
Distributed Systems:
Survey of Open
Management Approaches

NISTIR 5735

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Distributed Systems Engineering

Gaithersburg, MD 2Q899

NIST





NISTIR 5735

Distributed Systems:
Survey of Open
Management Approaches

Joseph Hungate
Geraldina Fernandes

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Distributed Systems Engineering

Gaithersburg, MD 20899

Draft 1.0

September 21, 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





TABLE OF CONTENTS

1 Introduction 1

2 POSIX OSE 2

2.1 Objectives 2

2.2 Service Requirements 3

2.2.1 Application Software Management 4

2.2.2 Application Platform Management 5

2.2.3 Human/Computer Interface (HCI) Management 6

2.2.4 Information Management 6

2.2.5 Communication Management 7

2.3 Reference Model 8

3 X/Open Systems Management 10

3.1 Requirements 10

3.2 Reference Model 12

4 NMF OMNIPoint 15

4.1 Requirements 15

4.1.1 System Interoperability 15

4.1.2 Management Application 16

4.1.3 Management Platform Functional Requirements 17

4.1.4 Testing 18

4.2 OMNIPoint Management Model 19

5 Open Distributed Processing (ODP) Overview 23

5.1 The Reference Model ofODP 23

5.2 ODP Architecture 24

5.4 Management ofODP Systems 25

6 Conclusion 27

7 References 29

i





1 Introduction

Networks and distributed systems are becoming critical for the working- of many enterprises.

Many organizations are becoming dependent on distributed computing systems. These are

expected to contribute to the financial and operational well-being of the organizations who
utilize them.

Traditionally, tools necessary to perform effective system management were inherent to

proprietary operating systems and dealt with user and resource allocation and administration.

With the introduction of local area networks (LANs), distributed computing environments

started to develop. System management tools were enhanced with network management

facilities, but rarely in an integrated fashion. However, these environments were still composed

of single-vendor products.

In a very short time technology has become incredibly diverse, providing cheaper and more

sophisticated information technology (IT) products. With the incorporation of emerging

technologies into existing distributed computing environments, single-vendor systems are giving

way to multi-vendor, heterogeneous distributed systems. The integrated management of these

systems has become nearly impossible. Some components are not managed at all; they are just

monitored whether they are in service or not. Those that are managed are each managed

differently, usually by independent systems that need to be administered and monitored

separately. Administration of the many management systems, and monitoring ofmany

non-managed components, is done by a small army of people using ad hoc management

mechanisms.

With systems becoming larger and more complex, manual management is not sufficiently

coping and the associated costs are rising rapidly. Technology should be able to provide

automatic management, releasing people from non-productive tasks. However, the way

distributed environments have been constructed, by many vendors working independently,

means that the management systems do not speak the same language or use the same terms.

Traditional systems management technology is neither open nor integrated. Management

systems from different vendors do not interoperate and there is little or no integration in the

management of different, but related, areas. Also, different aspects of the user's environment

(e.g., interaction with mail and printing systems) are managed using different interfaces.

Management services, providing mechanisms to monitor and control a great diversity of

components and user interactions with these components, and an integrated approach to assure

consistency are just now being addressed by standard development organizations and user

consortia.

This report gives an overview of some existing approaches proposed by different

organizations: IEEE POSIX Working Group PI 003.0, X/Open, ISO/IEC, and the Network

Management Forum (NMF).

1



2 POSIX OSE

The Institute of Electrical and Electronics Engineers (IEEE) Portable-Operating System

Interface (POSIX) Working Group PI 003.0 describes an Open System Environment (OSE)

Reference Model (OSE/RM), which provides a framework for describing open system concepts

and defining a terminology that can generally be agreed upon by all interested parties. The

OSE/RM spans the gap between system requirements specification and design of a specific

system that uses IT 1

,
allowing future information system users (who state requirements) and

providers (who provide the system to fulfill those requirements) to understand each other.

The OSE/RM provides a basis for specification of standards to enable portability and

interoperability of applications, data and people.

Distributed system management is just now being addressed, particularly for the

heterogeneous system. The goal of systems and network management standards is to enable the

provision of portable and interoperable management technology
1

. The existence of standard

user-level interfaces to management functionality also provides portability of system and

network administrators.

A standards program for management of OSE-based distributed systems needs to address

many diverse elements. The elements of this process include requirements, framework and

specifications. Requirements analysis is the first step in determining which services are needed.

Once requirements are documented, the second step is to establish a viable framework. The

framework needs to provide an integrated infrastructure and includes reference model(s) and

architecture(s), service definitions, requirements, metrics, as well as methodologies for applying

them. Appropriate standards and publicly available specifications would then be selected to meet

the requirements and populate the framework.

2.1 Objectives

Portability and interoperability of applications, data and people are major objectives of

PI 003.0. The approach to management of OSE-based distributed systems should also satisfy

those same objectives, providing:

• Application Portability at the Source Code level,

• System Interoperability,

• User Portability,

• Accommodation of Standards,

• Accommodation ofnew Information System Technology,

• Application Platform Scalability,

• Distributed System Scalability,

• Implementation Transparency, and

• User's Functional Requirements.

2



Additionally, management of OSE-based distributed systems should provide:

• An integrated approach to distributed systems management — essential to achieve

interworking between different management domain areas.

• A consistent user interface, avoiding pointless differences in the interfaces presented to

the user for management functions.

• The ability for the entire system to be manageable under different domain relationships,

ranging from a purely centralized approach to loose federations.

• Support for interoperability among diverse resources.

• Effective automation.

The distributed systems management domain can be thought of as the integration of five

distinct, supporting domain areas which reflect the system entities identified in the OSE
Reference Model2

:

• Application Software Management,

• Application Platform Management,

• Human/Technology Interface Management,

• Information Management, and

• Communication Management.

2.2 Service Requirements

A requirement is defined as the user need for a service at an interface. The requirements for

management of OSE-based distributed systems
2

,
can be drawn from the requirements of the five

supporting domains stated in the previous section. Services for all domains need to be integrated

to provide a comprehensive set of distributed systems management services.

Some requirements are similar across the five domains. The goals are similar, only the system

entities involved, and the underlying mechanisms provided to meet those goals are different

Thus, all five management domains include the following requirements:

• State Management: a mechanism is needed for managing the state of the system entity

involved in each management domain. This need includes system initialization to a

pre-determined state (startup), and the ability to suspend operation
,
synchronize and

shutdown.

3



• User and Group Identification: there is a need to establish identity of a user/group by

appropriate authentication means prior to interaction with the system.

• Configuration Control: management of system configuration is needed and includes the

ability to view the current configuration, to modify it and to tune the system.

• Service Access Control: the system must be protected from unauthorized access or

hostile modification through appropriate security measures at the component level where

modification is affected.

• Usage Management and Cost Allocation: system utilization/cost data per user must be

collected, stored and analyzed, in order to determine what users are doing and what

resources are being consumed by that use.

• Performance Management: this service is needed and it includes measurement and

collection of tunable performance parameters, adjustment of system resources to improve

performance, redistribution ofworkload to optimize resource usage, and evaluation ofthe

results of adjustment or redistribution.

• Fault Management: this service is critical and it includes the prevention, isolation,

notification, diagnosis, and correction of fault conditions.

• Security Management: this service is needed and it includes security measures utilized in

IT resources to insure system integrity. Other aspects of security, such as physical and

personnel factors, are clearly outside the scope of this paper.

Specific details in each domain for some of these requirements will be described next, as well

as additional requirements particular to each domain.

2.2.1 Application Software Management

Application software includes programs, data, documentation and embedded training.

The requirements for managing application software include:

• State Management: a mechanism is needed for initializing the application software. In

addition to startup, the ability to suspend, synchronize, or shutdown is also required.

• User and Group Identification: a user must be identified prior to interaction with the

application software.

• Configuration Control: from the application software perspective, management of

4



system configuration includes configuration ofmemory and CPU allowances and

processor allocation.

• Service Access Control: for the application software this includes enforcing resource

authorization by authentication on invocation.

• Usage Management and Cost Allocation: this requirement calls for a common measure

of usage for application software is memory/CPU utilization over time.

• Fault Management: Common application software faults might include abnormal

termination, memory access violation, or excess cpu utilization.

Application software management requirements also include:

• Application Software Installation, Distribution, and License Control: this requirement

calls for the addresses the installation and distribution of software, including new releases

of operating systems software and the moderation and management of licensed software

usage.

2.2.2 Application Platform Management

POSIX defines an application platform as a set of resources, including hardware and

software, that support the services on which application software runs. These services are

provided through a set of defined interfaces.

The requirements for managing the application platform include:

• State Management: a mechanism is needed for initializing the system or components of

the system. Also required is the ability to suspend, synchronize, and shutdown. Shutdown

of all or part of the system may be necessary for maintenance, security or component

upgrade reasons.

• User and Group Identification: a user must be identified prior to establishing a session

on an application platform.

• Configuration Control: from the application platform perspective, management of

system configuration might include configuration ofmemory and CPU cycle allocations.

• Service Access Control: for the application platform this includes enforcing resource

authorization by authentication on session establishment or utilization of services at key

interfaces.

• Usage Management and Cost Allocation: a common measure of usage is needed for

5



application platform is MIPS (Million-Instructions Per Second).

• Fault Management: this requirement needs to deal with common application platform

faults due to such factors as out of range environmental conditions, circuit failure or

power fluctuations.

Application platform management requirements also include:

• Print Management: needs the functionality to initiate, stop, and manage print jobs, queues

and their associated output device.

2.2.3 Human/Computer Interface (HCI) Management

Human Computer Interface (HCI) services provide a consistent way for people who develop,

administer, and use a system to gain access to applications programs, operating systems, and

various systems utilities. The HCI services address client-server operations, object definition and

management, window management and dialog support.

The requirements for managing the HCI include:

• State Management: a mechanism is needed for initializing an information appliance. In

addition to startup, the ability to suspend, synchronize, and shutdown is also required.

• User and Group Identification: a user must be identified prior to establishing interaction

through an information technology component.

• Configuration Control: in human/computer interaction, management of system

configuration needs to include configuration of variable options available from

information appliances.

• Service Access Control: for HCI this needs to include enforcing resource authorization

by authentication on information appliance activation.

• Usage Management and Cost Allocation: needs a common measure of usage for the

human/computer interface such as the duration of use for an IT resource.

2.2.4 Information Management

The fundamental objectives of information management are to maximize the value, quality, and

usability of information resources and to coordinate requirements and design across the entire

6



organization. Information management is concerned with information from the user view and

functional standpoint. Information Management includes data modeling, development of policies

and standards for use and management of data, training users and coordination of other data

activities with system designers and users.

The requirements for managing information include:

• State Management: a mechanism is needed to initialize, suspend, synchronize, and

shutdown the information storage components of the system.

• User and Group Identification: a user must be identified prior to accessing information

storage.

• Configuration Control: in information management, this requirement includes

manipulation of media options and their availability.

• Service Access Control: this information management requirement includes enforcing

resource authorization by authentication on access.

• Usage Management and Cost Allocation: a common measure of usage (CMU) is needed;

for information management a CMU is bytes of data stored over time.

• Fault Management: to fulfill this requirement, services are needed to deal with common
information storage faults might be due to bad blocks or exhausted capacity.

Information management requirements also include:

• Database Management: provides mechanisms to accurately represent the meanings and

relationships ofthe information items to be managed. These mechanisms will provide a

standard way of representing data.

• File System Management and Content Integrity Checks: in a distributed system

environment files no longer reside locally. A distributed file system management

application must allow access to, and manipulation of, files across the system. Support

for the distribution and integrity of data must be provided.

2.2.5 Communication Management

Communication services provide functionality to allow two different parts of a system, or two

distinct systems, to invoke services from one another. These services include data transfer

protocols, services of the communications infrastructure, and services to manage data transfer

and communications.

7



The requirements for managing communication services include:

• State Management: a mechanism is needed to initialize the system or components ofthe

system. Also required is the ability to suspend, synchronize, and shutdown all or part of

the system.

• User and Group Identification: a user must be identified prior to establishing

communication.

• Configuration Control: the ability to configure network components is needed in

communication services.

• Service Access Control: for communication services this includes enforcing resource

authorization by authentication upon usage.

• Usage Management and Cost Allocation: a common measure of usage (CMU) is needed;

for communication services a CMU is bandwidth.

2.3 Reference Model

POSIX has defined a reference model for systems management2
consistent with the POSIX

OSE Reference Model2
. The reference model for systems management is shown in figure 1.

8



Figure 1 POSIX OSE Reference Model for System Management

A management application provides software application entities to support management

tasks in specific areas ofmanagement functionality. Application Entities make use of services

provided by the application platform.

In addition to the normal platform functionality, management components within the platform

provide management system services. Managed objects are included in the application platform

as abstract representations of resources that are to be managed. This abstraction allows different

resources to be managed in a uniform manner.

The external environment, as described for the systems management reference model,

includes administrators, who use management applications via a command line interface or a

graphical interface (facilitating administrator portability), and mechanisms for exchanging

information outside the model (e.g., via external networks and transportable media).

The POSIX OSE standards for some management services (i.e., print, software distribution

and user/group management) already exist. Appropriate standards and emerging standards

developed by other organizations, will be included in POSIX OSE. The development of an

approach for management of OSE-based distributed systems is still in an early stage. At present

most work is being done on service requirements definition.

9



3 X/Open Systems Management

X/Open is an open systems organization with the primary aim of bringing to users greater

value from computing, through the practical implementation of open systems
3

. The X/Open

strategy is to combine existing and emerging standards into a comprehensive, integrated,

high-value and usable system environment referred to as the Common Application Environment

(CAE).

The CAE covers the standards above the hardware level needed to support open systems. The

CAE provides portability and interoperability of applications, and allows users to move between

systems with a minimum of retraining. Components ofCAE include APIs, to enhance

portability of application programs at the source code level, and protocols to enhance

interoperability of applications.

The X/Open Systems Management Programme (XSM) addresses distributed systems

management. The primary requirement ofXSM is to develop management software that allows

an administrator to manage a network of heterogeneous systems as a single logical system. The

XSM is concerned with the definition ofthose interfaces necessary for portable implementation

of distributed management systems.

3.1 Requirements

The XSM is intended to achieve several high-level requirements:

• Portability: the ability to create software that is portable at the source code level (i.e.,

can easily be moved between systems from different vendors). The XSM provides

interfaces to enhance portability ofmanaged objects and managers. The scope ofXSM
interfaces is limited to management aspects. Other components to achieve portability are

provided by the CAE.

• Interoperability: the ability of systems and components from different vendors to share

and exchange information. Systems and components need to have connectivity and a

common understanding ofthe significance of information. The XSM provides this

property by defining:

• communications service for management purposes, which provides the means for

management information to be exchanged between systems;

• standards for management interactions;

• managed objects using object-oriented techniques, therefore allowing the

refinement ofmanaged objects while providing for their management based on

their original definition. This approach provides sufficient abstraction so a

manager does not need to have knowledge of the recently refined managed object

definition. Guidance is also given on how resources should be expressed as

10



managed objects, so that a manager on one system can understand the definition

of a managed object on any given system.

• Transparency: simplifies the task of developing management applications, hiding

distribution details. There are different aspects of transparency, access, failure, location,

migration, replication, and transaction transparency. Transparency should be selective,

particularly in the domain of management as there will be occasions when it is necessary

to be aware ofthe precise location or implementation of a resource (eg., in case of

failures). The XSM provides support for transparency by using a model based on

object-oriented techniques, in which managed resources are represented by managed

objects.

• Extensibility: the ability to extend the management system and to customize it to

implement different management policies. Extensibility means to allow the introduction

of new resources to manage and new ways to manage them. This property is provided by

resources being specified as managed objects. Managed objects definitions may be

extended by the definition ofnew objects that are refinements of the original objects.

• Robustness: the ability of the management system to provide necessary levels of

integrity, security and reliability. The XSM will address the provision of security in the

relationship between manager and managed object, by the provision of suitable services

(e.g., authorization and authentication services). The XSM does not define how
consistency of a managed object as viewed by a particular manager is achieved when

several managers manage the same managed object. Reliability is addressed by XSM
providing both confirmed and unconfirmed management interactions.

Additionally, the following requirements relate to the interfaces that will be provided to

access the management functionality:

• Ease of use: the services and APIs should be simple to use.

• Consistency: wherever appropriate, stylistic inconsistency should be avoided in

specification of interfaces.

The management functional areas to be covered, corresponding to real end-user requirements,

include:

• Network Backup and Restore,

• Performance Management,

• Accounting Management,

• Software Management, and

• Printer Management.

11



3.2 Reference Model

The X/Open Systems Management Reference Model (XRM) has been developed as part of

the XSM to meet the high-level requirements listed in the previous section.

The XRM's primary goal is to provide solutions for distributed systems management. The

XRM describes the components and architecture necessary to build a comprehensive distributed

systems management environment. Based on the use of object-oriented specification techniques,

the XRM describes the environment in which distributed systems management can be performed

without requiring the use of particular technologies. The XRM does not give a detailed

description of its various components; addresses only general properties. Required management

interfaces are identified but not defined.

Figure 2 shows the basic components ofthe XRM and their relationships.

Encapsulating Software

Interface Objects

Figure 2 XRM components

A manager is the initiator of a management interaction. A manager is a software component

that requests some operation to be performed by a managed resource. A manager may provide a

user interface allowing the invocation of management tasks, or may invoke, or be invoked, by

other managers. When invoked by another manager, a manager appears itself as a managed

object. This is the concept of cascading (i.e., multiple layers of management interaction between

the original initiator of the management request and the ultimate target resource(s) that are

affected by it).

To enable the management of heterogeneous systems, the management view of a resource has

to be isolated from the implementation of that resource. The management view should be

expressed in terms that enable managers to perceive resources as being the same from a

management perspective, even when their implementation and functional interface are different.

12



This management view corresponds to managed objects. Their definition encapsulates the

management characteristics of the resource and isolates these characteristics from the resource

implementation. Some managed objects may not correspond to any real resource within the

system, but rather correspond to an abstract element of functionality relevant to management of

some other resource, thus providing the capability of cascading managers.

Resources are entities within a system or network of systems that require management.

Resources can include physical entities (e.g., printers, routers) or logical entities (e.g., users,

groups). Not all resources need to be managed.

Services provide the common facilities that must be provided by the XSM Support

Environment in order to support distributed systems applications. Services are divided into three

major categories:

• General Services: the normal services available to all applications.

• Management Services: provide the common management functionality available to all

management applications. Management Service are built on common underlying system

services and management specific services.

• Application Services: services specific to some particular functional area within the

overall management problem space.

The basic reference model for management is shown in figure 3 . The reference model

describes the relationship between the three fundamental components — managers, managed

objects and services.

The communications service is specifically singled out for special treatment as this service

provides all the functionality necessary to provide transparent communications between

managers and managed objects. There is no direct access between manager and managed objects

except via the communications service. In the case where manager and managed object are on

the same system, the communications service may use local transport mechanisms, such as

Interprocess Communication (IPC).

Two types of interfaces are addressed in the reference model. The interface to the

communications service is an object-oriented interface, in which requests and responses are

expressed in object terms. Non-object interfaces are also included because many services will be

expressed in terms of traditional, functional interfaces, and mainly general services not specific

to management.

X/Open describes mappings of different existing technologies to the XRM, namely the Object

Management Group (OMG) mapping, the International Standards Organization (ISO)/CCITT

13



OSI Management mapping and the Internet Management mapping.

User Interface

Communications Service

Services

==: Object Interface

Non-Object Interface

Optional User Interface

Figure 3 XRM Reference Model

14



4 NMF OMNEPoint

The OMNIPoint (Open Management Interoperability Point) program is an NMF (Network

Management Forum) approach to the integrated management of networked information systems.

OMNIPoint comprises a framework for managing networks and systems from the perspective of

the services they deliver to end-users
4

. The ultimate goal of OMNIPoint is to achieve fully

automated, flexible management systems that provide the enterprise using the information

system the required levels of service.

OMNIPoint defines a complete infrastructure that enables management systems to

interoperate and exchange information. OMNIPoint consists of a set of standards,

implementation specifications, testing methods and tools, and object libraries to enable the

development of interoperable management systems and applications. This framework enables the

implementation of products and service quality while reducing costs, and provides the

integration of multiple management technologies, in both computing and telecommunications.

4.1 Requirements

OMNIPoint provides a list of requirements targeted for use by developers of management

systems, applications, and platforms in developing their own statement of requirements. It is not

necessary for a product to support all the requirements to be OMNIPoint compliant.

4.1.1 System Interoperability

OMNIPoint defines mechanisms for ensuring interoperability between management systems

using a set of standard services and protocols. The requirements necessary to achieve

interoperability include the following requirements
5

:

• Interface between Management Systems

• The offered management system must support ISO/CCITT Common Management

Information Service (CMIS) services.

• An approach to naming and exchanging management information must be

supported.

• An interface to nonconformant management systems or elements must be

provided.

• General Management Services

• The offered system must provide configuration, alarm, and event reporting and

logging services.

15



Managed Objects

A particular network resource is represented within management systems by one or

more managed objects.

• The offered system must provide a framework for defining managed objects using

managed object classes, instances, attributes, management operations, behavior,

and notifications. The standard used by OMNIPoint is ISO/CCITT GDMO.

Security ofManagement

In order to prevent unauthorized access to network management systems, the system

should provide access control.

• Access control should restrict unauthorized access to the system via the

interoperable interface (see section 4.2), and for authorized users access control

should then restrict functions and the span of control.

• The system should provide an audit trail and log commands entered by the

operators.

• The system should provide a means to authenticate the identity of any other

system trying to access management information.

• Security alarms for network management violations should be provided.

4.1.2 Management Application

OMNIPoint provides a range of application services that are prerequisites for the

implementation of management applications, but OMNIPoint does not specify the applications

themselves. However, OMNIPoint offers a range of application requirements as an aid to

organizations wishing to develop management applications:

• Integrated Configuration Management

Configuration management is defined as the process ofmanaging change in the business

operation. This process includes the ability to initialize and close down particular resources, to

collect information on demand about the current condition of systems, to obtain notification of

significant changes, and to change the configuration ofthe components in the system.

Requirements to meet integrated configuration management include the following:

16



• It should be possible to enter data only once. This can be achieved either by

having a common database, a centralized change management system or

application, or a distributed approach by each of the involved management
systems owning specific data elements that are within its management domain.

• Management systems should make transparent to network operators differences in

language, terminology, and methods of identifying resources employed by

different systems.

• Management systems should support the construction of a single inventory of all

resources from which a network map can be developed.

• Distribution of configuration management should be supported so that operators

at geographically separated locations can operate on the same configuration

information.

• Integrated Fault Management and Trouble Ticketing

In a complex communication network with multiple components, one failure can

generate multiple alarms from multiple systems. A mechanism should be provided to ensure that

various management systems work together to present the network operator with answers instead

of problems. Requirements to achieve this integration include.

• a mechanism to generate trouble ticket information automatically.

• a correlation among alarms from all management systems received by a single

management application to identify the most likely source of the problem

identified. The system must provide for the activation of predefined diagnostic

and testing procedures to determine or verify where faults occur.

4.1.3 Management Platform Functional Requirements

In addition to the requirements specified for system interoperability, platform requirements

specifically related to application portability and platform scalability must also be met. These

requirements are concerned with the following.

• Application Programming Interfaces

The X/Open Management Protocol Application Programming Interface (XMP), also

known as Communications Management API (CM-API ), provides the capability to

manage objects using ISO/CCITT CMIP and Internet SNMP. The system provider must

identify the support offered for the XMP protocols.

17



Management Protocol

The system should support the Common Management Information Protocol (CMIP). The

level of support provided for the Simple Network Management Protocol (SNMP) should

also be identified.

• Management Information Database

The requirements that provide a basis for managing the management information

databases include:

• a user-friendly data entry and editing mechanism that will allow the management

information databases to be built and maintained, and

• a database accessible using a standard query language.

• Operator Interface

One of the primary objectives ofthe open management of complex, networked systems is

to enable network operators to monitor and control systems without having to adjust to

multiple operator interfaces.

• The systems should provide the operator with a graphical user interface (GUI).

• As the network grows, several operators may need to be on-line to the

management applications concurrently. The system should provide a mechanism

that allows multiple management domains and multiple management views to be

defined.

4.1.4 Testing

The OMNTPoint testing program consists ofthree forms of testing: conformance,

interoperability and acceptance. These forms are described below.

• Conformance Testing

A product is conformant if it meets the requirements of an agreed-upon specification or

international standard. Conformance testing is performed on a product by an appropriate

test laboratory and results are documented in a conformance test report (CTR). The

primary objective of conformance testing is to maximize the probability that different

OMNTPoint implementations will interoperate.

• Interoperability Testing

18



Even when conformance to standards has been achieved, the functions performed may
not meet user requirements due to different interpretations of the specifications by the

developers of each system. Within the OMNIPoint program an interoperability

framework is being developed that will lead to the introduction of testing services.

Acceptance Testing

This form of testing provides for specification of a process which verifies fulfillment of

the requirements.

4.2 OMNIPoint Management Model

The development ofOMNIPoint is based on the principle that if users and suppliers come
together to identify the user's needs and a common approach to meeting those needs, the risks

involved in developing and then implementing the resulting products is significantly reduced
4

.

The main job of information systems is to deliver information services to clients. With the

migration from centralized to distributed information environments, the infrastructure for

delivery of services has dramatically increased in complexity and diversity. The requirement

now is for interoperable management applications that provide a common view of all the

resources within the infrastructure.

OMNIPoint specifies the basic infrastructure to implement open management of networked

information systems. OMNIPoint does not define the actual management applications

themselves. Its emphasis is on the point where two different management systems meet to

exchange data — known as the interoperable interface. Managed objects, representing

management characteristics of the resources being managed, are made visible by one system to

another across the interoperable interface. An agent is the management system that makes

objects visible providing access to the resources represented by the managed objects. A manager

is the management system that operates on managed objects in another system (i.e., a manager

manages and controls the resources that the managed objects represent). Figure 4 illustrates the

OMNIPoint management model.

19



The detailed functions to be performed by particular management applications are not defined

by OMNIPoint. It defines the elements which must be implemented in order to achieve effective

User

Interface

Management

Applications

CORBA

API

Management

Services

CMIS SMFs

SMK

Naming

Information

Services

Directory

Communication Services

XMP

CMIP SNMP RPC Other

Class

Directory
SQL

Defined within OMNIPoint

Left to local implementation

Figure 4 OMNIPoint Management Model

exchange of management information. The management model shows the logical relationships

between these elements and management applications.

Management services are derived from ISO/CCITT CMIS (Common Management
Information Services), a standard that defines the services required to exchange management,

information such as requests to read object attributes or send event reports, together with a set of

System Management Functions (SMF). The SMFs are described below.

• Configuration Management: using CMIS services, OMNIPoint defines functions that

support basic configuration management. These functions depend on the role played by

each system -- manager or agent.

• Fault Management: OMNIPoint defines functions that support fault management. These

functions also depend on whether the system is a manager or an agent.

20



• Testing Management: provides the interface for a management system to request a

remote management system to execute a test and return the results^

• Scheduling Management: provides a mechanism for defining and altering a timetable

(schedule) for the triggering or operation of a function within a resource being managed
over an interoperable interface.

• Trouble Management: provides procedures to initiate trouble reports as a result of a

problem detected or reported. Trouble management allows for the monitoring of status

from detection through resolution.

• Path Tracing: functions are provided to enable the identification of managed objects in a

communications path.

• Security ofManagement: provides mechanisms to protect management applications and

information, specifically access control, peer entity audit trail recording, and generation

and logging of security’ alarms.

Information services define a common naming architecture to unambiguously identify the

resources presented as managed objects, and shared management knowledge. Because

interoperable management products are developed to achieve certain objectives, not all of these

products will have the same capabilities nor behave the same way to achieve their objectives. A
common understanding ofmanagement capabilities (or shared knowledge) must be established

before two management products can interoperate. Each needs to know the other's capabilities

in a given area in order to communicate effectively. OMNIPoint enables the automation of some

aspects of this knowledge-sharing process.

The OMNIPoint management model includes a set of Application Programming Interfaces

(APIs) that enhance portability features of implementations. These APIs are described below:

• X/Open XMP: provides the capability to manipulate managed objects by means of both

ISO/CCITT CMIP and Internet SNMP.

• X/Open XOM: provides the capability (when implementing XMP) to manipulate

abstract data, thus hiding complexity of their definition (ASN.l).

• CORBA: specifies interfaces from objects to an object request broker (ORB) and allows

objects to be portable from one ORB implementation to another. Mapping between the

interface definition language (DDL) and ASN. 1 is still under study, resulting in the view

that CORBA is as a strategy for future implementation.

Communication services are needed for a management system to be able to communicate

21



with another management system. OMNIPoint integrates two different standards: CMEP and

SNMP; these are described below.

• CMIP: specifies the protocol required to exchange management information within an

OSI environment.

• SNMP: specifies the protocol required to exchange management information between

network elements and their management stations in an Internet environment.

Managed objects are the data representation of the resources to be managed by management

applications. They supply management information to the applications and are defined according

to ISO/CCITT GDMO. Managed objects information is stored in the Management Information

Base (MEB).

22



5 Open Distributed Processing (ODP) Overview

The objective ofOpen Distributed Processing (ODP) standardization is to develop standards

that allow the distribution of information processing services in an environment of

heterogeneous information technology resources and multiple organizational domains6
.

The ODP standardization aims to build distributed systems which include openness,

integration, flexibility and transparency. These properties are described below:

• Openness This property consists of portability (the ability to execute different system

components on different processing nodes without modification) and interworking (the

ability to support meaningful interactions between components, possibly residing in

different systems).

• Integration This property allows the incorporation of various systems and resources

(e.g., systems with different architectures, different resources with different

performances) into a whole. Integration helps to deal with heterogeneity.

• Flexibility This property is geared to supporting a system's evolution. A system should

be capable of facing run-time changes and be capable, for instance, of dynamic

reconfiguration to accommodate these changes.

• Transparency This is a central requirement to facilitate distributed applications

development. Transparency aims to hide distribution details from developers.

5.1 The Reference Model of ODP

The Reference Model ofODP (RM-ODP) provides a framework for the standardization of

Open Distributed Processing. The RM-ODP creates an architecture within which support for

distribution, interworking and portability can be integrated.

The purpose of the RM-ODP framework is to organize services within autonomous systems

in order to facilitate interworking of software components distributed into progressively larger

and larger systems.

The RM-ODP is organized into two main parts, described below.

• A descriptive model of distributed systems. This model takes an object-based modeling

approach that provides a common ground for all of the ODP viewpoint specifications.

• A prescriptive model that describes the organization and structure of an open distributed

system. This model is organized around the ODP five viewpoints. These viewpoints are:

Enterprise, Information, Computational, Engineering, and Technology.

23



5.2 ODP Architecture

The prescriptive model
7 makes statements which must hold for a system to be considered as

an ODP system. The model presents the ODP Architecture, which consists of a set of rules to

define the structure of an ODP system and the interrelationships between its parts.

The Reference Model defines a framework comprising:

• viewpoints,

• a viewpoint language for each viewpoint,

• specifications of the functions required to support ODP systems, and

• transparency prescriptions showing how to use the ODP functions to achieve distribution

transparency.

The architecture for ODP systems and the composition of functions is determined by the

combination of the computational language, the engineering language and the transparency

prescriptions.

5.3 ODP Management Functions

Resource management requires that it be possible to invoke management operations on

individual services, the objects that contain them, the cluster that contains the object, the capsule

that contains the cluster and the node that supports the capsule.

A cluster is a set of basic engineering objects (BEOs) associated with a cluster manager.

Each BEO in a cluster can be bound to other BEOs in the same cluster, or in other clusters.

Additionally, a BEO can have an interface supporting the object management function. This

object interface is bound to the cluster manager. A BEO is also bound to the nucleus at an

interface providing the node management function.

Each cluster manager in a capsule is bound to the capsule manager for that capsule. This

structure is presented in figure 5.

The cluster management function can checkpoint, recover, migrate, deactivate and delete the

cluster. The cluster management function may require the cluster manager to interact with the

objects in the cluster via their object management interface. Cluster instantiation is performed by

a capsule manager.

24



A capsule consists of: cluster(s), cluster managers (one for each cluster) and a capsule

manager. The capsule management function instantiates clusters from a cluster template and can

checkpoint, deactivate and delete a capsule. Capsule instantiation is performed by the nucleus.

Object Managent

Interface

Channel

A node consists of one nucleus and a set of capsules. The nucleus provides a set of node

management interfaces, one to each capsule within the node. The node management function

provides thread management for objects which can provide spawning, forking and joining of

activities defined in the computational language.

5.4 Management of ODP Systems

An ODP system consists of a number ofODP applications which make use of underlying

support services. All of these services, as well as the ODP applications, need to be managed.

Management in ODP is concerned with overall systems management, including application

management and communication management.

A managed object is an entity to which a management policy applies and which behavior can

25



be monitored and changed by a manager. A managed object is an abstraction that represents the

properties of data processing and data communications resources, for the purposes of

management. A managed object could be a hardware or software component, or a collection of

information (e.g., a data structure).

Managers monitor the activities of managed objects, make management decisions based on

that information and perform control actions on the managed objects, modifying the system's

behavior.

In an ODP system, only an object can modify its own behavior. In order to realize ODP
management applications, it is necessary to specify management interfaces supporting the

management operations that can be performed on a managed object. Thus, a managed object,

besides its normal functional interfaces, can provide more than one management interface

reflecting different management views.

There are three types of interactions between managers and managed objects. These are

described below.

• control actions: action directed by the manager to the managed object,

• requests for information: issued by the manager, these instructions result in a reply from

the managed object sending the required information, and

• notifications: actions sent to the manager by the managed object to report faults or

events.

Within the ODP environment there are multiple coexisting management views and boundaries

of responsibility. To reflect these different views, domains provide a means of specifying

boundaries of management responsibility and authority. All the managed objects in a domain are

controlled under a common management policy. An important aspect of a management policy is

to specify what management operations managers may perform on the objects they manage.

Management policy and domain membership can be modified through interactions with a single

object, called the domain coordinator managed object. This way managers do not need to

interact individually with multiple managed objects within the environment.

Domains do not encapsulate the member objects; external objects may interact directly with

an object in a domain. Domain relationships can be used to model management structures. It is

necessary to permit different domains, with members in common, to coexist in order to reflect

the different required views of management. Two domains are disjoint ifthey have no member

objects in common. Two domains overlap ifthere are objects that are members of both domains.

The necessary transformations in order to allow activities to cross from one domain to another

take place at the domain boundaries.

26



6 Conclusion

The approaches presented are all intended to give a solution for distributed systems

management. They have different objectives and requirements, but their primary goal is the same
— to provide a framework for managing a network of heterogeneous systems.

The POSIX OSE approach is the only one that tries to clearly differentiate objectives and

requirements. Objectives are general characteristics the management framework must support,

namely portability of applications and users, system interoperability, and scalability. Primarily,

the framework is intended to meet the user's requirements. The first step to address management

of OSE-based distributed systems is to analyze the requirements in order to determine which

services are required. The POSIX OSE defines a requirement ofwhat a user needs from a

service at an interface. The POSIX OSE divides management into five domain areas, according

to the system entities involved, and identifies the requirements for each domain. The OSE
requirements for management of distributed systems may be included within what the

ISO/CCITT OSI management model defines as management functional areas
8

:

• fault management,

• configuration and name management,

• performance management,

• accounting management, and

• security management.

The reference model presented by POSIX OSE for systems management is a very high-level

model, only identifying the system entities involved: management applications, application

platform, user, information interchange entities, and communication entities. Management is

focused on the services expected at the interfaces between the application platform and the other

system entities. These services are divided into: general services and management services.

There is no reference to how these services are provided at the application platform boundaries.

The OSE only refers to the existence of managed objects in the platform, but the OSE does not

address how they are defined and organized.

Like POSIX OSE, the main goal ofX/Open is to provide portability and interoperability of

applications and users. To achieve that, X/Open tries to combine existing and emerging

standards into a system environment. The XSM is also concerned with defining those interfaces

necessary for portable implementation of distributed systems management.

X/Open does not distinguish between objectives and requirements. X/Open only define

requirements, dividing them into high-level requirements and real end-user requirements. The

high-level requirements may be compared to POSIX OSE objectives and the real end-user

requirements to POSIX OSE requirements; however, XSM describes mechanisms used to meet

high-level requirements. For instance, to provide interoperability, XSM includes a

communications service that can be provided by ISO/CCITT CMTP or Internet SNMP, standards

for management interactions (e.g., ISO/CCITT CMIS and SMFs), and managed objects defined

27



using ISO/CCITT GDMO.

The X/Open reference model for management of distributed systems (XRM) describes the

components and architecture necessary to build a distributed system management environment.

Unlike POSIX OSE, the XRM defines managers, agents and managed objects, based in

object-oriented technology. The XRM does not give a detailed description of these components,

referring only to general properties, relationships and the management interactions between

those components. Management interfaces are also identified.

Similarly to POSIX OSE, services are divided into general services and management services.

Furthermore, the XRM identifies an additional class of services -- application services which are

specific to a particular management functional area.

In general, the management of an ODP system, similar to the OSE approach, is provided

by specialized ODP applications. The ODP can distinguish the normal functionality of an

object from its management functionality because objects in ODP are permitted more than

one interface (i.e., interfaces can be regarded as "objects" that share state.). A typical use for

this feature is in the specification of separate interfaces for the functional and management

behavior of objects. An object would have one set of conformance reference points for

functional behavior and another for management behavior. The management domain,

encompassing the management behavior, can be re-mapped onto the other domains, since

ODP assumes for the general case that an application will span organizational boundaries.

The NMF OMNIPoint provides a framework for managing networks and systems from the

perspective of the services delivered to end-users. Like POSIX OSE, OMNIPoint is concerned

about the interfaces to the management system where services are provided to users.

Like X/Open, OMNIPoint does not distinguish between objectives and requirements.

Requirements are divided into: system interoperability requirements, management application

requirements, management platform functional requirements and testing requirements.

OMNIPoint is the only approach that refers to testing requirements. Like X/Open, OMNIPoint

refers to mechanisms intended to meet the requirements defined. OMNIPoint includes XMP to

provide the capability of managing objects using ISO/CCITT CMIP and Internet SNMP.

The OMNIPoint management model provides a range of application services, as does

X/Open, however, does not specify applications themselves. None of the approaches specifies

applications. OMNIPoint also defines managed objects, managers and agents giving more

emphasis to interoperation, defining the elements which must be implemented in order to

achieve effective exchange ofmanagement information and the relationships between them and

management applications. OMNIPoint focuses on interoperable interfaces (i.e., the point where

two different management systems meet to exchange data). Services are divided into

management services, information services and communication services. This classification of

services reflects OMNIPoint concern about interoperation among management systems.

28



7 References

1. ISO/IEC TR 14252
|

IEEE 1003.0. Guide to the POSIX Open System Environment,

1995.

2. Requirements for Distributed Systems Management, Draft 1.1, January, 1995.

Distributed Systems Management Working Group, Open System Environment

Implementors' Workshop (OIW).

3. X/Open Company Ltd. Systems Management: Reference Model. X/Open Guide,

August, 1993.

4. Network Management Forum. OMNIPoint Strategic Framework: A Service-based

Approach to the Management ofNetworks and Systems. Technical Report 1993.

5. Network Management Forum. Discovering OMNIPoint: A common Approach to the

IntegratedManagement ofNetworked Systems. PTR Prentice Hall, 1 993

.

6. ISO/IEC 10746-1. Open Distributed Processing - Reference Model - Part 1: Overview.

ISO/IEC 10746-1, ITU-T X.901 (committee draft), July 1994.

7. ISO-10746-3. Open Distributed Processing - Reference Model - Part 3: Architecture.

ISO/IEC 10746-3, ITU-T X.903 (committee draft), 1995.

8. ISO/IEC 7498-4. Information Processing Systems - Open Systems Interconnection -

Basic Reference Model - Part 4: Management Framework.

29








