .

On the other hand, Liu, et al.’s algorithm [66] (denoted as the gradient algorithm) uses

up to third order spatio-temporal derivatives and a generalized motion model that

accommodates expansion and translation. The speed is roughly 3 to 10 frames per sec-
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Fig 62.Real-time implementation of Liu, et al.’s optical flow algorithm

ond depending on the window size, median filtering, order of derivatives used, density of

output, etc. Generally speaking, the efficiency is about equal to that of Camus’s algo-

rithm [21] (denoted the correlation algorithm).

Efficiency is the only thing that is common in these two algorithms. Their differences

are listed in Table 12 and elaborated in the following paragraphs.

Table 12: Comparing Liu’s gradient algorithm with Camus’s correlation

algorithm

Liu’s gradient algorithm Camus’s correlation algorithm

strengths

accurate flow

weaknesses

quantized flow

handles various motion velocity constrains motion velocity

models expansion explicitly models translation only

multiple confidence measures no confidence measure

handles occluding boundaries distorts occluded object

robust to aperture problem less robust to aperture problem

weaknesses

sensitive to noise (brightness change)

strengths

more robust to noise

susceptible to subsampling effect less susceptible to subsampling effect

latency due to frame delays no latency due to frame delays

requires floating point computation uses only integer computation
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The gradient algorithm outputs very accurate flow, as evaluated previously, while the

correlation algorithm outputs less accurate quantized flow. It would be very difficult to

extract from quantized flow the first order optical flow information (e.g., divergence),

which is often used for subsequent applications. On the other hand, since the gradient

method is based on the brightness constancy assumption, it is sensitive to noise or to

brightness changes of any scale. As analyzed earlier, the error magnitude is proportional

to the noise magnitude. In many real world image sequences, the correlation algorithm

shows more robustness to brightness changes and the flow field seems smoother in space

and more stable over time.

The gradient algorithm is capable of handling motion velocities up to about a quarter of

the filter size. It is also very good at extracting very small motions, like that in the NASA
sequence. Generally, it can handle 0.05 to 4 pixels per frame of motion. The correlation

algorithm is only capable of handling 1/10 to 1 pixel per frame of motion.

The gradient algorithm can use two confidence measures (residuals and smallest eigen-

value) to output more reliable sparse flow. These confidence measures, as discussed ear-

lier, reflect not only reliability of the output data but also image properties. The

correlation algorithm does not generate confidence measures.

Occluding boundaries are difficult for all motion estimation algorithms. The gradient

algorithm is better at handling occluding boundaries because symmetric (noncausal)

temporal filters are used, i.e., future frames as well as past frames are used to compute

flow. Although the motion within the local 3-D filter window contains multiple motions,

Fig 63.1 The use of a symmetric tem-

poral filter.

occluding

object

Fig 63.2 Temporal matching with

past frames.

as long as the object under consideration occupies more than half of the window, the

estimation is still closer to true motion(Fig 63.1). On the other hand, matching the cur-

rent frame with only previous frames may produce erroneous estimates. In fact, it has a

tendency to find the best match in the most recent frame because the object under con-

sideration is occluded in most of the past frames(Fig 63.2). This is a systematic error for

any algorithm using noncausal filtering or matching. For the same reason, the gradient
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algorithm introduces an additional latency in the output proportional to half the temporal

filter size. The latency of the correlation algorithm, on the other hand, is only due to

computation. Specifically, for a throughput of 5 frames per second, the latency of the

gradient algorithm is 2 x 33ms + 200ms = 266ms (temporal filter support is 5, result-

ing in a 2 frames latency, and images are captured at frame rate, 33ms per frame); The

correlation latency is 200ms

.

The gradient algorithm is less susceptible to the aperture problem because a large filter

support is used.

When the image is subsampled, the gradient algorithm is more likely to suffer from

aliasing than the correlation algorithm. Consider as an example an extreme case where a

random dot pattern is moving one pixel to the right. In the subsampled image sequence,

adjacent frames become completely uncorrelated, so the gradient algorithm cannot esti-

mate motion correctly. The correlation algorithm, on the other hand, can find a perfect

match in one particular frame in the past. The distance between the current frame and

the matched frame is equal to the subsampling period. Note that the gradient method is

operating similarly to biological receptive fields, which also have difficulties perceiving

motion in a subsampled random dot pattern, especially when the subsampling distance is

high.

Finally, the gradient algorithm requires extensive use of floating point operations. Using

only integer computations may significantly compromise the gradient algorithm’s accu-

racy. The correlation algorithm uses only integer computations and thus may be easily

and efficiently implemented in special hardware.

Although this comparison is specific to the two algorithms under consideration, the

major strengths and weaknesses mentioned are mostly general to gradient algorithms

and correlation algorithms. The understanding of these strengths and weaknesses offers

new insight beyond the traditional intuitive distinctions between these two approaches.

7.5 Conclusion

Motion research has typically focused on only accuracy or only speed. We have

reviewed many different approaches to achieving higher accuracy or speed and pointed

out their difficulties in real world applications. We also have raised the issues of accu-

racy-efficiency trade-offs resulting from subsampling effects, temporal processing of the

output, algorithm flexibility and robustness, output density, and hardware implementa-

tion constraints. It is only through consideration of these issues that we can address a

particular algorithm’s applicability to real-world tasks. We highlight these issues by

doing a case study of comparisons between Liu, et al.’s gradient algorithm [66] and

Camus’s correlation algorithm [21] . Due to recent advances in motion research, the dis-

tinctions between these two approaches are becoming less clear. In theory, some gradi-

ent methods and some correlation methods are equivalent. However, the

implementations are very different. The understanding of relative strengths and weak-

nesses is important in selecting an algorithm for a real-time application. The accuracy-

efficiency trade-off issues discussed here are by no means exhaustive. We hope that this

initial study can generate more interesting discussions and shed some light on the use of
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motion algorithms in real world tasks.



Chapter 8

Conclusions and Future Research

8.1 Conclusions

Optical flow estimation is difficult and ill-posed. The past two decades of research have

led to spatio-temporal filtering techniques to overcome sensor noise, brightness change

over time, and quantization error. The aperture problem is mitigated by increased filter

support or other global techniques, while other approaches attempt to use an affine

motion model to pursue better accuracy in the optical flow. We have learned from these

results and have developed an integrated approach that combines a general motion

model and 3-D Hermite polynomial differentiation filters.

The general motion model we use avoids many dilemmas in motion algorithms includ-

ing filter (template) size selection, motion boundary extraction and flow field divergence

computation. Due to these dilemmas, traditional approaches that interpret motion using

optical flow are often self-conflicting.

What distinguishes the general motion model we use is that it is based on the continu-

ous-time analysis of arbitrary 3-D motion. The motion equation depicts pointwise rela-

tion in the image sequence and hence is correct for arbitrary 3-D scene and not restricted

to rigid motion. It is useful for all motion algorithms, but better numerical techniques are

required to make good use of the model. We have found that Hermite polynomial theory

provides necessary advantages for this purpose. It possesses many elegant properties,

including orthogonality, extensibility, Gaussian smoothing, and the recursive relation

(20) that facilitates the quadratic motion equation, etc. Contrary to general belief, the

behaviors of these high order differentiation filters are quite insensitive to noise. This

observation is supported by the good results in our noise sensitivity analysis. Simplicity

adds yet another dimension to the strength of this algorithm, making real-time imple-

mentation feasible.

Combining the general motion model and spatio-temporal Hermite polynomial filters,

we have solved for optical flow computation, motion boundary extraction, time-to-con-

tact estimation, and transparent motion segmentation.

At the application level, our optical flow algorithm generates a set of confidence mea-

sures that we prove reflect physical phenomena about the image and motion. These mea-

sures can then be used for subsequent qualitative processing, for example, separating

normal flow from accurate optical flow (Section 2. 5.3.4). In experiments, our algorithm

generates accurate and dense results, which are very useful for such tasks as motion seg-

mentation and obstacle detection (Section 3.2.3). Our motion boundary extraction algo-

rithm accurately localizes boundaries and the separate evaluation scheme also helps

distinguishes this characteristic of our algorithm. The time-to-contact algorithm success-

ful builds a dense threat map of the environment from real images. Transparent motion is

no longer an outlying process that disturbs normal processing because it is correctly
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modeled so that the foreground motion can be reliably segmented.

Our algorithms’ accuracy is rigorously evaluated using not only well established stan-

dard schemes (e.g., [9]

)

but also real world applications (e.g., obstacle detection in Sec-

tion 3.2.3). Their accuracy, flexibility, and robustness is the justification of our sound

theory and excellent numerical techniques.

Above all, our algorithms’ complexity achieves the lower bound and the implementa-

tions are so efficient that we are able to address a whole new array of real-time issues

that are certainly of interest to speed conscious researchers.

In summary, the major contributions of this report are a sound theory that interprets 3-D

motion unambiguously, a solid set of algorithms that perform well in terms of accuracy

and efficiency, rigorous evaluations that clearly distinguishes algorithms’ characteristics,

and real-time implementations that are suitable for many real world applications.

8.2 Future Research

Real world tasks that can benefit from the theory and implementations presented here

include unmanned vehicle (obstacle avoidance, range recovery), reconnaissance, sur-

veillance, target acquisition (image stabilization, object tracking, motion detection),

video compression (motion estimation, segmentation), etc.

Future directions for study include integration of the algorithms in an adaptive way, for

example, when there is transparent motion, we segment the foreground motion; and

when there are independently moving objects, we segment them using boundary infor-

mation and estimate their motions using 3-D motion parameters; when an object poses a

threat to the observer, the algorithm issues certain warnings to a (robot) control system

that navigates to avoid the threat. We hope that our evaluation and real-time discussion

generates more rigorous study on the applicability of motion algorithms to real world

tasks.



Appendix. A

We prove Theorem 1 as follows:

Proof: The first equality comes from the orthogonality of {Hn (x ) }. We now prove

the second equality, which claims that the scalar product of a function and the kth Hermite

polynomial is equal to the scalar product of the kth derivative of the function and 1.

(I, Hk)
=

J
G(x)I(x)Hk(x)dx

—oo

oo

= J

= (- 1 )* I
I(xfGMdx

—OO

= (-!)*/(*)
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dxk
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dxk 1
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J
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dx dxk ~ l
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= J/'Ax-i)'
_ |
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Appendix. B

Let A
n
and b , defined in (35), contain no noise and let the noise be modelled as in (42).

Then

E = An s + b - 0 and 5 = -(AjA
n )

1

A^b . (76)

Let the noise contaminated optical flow be s and the new residual be E . and assume that

N « A
n
and Ab « b elementwise, i.e., NN T ~ 0 and NAb ~ 0 . Then

5 = _[(A
n + A-)^(A„ + N)]- 1 (A

n + 7V) r (Z? + AZ>),and (77)
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l(A„ + N) t(A„ + N)]-> = (AjA„[/ + (AjAJ-'tAjJV + ^VrA„)])->

= [/-(AjA„)-l(AjW + ^A„)](AjA„)-i
>so (7g)

5 = - (A T
n
A

n
)~'A T

n
b + (AjA)-'(AjN + NTA

n
)(A T

n
A

n )-'

A

T
n
b + (A T„A

n
)~'NTb - (A„rA

Using (76), this can be simplified as follows:

5 = s - (A,[A„)-> A T
n Ns - (AjA„)-> AjAfe and As = (A Tn An)-'A

T
n Ns-(AlAn

)- lAT
n
Ab

.

For the residual, substituting 5 into (42), and using (76), we have

E » ||(A„ + (V)s - An(AlAn)-'A
T
n Ns - A„(AjA„)->AjAh + b + Ab||

» |
(/ - A„(AjA„)-> Aj)(Afr + Ab)|| as in (44).

To understand £ better, we analyze the matrix 1 - A
n
(A^A

n
)~ ] Aj, denoted by 7".

It is easy to verify that the only nontrivial eigenvalues of matrix T is/are 1, which means

that it maps any vector (Ns + Ab) to only the directions specified by the eigenvectors

corresponding to the nontrivial eigenvalues.

Appendix. C

We prove equation (60) here.

5 3 x' = x(\-st)-pt
±J(x, y, 0= fxF(S, y ) where

y = y(l , st)_
F
qt . (79)

Assume the surface is parallel frontal, so = 0
dx
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(80)

= d-«)(^F(v,y)
x' = x(l-st)-pt
y' = yQ. -st)-qt

x' = x(\-st)-pt

y = y(l-st)-qt

= (1 -st)^-I(x(l-st)-pt, y(\-st)-qt, 0)
ox

= (1 -st)^-I(x', y\ 0)
ox

Appendix. D

We prove equation (64) here

First, from (18) and (22), we establish

xHn {x) = o 2Hn + i(x) + nHn -i(x)

.

(81)

Equating I
lj{

to F
ijl

and using Theorem 1,

hji
=

Fiji = (F,Hijl ) = (¥,H ij0)

/s(x-x
0 ) + My-y0 ) +

\ 1 - st Jdx V 1-5? % . Hii0)

(82)

Practically, 5 « 1 so 1 - st = 1 . Equation (82) can be approximated by

-<(5(x - x
0 ) + p)^- + (s(y - y0 ) + q)^-, Hij0) or-((sx + u)j^+(sy + v)^, H lj0) (83)

Using Theorem 1 again, we derive

dl — dl —
~ uI

(i + 1 )j0
- vI

i(j + i) 0
~ s^ xHy'0>

~ s^ yRijO> • (84 )

Equation (84) and (81) yield

~uI
(i+ l)jO~

vI
i(j + 1 )0

“ (‘ + j^sIijO~sa2 ^(.i + 2)jO
+ 1

i(j + 2) 0^ (8 ^)

The last term in (85) involves higher order differentiation, which often suffers from quan-

tization error due to limited filter support. Furthermore, it is very small in smooth images.

We choose to ignore it in practice. Flence, we have proved equation (64).
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