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Abstract

This paper is concerned with the task of visual motion-based navigation. A

critical requirement of the task is the ability to estimate 3-D depth and

motion from visual information. Recent studies have demonstrated that the

relevant cues is contained in motion parallax or optical flow and that flow

field divergence and hence time-to-contact can be extracted. We present a

new concept called image gradient evolution (IGE), which utilizes the

change of image spatial gradients over time as a threat cue: an

approaching object induces 2-D expanding motion and causes the image

spatial structure to stretch so the image gradients decrease. Based on this

idea, our method offers a one-step solution directly from image gradients,

instead offrom optical flow and its derived properties. We use a technique

that is local and linear so the implementation can be very fast. The threat

map is expectedly noisy but sufficiently informative, as is seen in

demonstrations on several real images. These two aspects, fast

implementation and useful qualitative information, provide a viable

solution to navigational tasks.

1. Motivation

We start with a simple illustration to introduce the idea of the image gradient evolution

(IGE) and emphasize its difference from the optical flow approach.

Figure 1 . 1 shows a diverging object in the image. Our goal is to obtain an algorithm that

can warn the observer of a potential collision.

1



Conventionally, optical flow (Figure 1.2) is computed first and then the first order flow

field properties (diverging or converging) is used to characterize the underlying objects’ 3-

D motion. In our approach, however, the change of the image gradients over time is com-

puted. As illustrated in Figure 2, a decreasing image intensity gradient(slope) at an image

Original image

intensity profile

Image intensity profile

after diverging

Fig 2 1-D image gradient evolution

Decreasing

slope

point over time signifies a diverging object. As shown in Figure 3, we wish to avoid pro-

cessing the noisy flow data when it is evident that we can achieve the same result from IGE.

The following sections are organized as follows. Section 2 discusses our work in the

context of previous research. The IGE is formulated in the context of a generalized motion

model in Section 3. Section 4 details our filtering scheme and implementation issues. Sec-

tion 5 demonstrates experimental results on real images. Section 6 concludes the paper.
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Fig 3 Different approaches to divergence

2. Previous Work

The looming effect is a major cue in biological vision systems used to sense danger

(Schiff, et al.[23] ). Local motion parallax is in turn a cue for looming or divergence

(Werkhoven & Koenderink[27] ). Since time-to-contact is related to both divergence and

3-D scene structure, solving for time-to-contact is, in an exact sense, equivalent to recov-

ering 3-D motion and structures. There is a plethora of literature dealing with recovering 3-

D motion and structure from optical flow (Adiv[l]
,
Bruss & Hom[5] , Negahdaripour &

Lee[20] ), image sequences (Broida & Chellappa[4] ), or features (Negahdaripour &

Horn[19] , Tsai & Huang[26] ). It is basically an ill-posed and nonlinear problem. These

methods usually use iterative optimization techniques which are often time-consuming.

However, these reports have established the feasibility of imposing extra constraints and

/

or using derivatives of flow to solve the problem in theory. The intended precision of these

quantitative methods is often an illusion due to the limit on accuracy with which the input

measures can be obtained (Thompson & Keamey[25] ). Accurate optical flow estimation

is still a difficult problem.

The avoidance of differentiating optical flow has been approached in different ways.

Integration theorems such as Green’s theorem (Poggio, et al.[22] ,
Cipolla, et al.[9] ),

Stoke’s theorem [22] ,
and Gauss’s theorem (Gupta[ll] ) are used to estimate first order

flow parameters directly from image intensity integrals[l 1] ,
image moments (and their

temporal derivatives) [9] ,
or flow integrals[22] . The integration techniques basically trade

off noise sensitivity for smoothness, which arises from a single motion assumption within
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the integration contour. To prevent the integration contour from going across boundaries,

additional mechanisms, probably global, are required to segment images.

Another approach models the local motion with an affine model. It uses higher order

pointwise image derivatives (Nagel[18]
,
Werkhoven & Koenderink[27] ) or patchwise

motion coherence (Campani & Verri [7]

,

Bergen, et al.[3] ) techniques to solve for first or-

der motion parameters. This approach is actually aimed at accurate flow estimation and the

reports make little mention of 3-D motion estimation.

Since the above two approaches do not model the 3-D structure, they do not offer suf-

ficient information to solve for time-to-contact without additional constraints or differenti-

ations in the general case. It has been proved that only the upper and lower bounds on time-

to-contact can be derived (Subbarao[24] )(Cipolla, et al.[9] ). Meyer and Bouthemy[14]

used temporal derivatives on the first order parameters to circumvent the problem. Essen-

tially it is equivalent to second order derivatives, but Kalman filtering on the temporal de-

rivatives makes the result much smoother and more practical. However, a fast implemen-

tation is relatively difficult.

Nelson & Aloimonos[21] were the first to attempt a realistic approach to navigation.

Their algorithm computes directional divergence, which is a second order flow parameter,

and can be very noisy. Coombs, et al.[10] employed flow divergence for real-time obstacle

avoidance. Their obstacle avoidance system currently appears to be the fastest one using

flow divergence. In their system, the time-to-contact is equivalent to divergence when care-

fully controlling the camera so as to approximately translate in the direction of the optical

axis. The computation of divergence, however, is based on noisy flow and requires tempo-

ral integration in order to interpret the result. Camus[8] implemented a real-time algorithm

for time-to-contact which is quite reliable. However, the application is limited by its restric-

tive assumptions about motion and surfaces. Kundur & Raviv[14] proposed the use of an

image quality measure for the visual threat cue. This method exploits the camera defocus-

ing effect for navigation.
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The major contribution of this paper is to pioneer the idea of IGE and its use as a cue

for threat during navigation. Such a capability is embedded in a generalized 2-D motion

equation that also models expansion. An integrated spatio-temporal filtering scheme is de-

signed to estimate image derivatives in a numerically coherent manner. Using these deriv-

atives, IGE and optical flow can quickly be estimated at the same time in a fast manner.

3. Generalized Motion Model

The brightness constancy equation is often interpreted in the following way:

V/ = 0 => I(x, y, t) = F(x-ut, y-vt)

.

(1)

The first step in measuring IGE is to extend the image motion model from simple 2-D

translation to translation plus expansion. A 3-D point at position P =
(X , Y, Z ) ,

under

perspective projection, projects to a point in the 2-D image plane, (x, y )

,

x = fX/Z
,
where f is the focal length of the projection. (2)

y = fY/z

Let there be relative 3-D translational motion P{t ) = (X + Ux t, Y + U Y t, Z - Uz t)

.

Hence,

x(t) = f(X + UXt)/(Z - Uzt)

y(t) = f(Y+uyt)/(Z-uzt
)'

Brightness constancy and (3) yield

I(x, y, t)= F\x\l-~Yt I-
fUx
Z

(4)

3-D translation only is assumed for its simplicity since 3-D rotation has no bearing on

expansion (Koenderink[13] ). A general motion model that includes rotation parameters

can be found in (Liu, et al.[16] ). The following equations can also be derived from the gen-

eral motion model.

To understand the generalized motion equation better, we describe equation (4) in the

context of optical flow.
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(5)(«,v) = (tm =

fu>
dt’dt
Uzx fU,

Z-Uz t Z-Uz t Z-Uzt

ffUx
,

Uzx fUy Uzy
l z

+
z ’ z

+
z

uzy \

Z-Uzt)~

uz
Let — be denoted by s ,

and
(fUx fUy

{ Z ’ z
by (p, q).

Rewriting (4) and (5):

/ (x, y, t) = F(x(l - st) - pt, y(l - st

)

- qt) (6)

(w, v) = (p + sx, q + sy). (7)

Equation (7) lays out the two components of optical flow: (p,q), and (sx, sy)

.

From

the linear dependency of (sx, sy) on (x, y) , s is interpreted as expansion. The translation

component (p, q) is induced by (Ux ,
U Y ) only, and the expansion component 5 by Uz

only. When s = 0

,

then (u, v) = (p, q) and (6) reduces to (1).

The IGE is characterized by the following equation (derived in Appendix A),

Fl(x,y,t) = (l-st)^-I(x\y', 0),
OX ox

X(l-st)-pt

y(l-st)-qt
(8 )

An image point (x', /) at time 0 moves to (x, y) at time t

.

The two image gradients

are related by (8 ). When 5 is positive, which means the object is approaching ( Uz > 0 , in

(4)), the slope is decreasing (1 - st < 1 ). This coincides with our previous observation in

Fig 2. In the extreme case, when st = 1

,

t = - =
77

- and (x, y, t) = 0.
s Uz ox

(9)

In equation (9), t is interpreted as the time-of-contact. At that instant, the entire image

texture disappears, which is what we observe when an object is too close. It is clear that s

measures not only 2-D expansion, but also IGE and time-to-contact. We can use it as a cue
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for visual threat.

Note that the focus of expansion (FOE) is predefined to be at (0 , 0 ) in (4). To complete

the formulation, we modify (6) and (7) to allow the FOE to be at an arbitrary location

(*o> yo) •

I (x, y, t) =
( 10 )

F((x - x0)(l - st)-pt +x0 ,(y- y0)(l - st)-qt + y0 )

(u,v) = (p + s(x-x0),q + s(y-y0 )). (11)

Note that equation (8) is derived based on the assumption of a parallel frontal surface,

i.e., the surface normal is parallel to the optical axis. When the surface is not parallel fron-

tal, the IGE cannot be reliably interpreted for 3-D motion. However, in order to use IGE as

a qualitative cue for threat, our algorithm identifies other types of surfaces and potential

boundaries as outliers. A post-smoothing stage then overwhelms the errors induced by the

outliers. This technique is reasonable because “divergence due to a relatively distant object

can be large, but only over a short distance in the image” (Nelson & Aloimonos[21] ).

Compared with other approaches that attempt to compute absolute time-to-contact

(Burlina & Chellappa [6] ), our method appears inexact. In fact, we use a simplified model

of the affine motion with reasonable assumptions. It is, however, a sound approach since

humans navigate in complex environments without estimating time-to-contact exactly. In

addition, it is important to be able to navigate in an unknown environment where the scene

and objects change dynamically, therefore there is little point in spending time computing

exact time-to-contact for the underlying scene [25] . For navigational tasks, it is more im-

portant to build a “qualitative" threat map quickly rather than to build an accurate time-to-

contact map slowly.

4. Algorithm and Implementation

To facilitate the estimation of IGE in the framework of the general motion model, a po-

tent and stable image differentiation filtering scheme is needed. The set of orthogonal 3-D
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Hermite polynomial filters is excellent for the task.

4.1 Hermite polynomials

The nth Hermite polynomial Hn (x) is a solution of

d H„ dH„—- -2x— + 2nH„ = 0.

dx dx
( 12)

The H
n
(x) are derived by Rodrigues’ formula [12]

H„(x) = (-lfe
x2J-e-*
dx

(13)

By substituting G(x) (with variance o ) for e in (13), we generalize to Hermite

polynomials with respect to the Gaussian function. Let these Hermite polynomials be

denoted by Hn (x). Then

Hn(x) =
I -L- fH 1 x
~l/2 )

n \~l/2
2 a y v2 a

(14)

The scalar product of two functions and the L2-norm of a function with G(x) as a

weight function are defined as:

(a, b) = J
G(x)a(x)b(x)dx and ||a|| = (a, a)

1/2
(15)

The orthogonality of {Hn (x ) } can be expressed in the following way [12] :

= <T
2V5„ (16)

The 3D case of Hermite polynomials is especially simple because they are separable:

Hljk (x, y, t )
= Hi(x) • Hj(y) Hk (t ) (17)

4.2 Derivation of gradient constraint equations

We use the following Gaussian derivative theorem to derive motion constraint equa-
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tions.

Theorem 1: A one dimensional signal I(x ) can be expanded in terms of Hermite poly-

nomials as

I(x) I h
k = 0

Hk (x)

IIAll
2

Then I
k = (/, Hk) = </'*’, //„) , where I

ll >

k

d I

dxk

(18)

Recall our motion model,

I(x,y,t ) = (19)

F((x-x0)(l -st)-pt+x0 ,(y-

y

0)(l -st)-qt+y0 )

Expand both sides with Hermite polynomials,

oo oo oo

H
oo oo oo

H itESI fy-2
= SEE ^jjfnh then

i = Oj = Ok = 0 11“ ^11 i = 0j = Ok = 0 H“9*ll

hjk = 0’H ijk)
= F

ijk = ( F,H l]k>

Equating I
tj]

to and using Theorem 1, we derive (see Appendix B)

(20)

Iijl
~ -ul

(

i+ ])j0
-vl

Kj + ])0
-(i + j)sl

ij0
where (

u

,
v) are defined in (11). (21)

Equation (21) is linear in terms of optical flow ( u ,
v) and IGE 5 . Using 00, 01, 10 for

ij ,
we can derive three equations up to the second order and solve the linear system. In our

implementation, we use six equations up to the third order to form a least square formula-

tion. The reason is that the residual is an excellent reliability measure. In fact, if we consider

the residual as the extent to which the motion model is violated, it can be used to indicate

noise, non-frontal surfaces, and boundaries (Liu, et al.[17] ). Since s is noisy, our imple-

mentation exploits smoothing with confidence weighting, i.e., extra steps of smoothing on

s with the reciprocal of the residual as weighting. This smooths out noise but prevents

smoothing across boundaries. It also overwhelms the errors due to non-frontal surfaces as

9



long as there is a portion within the object that is parallel frontal or nearly parallel frontal.

If the objects’ surfaces are nowhere frontal, we direct the robot to look and move in the

same direction in a piecewise manner using pan/tilt camera control, thus eliminating lateral

motion that may confuse the algorithm.

5. Experiments

The flow portion of the algorithm has been shown to be very accurate (Liu, et al.[16]

)

compared with other current algorithms [2] . The following figures (Fig 4-Fig 6) show one

Fig 4 Approaching box and threat map

image of the sequence and its 3-D perspective threat map based on IGE 5 . In the 3-D threat
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maps, elevation is used to depict threat. So the elevated area represents closer objects. The

threat value is thresholded to enhance 3-D structure perception. For example, in Figure 4,

the cereal box stands out in the center because most of the threat values within the box are

above the threshold, therefore a navigational algorithm can then use this threat map and

veer aside to avoid the dangerous area in the center; in Figure 5, the threat map is gradually

irregular clouds

elevated from the valley to the mountain in the lower left comer. The sky is perceived as

mostly safe except at some areas where the clouds change brightness irregularly and de-

ceive the algorithm. A navigational algorithm can use this threat map to avoid heading to-
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wards the lower left corner; in Figure 6, the metal plate in the lower left comer is extracted;

the Coke can and the platform are also partially visible; the pole on the right side is visible

Fig 6 NASA sequence and threat map

at both of its ends. The fact that the metal plate is detected and the hole remains intact dem-

onstrates the effect of smoothing with confidence weighting. We are currently working on

a real-time implementation of the algorithm. On 64x64 images, IGE without smoothing can

be expected at the rate of 3-4 frames per second on a HyperSparc 10 MP board. The amount

of smoothing is dependent on the image noise and may take a little more time than required

by computing IGE. Although the threat map is noisy and currently its resolution is limited

by the noise and irregular brightness change, it already provides useful information for nav-
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igation.

6. Conclusion

The use of the IGE eliminates the need to process noisy optical flow. Image gradient

evolution has been shown to be a useful cue for threat. Our algorithm builds a dense qual-

itative threat map based on IGE. For navigation, we would rather compute useful, probably

inexact, information quickly than exact information slowly. That is what our algorithm

achieves.

Appendix A.

We prove equation (8) here.

x' = x(l-st)-pt

y = y{l-st)-qt ( 1 )

Assume the surface is parallel frontal, so = 0
ox

(22 )

/ = y(l-st)-qt

Appendix B.

We prove equation (25)(21) here

First, from (12) and (14), we establish

13



(2)xHn (x) = o2Hn + 1 (x) + nHn _ 1 (x).

Equating I
lj}

to F
l}]

and using Theorem 1,

hi Fij, = (F, Hm)
=

<|f,
Hijo)

-<e-

(x-x0)+pyi My-y0) + q^i _
1-st Jdx l 1-st

(23)

Practically, s « 1 so l - st ~ 1. Equation (23) can be approximated by

-{(s(x-x0 ) + p)^-+ (s(y - y0 ) + Hij0) or -((sx + u)^-+ (sy + v)|j, Hij0) (24)
dx ' 0 dy J dx

Using Theorem 1 again, we derive

- uI
(i + 1)10

- vI
i(j + 7)0 - y0> - *

<^y ^y0>
•

Equation (3) and (2) yield

~uI(i+ l)jO~vIi{j+ l)0~( l + jFIijcrs<3
2
( I(i + 2)jO

+ I
i(j + 2)o'>

(25)

(3)

(26)

The last term in (26) involves higher order differentiation, which often suffers from

quantization error due to limited filter support. Furthermore, it is very small in smooth

images. We choose to ignore it in practice. Hence, we have proved equation (21).
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